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Abstract Dial-a-ride problems consist of designing vehicle routes and time schedules in a system of
demand-dependent, collective people transportation. In the standard problem, operational costs are
minimized, subject to full demand satisfaction and service level requirements. However, to enhance
the practical applicability of solution methods, authors increasingly focus on problem variants that
adopt additional real-life characteristics. First, this work introduces an up-to-date classification
that distinguishes multiple categories of real-life characteristics. Second, the wide range of solution
methods proposed in the literature is reviewed in a structured manner. Although the existing
literature is reviewed exhaustively, specific attention is devoted to recent developments. Third, an
extensive overview table provides full details on all problem characteristics and solution methods
applied in each paper discussed. Fourth, lacunae in research conducted to date and opportunities
for future work are identified.
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1 Introduction

A dial-a-ride system is an application of demand-dependent, collective people transportation [21].
Each user requests a trip between an origin and a destination of choice, to which a number of ser-
vice level requirements are linked. The service provider attempts to develop efficient vehicle routes
and time schedules, respecting these requirements and the technical constraints of a pickup and
delivery problem [98]. A frequent objective is to minimize operational costs subject to full demand
satisfaction and side constraints, but service level criteria may be optimized as well. Balancing the
human and economic perspectives involved in solving such a Dial-a-Ride Problem (DARP) is essen-
tial for organizing quality-oriented, yet efficient transportation of users with special needs, such as
door-to-door transportation for elderly and disabled. In light of the ageing population, dial-a-ride
systems are gaining importance to complement regular transportation modes. They also fulfill a
social role, preventing isolation of vulnerable groups in society. However, due to the rising demand,
service providers no longer manage to compose vehicle routes and time schedules manually. Plan-
ning algorithms are required to safeguard cost efficiency and service quality.

This work analyzes the existing literature on planning algorithms for dial-a-ride problems, which
delivers a fourfold contribution to the research field. First, a thorough classification of existing
problem variants is established. Originally, most authors adopted the standard DARP definition
[20], which explains why early literature reviews [21, 98] only distinguish between static or dynamic
variants, as well as single-vehicle or multi-vehicle systems. Nowadays, more and more authors tend
to address additional real-life problem characteristics, enhancing the practical applicability of their
solution methods. Although some extensions have been mentioned in recent book chapters [35, 99],
this work provides a more comprehensive classification to distinguish multiple categories of real-life
problem characteristics. Within each category, similarities and differences between the correspond-
ing papers are analyzed. As a second contribution, this work reviews the wide range of solution
approaches that have been applied to various problem variants. Due to space limitations, the discus-
sion emphasizes general evolutions in the literature. However, full details on problem characteristics
and solution methods in each single paper are listed in an exhaustive overview table (see Appendix
A), which is a third contribution. The overview table also reflects the focus of this work, being
the literature on the definition of problem variants and the development of solution approaches.
The increasing relevance of this subject is evidenced by the fact that half of all reviewed papers
have been published after 2010. As a final contribution, promising directions for future research
are identified by revealing trends and lacunae in the current state of the art.

The remainder of this work is organized as follows. Section 2 clarifies the methodology used to
review the literature. Section 3 classifies the variety of problem variants defined to date. Section
4 distinguishes multiple solution approaches and discusses widely used benchmark data. Section
5 covers the scheduling subproblem. Finally, Section 6 summarizes the main findings and derives
opportunities for future research.

2 Methodology

Two search strategies were adopted to collect all relevant literature in a structured way. First,
electronic bibliographic databases, such as EBSCOhost and Web of Knowledge, were consulted.
A broad search was carried out for papers having the concepts ‘dial-a-ride’, ‘on-demand trans-
portation’, ‘demand-responsive transportation’ or ‘patient transportation’ in their title, content or
keywords. Closely examining these search results, papers focusing on problem variants and solution
methods have been retained for inclusion in the actual literature review process. Second, additional
literature was identified on the basis of references by other authors. These papers were obtained by
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searching other sources or by contacting the authors. Once again, the aforementioned criteria were
employed to decide which of them have been included. After gathering all literature, a thorough
examination of the problem characteristics and solution methods in each paper allowed to establish
the structure of this work.

3 Problem characteristics

As a first contribution, this work identifies and classifies all problem variants presented in the lit-
erature. Section 3.1 discusses the standard DARP [20] and its mathematical formulations. Although
this standard problem has been studied extensively, practical applications of dial-a-ride systems
often exhibit numerous additional problem characteristics. Planning algorithms ignoring these ex-
tensions may deliver infeasible or unrealistic solutions. Therefore, the current trend of studying rich
vehicle routing problems with a broader practical applicability [14] is also noticeable in research
on the DARP. More specifically, the classification scheme presented in this work is based on the
observation that real-life systems may require three types of extensions to the standard problem
definition. The first type involves additional characteristics related to the design of the service. On
this matter, Section 3.2 presents problem variants that consider heterogeneous users, vehicles or
drivers, more complex routing properties and different service level specifications. The second type
of extension relates to the objective in the optimization process. Whereas the standard problem
definition includes a single operational objective, Section 3.3 discusses a wide range of operational
and service-related objectives whose practical relevance has been described in the literature. The
third type of extension concerns the nature of the information available to the service provider. The
standard problem assumes that data is deterministic and known before vehicle routes and schedules
are designed. In contrast, Section 3.4 focuses on problem variants that involve dynamic or stochastic
information on travel times, requests or user behavior. Table 1 outlines the detailed classification
scheme of additional real-life problem characteristics and indicates the references associated with
each category. Papers delivering multiple contributions may appear in several categories. Finally,
to conclude the discussion on problem characteristics, Section 3.5 identifies lacunae in the current
state of the art and emerging research topics for future work.

3.1 Standard DARP

3.1.1 Definition

A standard definition of the DARP has been established by Cordeau and Laporte [20]. The
problem consists of designing a number of minimum-cost vehicle routes in a complete graph of
nodes and arcs, provided that all user requests are met. Nodes correspond to the pickup and delivery
locations of users, supplemented with the vehicle depot. Each directed link between two nodes is
an arc, characterized by a travel time and an associated cost which is incurred if the arc is part
of the solution. Each route starts and ends at the depot within fixed time intervals and respects a
maximum route duration. For the users served in between, the service at each location starts within
a time window. The maximum user ride time cannot be exceeded and a vehicle’s load cannot violate
its capacity. To ensure a correct physical route construction, precedence and pairing of a user’s origin
and destination should be respected by visiting them in the right order, using the same vehicle.
A service duration indicates the time required for loading and unloading users. As indicated in
the classification scheme of Parragh et al. [98], this definition distinguishes the DARP from other
problems in vehicle routing. Most closely related is the pickup and delivery problem with time
windows (PDPTW), which also involves demand-dependent transportation between paired pickup
and delivery locations. However, the definition of the PDPTW is based on the transportation of
goods, which explains why fewer quality constraints need to be included. Particularly the maximum
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3.2 Advanced service design

3.2.1 Heterogeneity

Beaudry et al. [7], Braekers et al. [12], Detti et al. [32], Hanne et al. [55], Liu et al. [76], Parragh [96], Parragh
et al. [97], Qu and Bard [106], Wong and Bell [129], Xiang et al. [130], Zhang et al. [134]

3.2.2 Routing properties

Beaudry et al. [7], Braekers et al. [12], Braekers and Kovacs [13], Detti et al. [32], Espinoza et al. [37], Häll
et al. [49], Hanne et al. [55], Karabuk [69], Liu et al. [76], Masmoudi et al. [81], Masson et al. [83], Molenbruch
et al. [87], Parragh et al. [97], Parragh et al. [102], Reinhardt et al. [109], Zhang et al. [134]

3.2.3 Quality specifications

Diana and Dessouky [33], Jaw et al. [67], Jørgensen et al. [68], Melachrinoudis et al. [85], Paquette et al.
[94], Toth and Vigo [127]

3.3 Alternative objectives

3.3.1 Single objective

Attanasio et al. [5], Berbeglia et al. [9], Diana et al. [34], Feuerstein and Stougie [39], Garaix et al. [45],
Krumke et al. [71], Parragh et al. [102], Rekiek et al. [110], Ritzinger et al. [111], Yi and Tian [132]

3.3.2 Multiple objectives

Diana and Dessouky [33], Guerriero et al. [48], Jørgensen et al. [68], Lehuédé et al. [72], Mauri and Lorena
[84], Melachrinoudis et al. [85], Paquette et al. [95], Parragh et al. [101], Schilde et al. [119], Schilde et al.
[120], Wong and Bell [129], Xiang et al. [130]

3.4 Stochastic or dynamic

3.4.1 Travel times

Fu [41], Schilde et al. [120], Xiang et al. [131]

3.4.2 Requests

Attanasio et al. [5], Beaudry et al. [7], Berbeglia et al. [8], Berbeglia et al. [9], Coslovich et al. [23], Cremers
et al. [26], Ho and Haugland [60], Hanne et al. [55], Schilde et al. [119], Hyytiä et al. [63]

3.4.3 User behavior

Deflorio et al. [29], Heilporn et al. [58]

Table 1 Classification of papers extending the standard problem characteristics of Cordeau and Laporte [20]

user ride time constraint is inherent to the DARP and complicates the scheduling subproblem.
More specifically, scheduling the start of service in each node as early as possible is not an effective
strategy and may cause incorrect infeasibility declarations. It may be necessary to postpone the
start of service in pickup nodes in order to decrease the ride time of the user involved. Extensive
details on solution approaches for this scheduling subproblem can be found in Section 5.

3.1.2 Mathematical formulations

Cordeau [19] proposes an arc-based mixed-binary linear program, shown by equations 1-14. The
three-index binary decision variable xk

ij indicates whether vehicle k traverses the arc between
nodes i and j. Each vehicle route is assumed to start at an origin depot and end at a destination
depot (eq. 4, 6). One and the same vehicle should reach and leave corresponding pickup and delivery
locations i and n + i (eq. 2, 3, 5), which ensures flow conservation and pairing. Decision variable
Lk
i computes the ride time of user i (eq. 9) and cannot exceed the maximum user ride time L (eq.

12). Explicit precedence constraints become redundant if Lk
i is set at least equal to the associated

direct ride time. Decision variables Bk
i and Qk

i track the service start in node i (eq. 7) and the
load upon leaving node i (eq. 8), respectively. They should respect the time window of node i (eq.
11) and the capacity Qk of vehicle k (eq. 13), respectively. The time span between the moment a
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vehicle leaves the origin depot and the moment it returns to the destination depot cannot exceed
the maximum route duration Tk (eq. 10). A minimum-cost selection of arcs is made (eq. 1), subject
to all constraints and full demand satisfaction.

