
Typing candidate answers
using type coercion

J. W. Murdock

A. Kalyanpur

C. Welty

J. Fan

D. A. Ferrucci

D. C. Gondek

L. Zhang

H. Kanayama

Many questions explicitly indicate the type of answer required.
One popular approach to answering those questions is to develop
recognizers to identify instances of common answer types
(e.g., countries, animals, and food) and consider only answers on
those lists. Such a strategy is poorly suited to answering questions
from the Jeopardy!i television quiz show. Jeopardy! questions
have an extremely broad range of types of answers, and the most
frequently occurring types cover only a small fraction of all answers.
We present an alternative approach to dealing with answer types.
We generate candidate answers without regard to type, and for each
candidate, we employ a variety of sources and strategies to judge
whether the candidate has the desired type. These sources and
strategies provide a set of type coercion scores for each candidate
answer. We use these scores to give preference to answers with
more evidence of having the right type. Our question-answering
system is significantly more accurate with type coercion than it
is without type coercion; these components have a combined
impact of nearly 5% on the accuracy of the IBM Watsoni
question-answering system.

Introduction
The Jeopardy!** question BIn 1902 Panama was still part

of this country[explicitly indicates that the correct answer

is a country. To answer questions such as this one, it is

important to be able to distinguish between candidate

answers that are countries and those that are not. Many

open-domain question-answering (QA) systems (e.g., [1–4])

adopt a type-and-generate approach by analyzing incoming

questions for the expected answer type, mapping it into

a fixed set of known types, and restricting candidate answers

retrieved from the corpus to those that match this answer type

(using type-specific recognizers to identify the candidates).

The type-and-generate approach suffers from several

problems. Restricting the answer types to a fixed and

typically small set of concepts makes the QA system

brittle and narrow in its applicability and scope. Such a

closed-typing approach does not work for sets of questions

that cover a very broad range of topics. Answer types in

Jeopardy! are extremely diverse and are expressed using

a variety of lexical expressions (e.g., Bscarefest[when

referring to horror movies) and are sometimes vague (e.g.,

Bform[) or meaningless (e.g., Bit[). When questions ask

for types of answers not covered by the fixed set of types,

the QA system either fails to generate answers at all or uses

some catchall type (e.g., BOTHER[) for which the rest

of the system is typically not well suited. Performance on

questions whose answer types are outside the fixed type

system is significantly worse than when the answer type is

in the type system. Even when the system does have a type

that is appropriate, the type-and-generate approach is highly

dependent on the precision and the recall of the typing

component. That component acts as a candidate selection

filter; thus, any answer that it rejects cannot be considered

at all, regardless of how much other evidence supports it.

In contrast to the type-and-generate approach, IBM

Watson* uses a generate-and-type framework. This approach

has implications not only for the typing components but

also for other parts of the technology underlying Watson:

DeepQA. Many of the DeepQA search and candidate

generation components do not make use of type information

when identifying candidate answers [5]. As a result, many

candidate answers are generated without any attempt to

determine whether that candidate is an instance of the type

that the question is asking for. Instead, reasoning about

the type of an answer is performed later in the DeepQA

architecture. The portion of the DeepQA architecture

�Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without

alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

J. W. MURDOCK ET AL. 7 : 1IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

0018-8646/12/$5.00 B 2012 IBM

Digital Object Identifier: 10.1147/JRD.2012.2187036

in which candidate answers are evaluated is hypothesis and

evidence scoring. The subset of hypothesis and evidence

scoring that focuses on determining whether the candidate

answer satisfies the answer-type requirements of the question

is type coercion (TyCor). Results from each of the TyCor

components are then treated as distinct features used by

a statistical classifier, along with features from many other

components; the classifier is used to generate a confidence

score for each answer during DeepQA’s final merging

and ranking.

The term Btype coercion[has been used with different

meanings in other contexts. In programming languages,

Btype coercion[refers to the idea that one can force some

value with one data type to change to a different but

compatible data type by putting it into a context where

that other data type is required [6]. For example, in many

programming languages, the expression 0.5 þ 7 would

require that the compiler or the interpreter convert the

integer, i.e., 7, into a floating-point number, i.e., 7.0, before

adding it to another floating-point number; that implicit

change of type is called type coercion. Pustejovsky [7]

describes a similar phenomenon in linguistics, in which a

speaker can take a noun with one semantic type and imply

a different but compatible semantic type by putting it into

a context where that other semantic type is required. For

example, the word Bbook[in the sentence BBob finished

a book[refers to a physical object. This sentence coerces

an interpretation of Bbook[as an activity, i.e., the implied

activity of reading the book. As with that of Pustejovsky,

our paper involves forcing a particular semantic-type

interpretation on some instance. However, Bcoercion[in

our paper involves forcing an interpretation of some answer

to a question based on the type of answer that the question

asks for. For example, if a question asks BWhat novel

won the Pulitzer in 1937?[and a respondent asserts

BGone with the Wind[, the respondent is implicitly forcing

a specific interpretation of BGone with the Wind[, i.e.,

the novel. Some possible answers cannot be coerced into

some types. for example, there is no interpretation of

BMargaret Mitchell[that refers to a novel; thus, this

could not be a valid answer to this question. Our TyCor

components attempt to coerce consistent interpretations

of the candidate answer and the desired type. To the extent

these components are able to do so, DeepQA treats the result

as evidence that the answer could be correct.

Watson includes numerous TyCor components that

employ different sources of typing information and different

logic, but all that fit into the logical framework described

in this paper. There are two inputs to each TyCor

component.

• The lexical answer types (LATs) that the question is

asking for, as identified by DeepQA’s question analysis

module [8]. A LAT is a text string indicating the type of

answer being sought (e.g., Bactor,[Bcountry,[and

Bscarefest[).

• A candidate answer from DeepQA’s candidate

generation module [5].

The output of each TyCor component is a numerical

score indicating the extent to which that component has

concluded that the candidate answer is an instance of the type

indicated by the LAT. Unlike many QA systems, Watson

does not use answer-typing results as a Bhard filter,[

discarding that any answer that it cannot conclude has

the desired type. Instead, each TyCor score is a distinct

feature that is used by DeepQA’s statistical answer ranking

algorithm to assign a confidence value to each candidate

answer and to rank the answers according their confidence

value [9]. Correct answers in the training data are likely to

have evidence that they are instances of the desired type

(since they are). As a result, DeepQA’s statistical answer

ranking algorithm tends to prefer answers with higher TyCor

scores over answers with lower TyCor scores, but this

preference is not absolute, and an answer with little or no

evidence that it has the desired type can be still selected

as the final answer, if there is overwhelming evidence that

this answer satisfies the other requirements of the question

(particularly when the other candidate answers also have

little or no TyCor evidence).

