
TypingRing: A Wearable Ring Platform for Text Input

Shahriar Nirjon, Jeremy Gummeson, Dan Gelb, Kyu-Han Kim
Hewlett-Packard Labs, CA, USA

{nirjon, jeremy.gummeson, dan.gelb, kyu-han.kim}@hp.com

ABSTRACT

This paper presents TypingRing, a wearable ring platform

that enables text input into computers of different forms,

such as PCs, smartphones, tablets, or even wearables with

tiny screens. The basic idea of TypingRing is to have a user

wear a ring on his middle finger and let him type on a sur-

face – such as a table, a wall, or his lap. The user types as if

a standard QWERTY keyboard is lying underneath his hand

but is invisible to him. By using the embedded sensors Typ-

ingRing determines what key is pressed by the user. Further,

the platform provides visual feedback to the user and com-

municates with the computing device wirelessly. This pa-

per describes the hardware and software prototype of Typin-

gRing and provides an in-depth evaluation of the platform.

Our evaluation shows that TypingRing is capable of detect-

ing and sending key events in real-time with an average ac-

curacy of 98.67%. In a field study, we let seven users type a

paragraph with the ring, and we find that TypingRing yields

a reasonable typing speed (e.g., 33 − 50 keys per minute)

and their typing speed improves over time.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems

General Terms

Algorithm, Design, Experimentation

Keywords

Wearable, Typing, Ring

1. INTRODUCTION

As computing systems evolve, so do their input meth-

ods. With advancements in computing technology, different

forms of text input methods have been proposed and used in

practice. These forms include the standard QWERTY key-

boards for PCs, alphanumeric keypads and small keypads in

earlier mobile phones, and on-screen soft keyboards in mod-

ern smartphones and tablets. Each of these input method-

ologies for typing in text has been invented out of the need

for a change as the form factor and the mobility require-

ments of these devices have changed. We are now at the

forefront of technology where wearable computers, such as

smart watches and smart bands, have entered the consumer

market. These devices have even smaller screen sizes and

none of the existing typing methods are viable for these de-

vices. A quick fix to this problem has so far been in the

form of speech-to-text or shared keypads. However, the core

problem has still remained unsolved, i.e. there is no typing

accessory that is portable and usable with computers of all

form factors and mobility requirements.

To meet this need we have created TypingRing, which

is a wearable keyboard in the form factor of a ring. A user

wears the ring on his middle finger and types in text with

his three fingers (the index, the middle and the traditional

ring finger) on a surface, such as – a table, his lap, or a wall.

The user types and moves his hand as if there is an invisible

standard keyboard underneath his hand. By moving the hand

horizontally and vertically, TypingRing identifies one region

to another on the imaginary keyboard. Further, by pressing

one of his three fingers, the user types in the key. By using

the embedded sensors surrounding the ring, TypingRing de-

termines what key is pressed by the user completely inside

the ring and then sends the key event to a remote computer

over the Bluetooth LE network. TypingRing implements the

standard BLE keyboard protocol so that it can be used with

commercially available computing devices, such as – PCs,

smartphones, tablets, or even wearables with tiny screens

that support an external BLE keyboard. A piece of software

running on the computing device intercepts the key events

and provides a visual feedback to the user by highlighting a

key or a portion of a custom on-screen keyboard, as the user

moves his hand on the surface and types in keys.

Several salient features when combined together make

TypingRing unique of its kind. First, TypingRing being a

wearable device, is mobile and portable. The ring comes

handy in scenarios where a quick and on-the-go text input

is needed or scenarios when an alternative input method is

not convenient, e.g. devices with tiny screens. Second, Typ-

ingRing is fast and highly accurate in detecting keys, and it

performs all its computations inside the ring – without re-

quiring any computational support from a more capable de-

1

vice. Third, TypingRing is multi-platform. Because of its

adoption of standard BLE keyboard protocol, TypingRing is

usable with any computing device that supports an external

BLE keyboard. Fourth, typing with TypingRing is intuitive

and it is easy to learn. TypingRing breaks down the task

of typing on a standard keyboard into two intuitive tasks, i.e.

moving a hand on a surface and then pressing a finger, which

require little or no practice to get started with. Fifth, Typin-

gRing is flexible and extensible. It is not tied to English

alphabet or any specific keyboard layout. By changing the

mapping between a position and a key, TypingRing is usable

with keyboards of different layouts and dimensions.

TypingRing brings both engineering and computational

challenges in front of us. The hardware architecture of Typ-

ingRing is designed to obtain the relative movements of the

finger, and horizontal and vertical motions of the hand on

a surface, so that thus-obtained data can be used to infer

the position of the hand and typing gestures from just a sin-

gle finger. To realize this, we embed a tiny microcontroller,

an accelerometer, multiple line sensors, an optical displace-

ment sensor, and a BLE chip on the perimeter of a circular

ring platform. These sensors are read by a software run-

ning inside the ring, which detects and classifies typing ges-

tures using an offline trained Hidden Markov Model (HMM)

classifier. As an additional feature in TypingRing, we have

implemented a simple Naïve Bayesian classifier to infer 3D

gestures, such as - pitch, roll, and yaw, and map them to

commonly used keys on a keyboard to offer shortcut keys to

the user.

We have created a prototype of TypingRing using off-

the-shelf sensors and an open source miniature hardware

platform called TinyDuino [11]. In order to, tune various

parameters of the system and train the typing and gesture

classifiers, we perform an empirical study involving 18 users

who uses the ring to type in letters, words, lines, and ges-

tures while we store all the raw sensor readings. Based

on this empirical data, we measure execution time, energy

consumption, and the accuracy of typing and gesture clas-

sifiers. Our empirical evaluation shows that TypingRing is

capable of detecting and generating key events in real-time

with an average accuracy of 98.67%. Finally, we perform

a field study, in which, we let seven users type a paragraph

with TypingRing and we find that TypingRing yields a typ-

ing speed of 0.55 − 0.81 keys per second, and their typing

speed improves over time.

The contributions of this paper are the following –

• We introduce TypingRing, which is a wearable, portable

accessory device that allows a user to input text into mo-

bile and non-mobile computers of different forms.

• We describe a Hidden Markov Model (HMM) based typ-

ing gesture recognizer that uses acceleration, optical dis-

placement and proximity sensors to infer the typing fin-

ger in real-time and with an average accuracy of 98.67%.

• We perform a field study by letting seven end users type a

paragraph with TypingRing and we find that TypingRing

yields a typing speed of 33 − 50 keys per minute, and

their typing speed improves over time.

2. USING TYPING RING

This section describes the working principle of the Typ-

ingRing along with some potential use cases.

2.1 Working Principle

TypingRing is worn on the middle finger of a user. As

the user rests his ring on a horizontal surface, three consecu-

tive keys on the on-screen keyboard of the computing device

are highlighted. By using embedded sensors surrounding

the perimeter of the ring, the TypingRing detects typing ges-

tures made by the user’s three fingers – middle, index, and

traditional ring fingers. To highlight a different set of keys,

the user simply drags the ring up, down, left or right on the

surface. As long as the user is seeking a key or typing it

in, visual feedback is provided to him on the screen of the

computing device.

TypingRing assumes that the standard keyboard layout is

divided into multiple zones. A zone is defined as a sequence

of consecutive 3 keys on the same row on a keyboard lay-

out. With this definition of a zone, the task of locating a key

becomes a two-step problem: first, to identify the zone of

the intended key, and second, to identify the key within that

zone.