Minimize
∑
k∈K

∑
i∈N

∑
j∈N

ckijx
k
ij (1)

Subject to ∑
k∈K

∑
j∈N

xk
ij = 1 ∀i ∈ P (2)

∑
j∈N

xk
ij −

∑
j∈N

xk
n+i,j = 0 ∀i ∈ P, ∀k ∈ K (3)

∑
j∈N

xk
0j = 1 ∀k ∈ K (4)

∑
j∈N

xk
ji −

∑
j∈N

xk
ij = 0 ∀i ∈ P ∪D, ∀k ∈ K (5)

∑
i∈N

xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + di + tij)xk
ij ∀i ∈ N, ∀j ∈ N, ∀k ∈ K (7)

Qk
j ≥ (Qk

i + qj)xk
ij ∀i ∈ N, ∀j ∈ N, ∀k ∈ K (8)

Lk
i = Bk

i+n − (Bk
i − di) ∀i ∈ P, ∀k ∈ K (9)

Bk
2n+1 −Bk

0 ≤ Tk ∀k ∈ K (10)

ei ≤ Bk
i ≤ li ∀i ∈ N, ∀k ∈ K (11)

ti,i+n ≤ Lk
i ≤ L ∀i ∈ P, ∀k ∈ K (12)

max{0, qi} ≤ Qk
i ≤ min{Qk, Qk + qi} ∀i ∈ N, ∀k ∈ K (13)

xk
ij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀k ∈ K (14)

P = set of pickup nodes, D = set of delivery nodes, N = set of all nodes (including the depot nodes), K = set

of vehicles, cij = cost associated with arc (i,j), tij = direct travel time associated with arc (i,j), di = service

duration in node i, qi = net number of users boarding in node i

Since an arc cannot be traversed by multiple vehicles, the vehicle index k can be avoided when-
ever route duration is unbounded and travel times/costs are vehicle-independent. Different vehicle
capacities can still be modeled using artificial pickup and delivery nodes. Røpke et al. [114] present
two two-index formulations. The first only adapts constraints on the physical route construction.
Pairing is ensured by precedence constraints, defining subsets of arcs which cannot jointly be part of
a feasible solution. The second two-index formulation of Røpke et al. [114] defines a single decision
variable xij . Time and load restrictions are imposed by infeasible path constraints and rounded
capacity constraints. However, eliminating Li, Bi and Qi limits possibilities to include objectives
related to user quality (see Section 3.3). In addition, the number of constraints grows exponentially
with the number of users.

As explained in Section 4, these arc-based formulations are particularly suitable for branch-and-
cut approaches. However, other types of formulations have been presented as well. Set-partitioning
or set-covering formulations [103] are useful for column generation approaches. Such formulations
require a set of feasible routes with a known cost. A minimum-cost selection is made among these
routes, such that fleet size is respected and each request appears in exactly one (set-partitioning)
or at least one (set-covering) route. Constraint programming approaches may invoke a formulation
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based on successor variables [10]. A decision variable indicates the immediate successor of each node.
A route is represented as a closed circuit, assuming that the origin depot conceptually succeeds the
destination depot. Another decision variable registers the vehicle performing service in each node,
given that it should belong to the same route as its successor and its corresponding pickup/delivery
node. Also the start of service in a node and the load upon leaving this node are tracked by separate
decision variables. A feasible set of routes should be constructed subject to all constraints and full
demand satisfaction.

3.2 Advanced service design

3.2.1 Heterogeneity

In real-life patient transportation, Parragh [96] observes that users exhibit heterogeneous physical
needs. Instead of using a normal seat, some users travel in a wheelchair or on a stretcher. Besides,
they may require the presence of one [96, 97] or several [76, 134] accompanying persons. This is
reflected in the layout of the vehicles, which consists of multiple capacitated resource types, such
as staff seats, normal seats, wheelchair spaces and stretchers. If upgrading conditions apply, users
can be assigned to a ‘lower’ resource type than requested. Parragh [96] provides the formulation
of Cordeau [19] with an additional index, such that vehicle capacity should be respected for each
resource type. Any set of eligible resource types may be defined for each user category. Parragh [96]
also extends the first formulation of Røpke et al. [114] with a pair of artificial origin and destination
depots for each vehicle. Tournament inequalities are defined, based on all paths which start at a
particular artificial origin depot and violate a load constraint. Consequently, loads in each route
can be checked without using a third index. The second formulation of Røpke et al. [114] is adapted
by Braekers et al. [12]. Rounded capacity constraints are formulated for the resource type having
the smallest capacity relative to the corresponding demand.

Qu and Bard [106] note that service providers may use configurable vehicles to become more
demand-responsive. The distribution of total vehicle capacity over resource types is assumed to be
adjustable, given a set of possible layouts which are inherent to the vehicle type. Mathematically,
an additional index is added to the heterogeneous problem formulation of Parragh [96], indicating
which configuration should be selected while traversing an arc. Liu et al. [76], Hanne et al. [55]
and Beaudry et al. [7] also include disjunctive multi-dimensional capacities, but only the former
provide a formulation. Wong and Bell [129] consider two-dimensional vehicle capacity with two-way
substitution, meaning that resources of both types can readily be converted into each other.

In addition to physical needs, users may be heterogeneous with respect to their medical condi-
tion. Hanne et al. [55] and Beaudry et al. [7] discuss priority constraints for patient transportation
between hospital campuses. Emergency requests receive first priority in order to complete their
service within a limited time frame. Users may also require isolated transportation because of a
contamination risk, which implies that their ride cannot be shared. Afterwards, the vehicle has
to return to the depot for cleaning. Consequently, the arc between the user’s pickup and delivery
location, as well as the arc from this delivery location to the depot should be part of any feasible
solution. The depot may be visited multiple times throughout the day (see Section 3.2.2). Hetero-
geneity may also give rise to different medical driver qualifications. Xiang et al. [130] assume that
a degree of complexity is associated with users and with fixed medical equipment in the vehicle.
A driver is only assigned to users and vehicles that do not exceed his qualification level. Similarly,
Hanne et al. [55] define tasks which should be performed by staff employees and tasks which may be
done by volunteers. Based on real-life observations in patient transportation, Detti et al. [32] and
Molenbruch et al. [87] impose incompatibilities among different types of patients and restrictions
with respect to the vehicles that are eligible to transport them.
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3.2.2 Routing properties

Masson et al. [83] allow transfers of users between vehicles. This may increase the productivity of
systems with random origins and widespread, clustered destinations (or vice versa). On the other
hand, transfers may be impracticable for disabled users, spread delays throughout the network and
cause waiting times and discomfort. Assuming fixed transfer points, a formulation for the DARP
with transfers is obtained by adding user ride time and route duration constraints to the formula-
tion of Cortés et al. [22] for the PDPTW with transfers. Transfer points are modeled as consecutive
arrival and departure nodes. Users may reach and leave a transfer point in different vehicles. Upper
and lower bounds on transfer times can be included. Since corresponding origins and destinations
are not necessarily in the same route, a three-index decision variable registers which vehicle tra-
verses each arc. Reinhardt et al. [109] apply the transfer principle to organize assistance for people
with reduced mobility at an airport.

Furthermore, the integration of on-demand transportation and regular public transportation
may cause additional operational benefits. Guidelines to determine which requests are eligible for
hybrid execution [1, 59] consider distance traveled, handicap of the user and design of the fixed
routes. On-demand routes are often created subject to a given use of regular bus services. For exam-
ple, a user’s transfer points are determined in advance. However, an integrated approach is desirable
to balance travel times and total distance, as well as to alleviate pressure on the on-demand system.
Häll et al. [49] assume that pickup and delivery locations are visited by on-demand vehicles, but the
middle section of the ride may involve regular public transportation. Buses have unlimited capac-
ity and drive so frequently that waiting times are neglected. The authors’s arc-based mixed-binary
linear program includes two binary decision variables to indicate which arcs are traversed by an
on-demand vehicle and which regular bus lines are used.

Groups of users formulating a single multiple-load request are normally transported together.
However, on the one hand, Parragh et al. [102] notice that splitting group requests among multiple
rides may be more efficient from an operational point of view, even if the size of the group does
not exceed vehicle capacity. Some typical split-delivery properties do not hold in the presence of
precedence constraints [91]. For example, there may not exist an optimal solution in which each
arc is traversed at most once. This explains why Parragh et al. [102] refrain from an arc-based
formulation. They present an alternative mixed-integer program in which nodes are assigned to
certain positions in the routes, as well as a set-partitioning formulation. On the other hand, Qu
and Bard [107] and Liu et al. [76] propose to reduce the problem size by considering individual re-
quests with similar spatial and temporal characteristics as a group request. From a practical point of
view, this simplification seldom affects the solution, whereas the resulting problem is easier to solve.

Various authors consider a multi-trip problem variant, motivated by restrictions on staff avail-
ability and working times. Parragh et al. [97] assume that accompanying persons (see Section 3.2.1)
are limited in number, work mornings or afternoons and should be picked up or delivered at the de-
pot. In addition, drivers take a mandatory lunch break which starts within a prefixed time window.
An arc-based mixed-binary linear program requires an artificial noon depot, provided with a time
window. Binary decision variables indicate whether a vehicle takes an accompanying person dur-
ing the morning and/or afternoon, which relates to the assignment of users demanding assistance.
Driver assignments are registered as well, since no lunch breaks should be scheduled for unused
vehicles. The authors also provide a set covering formulation for the same problem variant. Zhang
et al. [134] and Liu et al. [76] include lunch breaks at the depot, both for drivers and full-time
accompanying persons. A maximum tour duration requires vehicles to visit the depot even more
frequently, e.g. to be cleaned. Liu et al. [76] assure that users may require assistance of multiple ac-
companying persons, who are limited in number. This introduces an additional manpower planning
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problem. Masmoudi et al. [81] combine lunch and coffee breaks with heterogeneous users [96] and
present a comprehensive mathematical formulation. Other multi-trip contributions include Beaudry
et al. [7], Hanne et al. [55] and Karabuk [69]. The latter two papers only insert lunch breaks in
the final scheme, which is a non-integrated approach that is frequently applied in practice. Finally,
Braekers and Kovacs [13] consider a multi-period variant involving multiple operating days in order
to ensure driver consistency. They propose three-index and four-index formulations in which the
total number of drivers serving each user is limited.