There is no single fixed set of types that is used by all

of the TyCor components. Instead, each TyCor component

is responsible for interpreting the LAT to the extent that

it needs to do so. Some TyCor components have a fixed

list of structured types that they are able to process; those

components are not useful at all when they are not able to

map the LAT to one of their types. Other TyCor components

have instances tagged with types in the form of text strings;

those components compute whether the LAT is consistent

with the known types for a candidate answer by matching

the LAT to those types linguistically (e.g., using dictionary

resources to identify synonyms).

This paper begins with a discussion of answer typing

in Jeopardy!. It then explains how this paper fits into

the DeepQA architecture. Next, it describes the shared

logical framework for TyCor. After that, it provides brief

descriptions of some of our TyCor components. Finally,

this paper presents evaluation results, related work,

future work, and conclusions.

Answer types in Jeopardy!
In our attempt to build a QA system capable of rivaling

expert human performance on answering open-domain

questions, we started with a type-and-generate approach

for generating candidate answers, simply because that is what

we had. However, in our early analysis of the domain of

questions from the TV quiz show Jeopardy!, we found

this approach to be problematic.

7 : 2 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

Human language is remarkably rich when it comes to

assigning types; nearly any word can be used as a type,

particularly in some questions.

• Invented in the 1500s to speed up the game, this

maneuver involves two pieces of the same color.

(Answer: BCastling[)

• The first known airmail service took place in Paris in

1870 by this conveyance. (Answer: Bhot-air balloon[)

• In 2003, this Oriole first sacker was elected to the

Baseball Hall of Fame. (Answer: BEddie Murray[)

• Freddy Krueger was introduced in this 1984 scarefest.

(Answer: BA Nightmare on Elm Street[)

• When hit by electrons, a phosphor gives off

electromagnetic energy in this form. (Answer: Blight[)

• Whitney’s patent for this revolutionized the garment

industry. (Answer: Bthe cotton gin[)

Such variability highlights one of the intrinsic problems

with the type-and-generate approach, i.e., we cannot reliably

predict what types the questions will ask about and what

their instances are. We analyzed 20,000 past Jeopardy!

questions and observed a very long tail of types (see

Figure 1). Although the type system for our named entity

detector was among the largest of the state-of-the-art QA

systems (more than 100 types), it covered less than half

the questions. Roughly 5,000 different type words were used

in the 20,000 questions; more than half of these occurred

fewer than three times in the question set, and roughly

12% occurred once. As we continued to evaluate on hidden

data, we found the 12% number to be roughly constant;

new types were being introduced at this rate (one in eight

questions on the average). In addition, 15% of questions

did not explicitly assert a LAT.

These observations led us to conclude that we need

to be open and flexible about types, treating them as a

property of question and answer combined. In other words,

instead of finding candidates of the right type, we want

to find candidates (in some way) and judge whether each

one is of the right type by examining it in context with

the answer type from the question. Furthermore, we need

to accommodate sources of type and instance data that

collectively reflect the same descriptive diversity as these

questions.

TyCor in the DeepQA Architecture
Our TyCor capabilities fit into the DeepQA architecture [10].

Question analysisVDeepQA’s question analysis includes

many subcomponents that classify and extract

relevant information from the question [8]. One kind

of information extracted during question analysis is

a LAT, i.e., a word in the question that indicates the type

of answer being sought. LAT recognition is easier than

mapping to a semantic type; although imperfect, our

LAT detection has an F1 measure of 0.8 (evaluated on

3,500 randomly selected questions [8]). LAT detection

includes a confidence measure, which is factored into

the TyCor scores.

Candidate generationVCandidate generation in DeepQA

employs a wide variety of strategies including identifying

candidates in both text and structured sources [5]. In some

cases, candidate generation results in a disambiguated

entity, e.g., one for which a Wikipedia** URL has been

Figure 1

Distribution of the 30 most frequent lexical answer types in 20,000 Jeopardy! questions.

J. W. MURDOCK ET AL. 7 : 3IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

identified. For example, if the candidate answer is found

in a Wikipedia document as the anchor text of some

hypertext link, candidate generation can use the target

of that link to provide a disambiguation for the entity.

The inputs to TyCor include these candidate answers

(with disambiguation results, if available) plus the LATs

identified in the question analysis.

Hypothesis and evidence scoringVThe TyCor components

are a subset of the hypothesis- and evidence-scoring

components. During the hypothesis- and evidence-scoring

phase, many different algorithms and sources are used

to evaluate evidence for each candidate answer.

Final-answer merging and rankingVAn overall

determination of the final answer must combine the scores

from each scoring algorithm for each answer in a way

that weighs each score as appropriate for the context

given by the question [9]. The TyCor scores are among

the many features used by this component.

TyCor logical framework
The TyCor answer-scoring components take as input one

or more LATs and a candidate answer. They each return a

score indicating the strength of the evidence that it is possible

to coerce some interpretation of the candidate answer into

some instance that is consistent with some interpretation

of the LATs. Since language does not often distinguish

between instantiation (e.g., BSecretariat was a horse[)

and subclassing (e.g., BA pony is a horse[), the TyCor

components must allow for this; TyCor gives an answer

a high score if it can be interpreted as a subclass or an

instance of a LAT.

For each LAT, the TyCor component performs the

four steps illustrated in Figure 2 and described in detail

below. The TyCor component then combines scores across

LATs to produce a score for the candidate answer. The four

steps involve using some source (e.g., a knowledge-base)

to determine whether the source indicates that the answer has

the desired type. This involves mapping the candidate answer

and LAT to instances and types in the source, and then

consulting the source to see if it claims that some instance

corresponding to the candidate answer is consistent with

some type corresponding to the LAT. Specifically, here are

the four steps.

Entity disambiguation and matching (EDM)VEDM finds

entities in the typing source that correspond to the

candidate answer. EDM must account for both polysemy

(the same name may refer to many entities) and synonymy

(the same entity may have multiple names). Each source

may require its own special EDM implementations that

exploit properties of the source; for example, DBpedia [11]

encodes useful naming information in the entity identifier

(ID). EDM implementations typically try to use some

context for the answer, but in purely structured sources,

this context may be difficult to exploit.