By moving the ring horizontally and vertically on a sur-

face, a user moves from one zone to another. The user is

given visual feedback by either highlighting the 3 keys on the

zone on a soft-keyboard or just showing 3 keys on the screen

when the computing device has a limited screen space. Once

a zone is selected, each of the three fingers is associated with

one of the 3 keys in that zone. To type in a specific key, the

user makes a typing gesture using the corresponding finger.

The ring detects the finger and sends the key associated with

it to the computing device over the wireless channel.

(a) 3-Letter Zones

f
g

h

(b) Typing Ring

Figure 1: Working principle of TypingRing.

Example. In Figure 1(a), we show sixteen zones on an

Android keyboard layout marked with dotted rectangles and

the selected zone fgh with a solid rectangle. Only one zone

is allowed to be active at a time. A large key (e.g. the space

bar) may be a part of multiple zones and the last zone on a

2

row may not have all three keys. To type in a letter, e.g. W,

the user at first moves his ring up and left to select the QWE

zone, and then makes a typing gesture with his middle finger

to input the key.

2.2 Usage Scenarios

TypingRing may be used with a variety of computing

devices that support standard external wireless keyboards.

The list includes desktops, laptops, tablets, smartphones, and

smart watches. However, below we list several compelling

usage scenarios, where TypingRing is a more convenient

choice than other input methods (e.g., on-screen keyboard).

• Devices with Tiny Screens. Some computing devices,

such as smart watches and smart wristbands, have very

small sized screens where a full scale touch enabled key-

board is not an option. TypingRing can be used with

these devices as it physically separates the actual typing

action from the visual feedback, and hence, the keyboard

layout can be scaled down enough to just to show a tiny

keyboard with highlighted keys, or a single row of keys,

or just the 3 keys on a selected zone.

• Saving Screen Space on a Mobile Display. Typical on-

screen soft keyboards on a mobile device block out more

than 40% of the display. This is annoying to the user

as the blocked out area may contain information that the

user needs to see while typing in his inputs. With Typ-

ingRing, the size of the blocked area is reduced up to 10
times, and hence, the freed space can be utilized by the

application to improve user experience.

• Quick and On-the-Go Typing. In some situations, e.g.

self checking-in at an airport kiosk, making transactions

at ATMs, or inputting pass codes into locks, we want

to input text quickly and on-the-go. Health conscious

people who want to avoid touching the keypads on these

public devices might want to use their personal mobile

device for input. The TypingRing being a wearable de-

vice, is more convenient in these scenarios than pulling

out a mobile phone from the pocket and interacting with

the display.

3. SYSTEM OVERVIEW

This section overviews the system architecture of Typin-

gRing. We defer the algorithms and implementation details

to subsequent sections.

3.1 The Hardware Architecture

TypingRing hardware platform is a redesign of conven-

tional rings that has embedded sensors surrounding its perime-

ter and a tiny micro-controller unit having wireless data com-

munication capability. The platform enables continuous sens-

ing of user’s hand and finger movements and processes the

sensing data on-board to generate the key events. Figure 2

is a schematic of the TypingRing– showing the components

and their placements on the ring.

MCU + Battery

Left Finger

Proximity

Right Finger

Proximity

Displacement

ΔX, ΔY

Accelerometer
Bluetooth LE

Figure 2: Hardware architecture of TypingRing.

• Microcontroller. The top of the ring, where usually a

jewel is placed, consists of three boards stacked on top

of each other. One of these is a micro-controller unit

(MCU) that operates all the components, processes sens-

ing data to determine key events, and transmits the key

information. The MCU is powered by a thin film battery.

• Accelerometer. A 3-axis accelerometer is placed on top

the ring, and it primarily detects the movement of the

middle finger and helps detect other fingers. This sensor

is kept always on to detect the presence of motion and

turn on and off other sensors as needed.

• Proximity Sensors. Two proximity sensors are placed

on the sides of the ring facing the two fingers which are

next to the middle finger. Their placement allows the

ring to measure the proximity between the middle finger

and the two fingers next to it. This is used to detect which

finger is used for typing.

• Displacement Sensor. An optical displacement sensor,

like the ones used in an optical mouse, is placed under-

neath the ring to detect the X and Y displacements of

the ring. This is used to detect when the user changes his

typing zone.

• Bluetooth LE. A Bluetooth LE chip is connected on top

of the ring, which is used by the MCU to send key events

wirelessly to the computing device using the standard

BLE keyboard protocol.

3.2 The Firmware Architecture

The TypingRing determines the key events completely

inside the ring without relying on the computing device for

any computational help. This makes it a self-sufficient in-

put accessory just like a regular Bluetooth LE keyboard. An

alternative to this would be to transmit raw or partially pro-

cessed sensing data and let the device determine the key

events. This, however, would require higher bandwidth com-

munication, increase the data transmission cost, and make

the ring a non-standard input accessory. The firmware run-

ning inside the TypingRing is responsible for controlling the

sensors, determining the key strokes, and generating and

sending key events to the computing device.

Figure 3 shows the architecture of the firmware. Figure

3 shows the architecture of the firmware. As shown in the

figure, the firmware is composed of three layers: sensing,

recognition, and communication.

3

BLE

Communication

Key Event

Generator

Accelerometer

S
en

si
n
g

L
ay

er

Controller

Unit

Key

Map

Gesture

Map

Proximity

Key Stroke

Recognizer

Gesture

Recognizer

Optical
K

ey
 a

n
d

 G
es

tu
re

R
ec

o
g
n
it

io
n

M
ap

p
in

g
 a

n
d

C
o

m
m

u
n

ic
a
ti

o
n

[high motion,

ring lifted]

[low motion,

ring down]

zone/position pitch/yaw/roll

Figure 3: Firmware architecture of TypingRing.

Sensing Layer. The top layer of the firmware contains

sensor sampling modules, which are the accelerometer, the

left and right proximity sensors, and the optical displace-

ment sensor modules. These modules read and hold sensor

values in bounded circular FIFO queues.

Key and Gesture Recognition Layer. The Controller

Unit is responsible for turning on and off a particular type of

sensor. Since sampling the accelerometer is relatively inex-

pensive, only the accelerometer is continuously monitored.

If it detects a significant motion, it turns on the optical sensor

to check if the ring is lifted up or is on a surface, and triggers

either the key or the gesture detection module.

The Key-Stroke Recognizer kicks off when the user’s

hand movement is low to moderate and the ring is on a sur-

face. It takes into account all three types of sensors to deter-

mine the zone or the finger using the algorithm in Section 4.

The Gesture Recognizer, on the other hand, starts when the

ring is lifted up and the user’s hand movement is relatively

higher. Using the algorithm described in Section 4.4, Typin-

gRing detects simple 3D gestures (e.g. pitch, roll, and yaw)

to enable short-cuts for commonly used keys.

Mapping and Communication Layer. The Key Event

Generator translates the detected zone, finger or the 3D ges-

ture into appropriate key events according to a predefined

mapping.

• A reported typing gesture by the Key-Stroke Recognizer

is mapped into a real key event corresponding to the fin-

ger in the currently selected zone.

• A reported change of zone by the Key-Stroke Recognizer

is mapped to a ‘fake’ key event, such as an unused ALT

+ a specific key, and is sent to the computing device to

enable visual feedback to the user. Such a fake key event

is ignored by the OS of the computing device, but is use-

ful to the TypingRing system, as this is used to determine

which zone to highlight (Section 5.3 describes this in de-

tail).

• A reported 3D gesture by the Gesture Recognizer is

mapped to a commonly used key. For example, pitch is

mapped to space bar, double pitch to enter, yaw to delete,

and roll to shift.