Whereas most authors assume that vehicles start and end their service at a single depot loca-
tion, the fleet may be allocated between multiple depots. For service providers who allow drivers
to take their vehicles home, these depots correspond to the home addresses of the drivers. Braekers
et al. [12] incorporate multiple depots into the three-index mixed-binary arc-based linear program
of Parragh [96] by adapting costs and travel times of arcs which leave or reach the depot. Due to a
much larger working area, multiple depots are also common in the context of per-seat on-demand
air transportation (dial-a-flight system), which is a rather recent development. Flight routes and
schedules can be found by modeling the problem as a DARP with specific routing constraints. Re-
garding the work duration of pilots, Espinoza et al. [37] distinguish between a maximum availability
duration and a maximum flight duration. Both capacity and weight limitations are included and a
maximum is imposed on the number of intermediate stops for each user.

3.2.3 Specifications of service quality

Most variants of the DARP involve two constraints which determine the service level experienced
by users. A time window restricts the waiting time a user may face before being picked up or after
being delivered. As noted in Jaw et al. [67], a user is typically asked to indicate either a preferred
departure time or a preferred arrival time. For an outbound trip to an appointment, it is important
not to be late for the appointment, but the user may arrive somewhat earlier than requested. This
gives rise to a time window for the destination of an outbound trip. The opposite reasoning applies
to an inbound trip, resulting in a time window for the origin node. In both cases, the single time
window for each trip is combined with a maximum user ride time, which cannot be smaller than
the corresponding direct ride time. Since this limits the time a user can spend aboard the vehicle,
an additional time window is implicitly constructed for the origin of an outbound trip (resp. the
destination of an inbound trip). This time window can be narrowed for reasons of transparentness
to the user [33]. Paquette et al. [94] review several approaches to express the maximum user ride
time itself. Although most authors impose a fixed value for all users, this entails the counterintuitive
consequence of a detour being feasible for a short trip and not for a longer one. Alternatively, the
maximum user ride time may be defined as a multiple of the corresponding direct ride time or a
maximum exceedance of the direct ride time may be imposed. A maximum user ride time may also
be enforced indirectly by imposing two time windows for each user, both for the departure and the
arrival (e.g. [4, 102, 128]).

Time windows and maximum user ride times can also be seen as soft constraints [68, 85], which
means that violations are allowed but discouraged through a penalty cost. This approach increases
the probability of finding a solution, but may result in users being late for an appointment or
unforeseen waiting time for vehicles which are due to leave before the user is available. Analogously,
rather than constructing a time window, deviations from the user’s preference time can be penalized
proportionally [127]. Remarkably, also violations of essential feasibility requirements (e.g. load
constraints) are sometimes minimized [84], rather than imposed as hard constraints. Less frequent
aspects of service quality are reviewed in Paquette et al. [94]. For example, some service providers
avoid waiting time being assigned to a vehicle while a user is aboard, except for loading or
unloading other users (e.g. [33, 78, 120]).
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3.3 Alternative objectives

3.3.1 Single objective

Most solution methods only include a cost-related operational objective. Service quality is as-
sumed to be sufficient as soon as the quality constraints (e.g. maximum user ride time) are met.
The most common objective is minimizing total distance traveled (see Appendix A). Assuming
that the cost and the travel time associated with an arc are proportional to its length, minimizing
total routing costs [20] or total vehicle travel time [111] are equivalent objectives. Less common
single-objective optimizations consider fleet efficiency, such as minimizing fleet size [34] or maximiz-
ing vehicle usage efficiency [110]. Maximizing the vehicle occupancy rate stimulates social contacts
among users, rather than enhancing the operational efficiency of the system [45]. Lastly, for private
service providers who are not obliged to meet all demand, profit may be maximized based on a
revenue associated with each request [102].

In a dynamic environment, which is discussed in Section 3.4.2, different objectives are com-
mon. Full demand satisfaction may no longer be attainable when requests are revealed in real
time. Therefore, the number of requests served in time may be maximized [5, 9, 132]. With users
requesting immediate service, the time needed to complete all available requests or their average
completion time may be minimized [39]. Another relevant objective is a minimization of maximum
flow time [71], with flow time being the difference between the release of a request and the start of
its service.

3.3.2 Multiple objectives

A single operational objective does not provide any incentive to optimize service quality. However,
it may be undesirable to ensure just a minimum service level. In addition, this level may be difficult
to specify in advance. Therefore, many authors consider multiple objectives, usually being a com-
bination of operational and quality-related objectives. In the latter category, the most common
objectives (see Appendix A) are minimizing total user ride time and minimizing total user waiting
time, caused by deviations from their preference time. Maximum user ride time may be minimized
as well [72]. Additional operational objectives relate to a minimization of vehicle idle time [33],
total driver wage [130], total route duration [68] and taxi costs to cover a fleet shortage [129].
Variable routing costs may be supplemented with a fixed vehicle activation cost, which contributes
to a minimization of fleet size [48, 130]. Whenever the feasibility of a solution is enforced using soft
constraints, additional penalty terms need to be included in the objective function [68, 84, 85].
They penalize violations of a soft constraint and guide the solution procedure towards the fea-
sible solution area. In models which consider an advanced service design, the objective function
may consider user inconvenience caused by the design characteristics (e.g. the number of transfers).

Most problem formulations aggregate the objectives into a single weighted-sum objective
function. Advanced utility models, e.g. based on the Choquet integral, may be used to consider
interactions between multiple objectives [72]. However, computing an at first sight readily inter-
pretable objective value requires preference information (a priori weight choices) and hides trade-offs
between different goals. Having insight into these tradeoffs, e.g. the operational cost of implement-
ing a certain quality level, is essential for a service provider to establish a targeted policy. Another
indirect strategy defines a hierarchical objective function [119, 120], in which an underlying
objective is only invoked as a decision criterion whenever two solutions perform equally well in
terms of a main objective. Direct multi-objective formulations most frequently adopt the principle
of Pareto dominance [87, 95, 101]. Their optimum is a set of non-comparable solutions which do
not weakly dominate each other. The set does not contain any solution pair for which one solution
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is better at one objective and not worse at the other objective. Solution quality of different sets
can be compared using Pareto-compliant sorting criteria (e.g. in [101]), such as the hypervolume
indicator [136] and multiplicative epsilon indicator [137]. Alternatively, a reference-point method
[17] may be used (e.g. in [95]), which sums distances between objective values and an ideal point.
Dynamic weights stress the objective for which these distances are large.

3.4 Stochastic or dynamic information

The standard DARP makes two assumptions regarding the nature of the information available
to the service provider. First, information is assumed to be static, which implies that all relevant
data (e.g. requests, travel times, ...) is known before the route planning process starts. It remains
unchanged during the entire time horizon. Second, the data is assumed to be deterministic, meaning
that it is not subject to variability or uncertainty. However, both assumptions rarely hold in real-
life systems. Most service providers face dynamic changes in inputs and external conditions tend
to induce stochasticity into the system. This section presents different causes that complicate the
availability of information and explains how the subject has been addressed in the literature.

3.4.1 Travel times

Fu [41] argues that in an urban environment, a system’s reliability can be increased considering
stochastic and time-dependent travel times. They allow to account for traffic congestion and
avoid that delays are accumulated. A normal distribution is assumed for the travel times on each
arc. The average travel time varies with the precise departure time, whereas the corresponding
standard deviation is assumed constant. A route is considered as a sequence of schedule blocks
[67] with zero variance at the start of each block. The expected start of service in a node can be
computed recursively and should respect the time constraints with a given probability. Routes being
feasible in a deterministic context may be rejected if they exhibit a large variance, which increases
fleet requirements. To estimate the travel times, Fu and Teply [43] suggest three approaches, based
on zones, distance and an artificial neural network. Xiang et al. [131] include stochastic travel
and service times in a dynamic problem context. Vehicle breakdowns may occur. Schilde et al.
[120] model accidents as gradually expanding and shrinking circles, causing congestion on the arcs
they cover. Travel time consists of an average and a stochastic influence of accidents, both being
time-dependent. Vehicles always use the shortest-distance path.

3.4.2 Requests

Most authors assume that all requests are known in advance, such that static routes and schedules
can be constructed. In the dynamic problem variant, additional information may be revealed dur-
ing the planning phase or even during the execution phase. The most studied case involves (part of)
all requests being received in real time. These users either follow the usual reservation principle or
ask for immediate service, in which case a maximum position shift may be imposed to respect the
order of booking [104]. The service provider should be able to decide instantaneously whether an
additional request can be inserted [5]. For this purpose, Berbeglia et al. [9] present a constraint sat-
isfaction problem formulation which can be used to prove the infeasibility of a problem. Hyytiä et al.
[63] point out the risk of congestive collapse when the capacity of the control policy is exceeded,
which suddenly causes an unacceptably high rejection rate. Specific problem contexts involving
additional requests may be considered. For example, Hanne et al. [55] and Beaudry et al. [7] study
transportation systems in a hospital context, where emergency requests should be serviced within
a very limited time frame. Coslovich et al. [23] focus on unexpected users asking for service during
the stop of a vehicle. Cremers et al. [26] consider subcontracting requests to taxi services during
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peak moments. The taxis are cheaper when booked one day in advance, but some requests are only
revealed at the beginning of the operation day. Apart from additional requests, several unexpected
events related to users or vehicles may be taken into account, including user no-shows, cancelations
of requests, changes of requests, vehicle breakdowns and traffic jams [36, 52]. Particularly the latter
two may have a considerable operational impact [131]. For a rather recent literature review on the
dynamic DARP, the reader is referred to Berbeglia et al. [8].

Despite technological advances, such as vehicle localization systems or increased processing
power, responding to new information remains a time-critical task. Therefore, most authors fo-
cus on repairing existing solutions, rather than repeatedly applying static solution methods. In
general, such repair heuristics first seek for a feasible solution once new information is revealed.
Next, continuous optimization is performed until the next event occurs. Parallel computation may
be applied [5]. Parallelization strategies differ in whether control is executed by a single processor or
distributed, whether new best solutions are communicated to other processors or not, and whether
search parameters and initial solutions differ or not. Nevertheless, a problem’s real-time nature
may heavily affect the efficiency with which it can be solved. This is reflected in the competitive
ratio, being the worst-case proportion between an algorithmic result and the corresponding static
optimum. Minimizing the time interval needed to complete all available requests, Feuerstein and
Stougie [39] and Ascheuer et al. [3] compute lower bounds on this competitive ratio. Lipmann et al.
[75] include incomplete ride information, meaning that destinations only become known when their
corresponding origin is visited. Feuerstein and Stougie [39] also find lower bounds on the competi-
tive ratio for a minimization of the average completion time. Minimizing the maximum flow time,
Krumke et al. [71] show that a solution method for a single vehicle with unit capacity cannot be
competitive. Yi and Tian [132] maximize the number of requests for which service starts within
a fixed time period after their release. They provide lower bounds for the single-vehicle case with
either unit capacity or infinite capacity. Yi et al. [133] add restricted information and a finite ca-
pacity to the work of Yi and Tian [132].