Type retrieval (TR)VTR retrieves the types for each entity

identified by EDM. For some TyCors, such as those

using structured sources, this step exercises the primary

function of the source and is simple. In unstructured

sources, this may require parsing [12] or other semantic

processing [13] of the natural language.

Predicate disambiguation and matching (PDM)VPDM

identifies types that correspond to the LAT found. In some

sources, this is the same algorithm as EDM; in others,

type lookup requires special treatment because those

sources encode types and instances differently. In TyCors

that use unstructured information as a source, the PDM

step may simply return the LAT itself. PDM strongly

Figure 2

High-level architecture of the TyCor component involving four core steps. For example, in YAGO TyCor, given candidate Bdifficulty swallowing[and

lexical answer type (LAT) Bmanifestation[, EDM maps candidate to DBpedia entity BDysphagia[; TR obtains WordNet type BSymptom[for the

DBpedia instance; PDM maps LAT to WordNet concept BCondition[; and the final TR step finds a hyponymy relation between BSymptom[and

BCondition[producing a positive TyCor score.

7 : 4 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

corresponds to notion of word-sense disambiguation with

respect to a specific source.

Type alignmentVThe results of the PDM and TR steps

must be then compared to determine the degree of match.

In sources containing a formal-type taxonomy, this

may include checking the taxonomy for subsumption,

disjointness, etc. For sources in which types are

natural-language text, alignment may require determining

whether the text of the LAT and the text of the

retrieved type for the answer are consistent. This is a

challenging natural-language processing (NLP) task

that uses parsing [12] and depends on resources such

as WordNet** [14] for finding synonyms, hypernyms, etc.

Note that EDM is skipped if candidate generation was

able to produce a disambiguated candidate answer with a

specified unique ID that the TyCor is able to use. For

example, the Wiki-Category TyCor (described later) has

types associated with specific Wikipedia entries; thus, the

Wiki-Category TyCor will skip EDM when it encounters

a candidate answer that was generated with a known

Wikipedia URI.

EDM, PDM, and TR can each return multiple results.

For example, one could start with a candidate string BGone

with the Wind[and a LAT Bbook[; EDM could tie the

candidate to a variety of entities, one of which is a movie

and one of which is a novel. We may have more or less

confidence in each of those entities, and those confidence

scores are factored into the TyCor score. Similarly, each

of those candidates can have multiple types found in TR.

Moreover, the LAT Bbook[could correspond to a type

of published work, a phenomenon in graph theory, or

something else. Type alignment attempts to align all of

the types retrieved by TR (for all of the entities identified

by EDM) to all of the types identifies by PDM.

We refer to TyCor as Bcoercing[the candidate answer

to the LAT because we are not committing early to a

single interpretation at the EDM, PDM, and TR stages.

For example, instead of first disambiguating BGone with

the Wind[and then deciding if it is an instance of the type

we want, we remain open to a variety of possibilities after

EDM and consider the types for all of those possibilities.

Thus, the type alignment step is able to Bforce[a particular

interpretation of both the candidate and the LAT by

identifying the interpretations of each that best fit each

other and basing its conclusions on those interpretations.

These four steps constitute a logical framework, i.e.,

conceptually all of our TyCor components follow this

progression of steps. Many subsets of the TyCor components

share common implementations of one or more of these

steps. For example, several of our TyCor sources (described

in the next section) provide type information for entities

defined by Wikipedia URLs; the TyCor components that

use those sources share a common EDM implementation.

In future work, we intend to formalize and refine this

framework (see the section on future work).

TyCor components that do not find any evidence that

the candidate answer has the desired type indicate a neutral

result (i.e., they neither support nor refute the answer).

In addition, a few TyCor components are able to identify

specific evidence that the answer does not have the desired

type. TyCor components that are able to identify negative

evidence are described as such in the next section. The

logic used to identify negative evidence is generally different

from the logic used to identify positive evidence. There is

no a priori reason to believe that a model should treat a

strong negative TyCor score as being as bad as a strong

positive TyCor score is good. Consequently, TyCor

represents positive and negative scores as distinct features

for use by DeepQA answer ranking [9]. TyCor components

that consider negative typing evidence have two features

in the final model, and these two features are constrained

by the framework such that each TyCor component can

have only one of these two features with a nonzero value

per candidate answer. It is possible that different TyCor

components produce conflicting scores, e.g., one produces

positive evidence and another produces negative evidence.

Generally speaking, negative typing evidence will reduce

confidence in an answer, but it will not remove the answer

or invalidate it. Since there is always error, it must be

possible for other evidence in Watson to override negative

typing evidence that may be incorrect.

TyCor sources and strategies
Watson uses a suite of more than ten different TyCor

components for scoring candidate answers against type

evidence. Some of our TyCor components share algorithms

but use different sources, whereas others use different

algorithms on the same sources. The algorithms mainly

involve different approaches to the four TyCor steps as

appropriate for the source, with an eye toward accurately

accounting for the error in the steps (most notably EDM

and alignment) to produce a meaningful score.

Some TyCor components have a well-defined set of

structured types. Some examples of TyCor components

of this sort are given.

YAGO (Yet Another Great Ontology)VMany candidate

answers in our domain are titles of Wikipedia articles.

Each of these is an entity in DBpedia, i.e., a linked open

data source automatically compiled from Wikipedia

infoboxes (i.e., information boxes) and article templates.

Entities (articles) in DBpedia have types represented in a

resource description framework (RDF) from YAGO [15],

i.e., a semi-automatically constructed type taxonomy

based on WordNet, corpus analysis, and Wikipedia.

In addition, we have manually added roughly

200 disjointness constraints (e.g., Ba Person is not a

J. W. MURDOCK ET AL. 7 : 5IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

Country[) between high-level concepts in the taxonomy.

Using a special-purpose reasoner to check for subsumption

and disjointness, YAGO TyCor can produce negative

evidence when a candidate matches only types that are

disjoint from all the types matching the LAT.

GenderVThis TyCor applies only to questions asking for

a person of a specified gender. It scores the evidence that

a candidate answer is of the appropriate gender using a

custom source of data mined from articles about people

by determining which pronouns are most unambiguously

or most commonly used to refer to the person. Gender

TyCor can produce negative evidence if the LAT indicates

one gender and the answer is found to be of another.

Closed LATVCertain LATs identify types with enumerable

lists of instances, such as countries, U.S. states, and

U.S. presidents. When such a list is available, this TyCor

component is capable of producing a negative-type score

for candidate answers that are not in the list. Of course,

as with everything described here, confidence is never

perfect because of name-matching issues and the

possibility that the LAT is used in a nonstandard way.