4. KEY STROKE RECOGNITION

This section describes the typing finger recognition algo-

rithm for key strokes along with a simple gesture recognition

algorithm for shortcut keys.

4.1 The State Machine

As described earlier, typing with the ring involves two

phases – seeking for a zone followed by making a typing

gesture. To enable this, the ring maintains a state machine

which is shown in Figure 4. The transitions between states

happen at some specific events (shown in brackets) which

are determined by processing the sensor streams. Below we

describe the states, the events and transitions.

Seek

Type

Hold

[drag	 ϵ] or

[ring = up]

[finger = lifting]

[type done]

Zone Changed

Send Update

Finger Detected

Send Update

[finger = closed] and

[drag	 δ]

[ring = up] or

[motion = idle]

[ring = down] and

[motion = present]

[drag	 δ]

Figure 4: The state machine for key stroke detection.

Once the Key-Stroke Recognizer is activated, the ring

stays in one of its three states: hold, seek, or type.

• Hold. This is both the start and the final state of the

state machine. This state is entered when the ring is on

a surface (ring = down) and motion is detected (motion

= present). From then on, this acts as the intermediate

state between the seeking and the typing phase. The ring

leaves this state when it is lifted up (ring = up) or is idle

(motion = idle).

• Seek. The seek state is entered when the user starts drag-

ging the ring on the surface (drag > δ) while keeping his

fingers close to each other (finger = closed), i.e. the

user is not making any typing gestures. Since a user may

have to cross multiple zones until he reaches the desired

one, the seek state repeats itself. Every time there is a

change in zone, the information is sent to the key event

generator. The ring leaves this state when it is lifted

up (ring = up) or no significant movement is detected

(drag < ǫ).

4

• Type. The type state is entered when the user lifts up

one or both of his fingers (finger = lifting) indicating

an intention to type. This state runs the typing gesture

detection algorithm (Section 4.3) to determine a valid

typing gesture and the finger used, and then goes back

to the hold state. In case of a valid gesture, it sends the

detected finger to the key event generator.

4.2 Detecting Sensor Events

All the state transitions in the state machine depend on

the values of four types of event variables: ring, motion,

drag, and finger.

• Drag Events. The drag event relates to the dragging of

the ring on a surface. These events are triggered when-

ever the displacement of the ring over a period crosses

a certain threshold. A large drag results in a change of

zone whereas the ring leaves the seek state when there is

no significant drag. The value of a drag is calculated

from the optical displacement sensor’s readings. The

optical sensor periodically sends updates on X- and Y-

displacements of the ring as a vector, ∆d = (∆x,∆y).
These values are too noisy and are hardware accelerated.

To compute a drag, ∆d is first passed through a moving

average filter and then integrated continuously. Transi-

tion from one zone to another happens when the inte-

grated value exceeds an empirically obtained threshold

δd. Equations 1 and 2 show the filtering and drag com-

putation steps.

∆d = α ∆dk + (1− α) ∆dk−1 (1)

drag =

∣

∣

∣

∣

∫

∆d dt

∣

∣

∣

∣

(2)

• Finger Events. The finger events happen whenever the

user lifts up one of his fingers or presses down both of his

fingers. These events are determined by two identical

detectors, one for each finger. Each of these detectors

accumulate proximity values, {pk} over a period of τp
and compute the range. The range is compared to two

empirically obtained thresholds δp and ǫp to detect finger

lifting and pressing events.

range = max
t−τp≤k≤t

{pk} − min
t−τp≤k≤t

{pk} (3)

• Motion Events. The presence or absence of motion is

determined from the 3-axis accelerometer sensor read-

ings (ax, ay, az). The ring keeps track of running vari-

ances of the magnitude of acceleration
√

a2x + a2y + a2z
over a period τa, and based on a threshold, ǫa, it deter-

mines the presence or absence of motion.

• Ring Events. The ring events, i.e. whether or not the

bottom of the ring is touching the surface, are read di-

rectly from the optical sensor. The optical sensor has a

built-in lift detector, which is programmed to detect up

to 5 mm lifting.

4.3 Detecting the Typing Finger

A naive algorithm to detect the typing finger is to use

thresholds to detect finger events similar to Section 4.2 and

thereby identify the finger. However, we empirically found

that such an algorithm does not work in practical cases and

results in false positives (multiple detections of one or more

fingers), false negatives (no detection), and does not provide

any confidence on the inference. By employing conservative

thresholds false positives may be eliminated, but this induces

delays in typing gesture detection and frustrates the user as

unlike zone seeking there is no visual feedback on how much

additional effort is needed to exert to type in the key.

In order to enable a robust and accurate finger detection,

we leverage an observation that – each finger’s movement

has an effect on the accelerometer readings obtained from

the middle finger – either directly (for the middle finger) or

indirectly (for the other two). With this observation, we de-

sign an algorithm that takes both the proximity sensors and

the accelerometer into account. Hence, the problem of typ-

ing finger detection is stated as – given periodic proximity

and accelerometer sensor readings over an interval, what

is the probability of making a typing gesture with one of

the three fingers?. If the highest probability for a finger is

greater than a threshold, the finger is reported by the algo-

rithm.

Because the algorithm runs inside the ring, the solution

has to meet some additional requirements. The algorithm

needs to be simple enough for implementation inside the

ring’s microcontroller, and also has to be fast, accurate, and

robust. To achieve this, we use a N -state Hidden Markov

Model (HMM). This satisfies our goals as HMMs are known

to be robust classifiers for time series signals [25] and they

provide a confidence value of the solution (i.e. a probabil-

ity for each class), and a trained HMM is compact enough to

store inside the ring and is fast enough to obtain the probabil-

ities in real time. The steps of the algorithm are as follows:

• Quantization. The left and right proximity sensor val-

ues, pLi and pRi , and the accelerometer reading ai, are

first quantized using Q′ and Q′′ functions, respectively.

Q′(pi) = argmin
1≤k≤L

∣

∣

∣

∣

q′k − pi

∣

∣

∣

∣

(4)

Q′′(ai) = argmin
1≤k≤L

∣

∣

∣

∣

q′′k − V (||ai||)
∣

∣

∣

∣

(5)

where, V (||ai||) is the variance in acceleration over a

second, L is the number of quantization levels, and q′k
and q′′k are the quantization levels for proximity and ac-

celeromoter sensors, respectively. To limit the number

of possible states in the HMM, we use L = 3 level quan-

tization, and the levels correspond to the quartiles of the

empirical data.

• Encoding. At every sampling interval, the quantized

values from the 3 sensor streams produce a 3-tuple, (ρli, ρ
r
i , αi),

1 ≤ ρli, ρ
r
i , αi ≤ L. Considering all possible combi-

5

nations and 3-level quantization, there can be at most

L3 = 27 different tuples. Each of these tuples is con-

sidered as an observed event (called an emmision) in the

HMM, resulting in a set of possible emissions, {Yi},

1 ≤ i ≤ 27, at each state of HMM.