Apart from the dynamic DARP, problem variants with a limited availability of information may
involve known requests with a stochastic or probalistic nature. Schilde et al. [119] observe that
some users, such as patients in a hospital, may be unable to specify their return time in advance.
Rather than considering such inbound trips as dynamic requests, a statistical distribution can be
used to anticipate possible inbound trips at various times. Ho and Haugland [60] consider requests
that are served with a given probability. In real-life cases, such a problem arises when fixed routes
are executed on a regular basis, but users are absent with a known probability. For example, elderly
people may not feel fit enough to go to the daycare center on a particular day. In this case, the
order of the remaining nodes in the route remains unchanged. The authors construct routes such
that expected costs are minimized, using a recourse function that takes into account the skipping
probabilities.

3.4.3 User behavior

Reliability may also be impacted by stochastic user behavior. Heilporn et al. [58] consider users
showing up late at their pickup location. In this case, the on-demand vehicle leaves at the scheduled
time and a taxi is called in, causing a cost which exceeds the savings of skipping the corresponding
delivery node. An arc-based mixed-binary linear program for this problem variant includes an
expected delay cost. The probability of being late decreases as a user is visited later in his pickup
time window and thus also depends on the probability of skipping preceding nodes. Some users may
be scheduled early in their time window in order to serve the majority of users as late as possible.
This may generate considerable savings over a deterministic optimum with expected delay costs,
even if the scheduling procedure is adapted. Deflorio et al. [29] discuss lateness of both users and
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drivers, the latter due to time-dependent variability of travel times and unforeseen waiting times.
Decreasing the variance on how long drivers decide to wait for late users increases the number of
requests met.

3.5 Discussion and research opportunities

The literature analysis in the preceding sections reveals a trend of including more real-life prob-
lem characteristics in models on the DARP. Variants considering heterogeneity, more complex
routing properties and dynamic or stochastic information have gained interest in recent years, as
demonstrated by the number of contributions in these categories. Although it is encouraging that
authors base their work on a practical operating context, some challenges should be pointed out
as well.

First, recent surveys on service quality and user satisfaction [93, 94] still indicate an insufficient
match with the actual needs and concerns expressed by users. Consulting users, service providers
and other stakeholders remains advisable to ensure the practical applicability of theoretical research.
Second, the research domain lacks unification, since the integration of problem characteristics from
different categories has been overlooked. For example, no research has been performed on the
realistic combination of stochastic travel times and configurable vehicles, despite all efforts to
investigate both characteristics separately. The extensive overview table in Appendix A allows the
interested reader to identify similar gaps in the current state of the art. Third, from a managerial
point of view, it is insufficient to include real-life problem characteristics without analyzing their
effect on operational costs and service quality. For example, a service provider is interested in a
quantitative analysis on the benefits of purchasing configurable vehicles before actually doing the
investment. However, such insights are currently unknown for many problem variants, although
at least a lower bound on the impact of real-life characteristics can be found (e.g. [83]). Fourth,
a trend of solving the DARP in combination with related problems has recently arisen. Instead
of considering requests and time preferences as an input to the routing problem, Coppi et al. [18]
claim that mutual benefits may be obtained by integrating health care scheduling and vehicle
routing. They propose to schedule patient treatments in a hospital in such a manner that the costs
of transporting the patients to the hospital is minimized. In other words, the overall costs of the
health care provider and the dial-a-ride provider can be decreased if their operational activities are
planned jointly. Li et al. [73] integrate the on-demand transportation of people and parcels and
propose an adapted scheduling procedure to avoid that slack time is scheduled while people are
aboard the vehicle. Santos and Xavier [117] discuss a dynamic integration of the DARP and ride
sharing by private car owners who are willing to deviate from their intended routes. Such integrated
approaches inspired on real-life examples are interesting topics to address in future research.

4 Solution methods

As a second contribution, this work identifies and classifies all solution methods applied in the
literature to date. Section 4.1 provides an overview of different exact solution methods. However,
due to the complexity of the problem, research has mainly been directed at the approximate solution
methods discussed in Section 4.2. Table 2 outlines the detailed classification scheme of all approaches
as proposed in this work. This table also indicates the references associated with each category.
Papers delivering multiple contributions may appear in several categories. Furthermore, common
benchmark instances on which the solution methods have been applied are presented in Section
4.3. Section 4.4 includes a summarizing discussion and identifies opportunities for future research.
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4.1 Exact methods

4.1.1 Branch-and-cut

Braekers et al. [12], Cordeau [19], Häll et al. [49], Heilporn et al. [58], Liu et al. [76], Parragh et al. [101],
Parragh [96], Røpke et al. [114]

4.1.2 Column generation

Garaix et al. [45], Parragh et al. [97]

4.1.3 Branch-(cut-)and-price

Gschwind and Irnich [47], Parragh et al. [102], Qu and Bard [107]

4.1.4 Dynamic programming

Desrosiers et al. [30], Häme [52], Häme and Hakula [53], Häme and Hakula [54], Lois et al. [77], Psaraftis
[104], Psaraftis [105], Ziliaskopoulos and Kozanidis [135]

4.2 Approximate methods

4.2.1 Classical heuristics

Borndörfer et al. [11], Coslovich et al. [23], Diana and Dessouky [33], Ioachim et al. [65], Jaw et al. [67],
Karabuk [69], Luo and Schonfeld [79], Teodorovic and Radivojevic [126], Toth and Vigo [127]

4.2.2 Metaheuristics based on local search

Attanasio et al. [5], Baugh et al. [6], Beaudry et al. [7], Braekers et al. [12], Braekers and Kovacs [13],
Cordeau and Laporte [20], Chassaing et al. [15], Detti et al. [32], Guerriero et al. [48], Häll and Peterson [51],
Healy and Moll [57], Ho and Haugland [60], Kirchler and Wolfler Calvo [70], Lehuédé et al. [72], Li et al.
[73], Masmoudi et al. [81], Masson et al. [83], Mauri and Lorena [84], Melachrinoudis et al. [85], Molenbruch
et al. [87], Muelas et al. [88], Muelas et al. [89], Neven et al. [90], Paquette et al. [95], Parragh et al. [100],
Parragh et al. [102], Qu and Bard [106], Ritzinger et al. [111], Schilde et al. [119], Schilde et al. [120], Toth
and Vigo [127], Wolfler Calvo and Touati-Moungla [128], Xiang et al. [130], Xiang et al. [131]

4.2.3 Metaheuristics based on population search

Atahran et al. [4], Chevrier et al. [16], Cubillos et al. [27], Cubillos et al. [28], Hanne et al. [55], Jørgensen
et al. [68], Masmoudi et al. [80], Parragh et al. [101], Rekiek et al. [110], Zhang et al. [134]

4.2.4 Matheuristics

Berbeglia et al. [9], Crawford et al. [24], Crawford et al. [25], Espinoza et al. [37], Jain and Van Hentenryck
[66], Oberscheider and Hirsch [92], Parragh and Schmid [103], Ritzinger et al. [111]

4.2.5 Simulation studies

Deflorio et al. [29], Fu [42], Häll et al. [50], Hyytiä et al. [64], Quadrifoglio et al. [108], Schilde et al. [119],
Schilde et al. [120], Shen and Quadrifoglio [123], Shen and Quadrifoglio [124]

Table 2 Classification of papers with respect to the type of solution method applied

4.1 Exact methods

4.1.1 Branch-and-cut

Cordeau [19] applies a branch-and-cut algorithm to an arc-based mixed-binary linear program.
Preprocessing steps include time window tightening, elimination of arcs which violate physical or
time-related requirements, as well as variable fixing due to incompatible requests. The formulation
is strengthened using valid inequalities related to time and load variables, subtour elimination,
rounded capacity, precedence, generalized order, order matching and infeasible paths. Røpke et al.
[114] add inequalities related to fork structures and reachability. An initial pool of inequalities is
generated and the LP relaxation of the formulation is solved iteratively. If the root node solution
is infeasible, additional cuts are generated using separation heuristics and branching is performed
on the variable xk

ij (aggregated or not) to obtain integer values. Parragh [96] and Braekers et al.
[12] adapt rounded capacity and strengthened capacity inequalities to the heterogeneous problem
variant, defining them for each resource type. Häll et al. [49] discuss which arc eliminations are
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(in)valid with integration of regular public transportation. Based on their rich problem definition,
Liu et al. [76] incorporate configurable vehicles into the capacity inequalities. Given a minimal
capacity requirement of each resource to serve a subset of nodes, dynamic programming determines
the minimum fleet size to serve that subset. Liu et al. [76] also define path elimination constraints
for paths within a trip and for two consecutive trips of a vehicle or an accompanying person. New
valid inequalities impose a lower bound on the total number of trips and force certain users to be
served either before or after lunch. Finally, the epsilon constraint technique of Parragh et al. [101]
and the L-shaped algorithm of Heilporn et al. [58] are applications of the branch-and-cut algorithm
in a bi-objective and stochastic problem context, respectively.

4.1.2 Column generation

Column generation is a particularly useful technique to solve large-scale instances, since the
problem is split into a master problem and a subproblem. The master problem consists of solving
a set partitioning/covering formulation, making use of a subset of promising routes. With multiple
vehicles types, a different subset is assumed for each type [45, 97]. The subproblem consists of
generating additional routes with a negative reduced cost, such that they may improve the objective
value when added to the master problem. Although the subproblem may be approached in a
heuristic (e.g. [18]) or metaheuristic (e.g. [103], see Section 4.2.4) manner, the discussion below
focusses on exact techniques. Garaix et al. [45] and Parragh et al. [97] represent the subproblem
as an elementary shortest path problem with additional constraints, which can be solved using a
labeling method based on dynamic programming. In addition to the cost upon reaching a node and
a reference to its predecessor, other data should be stored to identify dominated labels [113]. This
includes time and load information, supplemented with information related to specific problem
characteristics. Labels can also be eliminated if users aboard the vehicle cannot be delivered in a
feasible manner. These procedures adopt a different definition of maximum user ride time, such
that this constraint is implicitly included in the time windows of users. Besides, Parragh et al.
[97] only launch the exact procedure if six pricing heuristics fail, two of which simplify the exact
algorithm.