For example, the mythical country of Gondor is not

on our closed list but could conceivably be the answer

to a country-LAT question. Because all of the lists

are believed to be complete (at least for the most obvious

interpretation of the LAT), closed LAT TyCor asserts

negative evidence for a candidate answer if it knows the

LAT and does not have that answer on its list.

LexicalVOccasionally, LATs specify some lexical constraint

on the answer, e.g., that it is a verb, or a phrase, or a

first name. Lexical TyCor uses various special-purpose

algorithms based on the LAT for scoring these constraints.

Lexical TyCor is able to produce negative evidence for

some types (e.g., it can conclude that any answer that

contains no blank space is not consistent with the

LAT Bphrase[).

Named entity detection (NED)VTyCor uses a rule-based

named entity detector that was originally designed for

a classical type-and-generate QA system [16]. That

named entity detector recognizes instances of more than

100 structured types, most of which are among the top

100 LATs. The named entity detector identifies zero

or more structured types corresponding to the LAT,

and it annotates the candidate answer with zero or more

structured types that it instantiates. NED TyCor determines

whether any structured type that the detector found for

the LAT is consistent with any structured type that the

detector found for the candidate answer.

WordNetVWordNet is used in several other TyCor

components to assist in the type alignment phase;

however, it does contain some limited information about

well-known entities such as famous scientists and a

few geographic and geopolitical entities. It also has

high coverage of biological taxonomies. WordNet TyCor

uses both hyponym and instance-of links in WordNet

to match the candidate answer string to the LAT.

This TyCor component has very high precision but

low recall.

Other TyCor components have types that are arbitrary

natural-language text. Type alignment for these TyCors

requires processing that natural language. We do this by

aligning terms with corresponding positions in the syntactic

structure of the types (as recognized by DeepQA’s parsing

and predicate-argument structure [12]). Once terms are

aligned, we determine whether they are consistent using

a variety of sources such as Wikipedia redirects and

WordNet. Some examples of TyCor components of this

sort are given.

Wiki-CategoryVWikipedia articles are frequently tagged

with explicit categories in the form of natural-language

text. All of these categories are stored in DBpedia. The

Wiki-Category TyCor uses the category names for an

entity as types. Wiki-Category does not use the category

structure (e.g., subcategory), because this adds too

much noise.

Wiki-ListVWikipedia and many other Web sources contain

lists of things associated in some way, such as BList of

Argentinean Nobel Prize Winners[. We collect these lists

and use the text following BList of[as types for the

instances on the list.

Wiki-IntroVBy convention, the first sentence of a Wikipedia

article identifies one or more types for the entity described

in the article, e.g., BTom Hanks is an American actor,

producer, writer, and director[or BThe lion (Panthera leo)

is one of the four big cats in the genus Panthera[.

Wiki-Intro TyCor utilizes a special source mined

from these intro passages using a variety of syntactic

patterns.

IdentityVIdentity TyCor uses the candidate answer text

as a source of typing information. For example, Identity

TyCor can recognize that Bthe Chu River[is a river

by looking at the text of the answer, without any prior

knowledge of that entity.

PassageVMany candidate answers occur in a passage of

text found either in primary search [5] or in supporting

evidence retrieval [17]. Occasionally, that passage

asserts the candidate’s type, e.g., BChristian Bale is the

first actor to really do Batman justice[. Passage TyCor

uses pattern-based relation detection [13] to identify

assertions that some entity has some type and attempts

to match the asserted type to the LAT.

PRISMATICVPRISMATIC [18] is a repository of corpus

statistics. PRISMATIC TyCor measures the frequency

with which the candidate answer is directly asserted to

be an instance of the LAT (using the same type assertion

detection patterns used in Passage TyCor).

7 : 6 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

Example
The four steps of the TyCor logical framework are differently

implemented in the various TyCor strategies. For example,

consider a question asking for an Bemperor[and the

candidate answer BNapoleon.[Here is how a few of the

TyCor strategies handle different steps of the framework for

this example.

EDMVTyCor strategies that use Wikipedia or derived

sources (e.g., Wiki-List, Wiki-Category, and YAGO) try

to determine what DBpedia entry BNapoleon[refers to.

They find dbpedia:Napoleon is as a strong match. They

also find a variety of other matches such as dbpedia:

Napoleon_%28card_game%29 (for which it assigns a

lower score). The WordNet TyCor looks up BNapoleon[

and finds three different word senses. Passage TyCor

identifies occurrences of Napoleon in some supporting

passage during this step. Other TyCors such as NED

and Identity TyCor simply take the candidate string

BNapoleon[and declare that to be the entity.

TRVThose TyCor strategies that identify a formal entity

[e.g., a DBpedia URL or a WordNet synset (or set of

synonyms)] during EDM are generally able to look up one

or more types for that entity in some structured source.

For example, YAGO TyCor is able to find formal YAGO

types for the DBpedia entities identified during EDM.

Similarly, WordNet TyCor finds other synsets that the

synsets for Napoleon are either instances or hyponyms

of; in this case, WordNet labels the primary sense of

BNapoleon[as an instance of the primary sense of

Bemperor[. NED TyCor gets a structured type from the

named entity detector, e.g., it labels BNapoleon[as a

NAME reference to a PoliticalLeader. Some TyCors

produce types in this stage, which are not entries in

a formal ontology but rather are simply text strings.

For example, Wiki-List provides the type BFrench

monarch[for dbpedia:Napoleon because there is a

page on Wikipedia labeled BList of French monarchs[that

has an entry that links to http://en.wikipedia.org/wiki/

Napoleon_I_of_France, which is a Wikipedia redirect

to http://en.wikipedia.org/wiki/Napoleon. Those TyCor

strategies that produce text strings for types defer the

issue of making sense of that type until the type

alignment step.

PDMVTyCor strategies that use formal types look up those

types in this step. For example, WordNet looks up the

LAT Bemperor[and identifies four synsets for that word.

YAGO TyCor finds formal types in the YAGO ontology

corresponding to the string Bemperor[. NED TyCor

examines the NED results on the question and determines

whether the LAT in the question was labeled with some

named entity type. In this case, Bemperor[is marked

as a NOMINAL reference to a PoliticalLeader. As with

TR, some TyCors implement PDM by simply returning the

input string, deferring the work of making sense of

that string.

