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The purpose of this paper is to identify and to discuss major analytical and 

interpretational errors that occur regularly in quantitative and qualitative 

educational research. A comprehensive review of the literature discussing 

various problems was conducted. With respect to quantitative data analyses, 

common analytical and interpretational misconceptions are presented for data-

analytic techniques representing each major member of the general linear model, 

including hierarchical linear modeling. Common errors associated with many of 

these approaches include (a) no evidence provided that statistical assumptions 

were checked; (b) no power/sample size considerations discussed; (c) 

inappropriate treatment of multivariate data; (d) use of stepwise procedures; (e) 

failure to report reliability indices for either previous or present samples; (f) no 

control for Type I error rate; and (g) failure to report effect sizes. With respect to 

qualitative research studies, the most common errors are failure to provide 

evidence for judging the dependability (i.e., reliability) and credibility (i.e., 

validity) of findings, generalizing findings beyond the sample, and failure to 

estimate and to interpret effect sizes.  

Educational research worldwide has played 

a major role in influencing and informing educational 

practice. Indeed, the last decade has seen a 

proliferation in the number of articles published in 

educational research journals. Some of these 

published works have been the basis of educational 

reform in many settings. Moreover, most 

investigators utilize previous research in developing 

their conceptual and theoretical frameworks, as well 

as in providing qualitative (e.g., content analyses) 

and quantitative (e.g., meta-analyses) reviews of the 

literature in which the key findings are summarized. 

In conducting literature reviews, researchers often 

assume that the documented findings are trustworthy. 

Unfortunately, some researchers have found 

that the majority of published studies and 

dissertations are seriously flawed, containing 

analytical and interpretational errors (Daniel, 1998c; 

Hall, Ward, & Comer, 1988; Keselman et al., 1998; 

Onwuegbuzie, 2002b; Thompson, 1998a; Vockell & 

Asher, 1974; Ward, Hall, & Schramm, 1975; Witta & 

Daniel, 1998). Some of these flaws have arisen from 

graduate-level instruction in which research 

methodology and statistics are taught as a series of 

routine steps, rather than as a holistic, reflective, 
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integrative process (Kerlinger, 1960; Newman & 

Benz, 1998); from graduate-level curricula that 

minimize students' exposure to quantitative and 

qualitative content (Aiken et al., 1990; Thompson, 

1998a); from proliferations of various erroneous 

"mythologies" about the nature of research (Daniel, 

1997; Kerlinger, 1960); from increasing numbers of 

research methodology instructors teaching out of 

their specialty areas; and from a failure, 

unwillingness, or even refusal to recognize that 

analytical and interpretational techniques that were 

popular in previous decades no longer reflect best 

practices and, moreover, may now be deemed 

inappropriate, invalid, or obsolete (Schmidt & 

Hunter, 1997).  

Purpose 

The purpose of the present paper is to 

identify and to discuss the major analytical and 

interpretational errors that occur in qualitative and 

quantitative educational research. Also contained in 

this essay are recommendations for good data 

analytic practices for each of these techniques that 

are based on the extant literature. Although a few 

methodologists have identified common errors made 

by researchers when analyzing various types of data, 

they have tended to focus their attention on a few 

data-analytic techniques at a time. For example, 

Thompson (1998a) reviewed the following five 

methodological errors that occur in educational 

research: (a) use of stepwise methods; (b) failure to 

consider result interpretation in the context 

specificity of analytical weights (e.g., regression beta 

weights, discriminant function coefficients); (c) 

failure to interpret both weights and structure 

coefficients in result interpretation; (d) failure to 

realize that reliability is a function of scores and not 

of instruments; and (e) incorrect interpretation of 

statistical significance and the associated failure to 

report and to interpret effect sizes present in all 

quantitative analyses. Moreover, no published paper 

was found in which errors made in both quantitative 

and qualitative research are discussed within the 

same article. As such, the present essay appears to 

represent the most wide-ranging discussion of 

analytical and interpretational errors in educational 

research to date. 

There is little doubt that a myriad of 

analytical errors still prevails, despite the widespread 

availability of statistical software and many 

documented accounts calling for better research 

practice. As supported in the foregoing literature 

review, it is likely that many of these errors stem 

from a lack of a unified framework for analyzing and 

interpreting qualitative and quantitative data. In order 

to rectify these shortcomings, it is recommended that 

researchers be provided with a catalog of appropriate 

and inappropriate data analytic practices upon which 

the majority of researchers agree. In addition, editors 

of research journals should provide authors, as well 

as members of their editorial board and other 

reviewers of articles, with specific guidelines for 

analyzing and interpreting empirical data (Daniel, 

1998a). Again, these guidelines should be based on 

agreed-upon practices. As such, the guidelines that 

are included in the ensuing literature review represent 

one small step in this direction.. 