4.1.3 Branch-(cut)-and-price

The branch-and-cut-and-price algorithm of Gschwind and Irnich [47] has obtained the most
efficient exact solutions to date for the common benchmark instances of the standard problem (see
Section 4.3). Column generation is integrated into a branch-and-cut algorithm, based on the ob-
servation that most variables in the solution are nonbasic. The branch-and-cut algorithm includes
classical preprocessing steps and cutting planes (valid inequalities [19, 114]). Compared with ear-
lier column generation algorithms, however, new dominance rules are developed to handle both
time windows and maximum user ride time constraints in the subproblem. Two pricing heuris-
tics, operating on a reduced network and neglecting ride times, are tried before invoking the exact
method. Qu and Bard [107] present a branch-and-cut-and-price algorithm which takes into account
configurable vehicles. Parragh et al. [102] design a branch-and-price algorithm, embedding col-
umn generation into a branch-and-bound algorithm, for a problem variant with split requests and
profits. In the subproblem, positive reduced profit columns are identified using a classical labeling
algorithm [113].

4.1.4 Dynamic programming

Pure dynamic programming algorithms were mainly studied in early contributions on single-
vehicle problem variants (e.g. [30, 104, 105]). In spite of few direct applications in practice, they
may be used to optimize pairs of routes in a multi-vehicle problem [77, 135] and to prove whether



Typology and Literature Review for Dial-a-Ride Problems 15

or not an additional request can feasibly be inserted in a route [54]. For example, Häme and Hakula
[54] use dynamic programming to solve a constraint programming formulation based on successor
variables [10]. Häme and Hakula [53] maximize the number of users served, investigating unassigned
nodes in a specific order. They also propose a restricted variant in which backtracks are limited. The
advanced insertion algorithm of Häme [52] considers all feasible insertion positions for a certain
user and preserves all resulting partial routes after each iteration, which is only possible in the
presence of small time windows. A restricted variant selects partial routes which maximize the
available time slack, such that future insertions are facilitated. Some aforementioned methods have
heuristic variants in the multi-vehicle context [53, 54]. For each route, the single-vehicle algorithm
is executed on a set of unassigned requests and demand satisfaction is maximized.

4.2 Approximate methods

Since the DARP is an NP-hard problem [6], optimal solutions are not expected to be found in poly-
nomial time. Therefore, most problems of realistic size are solved using the approximate solution
methods discussed in this section. First, Section 4.2.1 provides an overview of the two most common
types of classical heuristics, being insertion heuristics and cluster-first-route-second heuristics. Due
to their inability to escape from local optima, research attention for such classical heuristics has
steadily declined during the past decade. Nowadays, these classical heuristics are usually incorpo-
rated into metaheuristic frameworks, e.g. to generate an initial solution. This study provides an
extensive discussion on metaheuristic solution methods, based on local search strategies (Section
4.2.2) or on population strategies (Section 4.2.3). Section 4.2.4 delves into matheuristics, which rep-
resent a recent trend of embedding exact mathematical programming models in a (meta)heuristic
algorithm. Finally, Section 4.2.5 focuses on simulation studies.

4.2.1 Classical heuristics

The sequential insertion heuristic of Jaw et al. [67] sorts users according to their earliest pickup
time. In each iteration, the first-sorted user is inserted at the best feasible position in the first
route for which a feasible insertion is found. However, this position is not necessarily globally opti-
mal. Diana and Dessouky [33] address this myopic behavior in two ways. First, they use a parallel
insertion strategy in which the first-sorted user is inserted at the best feasible position over all
routes. A seed request is chosen for each route, based on geographic decentralization. Second, a
regret criterion prioritizes requests whose non-immediate insertion may harm the eventual solution
quality. Toth and Vigo [127] initialize routes with a difficult request in terms of user requirements
and spatial or temporal situation. Furthermore, they include a dynamic component which takes
into account decentralization from initial requests in other routes. Generally, the insertion order of
the remaining users may be tailored to the specific problem context (e.g. [109, 129]) or be based
on time windows or randomness. If requests cannot be inserted due to earlier myopic assignments,
time-overlapping users may be temporally removed and relocated to another route [78, 116]. Finally,
insertion heuristics are particularly useful in a dynamic problem context, since they can add new
requests without requiring re-computation of the complete solution (e.g. [23]). Luo and Schonfeld
[79] find that a rolling horizon insertion strategy, which postpones the insertion of requests in the
distant future, increases flexibility and reduces fleet requirements.

A cluster-first route-second heuristic solves the problem in two separate phases. Ioachim
et al. [65] first use column generation to construct clusters, solving a set partitioning master prob-
lem. In the subproblem, being a constrained pickup and delivery shortest path problem, clusters
with a minimal reduced cost are generated using dynamic programming. However, they are based
on a simplified network that only consists of arcs between neighboring requests, having similarities



16 Yves Molenbruch et al.

in terms of time, space and direction. In a second phase, a similar column generation algorithm is
applied to chain these clusters. Borndörfer et al. [11] generate clusters by complete enumeration.
Since possible combinations are numerous, efficient feasible routes are selected heuristically and a
branch-and-cut approach is used to solve the resulting set partitioning problem. A distinction is
made between different vehicle types. Karabuk [69] develops a nested column generation approach
which integrates the clustering and routing decisions, rather than composing routes after the con-
struction of the clusters. The author formulates a set partitioning problem of combining complete
routes. The simultaneous construction of these routes is done solving a network flow model which
is based on the entire set of clusters, provided that the lengths of user or driver rides remain
reasonable.

4.2.2 Metaheuristics based on local search

The tabu search (TS) framework investigates moves that consist of changing a single solution
attribute. In each iteration, the most improving or least deteriorating neighbor is selected, which
allows to escape from local optima. Cycling is avoided using a short-term memory (tabu list).
Cordeau and Laporte [20] relocate a single request to another route according to the critical vertex
rule, which first inserts the node having the tightest time window. Infeasible intermediate solutions
and long-term repetitive insertions are penalized in an evaluation function with dynamic weights.
An aspiration criterion allows tabu moves which improve the best-found solution containing that
tabu attribute. Additional intra-route local search is performed after a given number of iterations.
Various authors [7, 32, 60, 85, 95] apply a comparable tabu search strategy, often adapted to a
richer problem context. Attanasio et al. [5] present a parallel implementation in a dynamic con-
text. Wolfler Calvo and Touati-Moungla [128] and Kirchler and Wolfler Calvo [70] suggest granular
TS. Based on the cost of feasible request combinations, an assignment problem is solved to obtain
clusters of close requests. A granular neighborhood is defined using reduced cost information. The
authors require intermediate feasibility and ensure diversification through a variable length of the
tabu list and an adaptive granular threshold. Except for short running times, however, classical TS
is preferred because of its more extensive search area. Toth and Vigo [127] implement tabu thresh-
olding, which is a variant which requires no memory structure. Cycling is avoided by splitting the
neighborhood into subsets and selecting the most improving or least deteriorating neighbor within
a single subset. The relocate operator is supplemented with exchange and chain operators. Finally,
TS constitutes the improvement phase in the hybrid greedy randomized adaptive search (hybrid
GRASP) of Guerriero et al. [48].

The variable neighborhood search (VNS) framework exploits the insight that neighborhoods
are defined with respect to a particular operator. Switching between multiple operators may allow
to escape from local optima. Parragh et al. [100] alternate between three inter-route operator types
with different sizes, being the exchange operator, chain operator and zero-split operator. The latter
selects a natural sequence of nodes, meaning that the vehicle is empty at the start and at the end of
this sequence. As in Cordeau and Laporte [20], a dynamic evaluation function penalizes infeasible
intermediate solutions. Promising solutions are subjected to additional (intra-route) local search,
which is a common intensification technique in (meta)heuristic approaches. Additional local search
is also applied on a small percentage of other solutions to foster diversification. Muelas et al. [88]
propose additional relocate and exchange neighborhoods and sort their operators according to past
performance. Their distributed variant [89] solves large-scale applications containing up to 16,000
requests by creating independent and equally sized subsets. Detti et al. [32] pay specific attention
to operators that perturbate slightly infeasible solutions in order to attain feasibility. Schilde et al.
[119, 120] adapt VNS to a problem with stochastic requests, using a simple average indicator to
handle different future scenarios. In Parragh et al. [102], a pool of unserved (unprofitable) requests is
introduced and intermediate load violations are prohibited, since requests can be split. Local search
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may rejoin split requests. In a bi-objective context, Parragh et al. [101] apply iterated VNS for mul-
tiple weight combinations using a weighted-sum objective function, whereas Molenbruch et al. [87]
integrate a variable neighborhood descent approach into a multi-directional local search framework.

The large neighborhood search (LNS) framework first removes a considerable percentage of
requests, after which an attempt is made to insert these requests in a better way. Typical destroy
(ruin) operators [115, 121] are random removal, worst removal, sequential removal, route removal
and related removal (also referred to as Shaw [122] removal). Common repair (recreate) operators
[115, 121] are random insertion, greedy insertion, k-regret insertion, most-constrained-first insertion
and space-time-related insertion. Operators are usually tuned and evaluated for a specific problem
variant (e.g. [51]) and may even be tailored to this context. For example, Masson et al. [83] develop
operators which take into account transfers, whereas Lehuédé et al. [72] exploit the specific context
of common destination locations and Braekers and Kovacs [13] create a multi-period variant with
driver consistency. Ritzinger et al. [111] propose block-based operators, which remove zero-split
sequences [100]. These sequences are either reinserted as a whole or decomposed in individual re-
quests. In a multi-objective context, Lehuédé et al. [72] include parameterized repair operators,
which reduce computational efforts by focusing on a single objective. Furthermore, the basic LNS
framework is often extended. Qu and Bard [106], Masson et al. [83], Li et al. [73] and Masmoudi
et al. [81] implement adaptive LNS [115], in which the probability of selecting an operator depends
on its past performance. Qu and Bard [106] also suggest a multi-start strategy and solve a maxi-
mum diversity problem to decide which initial solutions are actually used.

The deterministic annealing (DA) framework accepts deteriorations which are smaller than
a gradually lowered threshold. Braekers et al. [12] apply relocate, exchange, 2-opt*, r-4-opt and
route elimination operators in a random order. The r-4-opt operator simplifies 4-opt [74] by se-
lecting successive arcs only. Preliminary feasibility checks reduce the invocations of a scheduling
procedure. Braekers et al. [12] obtain the best-known pure local search solutions for the common
benchmark instances of the single-depot and multi-depot problem (see Section 4.3). Neven et al.
[90] use deterministic annealing of Braekers et al. [12] to predict resource requirements for round-
the-clock transportation in Flanders. Molenbruch et al. [86] apply the same algorithm to analyze
the effect of service level variations on the operational costs for service providers. A distinction is
made between various operating circumstances, including the size of the service provider, traffic
conditions in the service area and heterogeneity of users. Simulated annealing (SA) accepts de-
teriorating solutions according to a stochastic process. It is usually combined with characteristics
from other metaheuristic frameworks. For example, Baugh et al. [6] and Mauri and Lorena [84]
apply an acceptance criterion based on SA, but also encourage diversification by integrating a tabu
list and three different neighborhoods (intra-route relocation, inter-route relocation and exchange),
respectively. Masmoudi et al. [81] integrate a population-based component into DA and SA by
means of a hybrid bee algorithm, which outperforms the results of Braekers et al. [12] for the
multi-depot DARP.