Type alignmentVFor TyCors such as WordNet, YAGO,

and NED that produce formal types in a type hierarchy

from TR and PDM, the type alignment process involves

aligning types in the hierarchy, i.e., checking for

subsumption, disjointness, etc. For example, WordNet

TyCor checks to see whether the entity type (from TR) is

a hyponym of the question’s desired type (from PDM).

In contrast, those strategies that simply produce text strings

from TR and PDM need to determine the extent to which

the known entity type (from TR) implies the desired

answer type (from PDM). For example, Wiki-List tries

to determine whether it can conclude that a BFrench

monarch[is an Bemperor[by parsing both (e.g., finding

that Bmonarch[is the headword of BFrench monarch[)

and matching terms using resources such as WordNet

and Wikipedia redirects. Many of these strategies use a

single configurable implementation of this capability but

use a variety of different configurations, which provide

different tradeoffs among precision and recall.

Evaluation
We have evaluated our TyCor mechanisms by comparing the

effectiveness of our QA system with and without TyCor

components. All experiments reported here were performed

on a set of 3,508 previously unseen Jeopardy! questions.

Figure 3 shows a line graph comparing the system with

all of the TyCor strategies versus the system with none,

and a bar graph showing the impact of our most effective

individual TyCor strategies. The horizontal axis of the line

graph shows the percentage of questions answered, with

preference given to questions where the confidence in the

answer is highest. For example, the 70% point on the

axis shows how the system performs when it attempts to

answer only 70% that it is most confident of (we refer to this

value as Precision@70). The vertical axis of the line graph

indicates the fraction of those questions that are correctly

answered. For example, the line for the complete Watson

system with all of the TyCor components shows a precision

of 0.875 at 70% of the questions answered; for 70% of

the questions for which Watson was most confident in its

answer, it answered 87.5% of those questions correctly.

In contrast, the full Watson system without TyCor answered

only 81.5% of questions correctly for the 70% for which

it was most confident. The difference, i.e., 6.0%, in

Precision@70 is statistically significant and is greater than

the impact on the overall accuracy (i.e., Precision@100),

which is 4.9%. The greater impact at 70% than 100%

suggests that TyCor is even more useful for assessing

confidence in Watson’s answers than it is for selecting

answers; when Watson is able to use its confidence score

to decide which questions to attempt to answer, it benefits

even more from TyCor.

J. W. MURDOCK ET AL. 7 : 7IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

The bar graph shows the impact on accuracy of 12 of our

most interesting TyCor components. We define impact on

accuracy here as the difference between the accuracy of

the QA system with no TyCor components and the accuracy

of the system with only the specified TyCor component

(accuracy is the percentage of all questions that are correctly

answered). The first 12 bars show the impact of individual

TyCor components, and the final bar shows the impact

of all of the TyCor components together. The individual

components shown have varying impact on accuracy of up

to 3%, and all of them together have an impact on accuracy

of 4.9%. That difference is also visible on the graph, by

comparing the rightmost points on the lines with no TyCor

and all TyCor.

We measure statistical significance for accuracy using

McNemar’s test with a correction for continuity [19], and

we consider p G :05 to be significant. By that standard, the

difference between Lexical TyCor and no TyCor is not

statistically significant. This is not surprising because Lexical

TyCor is a highly specialized component that addresses a

small number of unusual LATs. Each of the other TyCors

shows a significant impact versus no TyCor, and all TyCor

shows a significant impact versus any of the TyCors alone.

Precision@70 is not amenable to McNemar’s test because

it does not reflect a mean over a set of independent

observations (e.g., raising the confidence to an answer for

one question can cause some other question to drop out

of the 70% with the highest confidence). Consequently,

we use Fisher’s randomization test [20] to assess significance

for this metric.

One concern that we have with the results of ablating

TyCor from the full Watson system is that some of the

impact of TyCor is blunted by the existence of other scoring

components in Watson that are not explicitly focused on

TyCor but do implicitly correlate with answers having the

correct type. For example, the Passage Term Match

algorithm [17] counts the frequency with which each

candidate answer co-occurs in retrieved passages with terms

in the question. Since the LAT is in the question, it is one

of the terms that is matched and counted by Passage Term

Match. In many cases, we would expect answers that are

instances of the LAT to frequently co-occur with the LAT in

text; thus, we would expect the signal from the Passage Term

Match feature to overlap with the signal that our TyCor

components produce, blunting their measured impact in

ablation studies. Consequently, we have further evaluated

our TyCor components on the Watson answer-scoring

baseline system [10], which is also used for other DeepQA

evaluations [13, 17, 21]; that baseline includes all of the

DeepQA question analysis [8] plus search and candidate

generation [5], but no deep and shallow evidence scoring

other than NED TyCor. Answer ranking in the Watson

Figure 3

Impact of type coercion on the complete Watson QA system.

7 : 8 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

answer-scoring baseline system uses the same statistical

answer-ranking techniques as the full Watson system but has

a much more restricted set of features to work with. It has

all of Watson’s search and candidate generation features

(e.g., a rank and a score from a keyword search engine for a

passage where the answer was found). However, it does

not have any features that are derived from the deep analysis

of supporting evidence.

Starting with the Watson answer-scoring baseline, we

compare a variant with no TyCor (not even the TyCor

with NED) to variants with one TyCor component added,

as well as to the baseline system with all TyCor components

added. Figure 4 shows those results. TyCor has a greater

impact in this simpler configuration, with some components

showing more than 4% impact and the entire set showing

more than 8%. Each of the components except Identity

TyCor and Lexical TyCor provides a significant impact

versus no TyCor, and again, all TyCor provides a significant

impact versus any one TyCor.

The Watson answer-scoring baseline system includes some

signal that overlaps with answer typing, because several

of the search and candidate generation algorithms make use

of the LAT in finding sources of candidate answers [5].

Consequently, we built an extremely simple Bultralite[

baseline system as an additional point of comparison for

TyCor. The ultralite system includes only text document

search [5]; it does not search through any knowledge-bases

or text passages. Figure 5 shows the effectiveness of

TyCor in that configuration. The effect on accuracy is even

greater, with some components showing 8% to 10% and

all of the components together resulting in an impact of more

than 15%. Again, each of the components except Lexical

TyCor provides a significant impact versus no TyCor,

and again, all TyCor provides a significant impact versus

any one TyCor.