• HMM Classification. Assuming we have a precom-

puted HMM corresponding to sensor data obtained by

typing with a specific finger, this step computes the like-

lihood of a given sequence of emissions, y = (y1, ..., yT)
being generated by the model. The length of the se-

quence T depends on the sampling frequency fs and the

duration of a typing event W . In TypingRing, we use a

sliding window of W = 1 second (with 50% overlap)

to capture a typing event. This bounds the value of T to

⌈W/fs⌉. Using Viterbi [14] algorithm, we compute the

maximum likelihood of y given the precomputed HMM

– having a state space S, initial probabilites of each state

πi, 1 < lei ≤ |S|, and transition probabilities ui,j of

transitioning from state i to j – as follows:

v(1, i) = p(y1|i). πi (6)

v(t, i) = p(yt|i).max
s∈S

(us,i. v(t− 1, s)) (7)

where, v(t, i) is the probability that the most probable

state sequence that could emit y ends in state i. Now, to

obtain the maximum likelihood of our HMM to generate

y, we apply the following:

vML = max
1≤i≤|S|

v(T, i) (8)

This step is performed once for each of the 3 HMMs corre-

sponding to typing with 3 fingers and the model that has the

maximum vML is classified as the most likely finger. The

complexity of this algorithm is O(T ∗ |S|2).
In order to train the HMMs, we use our empirical data to

estimate the parameters of these HMMs offline. At first, all

labeled training examples – containing the proximity and ac-

celerometer sensor readings for typing with one of the three

fingers – are quantized and encoded to form a time series

of emissions. We truncate each instance of typing data to 1
second by removing the leading and trailing no-motion val-

ues. This makes the length of each encoded training example

exactly 1/fs elements long, which is used in classification.

Using the encoded training examples for each finger, we use

the standard Baum-Welch [25, 29] algorithm to find the un-

known parameters of the HMM. These models are stored

inside the ring and the ring only runs the classification step

in real-time.

4.4 Detecting Gesture Shortcuts

Gesture recognition from motion data is a well-studied

problem and there are many efficient and highly accurate

algorithms that detect a wide variety of gestures from ac-

celerometer readings obtained from mobile and wearable de-

vices. We have adopted one of the simplest of them in Typ-

ingRing that uses an offline trained Naïve Bayesian classi-

fier to detect the gestures from 3-axis accelerometer readings

from the middle finger. TypingRing recognizes three simple

3D gestures - pitch, roll, and yaw, and maps them to six com-

monly used non-alphabetic keys on a keyboard. In general,

the mapping could be anything, but in our implementation,

we have done it as shown in the Table 1. To support more

than three keys, we consider repetitions of the same gesture

within a small period of time (2 seconds) as two different

keys.

Gesture Repetition Key

Pitch 1 Space Bar

2 Enter

Roll 1 Shift

2 Caps Lock

Yaw 1 Delete (letter)

2 Delete (word)

Table 1: Gesture shortcuts in TypingRing to enable

faster entry of common keys.

We use an offline-trained Gaussian Naïve Bayesian clas-

sifier that uses the variance in each of the three axes of ac-

celeration as a feature. The steps that run inside the ring for

real-time gesture classifications are the following-

• Windowing. The ring periodically samples the accelerom-

eter and accumulates 1 second worth of 3-axis accelerom-

eter readings, ai = (aix, a
i
y, a

i
z). This window of 1 sec-

ond is shifted by 0.5 second to form the window for the

next iteration.

• Feature Computation. We compute a 3-element con-

tinuous valued feature vector, f = (f1, f2, f3), where

the elements are the variances of {aix}, {aiy}, and {aiz},

respectively.

• Classification. To determine the most likely class, vNB

for the feature vector f among the classes, C = {pitch,
roll, yaw}, we use Equation 9:

vNB = argmax
c∈C

3
∏

i=1

1√
2πσi

c

exp

{

−
(

fi − µi
c

2σi
c

)2
}

(9)

where, µi
c and σi

c are the mean and standard deviation of

the feature fi for the class c ∈ C which are empirically

determined in our system.

We use this model as our empirical observation reveals

that, for each gesture, the features – i.e. the variance in accel-

eration along each axis – closely follow normal distributions.

The algorithm is also highly efficient as these variances are

calculated as part of motion detection, hence no extra com-

putation is required for feature extraction. Given a fixed set

of classes the classification step is also essentially a constant

operation and runs very fast.

6

5. SYSTEM IMPLEMENTATION

This section describes the implementation details of our

TypingRing prototype. We describe the hardware, commu-

nication between the ring and the computing device, and the

software that enables visual feedback.

5.1 Hardware Implementation

The hardware is comprised of a total of seven sensor

boards surrounding all four sides of a circular titanium ring.

Figure 5 shows the top view, side view, and the bottom view

of the TypingRing prototype.

(a) Top View (b) Side View

(c) Bottom View

Figure 5: The top view, side view, and bottom view of the

TypingRing.

The top of the ring consists of a stack of four TinyDuino [11]

boards. TinyDuino is an open source platform that features

the full capability of the popular Arduino platform but minia-

turizes the board to make its size smaller than a quarter. Each

board has dimensions of 20 mm × 20 mm, and the stack of

four boards has a height < 15 mm. Of the four boards, the

bottom one contains an Atmel ATmega328P MCU (8MHz,

32KB Flash, 2KB RAM, 1KB EEPROM) and is powered

by a coin cell battery. The board on top of it is a Bosch

BMA250 3-axis accelerometer shield, which connects to the

MCU using the I2C bus. The third board contains a low en-

ergy Bluegiga BLE112 [1] Bluetooth module, which is used

to send the key events over the air. The top is an extension

board of the MCU, containing ten digital and four analog IO

pins.

The two sides of the ring, facing the index finger and

the traditional ring finger, have two identical QRE 1113 IR

line sensor boards attached to them. Each of these boards

contains an IR emitting LED and an IR sensitive photo tran-

sistor and has an optimal sensing distance of 3 mm. At the

bottom of the ring, there is an ADNS 9800 optical motion

sensor board. This sensor is used by the ring to measure the

X and Y displacements when the user drags the ring on a

surface. The motion sensor communicates to the MCU over

the standard SPI interface.

5.2 Ring to Device Communication

The Bluegiga BLE112 Bluetooth low energy system on

chip (SoC) is used for communications. A Tinyduino micro-

controller communicates with the SoC using the BGLib API

to configure the hosted radio stack. After the user presses a

button, the SoC begins sending undirected, connectable ad-

vertisement beacon packets that contains the name “Typing

Ring”; additionally, a field indicates the ring should have

the appearance of a keyboard-based human interface device

(HID).

After scanning for devices, a remote device will see “Typ-

ing Ring” appear in a list of available devices and has the

option of connecting to it. During the connection process,

Android’s Bluetooth Low Energy stack scans the remote de-

vice’s global attribute table (GATT) and determines that the

device is implementing the HID over GATT profile [2]. Once

this discovery process completes, the remote Android device

can receive keystroke events generated by the ring.

In order to send a keystroke to the remote device, the

ring encodes key presses as HID reports that each consist of

8 bytes. The first byte indicates a modifier value (i.e. Shift,

Alt, Control), the second byte is reserved, and the remaining

6 bytes contain slots that indicate individual characters that

are in the key down state. Communications between the ring

and the remote device are achieved by sending a key down

event, where a single slot in an HID report is populated by

a character, and optionally the modifier field. After trans-

mitting the key down event, a null report where all bytes are

set to 0x00, indicate that the key(s) have been released from

their down state.

Two types of HID reports are sent to the remote device.

The first type indicates values that indicate the visual feed-

back a user receives should be updated. As the user moves

their hand around on the surface, the position on the vir-

tual keyboard changes in terms of the row/column position.

These movements are encoded as non-visible keyboard val-

ues that make use of the identifier slot: ALT+1-4 indicate

the column of the currently highlighted zone, and ALT+6-9

indicate the row of the currently highlighted zone. In total,

4 HID reports are used to indicate an update to the current

row/column position – 2 key down reports and 2 key release

reports.