Similarly, evolutionary local search is a hybridization of the iterated local search meta-
heuristic, starting each iteration with a population of perturbated solutions. All are subjected to
local search and the best result serves as the new incumbent solution. Chassaing et al. [15] invoke six
local search operators, having dynamically adapted activation probabilities that stimulate conver-
gence. Their clone detection principle avoids that previously obtained solutions are visited too often.
This approach improves the results of Braekers et al. [12] for some instances of the standard DARP.

Upon reaching a local optimum, Xiang et al. [130, 131] diversify their search using a secondary
objective. Local search relocates one or two users or performs exchanges, alternatingly minimizing
the primary and secondary objective. These objectives should ideally guide the search towards the
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same global optimum, following alternative paths. The sacrificing principle of Healy and Moll [57]
is a similar approach, but the deterioration of the first objective value is bounded.

4.2.3 Metaheuristics based on a population

Genetic algorithms (GA) combine desirable characteristics of two parent solutions, making use
of a specific encoding scheme and crossover technique. A grouping GA (e.g. [55, 68, 110]) uses an
encoding scheme which clusters users into routes and requires a separate heuristic to determine
the order of service within each route. Jørgensen et al. [68] perform crossovers by randomly se-
lecting user-vehicle combinations from both parents. Rekiek et al. [110] insert clusters from the
first parent into the second and correct for double requests. Other GA (e.g. [4, 16, 27, 28, 134])
use a variety of encoding schemes in which both the clustering of users and their order in the
route is determined. However, such representations make it even more difficult to define tailored
crossover operators which strategically combine good solution characteristics. General crossovers
are usually invoked, such as the uniform crossover, one-point crossover, two-point crossover and
partially matched crossover. To reduce the number of infeasible solutions found, Cubillos et al. [28]
propose preprocessing techniques, a list of incompatible users and the use of a precedence table.
Zhang et al. [134], who consider a multi-trip problem variant, combine trips (segments starting and
ending at the depot) from both parents. If trips cannot be inserted, the remaining requests are
added individually using k-regret insertion. All aforementioned authors include sporadic mutations
which foster diversification. Parent selection may be based on a tournament principle or (in multi-
objective approaches) crowding distance.

Hybrid GA, also referred to as memetic algorithms, extend an evolutionary framework with local
search. For example, Chevrier et al. [16] add a 2-opt operator and Zhang et al. [134] apply relocate
and exchange operators after each crossover. The highly effective hybrid GA of Masmoudi et al. [80]
includes two crossover operators, based on a sequencing strategy using a one-point crossover and a
merge strategy selecting individual genes from the parent solutions, an additional local search phase
and four different mutation operators. This approach outperforms the results of both Chassaing
et al. [15] and Braekers et al. [12].

Parragh et al. [101] and Molenbruch et al. [87] invoke path relinking (PR) to intensify their
approximation of the Pareto frontier in a bi-objective problem context. PR is a stepwise conversion
between two solutions in the solution set. By combining desirable characteristics of both, new
non-comparable or even dominating solutions might be discovered. Mapping the routes from both
solutions is done randomly, according to the number of identical requests or according to the
number of transformations needed. During the actual procedure, a random weighted-sum function
determines the most appropriate move.

4.2.4 Matheuristics

Hybrid solution approaches that embed exact mathematical programming models in a (meta)heuristic
algorithm are defined as matheuristics. Archetti and Speranza [2] describe them as an emerging
trend in vehicle routing. Matheuristics combine the advantages of exploiting the specific prob-
lem structure and using high-performance mathematical solvers. They can be classified into three
classes, being decomposition approaches, improvement heuristics and column generation approaches
[2]. Despite their excellent performances, matheuristics are relatively scarce in the literature on the
DARP.

In the class of decomposition approaches, Oberscheider and Hirsch [92] first perform an
exact optimization of users that can be combined in the same vehicle, taking into account time
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preferences, ride times and combination constraints. Based on the resulting clusters, a tabu search
strategy is applied to optimize the routing problem. The current approach does not allow interme-
diate reclustering, which would be useful to broaden the search space. The class of improvement
heuristics is represented by hybrid large neighborhood search (hybrid LNS) algorithms. Jain and
Van Hentenryck [66] apply constraint programming to complete a partial solution in which ran-
dom users have been removed. The reinsertion order is based on the remaining number of feasible
vehicles and insertion points, as well as on the insertion cost. At the end of each iteration, non-
improving complete solutions may also be accepted. Ritzinger et al. [111] perform insertions using
a dynamic programming algorithm, which adopts a giant tour representation to deal with mul-
tiple vehicles. A restricted version selects the most promising states throughout the procedure.
The search strategy in Espinoza et al. [38] can be described as hybrid adaptive LNS. Various
route removal operators are applied, based on similarity criteria and selected according to dynamic
probabilities. The associated requests are restructured using integer programming. Since changes
involve a limited number of routes, this approach is particularly suitable for parallel execution.
In the class of column generation (CG) approaches, Parragh and Schmid [103] identify feasible
routes with a negative reduced cost in a non-exhaustive manner. Variable neighborhood search
(VNS) is performed on individual routes in the solution. After a given number of CG iterations,
large neighborhood search (LNS) is applied on the complete solution, invoking classical operators
[115]. All newly generated routes may be used in a subsequent execution of the CG procedure.
Crawford et al. [24, 25] implement hybrid ant colony optimization (hybrid ACO) to select columns
which represent clusters of requests. Guided by a short-term memory (pheromone trail) regarding
the profitability of columns, ants select columns until a complete solution is reached. Constraint
programming is integrated into the selection phase, such that the number of possible additional
columns is reduced through the identification of constraint violations.

Apart from the aforementioned classification of matheuristics, solution approaches may combine
full versions of exact and (meta)heuristic algorithms. This is particularly beneficial in a dynamic
problem context. Berbeglia et al. [9] combine tabu search (TS) [20] and constraint programming
(CP) [10] to determine whether a newly received request can be accepted. It is rejected if CP proves
that the insertion is infeasible or both methods cannot find a feasible insertion within a certain
time frame. Since CP performs well in the presence of tight constraints and TS easily discovers
insertions if constraints are weak, the strengths of both methods are combined. After the insertion
of a request, TS keeps running continuously to improve the unexecuted part of the solution.

4.2.5 Simulation studies

Several authors design simulation systems to gain a better understanding of dial-a-ride systems.
They mostly analyze the impact of parameter changes concerning the design of the system and
the way it is operated. Fu [42] quantifies the benefits of technological enhancements in automatic
vehicle location (AVL) systems, which allow service providers to track and redirect vehicles. Such
systems particularly increase productivity and reliability in the presence of uncertain information,
such as stochastic travel times or service durations. Schilde et al. [119], who assume that inbound
requests may be predicted through stochastic information from historical data, develop a simulation
framework to continuously keep track of requests and to provide information on newly arising
requests during the execution. In Schilde et al. [120], this framework is extended to handle stochastic
time-dependent travel times. Deflorio et al. [29] report considerable effects on operational efficiency
and service quality caused by the punctuality of users (resp. drivers), as well as the patience they
exhibit while waiting for drivers (resp. users) being late. Quadrifoglio et al. [108] analyze the effect
of splitting a service area into zones, which are assigned to different service providers. Real-life
spatial and temporal demand distributions with two user types and potential no-shows are used.
Shen and Quadrifoglio [124] add different time distributions for requests in high-density areas.
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More centralized strategies are found to reduce fleet size and empty mileage, but cause larger
deviations from user time preferences. Shen and Quadrifoglio [123] model inter-zone trips as two
intra-zonal requests, imposing transfers at specific locations. These transfers enhance the number of
user trips per vehicle revenue hour without substantially deteriorating service quality. Hyytiä et al.
[64] compare different route selection policies in a system with stochastic requests, simulating both
random and clustered demand. Routes are approximated as M/M/1 queues and route selections
are modeled as a Markov decision process. Häll et al. [50] develop a graphical user interface for
a simulation system (DARS) which integrates multiple solution methods. By means of example,
they assess the importance of user-related costs (waiting time and excess ride time), given two
kinds of users and partly dynamic requests. More details on agent-based simulation approaches in
demand-responsive transportation can be found in a recent review by Ronald et al. [112].

4.3 Benchmark data

Since many contributions in the literature are based on practical problems, algorithms are often
tested on case-specific real-life instances. Such an approach is useful to demonstrate the practical
applicability of solution methods, but causes difficulties in comparing their efficiency. Consequently,
two sets of artificial benchmark data have been proposed to perform computational tests. This
section discusses the characteristics of these instances and the efficiency of various algorithms in
solving them.

The data set introduced by Cordeau [19] and extended by Røpke et al. [114] consists of 42
instances, including 16 to 96 requests. An instance is structured as follows. Half of all requests are
outbound, whereas the others represent inbound requests. Origins and destinations are randomly
and independently generated in a square region [−10, 10]2. The depot is located in the center. The
data set can be subdivided into two groups of 21 instances. The a-instances consider a single user
to be picked up or delivered at each location, whereas the b-instances assume that users may travel
in group. A uniform distribution is used to determine the number of users picked up or delivered
at each location and the corresponding service duration. Time windows of 15 minutes are created
for destinations of an outbound request, as well as for origins of an inbound request. Travel times
equal Euclidean distances. A fixed maximum user ride time of 30 minutes and a fixed service du-
ration of 3 minutes are taken into account. Vehicle capacity is fixed at 3 customers. The maximum
route duration is dependent on the instance and ranges from 240 to 720 minutes. Several authors
extended this data set to richer problem variants, including heterogeneous customers and multiple
vehicle types [96], multiple depots [12] and breaks [81]. Berbeglia et al. [9, 10] assume that part of
the requests are dynamically revealed. Parragh et al. [102] use the b-instances to test the effect of
split requests.