As noted earlier, the NED TyCor uses a NED component

that was originally built for a classical type-and-generate

QA system that was consistently one of the highest

performers in competitive QA evaluations [1]. As such,

the comparison between the NED TyCor performance

and the all TyCor performance in Figures 3–5 demonstrates

the impact of our additional sources and strategies versus

a traditional QA baseline. That difference is 2.4% in the

full Watson system, 4.6% in the Watson answer-scoring

baseline system, and 8.5% in the ultralite baseline system;

those differences are all significant. We have also conducted

experiments in which we completely discarded candidates

that are rejected by NED TyCor, to more closely approximate

a type-and-generate approach (for comparison purposes).

Those experiments have shown that discarding candidates

rejected by NED TyCor performs worse than using NED

TyCor as the only TyCor feature and even worse than

no TyCor at all, because it discards many correct answers

that DeepQA is able to select using other features.

Figure 4

Impact of type coercion on the Watson answer-scoring baseline QA system.

J. W. MURDOCK ET AL. 7 : 9IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

Related work
Our paper differs in two major respects from existing work

on answer typing for QA.

• We employ a diverse collection of typing resources,

including highly precise but narrow coverage

hand-crafted resources (e.g., NED, closed LAT), broad

community generated resources (e.g., Wiki-Category,

YAGO), and resources automatically extracted from

natural-language text (e.g., Wiki-Intro, PRISMATIC).

This diversity allows us to cover a very wide range

of types while still having very high confidence for

those types that are well understood.

• We do not discard or ignore answers that we cannot

coerce to the given LAT. Instead, we retain all answers;

results from each TyCor are provided as a distinct

feature that is used by DeepQA answer ranking.

Traditional QA systems (e.g., [1–4]) have tightly

integrated capabilities for finding candidate answers and

answer typing, so that only strings that appear to have

the desired answer type are ever considered as candidate

answers. There is some existing work that has decoupled

typing and generation to some extent. QUARTZ [22] is a QA

system that uses a statistical mapping from LATs to WordNet

for PDM, and collocation counts for the candidate answer

with synonyms of the mapped type for TR. In [23], the

approach has been taken a step further by combining

correlation-based typing scores with type information from

resources such as Wikipedia, using a machine-learning-based

scheme to compute type validity. Both [22] and [23]

are similar to our TyCor approach in which they defer

type-checking decisions to the latter in the QA pipeline

and use a collection of techniques and resources (instead

of relying on classical NED) to check for a type match

between the candidate and the expected answer type in

the question. In our approach, the type match information

is not used as a filter to discard candidate answers;

instead, the individual TyCor scores are combined

statistically with other answer scores in DeepQA answer

ranking. A similar approach to the combination of our

NED and Wiki-Category is presented in [24]. In that work,

the traditional type-and-generate approach is used when

question analysis can recognize a semantic answer type in

the question and revert to Wikipedia categories. As with [22]

and [23], typing is treated as a hard filter, not as supplying

features for classifying answers.

Another unique characteristic of our TyCor is the

framework that separates the various steps of EDM, PDM,

type alignment, etc. The algorithms (and the resources)

that we use to implement these steps are complex and

variedVhaving either much more precision or much broader

Figure 5

Impact of type coercion on the Bultralite[baseline QA system.

7 : 10 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

scope compared with existing work. For example, the only

use of Wikipedia content for type inference in [23] is through

a shallow heuristic that searches for the mention of the

expected answer type on the Wikipedia page of a candidate

answer (mapped using an exact string match to the page

title) and makes a yes/no decision for the type validity on

the basis of this finding. In contrast, in our Wikipedia-based

TyCors, we use an EDM algorithm to map the candidate

answer string to a Wikipedia page using a variety of

resources such as Wikipedia redirects, extracted synonym

lists, and link-anchor data. We then use different kinds of

type information expressed in Wikipedia (e.g., lexical types

in the introductory paragraphs and Wikipedia categories)

as types to match to the LAT. Similarly, whereas [22] uses

the notion of complement-type sets, which are approximated

using heuristics such as sibling types, we have explicitly

identified pairs of types in YAGO that are disjoint, and we

use disjointness information as evidence against candidate

answers whose types are disjoint with the LAT.

Our PRISMATIC, Wiki-Intro, and Passage TyCor

components use NLP analyses to extract typing information

from natural-language text. The automatic detection of

typing relations is a long-studied topic in NLP [25–27].

A variety of existing projects attempt to use relation detection

of this sort to build large-scale entity-type knowledge-bases

[28, 29]. PRISMATIC and Wiki-Intro TyCors both follow

this basic approach; they differ from each other in which

PRISMATIC runs over a large Web corpus, whereas

Wiki-Intro draws results exclusively from the first sentence

of Wikipedia articles. As a result, PRISMATIC TyCor

has broader coverage and has statistics for each entity-type

pair (e.g., statistics indicating how often BThe Godfather[

is asserted to be a Bfilm[and how often BThe Godfather[

is asserted to be a novel). In contrast, Wiki-Intro has much

less data, but the data that it does have is very precise

and is disambiguated (attached to a specific Wikipedia URL,

e.g., http://en.wikipedia.org/wiki/The_Godfather is a Bfilm[).

Existing research on mining answer types from text is

closer to PRISMATIC TyCor in this respect. As described

earlier, we are able to benefit from the advantages of each

by posting them (along with all of our other TyCor results)

as distinct features for DeepQA statistical answer ranking.

Future work
As noted in the BTyCor logical framework[section of

this paper, all of our TyCor components share a common

logical framework consisting of four processing subtasks.

The logical framework is not implemented as a common

software artifact that is shared across all TyCors. In future

work, we intend to build an explicit software framework

that formalizes this design.

The fact that the logical architecture is not explicit in

the implementation was convenient early in our development

process because many of our TyCor components address

dramatically different challenges with different information

requirements. For example, type alignment in YAGO

TyCor takes a pair of structured types as input, and type

alignment in Wiki-List TyCor takes a pair of lexical types

as input; the former involves reasoning in a formal ontology,

whereas the latter involves NLP. This can be addressed

by a careful object-oriented design, e.g., by defining a type

alignment interface with abstract input types and providing

different implementations of those input types to provide

the different functionality required.

As work on TyCor has matured, the lack of an explicit

implementation of the logical framework has become an

increasingly significant obstacle to TyCor research. For

example, we would like to be able to rapidly test different

approaches to combining scores across the different steps

of the process; doing so now requires modifying different

pieces of code in different TyCor implementations. An

explicit software framework would provide a common

code base that integrates the steps of the TyCor process.