Additionally, when a virtual key is pressed, the user uses

one of their middle 3 fingers on the ring worn hand. The in-

dex finger is encoded as ALT+Q, the middle finger as ALT+W

and the ring finger as ALT+R – this is used as additional

feedback to highlight a particular key in the currently high-

lighted zone. The second type of HID report that is sent

consists of the characters themselves. Each HID report con-

tains a single key value in byte position 3, while the modifier

is either set to 0x00 – no modification, or 0x02 – indicating

capital letters with the left shift modifier.

7

5.3 Enabling Visual Feedback

We have created an Android keyboard application to run

on the user’s device and provide visual feedback for the ring.

It functions similarly to a traditional Android software key-

board but has additional functionality to provide ring related

feedback. It can be used as a traditional on-screen software

keyboard when the ring is not connected. When the ring is in

use with the app the ring transmits three types of messages.

All the messages are sent as Bluetooth keyboard HID events.

The first type of message is used to indicate the current zone.

This is used to draw a box around the currently active zone

to the user has visual feedback on what keys finger typing

gestures will activate. The second message type is to indi-

cate a finger press event and which finger was pressed. This

is used to draw a circle around the pressed key to give vi-

sual feedback that a press was registered. These messages

are based as ALT-key modifiers of keys that have no mean-

ing in Android. The ALT-key messages are intercepted by

the keyboard app and used to update the visual feedback as

shown in Figure 6. The final message type is the actual key

character event generated by a press event. This is sent as

a standard key event so that the ring could be used for typ-

ing with any device that supports Bluetooth keyboards or if

the keyboard app was not running. Figure 6 shows the ap-

pearance of the visual feedback for a normal sized Android

keyboard when a key has been recently pressed. The circle

around the pressed key serves as visual feedback that the key

press event was detected.

Figure 6: Visual Feedback for Key Press

Our technique can be easily adapted for devices with

very limited screen area, such as wearables including watches

or eyeglass displays. In such devices displaying a full key-

board is undesirable since it can consume a significant por-

tion of the display, hiding valuable visual information from

the user. In these situations we can display only a very lim-

ited keyboard representation showing only the active region.

This is illustrated in Figure 7. As the user moves their hand

and changes the active zone the micro-keyboard is updated.

The figure shows a region in a keyboard with the typical

QWERTY layout, but other layouts including a simple al-

phabetically ordered keyboard can also be used if desired.

Figure 7: Minimal Keyboard for Small Screen Devices

6. EVALUATION

In this section, we describe three types of experiments.

First, we measure the execution time and energy consump-

tion of various components of TypingRing. Second, we per-

form an empirical study to select various parameters and to

evaluate the performance of the key-stroke detection algo-

rithm. Third, we perform a user study by letting 7 users type

with the ring and summarize the findings.

6.1 System Measurement

The TypingRing is a self-contained system where all the

computations – from sensing to key stroke detection and

then sending the key events to the computing device – hap-

pen inside the firmware of the ring. Understanding the exe-

cution time and the energy consumption of its component is

important to gauge its responsiveness and lifetime.

6.1.1 Execution Time

We measure the execution time of all major components

of the system software. Since the timer provided by the Ar-

duino platform is not precise, we use a more reliable ap-

proach to measure the execution time using a Saleae Logic16

high-sensitivity logic probe [8]. Prior to measuring the ex-

ecution time, we instrument the code by enclosing it inside

two instructions – one that writes a logic HIGH to an unused

digital pin of Arduino and another that writes a logic LOW to

high. The digital pin is monitored by the logic probe which

samples the pin at 100 MHz – giving us a 10 ns resolution

in time measurement. We cross-check measured execution

times using Arduino’s micros() API which has a µs level

resolution and have found that the measurements are close

to each other when rounded to the nearest ms.

0 2 4 6 8

BLE (ACK)
BLE (Send)
Gesture

HMM

Events

Controller

Sensing

EXECUTION TIME (MS)

Figure 8: Execution time of different components in Typ-

ingRing.

Figure 8 shows the measured execution time of seven

major components of the TypingRing system software which

includes both computation and communication modules. Among

8

all the computational modules, the HMM classification task

takes the highest amount of execution time of 6.75 ms, while

combining all other tasks the total computation time still re-

mains < 10 ms. The BLE (Send) of 6.99 ms denotes the

duration between time of issuing a send command and the

instant when the key is actually transmitted by the Bluetooth

LE chip. The BLE (ACK) of 3.67 ms denotes the time it

takes to get an acknowledgment back from the computing

device, after a key has been sent. Overall, the system has

an end-to-end execution time of about 20 ms from making a

typing gesture to getting back an acknowledgment. Consid-

ering the 100 ms sensor sampling interval of TypingRing,

this indicates that the system is capable of detecting and

sending a key in real-time.

6.1.2 Energy Profile

We create an energy profile of our prototype and esti-

mate its lifetime. We identify the states of the system and

the components (e.g. processor, sensors, and BLE) that con-

sume power in each state. Using the estimated power of each

component and the duration of each state from our empirical

data, we obtain an energy profile that is shown in Figure9.

102

0.34

73

24

0.52

4.14

0 20 40 60 80 100 120

Total

BLE TX/RX (80 mW)

Displacement (75 mW)

Proximity (60 mW)

Accelerometer (0.45 mW)

Arduino (3.6 mW)

ENERGY/KEY (MJ)

Figure 9: Energy profile of TypingRing.

We show the energy consumption per key in this figure.

The labels on the left show the hardware components and

their power consumption when they are active. From our

empirical data, we get the fraction of time each of these com-

ponents are active when typing a key and by multiplying the

power to an average key stroke length, we obtain the energy

values. For example, BLE TX/RX power in general is about

80 mW. However, when we consider idle time and data ex-

changes separately, the average power to maintain connec-

tion and send one key becomes less than 0.3 mW. Similarly,

not all sensors are active at all states - e.g. proximity sensors

are not used during seeking, optical sensors are not using

during typing, and accelerometer is used in hold and gesture

states. With this energy profile and a coin cell battery of

125mAh, TypingRing’s life-time is about 13, 650− 15, 500
key events. Assuming approximately 1s per key stroke, the

lifetime of TypingRing is about 3.8− 4.3 hours.

6.2 Empirical Evaluation

In this section, we evaluate various aspects of the key

stroke recognition algorithm. First, we determine the pa-

rameters of the sensor event detectors that have been intro-

duced in section 4.2. Second, we evaluate the accuracy of

the HMM based finger detector and compare its performance

with two other baseline classifiers. Third, we evaluate the

accuracy of the gesture recognition algorithm.

6.2.1 Empirical Dataset

We have created an empirical dataset that we obtained

by letting 18 users (4 females, and 14 males) use the ring.

The users were shown randomly generated characters and

randomly selected text from a standard phrase set [23] on a

mobile device. They typed the text – at first, using the Typ-

ingRing, then on the touch-based soft keyboard of a mobile

device, and then by clicking on a Windows 7 on-screen key-

board. Each user typed in about 50 random characters, 5−15
phrases, and about 30 gestures. The users were given visual

feedback on the screen by showing the input text, the high-

lighted zone, and the typed text. In order to enable visual

feedback, we used a bootstrap classifier that is trained on a

singe user prior to the data collection. We programed the

ring to sample and store accelerometer, proximity, and op-

tical sensor readings at 100 ms interval. The collected data

were analyzed offline in a desktop computer.

6.2.2 Drag Events

The drag event depends on two parameters – the smooth-

ing factor (α) and the drag threshold (δd) which we deter-

mine in this experiment.