Method for Arriving at Typology of Errors 

Over the last six years, several 

methodologists have examined various erroneous 

analytical practices undertaken by applied 

quantitative researchers in various educational and 

psychological journals. The current authors attempted 

to obtain as many of these articles arising from these 

examinations as possible by conducting a search of 

literature databases such as ERIC (i.e., Educational 

Resource Information Center) and PsycINFO, as well 

as by attending methodological paper presentations at 

state (e.g., Georgia Educational Research 

Association), regional (e.g., Mid-South Educational 

Research Association, Southwest Educational 

Research Association, Eastern Educational Research 

Association, Midwestern Educational Research 

Association), national (e.g., American Educational 

Research Association, Association for the 

Advancement of Educational Research), and 

international (e.g., European Educational Research 

Association) conferences over this time period. The 

articles extracted from these sources included the 

following: Elmore and Woehlke (1988, 1998); Kirk 

(1996); Keselman et al. (1998); Onwuegbuzie 

(2002b), Vacha-Haase, Ness, Nilsson, and Reetz 

(1999); Vacha-Haase (1998); Simmelink and Vacha-

Haase (1999); Henson, Capraro, and Capraro (2001); 

Henson and Roberts (in press); Lance and Vacha-

Haase (1998); Vacha-Haase, Nilsson, Reetz, Lance, 

and Thompson (2000); Snyder and Thompson 

(1998); Thompson (1999b); Thompson and Snyder 

(1997, 1998), Vacha-Haase and Ness (1999); Vacha-

Haase and Nilsson (1998); and McMillan, Lawson, 

Lewis, and Snyder (2002). All of these articles 

represent paper presentations at professional 

meetings and/or published works in reputable 

journals over the last six years. 

In addition to searching the literature 

database and collecting methodological articles from 

professional meetings, the authors used the 

"snowballing" approach to obtaining manuscripts. 

Specifically, the reference list of every 

methodological paper extracted was examined to 

determine if it contained relevant articles that we had 

overlooked. This technique led to the identification of 

several additional articles. This method also helped 
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us to validate our choice of articles. For example, 

Vacha-Haase et al. (2000) reviewed 10 of the articles 

cited above, whereas McMillan et al. (2002) 

reviewed these same 10 articles, as well as Vacha-

Haase et al.'s (2000) article. These three techniques 

for extracting methodological papers (i.e., database 

searching, attending conferences, snowballing) led to 

the identification of a large proportion of empirical 

studies examining the erroneous practices undertaken 

by applied researchers with respect to statistical 

analyses over the last six years. 

The same three techniques outlined above 

were used to obtain articles that formed the basis of 

our recommendations for analyzing and interpreting 

quantitative and qualitative data. Extracting literature 

for this purpose was much more challenging than 

obtaining articles that examined the incidence of 

errors of omission and commission made by applied 

researchers, as described above. Whereas the latter 

type contained less than two dozen articles, papers 

presenting methodological recommendations for 

qualitative and statistical analyses numbered in the 

hundreds, just in the last decade alone! In extracting 

articles from the literature database, professional 

conferences, and via snowballing, the present writers 

tended to include articles that were authored or co-

authored by quantitative and qualitative researchers 

and methodologists with national/international 

reputations. Many of these methodologists are not 

only researchers and writers, but also are journal 

editors and reviewers. Thus, they are widely read in 

the fields of educational and psychological research, 

as reflected by the reference lists contained in their 

articles. Snowballing techniques on these lead 

methodologists' articles yielded many more useful 

sources. In compiling our list of recommendations, 

we also reviewed many of the most popular 

textbooks in the area of qualitative research methods, 

quantitative research methods, statistics, 

measurement, and evaluation. 

A series of content analyses was undertaken 

on the collected articles. Specifically, a content 

analysis was undertaken with respect to each of the 

analytical techniques discussed below. In using this 

procedure, our goal was to summarize the collective 

thought in the field. It could be argued that the fact 

that we did not summarize a random (i.e., scientific) 

sample of methodological papers provides a 

limitation to our paper. To the extent that our sample 

of articles was not representative of the 

recommendations posited by the majority of the 

leading methodologists, this criticism is valid. 