Given our experience with the diverse range of TyCors

in Watson, we believe that we are now ready to design

and implement an explicit software framework. The key

challenge in this paper will be precisely identifying the

proper level of abstraction, i.e., distinguishing capabilities

and data structures that are shared across all implementations

from those that are specific to particular TyCor algorithms

and sources. We now have a reasonable, large, and diverse

set of TyCor components that can provide motivating

examples for that work.

Future work on DeepQA will involve a wide variety of

concrete application areas. Consequently, flexibility and

rapid adaptation to new technical challenges will be essential.

In some cases, that will involve plugging new knowledge

sources into existing logic, and in others, the logic will

also require revisions. A pluggable extensible framework

for TyCor components and subcomponents will make it

easier to customize DeepQA to address new challenges.

Conclusion
TyCor is an approach to finding evidence regarding whether

a given candidate answer has a specified lexical type

(i.e., a type characterized by natural-language text). DeepQA

includes a logical framework for TyCor and a variety of

specific instantiations using an assortment of structured

and unstructured sources. TyCor is used in DeepQA as a

form of evidence scoring; it is performed after answers

are generated and before they are ranked. The TyCor

components provide separate scores that are used as

distinct features by DeepQA answer ranking.

Our TyCor components all instantiate a logical framework

composed of four elements. EDM maps candidate answer

strings to entities. TR identifies (structured or lexical) types of

entities. PDM maps LATs to answer types. Type alignment

determines whether the types for the candidate answer

J. W. MURDOCK ET AL. 7 : 11IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

(from TR) are consistent with the desired type for the

question (as determined by PDM).

The TyCor components have a significant impact on the

accuracy of a QA system applied to the Jeopardy! task.

The components complement each other, as demonstrated

by the fact that our QA system does better with all

of the TyCor components than it does with any one of

them alone.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Wikimedia Foundation, or Trustees of Princeton
University in the United States, other countries, or both.

References
1. J. Chu-Carroll, K. Czuba, P. A. Duboue, and J. M. Prager,

BIBM’s PIQUANT II in TREC2005,[in Proc. 14th TREC,
Gaithersburg, MD, 2005. [Online]. Available: http://www.
mendeley.com/research/ibms-piquant-ii-trec2005/.

2. H. Cui, K. Li, R. Sun, T.-S. Chua, and M.-Y. Kan, BNational
University of Singapore at the TREC-13 question answering
main task,[in Proc. TREC, Gaithersburg, MD, 2004.

3. S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J. Williams,
and J. Bensley, BAnswer mining by combining extraction
techniques with abductive reasoning,[in Proc. TREC,
Gaithersburg, MD, 2003.

4. N. Schlaefer, P. Gieselmann, and G. Sautter, BThe Ephyra
QA System at TREC 2006,[in Proc. 15th TREC, 2006, pp. 1–10.

5. J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald,
and C. Welty, BFinding needles in the haystack: Search and
candidate generation,[IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 6, pp. 6:1–6:12, May/Jul. 2012.

6. G. Ford and R. Wiener, Modula-2: A Software Development
Approach. Hoboken, NJ: Wiley, 1986.

7. J. Pustejovsky, BType coercion and lexical selection,[in
Semantics and the Lexicon, J. Pustejovsky, Ed. Dordrecht,
The Netherlands: Kluwer, 1993.

8. A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,
S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, BQuestion
analysis: How Watson reads a clue,[IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 2, pp. 2:1–2:14, May/Jul. 2012.

9. D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. Duboue,
L. Zhang, Y. Pan, Z. M. Qiu, and C. Welty, BA framework for
merging and ranking of answers in DeepQA,[IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 14, pp. 14:1–14:12, May/Jul. 2012.

10. D. A. Ferrucci, BIntroduction to FThis is Watson_,[IBM J. Res. &
Dev., vol. 56, no. 3/4, Paper 1, pp. 1:1–1:15, May/Jul. 2012.

11. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann, BDBpediaVA crystallization
point for the web of data,[J. Web Semantics Sci., Services
Agents World Wide Web, vol. 7, no. 3, pp. 154–165, Sep. 2009.

12. M. C. McCord, J. W. Murdock, and B. K. Boguraev, BDeep
parsing in Watson,[IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 3, pp. 3:1–3:15, May/Jul. 2012.

13. C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. C. Gondek,
BRelation extraction and scoring in DeepQA,[IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 9, pp. 9:1–9:12, May/Jul. 2012.

14. G. A. Miller, BWordNet: A lexical database for English,[
Commun. ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

15. F. M. Suchanek, G. Kasneci, and G. Weikum, BYAGO: A core
of semantic knowledge-unifying WordNet and Wikipedia,[in
Proc. 16th Int. WWW Conf., Banff, Canada, 2007.

16. J. M. Prager, E. W. Brown, A. Coden, and R. Radev,
BQuestion-answering by predictive annotation,[in Proc.
SIGIR, Athens, Greece, 2000, pp. 184–191.

17. J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev,
BTextual evidence gathering and analysis,[IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 8, pp. 8:1–8:14, May/Jul. 2012.

18. J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci,
BAutomatic knowledge extraction from documents,[IBM J. Res.
& Dev., vol. 56, no. 3/4, Paper 5, pp. 5:1–5:10, May/Jul. 2012.

19. J. L. Fleiss, Statistical Methods for Rates and Proportions,
2nd ed. New York: Wiley, 1981.

20. M. D. Smucker, J. Allan, and B. Carterette, BA comparison of
statistical significance tests for information retrieval evaluation,[in
Proc. 16th ACM CIKM, 2007, pp. 623–632.

21. A. Kalyanpur, B. K. Boguraev, S. Patwardhan,
J. W. Murdock, A. Lally, C. Welty, J. M. Prager, B. Coppola,
A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu,
BStructured data and inference in DeepQA,[IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 10, pp. 10:1–10:14, May/Jul. 2012.

22. S. Schlobach, D. Ahn, M. de Rijke, and V. Jijkoun,
BData-driven type checking in open domain question answering,[
J. Appl. Logic, vol. 5, no. 1, pp. 121–143, Mar. 2007.

23. A. Grappy and B. Grau, BAnswer type validation in question
answering systems,[in Proc. RIAOVAdaptivity, Personalization
and Fusion of Heterogeneous Information, Paris, France, 2010,
pp. 9–15.