The data set of Cordeau and Laporte [20] consists of 20 instances, containing between 24 and
144 requests. The requests are generated in a comparable manner as described before, but clustered
around a number of seed points. The coordinates of the depot are the averages over those of the
seed points. A single user is picked up or delivered at each location. Half of the instances have time
windows of 30 minutes, whereas wider time windows of 60 minutes are defined for the other half. A
fixed maximum user ride time of 90 minutes and a fixed service duration of 10 minutes are imposed.
Vehicle capacity is fixed at 6 customers and the maximum route duration equals 480 minutes for
all instances. Richer problem characteristics have also been introduced into this data set, such as
heterogeneity, multiple depots and breaks [81] and the combination of parcels and people [73]. Ho
and Haugland [60] define probabilities with which certain requests may be submitted and Masson
et al. [83] extend the instances with one or several transfer points.
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Exact solution approaches are usually tested on the data of Røpke et al. [114]. To date, the most
efficient results have been obtained by the branch-and-cut-and-price method of Gschwind and Irnich
[47], solving all instances to optimality. Approximate solution methods are often tested on both
artificial data sets. State-of-the-art heuristics are the hybrid genetic algorithm of Masmoudi et al.
[80] and the evolutionary local search of Chassaing et al. [15]. Note that such efficient combinations
of local search and population characteristics are a recent development. Other good results have
been obtained by solution methods based on pure local search, such as the deterministic annealing
metaheuristic of Braekers et al. [12].

4.4 Discussion and research opportunities

Over three decades of research on the DARP has resulted in the development of numerous solution
methods. Initially, exact solutions were obtained through dynamic programming. The use of this
technique is restricted to small instances, preferably involving a single vehicle. During the past
decade, branch-and-cut approaches on efficient two-index formulations have been proposed [114].
Formulations and valid inequalities have been extended to various rich problem variants [12, 76].
Because of their efficiency, column generation and branch-(and-cut)-and-price (e.g. [47]) approaches
have recently gained attention. Since these solution approaches currently obtain the fastest exact
solutions for artificial instances with up to 96 requests and 8 vehicles, their application to rich
problem variants and larger instances is an important direction for future research.

The NP-hardness of the DARP explains why most authors develop approximate solution
methods. Initially, a variety of classical heuristics was presented in the literature, mainly fo-
cussing on standard problem characteristics. Insertion heuristics and cluster-first-route-second heuris-
tics were the most common types. The former are also useful to update solutions in a dynamic
setting. The further development of approximate solution methods was characterized by two major
shifts of attention. The first one occurred when Cordeau and Laporte [20] proposed an efficient im-
plementation of tabu search. Since then, authors have designed metaheuristics for various problem
variants. The efficiency of such a metaheuristic framework is not an intrinsic feature, but depends
on its specific implementation. Numerous design choices, such as the representation of the solution,
the definition of neighborhoods and the balance between intensification and diversification should
be tailored to the specific problem context. Nevertheless, metaheuristics based on local search
(e.g. VNS [100] and DA [12]) most often obtained good results within realistic computation times.
They typically use classical neighborhood types, such as relocating or exchanging one or several
users between routes, supplemented with intra-route optimization. However, solutions methods for
rich problem variants benefit from additional operators that take advantage of the specific struc-
ture. For example, this is demonstrated by the transfer-related destroy and repair operators in
Masson et al. [83]. The further development of such operators for other rich problem variants may
be addressed in future work. A second, more recent shift of attention is the integration of multiple
types of solution approaches. Several state-of-the-art metaheuristics benefit from integrating a
population concept into local search approaches [15, 81] or vice versa [80]. Implementations of pure
population-based metaheuristics proved less effective in the past, as it is difficult to define crossover
operators which combine desirable characteristics of two parent solutions in a strategic manner.
Yet, combining multiple types of crossovers and mutations in a genetic algorithm with additional
local search operators can be highly effective [80]. Besides, hybridizations of exact and approximate
solution methods have been proposed in the literature. Results of the first implementations, such as
the hybrid column generation approach of Parragh and Schmid [103], show that this is a promising
and relatively unexplored field that offers interesting opportunities for future research.
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5 Scheduling procedures

This section compares various procedures for solving the scheduling subproblem, which consists of
determining the start time of the service at each node in a route, given all time-related constraints
and the order by which the nodes are visited. Finding a correct time schedule is an essential con-
dition to prove the feasibility of a route. Most of the scheduling procedures discussed below have
a general applicability, rather than being restricted to a specific problem variant or solution method.

Most frequently used is the eight-step scheduling procedure of Cordeau and Laporte [20], adopt-
ing the forward time slack principle [118] to successively minimize violations of time windows, route
duration and violations of maximum user ride time. Since the last two phases do not influence vio-
lations in the previous phase(s), it may also be used in algorithms that should maintain feasibility
at all times. First, the start of service in each node is initialized at the maximum of (1) the lower
time window bound and (2) the earliest time by which the node can be reached. Second, the start of
service in the origin depot is delayed as much as possible without causing additional time window
violations, such that total route duration is minimized. The service starts in all following nodes
are updated, which never increases user ride times. Third, an analogous shift is considered for all
pickup nodes, since delaying the start of service in a pickup node may eliminate a violation of max-
imum user ride time. All pickup nodes are investigated one by one, using a forward loop through
the route. The service start in a pickup node is delayed as much as possible, without causing ad-
ditional time window violations, maximum user ride time violations or route duration increases.
The starts of service in all following nodes are updated after each shift. Parragh et al. [101] observe
that reducing a user’s ride time (violation) may increase - but not violate - the ride time of other
users aboard the vehicle. To approximate the minimal total user ride time, they propose a more
conservative computation of the forward time slack, even though this modification causes incorrect
infeasibility declarations. If minimizing total user ride time is not an objective and all ride times are
feasible, the third phase may be skipped to reduce computation time [100]. Molenbruch et al. [87]
propose a scheduling heuristic that minimizes total user ride time according to a different strategy.
Starting from a schedule with minimal ride times for the given time windows, potential travel time
shortages are eliminated while keeping ride time increases as limited as possible. A variant imposing
constraints on the allocation of waiting time is presented.

The aforementioned scheduling procedures based on the forward time slack principle have O(n2)
complexity. However, Hunsaker and Savelsbergh [62] argue that the earliest feasible schedule for a
DARP with maximum waiting times in each node can be determined in linear time. After initiating
arrivals and departures at any node to the earliest possible time, a backward pass through the route
postpones the pickup time of users whose maximum ride time is violated. If there is still any ride
time violation left, waiting time is shifted. Both Tang et al. [125] and Haugland and Ho [56] detect
incorrect infeasibility declarations. First, no waiting time is modeled at the last node in the route.
Second, the backward pass corrects departures in pickup nodes without delaying the corresponding
destination. This may allow larger waiting time shifts, but increases complexity to O(n2) [125].
Tests on a related problem show that this worst-case complexity is rarely met [46]. Haugland and
Ho [56] propose a correction which results in a O(n log(n)) complexity. Relaxing all upper time win-
dow bounds, they minimize the departure times at nodes for which the lower time window bound
is a binding constraint. Firat and Woeginger [40] solve a shortest path problem vertex-weighted
interval graph. Their formulation of linear inequalities uses a single decision variable, indicating
waiting time before leaving a node. All constraints are expressed as a difference constraint system.
A feasible schedule exists if the graph does not include negative-weight cycles. A feasible schedule
is obtained with linear complexity, as confirmed by computational tests in Chassaing et al. [15].
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Finally, some specific contributions to the scheduling subproblem are presented. The heuristic
of Jaw et al. [67] divides routes into schedule blocks, being continuous active periods. It relies on the
simplifying assumption that no waiting time is scheduled while users are aboard the vehicle. This
approach is particularly useful with nonconstant travel times [41, 120], as blocks can be scheduled
independently. Braekers et al. [12] introduce preliminary checks which may prove infeasibility of
a route before any scheduling procedure is executed. They compute the earliest arrival and latest
departure in each node on the basis of travel times, time windows and service durations, not taking
into account user ride times. Finally, specific procedures have been presented for certain problem
variants. Masson et al. [82] consider route interdependencies due to transfers and show that evalu-
ating feasibility is equivalent to checking the consistency of a simple temporal problem. Zhang et al.
[134] deal with scheduling for the multi-trip problem variant. Garaix et al. [44] approach scheduling
as a multi-objective problem in which nodes are connected by multiple Pareto-optimal paths. For
example, costs and travel times should be balanced when congestion or multimodal transportation
are taken into account. The scheduling subproblem becomes an NP-hard fixed-sequence arc selec-
tion problem, which is solved using dynamic programming. Gschwind [46] generalizes the forward
time slack principle and two of the aforementioned scheduling procedures [40, 125] to a problem
variant with both minimum and maximum ride time constraints.

6 Conclusion

Recent literature on dial-a-problems takes into account increasingly more real-life problem char-
acteristics that generalize the standard definition. This work presents a thorough classification of
all existing problem variants. Variants that involve heterogeneity, more complex routing properties
and stochastic or dynamic information have gained interest in recent years. Although this encourag-
ing trend enhances the practical applicability of solution methods, surveys among users still reveal
an insufficient match between theoretical problem characteristics and their actual concerns in daily
practice. This is due to the fact that authors fail to combine real-life characteristics from different
categories. From a managerial point of view, research should to a larger extent focus on analyzing
the impact of particular problem characteristics on the service provider’s operational efficiency and
the service quality offered to users. An extensive discussion of future research opportunities related
to the definition of problem variants can be found in Section 3.5. For example, a new perspective
in patient transportation consists of combining health care scheduling and vehicle routing, rather
than considering user requests as an input to the routing problem.

From an algorithmic point of view, the wide range of solution methods proposed in the lit-
erature is reviewed in a structured manner. In the past decade, exact solutions for relatively small
artificial instances have been obtained using branch-and-cut, column generation or branch-(and-
cut)-and-price approaches. Due to the NP-hardness of the problem, approximate methods have been
invoked to solve larger problems with diverse characteristics. In particular, metaheuristics based
on local search have obtained good results within realistic computation times. Their performance
on rich problem variants can still be improved using operators that exploit the specific problem
structure. In that respect, it may also be useful to investigate whether certain search operators and
algorithmic components perform better in a particular problem context. Furthermore, hybridization
is a recent trend to improve the performance of solution methods. For example, combinations of
local search and population strategies, as well as combinations of exact and approximate methods
constitute a promising and relatively unexplored research area. More interesting topics for future
work are discussed in Section 4.4.

Solution methods are often tested on real-life instances. To compare them among each other,
two sets of artificial benchmark data are commonly used for a limited number of problem variants.
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For other variants, either no artificial benchmark data exist or data have been created to the sole
discretion of authors. A more general applicability is desirable to compare solution techniques for
all rich problem variants. In addition, the number of users and vehicles in the artificial instances is
relatively small in comparison with real-life systems and some reasonable assumptions are ignored,
such as the fact that users normally request corresponding inbound and outbound trips on the same
day. In that respect, computational analyses should devote more attention to the robustness of the
solution methods, verifying whether they produce equally efficient solutions if different operational
characteristics apply.