The smoothing factor is used to reduce the variance in

optical sensor reading prior to integration. However, the re-

quired amount of smoothing depends on the surface material

on which the sensor is being dragged. Hence, we conduct an

experiment to understand the relationship between the qual-

ity of a surface and the amount of variance in displacement

sensor reading on that surface. We leverage this relationship

in TypingRing to tune in the smoothing factor (α) based on

the surface on which the user is typing.

The ADNS 9800 optical sensor comes with a register that

contains the amount of high-quality optical features it used

to compute the displacement. This gives us an indication of

the quality of the surface underneath the sensor. In our ex-

periment, we collect displacement sensor readings from var-

ious types of surfaces, such as – wooden table, wall, plastic,

white board, various types of fabrics, and paper. As read

by the ADNS 9800, these materials have a surface quality

value ranging from 15 to 75. On each surface, we drag the

ring horizontally, vertically, and diagonally for about 3 feet,

at a speed of approximately 4 inches per second, and then

measure the variance in displacement.

From Figure 10 we see that there is a linear relationship

between the surface quality and the variance in sensor read-

ings. We leverage this information to obtain the smoothing

factor α for a particular surface. We do the mapping by first

computing α for a white paper surface so that the zone tran-

9

sitions are smooth. For other surfaces, we scale the value

of α according to its relative surface quality with respect to

white paper. This technique makes the zone transition con-

sistent across different types of surface materials.

0

10

20

30

40

50

15 25 35 45 55 65 75V
A
R
IA
N
C
E

 IN
 D
R
A
G

 (%
)

SURFACE QUALITY
(AS READ FROM SENSOR)

Figure 10: Impact of surface quality on variance in data.

The drag threshold (δd) represents the total linear dis-

placement reached when a zone transition happens. A smaller

δd results in a quicker zone transition and vice versa. We

perform an experiment to quantify this inverse relationship

between the drag threshold and the zone transition rate. Fig-

ure 11 shows that as the total displacement (shown in units

of optical sensor reading) increases from 60 to 270, the ring

updates the zone at the rate of 200 to 50 times per minute.

In TypingRing, we adopt an adaptive thresholding scheme

for δd depending on the state of typing. For an initial zone

transition, we use a larger threshold to make certain that the

user really wants to move and it is not just casual hand mo-

tion. For successive zone transitions, a smaller threshold is

used so that the zone transitions are smoother.

0

20

40

60

80

100

120

60 90 120 150 180 210 240 270Z
O
N
E

 C
H
A
N
G
E
S
 /
M
IN
U
T
E

DRAG THRESHOLD

Figure 11: Adaptive thresholding for smooth zone tran-

sitions.

6.2.3 Finger Events

The finger lift and press events depend on the range of

proximity sensor values. Two thresholds δp and ǫp are used

to detect these two types of events. Both of these thresholds

are chosen so that the false positives, false negatives, and the

overall error in event detection are minimal. As an illustra-

tion of this, we describe how δp is determined.

Each typing gesture made by either the left or the right

finger in our dataset contains exactly one finger lift event and

one finger press event. For a given threshold, based on the

0

20

40

60

80

100

0 0 . 1 0 . 3 0 . 5 0 . 7 0 . 9 1

P
E
R
C
E
N
T

 (%
)

PROXIMITY THRESHOLD

FPR FNR ERR

Figure 12: Finger threshold to reduce false posi-

tive/negatives and overall error.

type of finger and the number of times the time vs. prox-

imity curve crosses the threshold, we determine whether it

contributes to false positives or false negatives, or if it is ac-

curate.

Figure 12 shows the false positive rates (FPR), false neg-

ative rates (FNR), and the error in detection (ERR) of the

finger lift events, as the threshold δp is varied. A smaller δp
increases the false positives and larger ones tend to increase

both the false negative rate and the overall error. We choose

δp = 0.25 to ensure negligible false positives as this is more

problematic than the other two.

6.2.4 Motion Events

The presence or absence of significant motion is detected

from the variance in acceleration. To obtain a threshold to

distinguish motion and non-motion, we divide our empirical

data into two subsets – one containing examples that are col-

lected when a user is typing or seeking a zone, and the other

one containing examples when the user’s hand is resting and

idle. Figure 13 shows the box plot of variance in acceleration

for these two cases. We see that the two classes are clearly

separable with a small threshold between 20 – 50.

0

300

600

900

1200

1500

No Motion Motion

V
A
R
IA
N
C
E

 IN

A
C
C
E
L
E
R
A
T
IO
N

MOTION DETECTION

Figure 13: Variance in acceleration for motion detection.

6.2.5 Typing Finger Detection

The goal of this experiment is to evaluate the accuracy of

the HMM based classifier that determines which of the three

fingers a user used to make a typing gesture. The HMM is

trained and tested on the empirical dataset that contains a to-

10

tal of over 2500 letters (including phrases). Each letter in the

alphabet is typed in at least 75 times, and each of the three

fingers has been used at least 650 times. Letters in a phrase

are isolated by noting the duration in zones, and sensor val-

ues for each letter are stored separately. The training phase

of HMM is run for 1000 iterations and the initial values of

transition and emission matrices are randomized. Because

there is randomness involved, the experiment is repeated 10
times to increase the confidence. On each run, 70% of the

examples are used for training and the rest are used for test-

ing. The accuracy is measured by calculating the percentage

of correct predictions among all test cases. The accuracy of

the algorithm is compared with the accuracy of two other

baseline classifiers: a decision tree classifier and a Naïve

Bayesian classifier. Both of these use the same set of fea-

tures – which are the quantized proximity and accelerometer

readings.

60

70

80

90

100

Left Middle Right

A
C
C
U
R
A
C
Y

 (%
)

HMM Decision Tree Naïve Bayes

Figure 14: Accuracy of typing finger detection.

Figure 14 compares the accuracy of the three algorithms

in detecting the typing finger. Of the three, HMM performs

the best with an average accuracy of 98.67%, which is 15%−
27% higher compared to the other two. The main reason for

HMM to perform better than the other two is that the HMM

considers the sequence of states and each state is formed by

taking all combinations of the three sensors into account.

The other two classifiers are fundamentally extreme in this

issue. The Naïve Bayesian classifier assumes independence

of all three sensor types – which is not true in our problem.

The decision tree classifier, on the other hand, assumes that

all variables interact with each other – which is also not quite

true in TypingRing, e.g. the left and the right proximity sen-

sors are mostly independent of each other. The decision tree

also suffers from over fitting the training data, which results

in better training accuracy, but because of their poor gener-

alization ability, the cross validation accuracy remains lower

than the HMM.

One design decision in HMM is to select the number of

hidden states. For our problem, we empirically determine

this by varying the number of states from 2 to 5, and then

comparing the accuracy. Figure 15 compares the classifica-

tion error, false positive rate, and the false negative rate of

four HMMs. The number after the HMM denotes the num-

ber of states. We observe that a 3 state HMM is the best

0

5

10

15

HMM‐2 HMM‐3 HMM‐4 HMM‐5

P
E
R
C
E
N
T

 (%
)

Error FPR FNR

Figure 15: Performance of different sizes of HMMs.

among the four having the lowest error rate of 1.3% with less

than the 1.5% false positive and false negative rates. Com-

pared to other models, this is 2.4−9.13 times lower. HMM-3

is better than HMM-2 as it is more expressive and capable of

encoding more information. HMM-4 and HMM-5 however

is not better than HMM-3, because of their tendency to over-

fit the training data and then failing to recognize unknown

examples from the test set.