24. D. Buscaldi and P. Rosso, BMining knowledge from Wikipedia
for the question answering task,[in Proc. Int. Conf. Lang. Resour.
Eval., 2006, pp. 727–730.

25. R. Amsler, BThe structure of the Merriam-Webster Pocket
Dictionary,[Ph.D. Dissertation, Univ. Texas, Austin, TX, 1980.

26. M. Chodorow, R. Byrd, and G. Heidorn, BExtracting semantic
hierarchies from a large on-line dictionary,[in Proc. 23rd Annu.
Meet. Assoc. Comput. Linguistics, 1985, pp. 299–304.

27. M. Hearst, BAutomatic acquisition of hyponyms from large text
corpora,[in Proc. 14th COLING Conf., 1992, vol. 2, pp. 539–545.

28. S. Soderland, A. Ritter, and O. Etzioni, BWhat is this, anyway:
Automatic hypernym discovery,[in Proc. AAAI Spring Symp.
Learn. Reading Learn. Read, 2009, pp. 1–6.

29. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr.,
and T. M. Mitchell, BToward an architecture for never-ending
language learning,[in Proc. 24th AAAI Conf., 2010,
pp. 1306–1313.

Received August 18, 2011; accepted for publication
November 18, 2011

J. William Murdock IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (murdockj@us.
ibm.com). Dr. Murdock is a member of the IBM DeepQA Research
Team in the T. J. Watson Research Center. In 2001, he received a
Ph.D. degree in computer science from Georgia Tech, where he was
a member of Ashok Goel’s Design and Intelligence Laboratory.
He worked as a postdoctorate with David Aha at the U.S. Naval
Research Laboratory. His research interests include natural-language
semantics, analogical reasoning, knowledge-based planning, machine
learning, and self-aware artificial intelligence.

Aditya Kalyanpur IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (adityakal@us.
ibm.com). Dr. Kalyanpur is a Research Staff Member at the IBM
T. J. Watson Research Center. He received his Ph.D. degree in
computer science from the University of Maryland in 2006. His
research interests include knowledge representation and reasoning,
natural-language processing, statistical data mining, and machine
learning. He joined IBM in 2006 and worked on the Scalable Highly
Expressive Reasoner (SHER) project that scales ontology reasoning
to very large and expressive knowledge bases. Subsequently, he joined
the algorithms team on the DeepQA project and helped design the
Watson question-answering system. Dr. Kalyanpur has over 25
publications in leading artificial intelligence journals and conferences
and several patents related to SHER and DeepQA. He has also chaired
international workshops and served on W3C Working Groups.

7 : 12 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

Chris Welty IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (cawelty@gmail.com).
Dr. Welty is a Research Staff Member in the Semantic Analysis
and Integration Department at the T. J. Watson Research Center.
He received a Ph.D. degree in computer science from Rensselaer
Polytechnic Institute in 1995. He joined IBM in 2002, after spending
6 years as a professor at Vassar College, and has worked and published
extensively in the areas of ontology, natural-language processing,
and the Semantic Web. In 2011, he served as program chair for the
International Semantic Web Conference, and he is on the editorial
boards of the Journal of Web Semantics, the Journal of Applied
Ontology, and AI Magazine.

James Fan IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (fanj@us.ibm.com).
Dr. Fan is a Research Staff Member in the Semantic Analysis and
Integration Department at the T. J. Watson Research Center, Yorktown
Heights, New York. He joined IBM after receiving his Ph.D. degree
at the University of Texas at Austin in 2006. He is a member of
the DeepQA Team that developed the Watson question-answering
system, which defeated the two best human players on the quiz
show Jeopardy!. Dr. Fan is author or coauthor of dozens of
technical papers on subjects of knowledge representation, reasoning,
natural-language processing, and machine learning. He is a member
of Association for Computational Linguistics.

David A. Ferrucci IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (ferrucci@us.ibm.
com). Dr. Ferrucci is an IBM Fellow and the Principal Investigator
for the DeepQA Watson/Jeopardy! project. He has been at the
T. J. Watson Research Center since 1995, where he leads the
Semantic Analysis and Integration department. Dr. Ferrucci focuses on
technologies for automatically discovering meaning in natural-language
content and using it to enable better human decision making. He
graduated from Manhattan College with a B.S. degree in biology and
from Rensselaer Polytechnic Institute in 1994 with a Ph.D. degree
in computer science specializing in knowledge representation and
reasoning. He has published papers in the areas of artificial intelligence,
knowledge representation and reasoning, natural-language processing,
and automatic question answering.

David C. Gondek IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (dgondek@us.ibm.
com). Dr. Gondek is a Research Staff Member and Manager at the
T. J. Watson Research Center. He received a B.A. degree in
mathematics and computer science from Dartmouth College in 1998
and a Ph.D. degree in computer science from Brown University in
2005. He subsequently joined IBM, where he worked on the IBM
Watson Jeopardy! challenge and now leads the Knowledge Capture
and Learning Group in the Semantic Analysis and Integration
Department.

Lei Zhang IBM Research Division, China Research Lab, Haidian
District, Beijing, 100193, China (tozhanglei@qq.com). Dr. Zhang
received his Ph.D. degree in computer science and engineering
from Shanghai Jiao Tong University in China in 2005. His research
interests include knowledge representation, Semantic Web, information
retrieval, and statistical machine learning. After his Ph.D. study, he
worked as a Research Staff Member in the Information and Knowledge
Department of IBM Research–China. Since 2005, he and his team
have worked on Semantic Web technologies and semantic search
and their applications in the healthcare domain. Since 2008, he and his
team have worked on using structured knowledge (including Semantic
Web data) to help question-answering in the DeepQA project. He is
active in several academic communities and is one of the major
initiators of the China Semantic Web Symposium series, which started
in 2007. He has been program committee member of conferences such
as WWW, IJCAI (International Joint Conferences on Artificial
Intelligence), ISWC (International Semantic Web Conference), etc.

More recently, he was one of the local organizers of the ISWC 2010
conference.

Hiroshi Kanayama IBM Research Division–Tokyo, Yamato-shi,
Kanagawa 2428502, Japan (hkana@jp.ibm.com). Mr. Kanayama is
a Staff Researcher in IBM Research–Tokyo. In 2000, he received
a master’s degree from the Graduate School of the University of Tokyo,
for research on Japanese syntactic analysis. Since joining IBM
Research, his research has focused on several types of deep language
analysis including machine translation, sentiment analysis, and
knowledge extraction from unstructured data.

J. W. MURDOCK ET AL. 7 : 13IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