Finally, the interested reader is referred to the extensive overview table in Appendix A. This
overview table provides full details on the problem characteristics and solution methods applied
in each of the papers discussed in this work. Column 1 contains the references to these papers in
alphabetic order. Columns 2-24 correspond to the problem characteristics discussed in Section 3.
They indicate whether a certain problem characteristic is studied in the corresponding paper. More
specifically, columns 2-6 refer to the characteristics of the standard DARP (Section 3.1), columns
7-13 to heterogeneity (Section 3.2.1), columns 14-18 to more complex routing properties (Section
3.2.2) and columns 19-24 to stochastic or dynamic information (Section 3.4). Column 25 gives more
details on the solution method applied (Section 4). Columns 26-32 categorize the objectives, whereas
Column 33 enumerates all components taken into account in the objective function. Columns 34-37
mention the data sets used to test the corresponding solution method (Section 4.3). Finally, an
explanation of the abbreviations used can be found below the table.
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Atahran et al. [4] x x x GA x x x x x Routing cost, time window violations, user
waiting time, CO2 emission

x x

Attanasio et al. [5] x x x x x x TS x Users served x
Baugh et al. [6] x x SA x x x x x Routing costs, time window violations, fleet

size
x

Beaudry et al. [7] x x x x x x x x x x x x TS x x Vehicle travel time, deviation from user
preference time

x

Berbeglia et al. [9] x x x x x H-TS x Users served x x
Borndörfer et al. [11] x x x x x x x BC x Distance x
Braekers et al. [12] x x x x x x x x x BC, DA x Routing costs x
Braekers and Kovacs [13] x x x x x x x x BC, LNS x Routing costs x
Chassaing et al. [15] x x x x x ELS x Routing costs x x
Chevrier et al. [16] x x x GA x x x x Fleet size, route duration, user delays x
Coppi et al. [18] x x x x x x CG x Routing costs x
Cordeau and Laporte [20] x x x x x TS x Routing costs x x
Cordeau [19] x x x x x BC x Routing costs x
Coslovich et al. [23] x x x IH x Deviation from user preference time, user

ride time
x

Crawford et al. [24, 25] x x x x x H-ACO x Routing costs
Cremers et al. [26] x x x x x GA x Expected routing costs x
Cubillos et al. [27] x x x x GA x x x Fleet size, vehicle travel time, vehicle slack

time, user waiting time, user ride time
x

Cubillos et al. [28] x x GA x x x Fleet size, vehicle travel time, vehicle slack
time, user waiting time, user ride time

x

Desrosiers et al. [30] x x x DP x Distance x
Dessouky et al. [31] x x x x x x IH x x x x Routing costs, penalties soft constraints,

life-cycle environmental costs
x

Detti et al. [32] x x x x x x x x TS, VNS x x x x Fixed and variable routing costs, vehicle
travel time, patients transported, vehicle
waiting time, user waiting time

x x

Diana and Dessouky [33] x x x x IH x x Distance, user ride time, vehicle idle time x
Espinoza et al. [37, 38] x x x x x H-LNS x Routing costs x
Fu [41] x x x x x x IH x x Expected vehicle travel time, expected

deviation from user preference time, expected
user ride time

x

Garaix et al. [45] x x x x x CG x Occupancy rate (= total user ride time over
total vehicle travel time)

x x x x

Continued on next page
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Gschwind and Irnich [47] x x x x BCP x Routing costs x
Guerriero et al. [48] x x x x x H-GRASP x Routing costs x x x
Häll et al. [49] x x x x x x x x BC x Routing costs x
Häll and Peterson [51] x x x x x x x x LNS x x Routing costs, vehicle waiting time, user ride

time, user waiting time
x

Häme [52] x x x x DP x x Route duration, user waiting time, user ride
time

x

Häme and Hakula [53] x x x x DP x Users served x
Häme and Hakula [54] x x x x DP x Users served x
Hanne et al. [55] x x x x x x x x x x x IH, GA x x x Total lateness, total earliness, vehicle travel

time, total user ride time
x

Healy and Moll [57] SOF x Routing costs (first); routing costs over
neighborhood size (second)

x

Heilporn et al. [58] x x x x x x BC x x Routing costs, expected delays x
Ho and Haugland [60] x x x x x x TS x Expected routing costs x
Hu and Chang [61] x x x x x BP x Routing costs x
Ioachim et al. [65] x x x x x CG x Distance x
Jain and Van Hentenryck [66] x x x x x H-LNS x Routing costs x
Jaw et al. [67] x x x x IH x x x Deviation from user preference time, user

ride time, active vehicle time, vehicle slack
time, system workload

x x

Jørgensen et al. [68] x x x x x x GA x x x Vehicle travel time, user ride time, user
waiting time, route duration, time window
violations, maximum user ride time
violations, maximum route duration
violations

x

Karabuk [69] x x x x x x x x x CG x x Users served, distance x
Kirchler and Wolfler Calvo [70] x x x x x TS x x x Routing costs, user ride time, user waiting

time aboard, route duration, early arrivals,
users served

x

Lehuédé et al. [72] x x x x x x LNS x x x x Maximum user ride time, user ride time, user
waiting time, vehicle travel time, fleet size

x

Li et al. [73] x x x x ALNS x x Profit from parcels, profit from user rides,
routing costs, discount for detours

x x

Liu et al. [76] x x x x x x x x BC x Vehicle travel time x
Luo and Schonfeld [78] x x x x IH x x Vehicle travel time, user ride time x x
Luo and Schonfeld [79] x x x x IH x x Vehicle travel time, user ride time x
Masmoudi et al. [80] x x x x x x x x H-GA x Routing costs x x
Masmoudi et al. [81] x x x x x x x x x x ALNS,

H-BA
x Routing costs x x

Continued on next page
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Masson et al. [83] x x x x x x x ALNS x Distance x x
Mauri and Lorena [84] x x x x x x SA x x x x Distance, fleet size, route duration, user ride

time, waiting time, maximum route duration
violations, maximum user ride time
violations, maximum waiting time violations,
vehicle capacity violations, time window
violations

x

Melachrinoudis et al. [85] x x x TS x x x Routing costs, time window violations, user
ride time

x

Molenbruch et al. [86] x x x x x x x x DA x Distance x x
Molenbruch et al. [87] x x x x x x x MDLS x x x Distance, user ride time x
Muelas et al. [88] x x x VNS x Routing costs x
Muelas et al. [89] x x x VNS x Routing costs x
Neven et al. [90] x x x x x x x x DA x x Fleet size, routing costs x
Paquette et al. [95] x x x x x x TS x x x Routing costs, user waiting time, user ride

time
x x x

Parragh et al. [101] x x x x IVNS x x x Routing costs, user ride time x
Parragh et al. [100] x x x x x VNS x Routing costs x
Parragh [96] x x x x x x x x BC x Routing costs, vehicle waiting time x
Parragh et al. [97] x x x x x x x x CG x Routing costs x x
Parragh et al. [102] x x x x BP, VNS x Profits x x
Parragh and Schmid [103] x x x x x H-CG, LNS x Routing costs x x
Psaraftis [104] x x DP x x Vehicle travel time, user waiting time, user

ride time
x

Psaraftis [105] x DP x Vehicle travel time x
Qu and Bard [106] x x x x x ALNS x x x Fleet size, distance, user ride time x x x
Reinhardt et al. [109] x x x x x x x SA x x Users served, user ride time x
Rekiek et al. [110] x x x x x x x x GA x Vehicle efficiency (= exploitation of vehicle

capacity)
x

Ritzinger et al. [111] x x x x x H-LNS x Total vehicle travel time x x
Røpke et al. [114] x x x x BC x Routing costs x x
Rubinstein et al. [116] x x x x x IH x x Time window violations x x
Santos and Xavier [117] x x x GRASP x x Users served, cost payed by all users x
Schilde et al. [119] x x x x x x SVNS x x x x Time window violations, fleet size, route

duration
x

Schilde et al. [120] x x x x x x x SVNS x x x x Time window violations, user ride time
violations, fleet size, route duration

x

Toth and Vigo [127] x x x x x x TT x x Routing costs, deviation from user preference
time

x

Continued on next page
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Wolfler Calvo and
Touati-Moungla [128]

x x x TS x x x Users served, fleet size, user ride time x

Wong and Bell [129] x x x x x x x IH x x Vehicle travel time, user ride time, taxi costs x
Xiang et al. [130] x x x x x x x SOF x x Routing costs, driver wage (first); empty

distance, wage for driving an empty vehicle
or waiting, user ride time (second)

x

Xiang et al. [131] x x x x x x x x x x x SOF x x Routing costs, driver wage (first); empty
distance, wage for driving an empty vehicle
or waiting, user ride time (second)

x

Zhang et al. [134] x x x x x x H-GA x x Requests served (first), total vehicle travel
time (second)

x x x

Ziliaskopoulos and Kozanidis
[135]

x x x DP x Vehicle travel time x x

Solution methods:
ACO = ant colony optimization, (A)LNS = (adaptive) large neighborhood search, BA = bee algorithm, BC = branch-and-cut, BCP = branch-and-cut-and-price, BP = branch-and-price, CG =
column generation, CP = constraint programming, DA = deterministic annealing, DP = dynamic programming, ELS = evolutionary local search, FL = fuzzy logic, GA = genetic algorithm, H =
hybrid, IH = insertion heuristic, (I/S)VNS = (iterated/stochastic) variable neighborhood search, MDLS = multi-directional local search, SA = simulated annealing, SOF = secondary objective
function, TS = tabu search, TT = tabu thresholding
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scheduling in a dial-a-ride system. Lecture Notes in Economics and Mathematical Systems
471, 391–422.

12. Braekers, K., Caris, A., Janssens, G. K., 2014. Exact and meta-heuristic approach for a general
heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B:
Methodological 67, 166–186.

13. Braekers, K., Kovacs, A., 2016. A multi-period dial-a-ride problem with driver consistency.
Transportation Research Part B: Methodological 94, 355–377.

14. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A. A., 2014. Rich vehicle routing
problem: Survey. ACM Computing Surveys (CSUR) 47 (2), 32.

15. Chassaing, M., Duhamel, C., Lacomme, P., 2016. An ELS-based approach with dynamic
probabilities management in local search for the dial-a-ride problem. Engineering Applications
of Artificial Intelligence 48, 119–133.

16. Chevrier, R., Liefooghe, A., Jourdan, L., Dhaenens, C., 2012. Solving a dial-a-ride problem
with a hybrid evolutionary multi-objective approach: Application to demand responsive trans-
port. Applied Soft Computing 12 (4), 1247–1258.
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