88.67 89.33

92.33

98.67

80

85

90

95

100

0 . 5 0 . 6 7 0 . 7 5 1

A
C
C
U
R
A
C
Y

 (%
)

SCALED SAMPLING FREQUENCY

Figure 16: Effect of sampling frequency.

While detecting the typing finger, we use a sampling pe-

riod of 100 ms for all three types of sensors. This results

in a very high accuracy in finger detection of over 98%. A

higher frequency does not have enough room for further im-

provement, but we wanted to determine the lowest sampling

frequency for which our algorithm still performs reasonably

well. To do this test, we down-sample the sensor streams to

lower the sampling frequency to 3

4
, 2

3
, and 1

2
of the origi-

nal frequency and then evaluate the accuracy of HMM using

these modified samples. Figure 16 plots the results. We see

that we could potentially double the sampling interval, but

in that case we have to sacrifice about 10% accuracy. Fur-

ther investigation reveals that most of the misclassifications

at the lower frequencies come from the right finger (the tra-

ditional ring finger when worn on the right hand) detection

errors. This is due to the fact that humans have limitations in

lifting up the traditional ring finger higher than other fingers.

This results in higher false positives and false negatives un-

less the right proximity sensor is sampled at a higher rate.

We leave this as a future work to enhance the efficiency of

the ring by suitably choosing the sampling intervals for each

11

sensor individually.

6.2.6 Gesture Detection

We perform an experiment to determine the accuracy of

the gesture recognizer. Our participants perform about 25−
35 gestures of each type, i.e. pitch, roll, and yaw, which

results in a sample size of over 500 gesture instances. This

dataset is used to train the 3-class Gaussian Naïve Bayesian

gesture recognizer in TypingRing. We use randomly chosen

70% examples for model training and use the rest for testing.

The experiment is repeated 10 times.

60

70

80

90

100

100 200 300 400 500 600 700 800

A
C
C
U
R
A
C
Y

 (%
)

SAMPLING PERIOD (MS)

Figure 17: Accuracy of gesture recognizer.

Figure 17 shows the accuracy of gesture recognizer for

various sampling intervals of the accelerometer. During data

collection, we set the sampling interval to 100 ms. During

our analysis, we down-sample the accelerometer readings

to vary the sampling frequency and compute the accuracy

of the classifier for different sampling intervals in the range

100− 800 ms.

We observe that up until 400 ms sampling interval, the

classifier’s accuracy remains 100%, and it starts to make

mistakes afterward. This indicates that when the ring is

lifted by the user to make a gesture we may use a larger

sampling interval to save some CPU cycles. However, this

does not help much in practice as gestures in TypingRing are

for shortcut keys with long intervals and last for a short du-

ration. In applications where short-cut keys may be used for

a longer duration, e.g. pressing only the ‘next’, ‘cancel’ or

‘okay’ button at an interactive kiosk, this principle could be

applied.

6.3 User Study

We performed a user study involving 7 users (2 females

and 5 males). The differences between this experiment and

our empirical data collection experiments were that during

the user study the system was trained on empirical data and

computations happened inside the ring. We gave each user

a paragraph printed on a piece of paper to type using the

TypingRing. Users were asked to type the entire paragraph

correctly – i.e. they were allowed to use the delete key in

case of an error. Each user participated in the study in two

sessions. In order to compare the performance of Typin-

gRing, we used two baseline solutions. The first one is an

on-screen soft keyboard of an Android smartphone, and the

second one is a Windows 7 on-screen keyboard where a user

types by clicking a mouse.

6.3.1 Typing Speed

Figure 18 plots typing speed in terms of number of typed

keys per second for each user, for each of the three key entry

methods. We order the users according to their typing speed

with TypingRing. We observe that, the typing speed on a

soft keyboard (shown as Soft KB) is the highest with an av-

erage speed of 1.63 keys/sec. This is about 2.4 times higher

than TypingRing. This is somewhat expected as our users are

highly experienced with touch-screen keyboards on mobile

devices. A major reason of this gap in speed is the amount

of hand movements in each technique. In case of a soft key-

board, fingers can be directly targeted to a key, but in case of

TypingRing, a user needs to seek a zone and then press the

key. TypingRing’s speed, however, is comparable to that of

a mouse based on-screen keyboard. For some users, e.g. U1,

U5, U6, and U7, TypingRing’s speed is as close as 0.92−1.0
times and on average the ratio is 0.88.

0

0.5

1

1.5

2

U1 U2 U3 U4 U5 U6 U7

S
P
E
E
D

 (K
E
Y
/S
E
C
)

Soft KB Mouse Click Typing Ring

Figure 18: Typing speed of our participants.

6.3.2 Learning Effect

As TypingRing is a new input technique, it requires some

practice to get used to it. This is evident when we compare a

user’s typing time in two separate sessions, which is shown

in Figure 19. For the first 4 users, we see a dramatic reduc-

tion in typing time by 4.5− 8.6 times. Further investigation

reveals that, for the most part, the improvement comes from

the reduction in seek time. This is intuitive since zone seek-

ing is more time consuming than making typing gestures and

it also requires some practice to coordinate between ring

movement and visual feedback. From our experience with

end users we noticed that those who took time to practice

before telling us that they are ready for the session were the

ones who achieve the best results with TypingRing.

6.3.3 User Survey

At the end of the sessions, we ask our participants some

questionnaire to understand their satisfaction on various as-

pects of the system. We ask them how they feel about the

size, weight, portability, usability, and visual feedback. We

12

0

2

4

6

8

U1 U2 U3 U4 U5 U6 U7

T
IM

E
 (S
E
C
)

TWO SESSIONS PER USER

Seek Time Typing Time

Figure 19: Learning effect in TypingRing.

also ask them if they notice any difference in their own per-

formance between two sessions, and their feeling about the

ring to becoming a replacement for other text input methods

on mobile computers. From their responses, some unani-

mous things are noticed, e.g. everybody seems to love the

visual feedback, felt that the system is easy to use, and with

practice they are doing better. For other issues, such as

about the size, weight, and portability, we have got mixed

responses. Several of them think that it is fine for typing,

but they might not want to wear it all day long. Some of

them complain about the size as it is larger than a typical

ring. Others who have used a smart ring before, are some-

what neutral on this issue. Most of them would like to see

this replace the on screen keyboard so that they get more

screen space which is a limitation of current mobile devices.

Overall they gave the ring a rating of 7.6. We note their feed-

back and plan to improve the usability of the ring in our next

iteration which we keep as a future work.

0 2 4 6 8 10

Overall

Replacement

Learning Effect
Visual Feedback

Ease of Use
Portability

Size and Weight

SCORES (1 = POOR, 10 = EXCELLENT)

Figure 20: Summary of user ratings.

7. RELATED WORK

Ring-based wearable devices. Several ring-based wear-

able devices have been proposed for variety of purposes. [16]

proposes an energy harvesting wearable ring platform for

gesture input on surfaces. Ring [7] is proposed for text recog-

nition, gesture detection, and payment. Fin [3] is another

gesture detecting ring that a user wears on his thumb and

then makes gestures by touching other fingers with his thumb.

NFC Ring [5] uses passive near field communication to pro-

vide easy locking/unlocking of a door or a smartphone. Thumb-

Track [10] is an ergonometric ring that performs the func-

tions of a mouse. Similarly, a ring proposed in [21] uses

a mouse optical sensor and an RGB camera to detect fin-

ger movements as well as surface types / textures. Smar-

tyRing [9] pairs with a smartphone and shows useful infor-

mation, such as notifications, triggers camera, tracks phone,

and shows time. In contrast, TypingRing is designed specific

for a text-input with all types of computer devices.

Wearable input devices. Other than the ring-form fac-

tor used in our work, there have been various wearable form-

factors used for new input methods. Keyglove [4] is a wear-

able glove that places 37 touch sensors on the palm of a

glove. Using the combination of these touch sensors, it is

possible to input text on to a computer. [15] uses sensors

worn on each finger as a PDA input device, while our system

uses only one finger. Virtual keyboard [6] is another wear-

able keyboard with high detection accuracy achieved by us-

ing artificial neural networks. It requires a user to wear the

device on both hands, while TypingRing requires only one

finger.

Gesture recognition with various sensors. Gesture recog-

nition as an input method has been extensively investigated.

uWave in [21] uses dynamic time warping (DTW) techniques

to classify movements of a hand in free space as 1 of 8 dif-

ferent gestures. Work in [26] is similar to uWave, but it uses

a HMM approach to classify 5 different gestures. Authors

in [12] use an accelerometer to detect characters and words

drawn in the air. Recently, authors in [27] used a RF signal

and NFC receiver to detect a gesture in air and translate it to

characters. While these gesture recognition work is exciting,

TypingRing is different in that it focuses on both key events

and hand gestures.

Keyboards for mobile devices and surfaces. Various

types of keyboards have been proposed for mobile devices

and surface environments. Recently the use of acoustic sen-

sors for keyboard has drawn significant attention. Ubik [28]

is a portable text-entry method that allows a user to make

keystrokes on conventional surfaces, e.g., wood desktop, by

extracting location-dependent multi-path fading features from

the audio signals. This however relies upon the dual-microphone

interface on a smartphone and not suitable for other devices

or surfaces. Stane [24] is a synthesized surface that makes

particular sounds and facilitates tactile interactions based on

the sounds. [17] uses a microphone on a stethoscope at-

tached to different surfaces to interpret gestures based on

sound alone. In [20], identifiers are carved into a surface

similar to a barcode. A microphone listens to a fingernail

move through the notches to determine the identifier. [22,

18] use microphones inside the surface to distinguish be-

tween different types of finger strikes (e.g., Knuckle vs. pad

of finger). [13, 19] combine acoustic sensors and sounds

from the body (e.g., bone movement) to detect movement/gesture

of finger or location of taps. TypingRing uses off-the-shelf

motion and proximity sensors without requiring any external

computing entity or synthesized surfaces.

13

8. CONCLUSION

This paper describes the design, implementation, and eval-

uation of a ring-based wearable platform, called TypingRing

that enables text inputs into computers of different forms

and mobile requirements. TypingRing employs embedded

sensors to detect the position of a hand and typing gestures

made by a finger, and infers the key using a HMM classifier.

Evaluations on empirical data and field tests show that the

ring detects and reports keys in real-time, achieves over 98%
accuracy, yields a typing speed of up to 0.81 keys per sec-

ond, the typing speed improves as a user uses it more. While

TypingRing is capable of inputting text into any computer

that supports a BLE keyboard, it’s typing speed is still not

comparable to that of a regular keyboard or on-screen soft

keyboards. However, in some scenarios where quick text in-

put is needed or other methods are inconvenient, TypingRing

presents a viable solution.

9. REFERENCES
[1] Bluegiga technologies. bluegiga.com/.

[2] Bluetooth Developer Portal.

developer.bluetooth.org/.

[3] Fin. www.finrobotics.com.

[4] Keyglove. keyglove.net.

[5] NFC Ring. nfcring.com.

[6] Project Virtual Keyboard.

www.senseboard.com/.

[7] Ring: Shortcut Everything.

www.kickstarter.com/projects/

1761670738/ring-shortcut-everything.

[8] Saleae Logic Probe. saleae.com/logic16.

[9] Smarty Ring. smartyring.com.

[10] ThumbTrack. mindstreaminc.com.

[11] Tiny Duino. tiny-circuits.com/.

[12] S. Agrawal, I. Constandache, S. Gaonkar,

R. Roy Choudhury, K. Caves, and F. DeRuyter. Using

mobile phones to write in air. In Proceedings of the

9th international conference on Mobile systems,

applications, and services, pages 15–28. ACM, 2011.

[13] T. Deyle, S. Palinko, E. S. Poole, and T. Starner.

Hambone: A bio-acoustic gesture interface. In

Wearable Computers, 2007 11th IEEE International

Symposium on, pages 3–10. IEEE, 2007.

[14] G. D. Forney Jr. The viterbi algorithm. Proceedings of

the IEEE, 61(3):268–278, 1973.

[15] M. Fukumoto and Y. Tonomura. "body coupled

fingerring": wireless wearable keyboard. In

Proceedings of the ACM SIGCHI Conference on

Human factors in computing systems, pages 147–154.

ACM, 1997.

[16] J. Gummeson, B. Priyantha, and J. Liu. An energy

harvesting wearable ring platform for gestureinput on

surfaces. In MobiSys, pages 162–175. ACM, 2014.

[17] C. Harrison and S. E. Hudson. Scratch input: creating

large, inexpensive, unpowered and mobile finger input
surfaces. In Proceedings of the 21st annual ACM

symposium on User interface software and

technology, pages 205–208. ACM, 2008.

[18] C. Harrison, J. Schwarz, and S. E. Hudson. Tapsense:

enhancing finger interaction on touch surfaces. In

Proceedings of the 24th annual ACM symposium on

User interface software and technology, pages

627–636. ACM, 2011.

[19] C. Harrison, D. Tan, and D. Morris. Skinput:

appropriating the body as an input surface. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 453–462. ACM,

2010.

[20] C. Harrison, R. Xiao, and S. Hudson. Acoustic

barcodes: passive, durable and inexpensive notched

identification tags. In Proceedings of the 25th annual

ACM symposium on User interface software and

technology, pages 563–568. ACM, 2012.

[21] J. Liu, L. Zhong, J. Wickramasuriya, and

V. Vasudevan. uwave: Accelerometer-based

personalized gesture recognition and its applications.

Pervasive and Mobile Computing, 5(6):657–675,

2009.

[22] P. Lopes, R. Jota, and J. A. Jorge. Augmenting touch

interaction through acoustic sensing. In Proceedings

of the ACM International Conference on Interactive

Tabletops and Surfaces, pages 53–56. ACM, 2011.

[23] I. S. MacKenzie and R. W. Soukoreff. Phrase sets for

evaluating text entry techniques. In CHI’03 extended

abstracts on Human factors in computing systems,

pages 754–755. ACM, 2003.

[24] R. Murray-Smith, J. Williamson, S. Hughes, and

T. Quaade. Stane: synthesized surfaces for tactile

input. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages

1299–1302. ACM, 2008.

[25] S. M. Ross. Introduction to probability models.

Academic press, 2014.

[26] T. Schlömer, B. Poppinga, N. Henze, and S. Boll.

Gesture recognition with a wii controller. In

Proceedings of the 2nd international conference on

Tangible and embedded interaction, pages 11–14.

ACM, 2008.

[27] J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual

touch screen in the air using rf signals. In Proceedings

of the 2014 ACM conference on SIGCOMM, pages

235–246. ACM, 2014.

[28] J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous

keyboard for small mobile devices: harnessing

multipath fading for fine-grained keystroke

localization. In Proceedings of the 12th annual

international conference on Mobile systems,

applications, and services, pages 14–27. ACM, 2014.

[29] L. R. Welch. Hidden markov models and the

baum-welch algorithm. IEEE Information Theory

Society Newsletter, 53(4):10–13, 2003.

14