However, it should be noted that the aim of this essay 

was not to provide a survey of different analytical 

techniques found in the literature because this would 

have led to the "best" and the "worst" 

recommendations being given equal weight; rather, 

our goal was to attempt to determine the best 

practices as advanced by the community of research 

scholars as a whole. In any case, a perusal of other 

articles similar to our own (e.g., Thompson, 1994a, 

1998a, 1999) indicates no more, and often even less 

structure in the technique used to select articles than 

described above. At the very least, as noted earlier, 

our paper appears to cite more literature in general 

and more current articles in particular than any other 

paper of its type.    

Review of the Literature 

Errors Common to Both Qualitative and 

Quantitative Research 

At the highest level, analytical and 

interpretational errors in educational research include 

creating a false dichotomy between quantitative and 

qualitative research methodologies; that is, failing to 

treat quantitative and qualitative research strategies 

as lying on an interactive continuum, with theory as 

the driving force. This practice tends to prevent 

researchers from taking a holistic and comprehensive 

approach to research (Newman & Benz, 1998). 

Throughout the 20th century, an 

uncompromising rift has prevailed between 

quantitative and qualitative researchers. Quantitative 

purists express assumptions about the world in 

general and research in particular that are consistent 

with a positivist or empiricist philosophy, whereas 

qualitative purists (e.g., post-positivists, post-

structuralists, and post-modernists) reject positivism 

(Onwuegbuzie, 2002a). Moreover, the major 

differences that prevail between the two sets of 

purists are at the level of logic of justification (Smith 

& Heshusius, 1986). Positivists believe that behavior 

can be measured empirically. On the other hand, non-

positivism is rooted in the constructivist, hermeneutic 

paradigm (i.e., Verstehen) in which multiple realities 

are socially constructed through individual and 

collaborative definitions of the situation, that values 

are an essential component of the research process, 

and that facts are indistinguishable from values 

(Onwuegbuzie, 2000a, 2002a). As such, qualitative 

purists are skeptical about the utility of providing 

evidence of representation and legitimation 

(Onwuegbuzie, 2000b). Unfortunately, much of the 

quantitative-qualitative debate has been 

counterproductive, entailing a continual contest of 

polemics, which has tended to confuse rather than to 

illuminate, and to segregate rather than to unify 

educational researchers (Onwuegbuzie, 2002a). 

Indeed, this trend prompted Miles and Huberman 

(1984, p. 21) to declare, "epistemological purity 

doesn't get research done." 

However, more and more researchers are 

realizing that no one paradigm is a hegemony in 
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educational research. Indeed, as concluded by 

Hammersley (1992), the primary dilemma facing 

both sets of purists is that their assumptions are self-

refuting. With respect to positivists, their assertion of 

the verifiability principle is self-refuting because it is 

neither logical nor empirical, and thus lacks meaning. 

To be congruous with their epistemological 

underpinnings, extreme relativists (i.e., 

constructivists) must concede that their assertion that 

all truth is relative is itself only true in the relative 

sense; thus, in terms of other philosophical 

perspectives their claims may be false. Accordingly, 

relativism is both true and false (Hammersley, 1992). 

Moreover, to be consistent with their tenets, realists 

must treat the quantitative paradigm not only as being 

true by its own standards, but also as a reality that is 

as legitimate as is any other reality--in particular, the 

qualitative paradigm (Onwuegbuzie, 2002a). As 

such, a false dichotomy exists between the 

quantitative and qualitative research paradigms 

(Newman & Benz, 1998). 

As asserted by Onwuegbuzie (2002a), 

recognizing these flaws in the logic of justification 

allows one to re-frame how research paradigms 

should be considered. As surmised by Newman and 

Benz (1998), instead of representing a dichotomy, 

positivist and non-positivist ideologies lie on an 

epistemological continuum. In fact, the myriad of 

dichotomies that are used to differentiate qualitative 

and quantitative research paradigms can be re-framed 

as lying on continua. These include realism versus 

idealism, foundational versus antifoundational, 

objective versus subjective, impersonal versus 

personal, and deductive reasoning versus inductive 

reasoning (Onwuegbuzie, 2002a). Such a re-

conceptualization permits quantitative and qualitative 

researchers alike to focus more on research 

methodologies rather than on paradigmatic 

considerations (Onwuegbuzie, 2002a). Indeed, as 

contended by Smith and Heshusius (1986), there is 

no one-to-one correspondence between research 

paradigm and research methodology. 

Paradigm-Specific Errors in Educational 

Research 

The remainder of this paper provides a 

critical synthesis and review of the educational 

research literature, examining both the extant 

qualitative and quantitative body of literature as 

described above. The first component involves an 

identification and discussion of the most prevalent 

analytical and interpretational errors made in 

qualitative educational research. This component is 

organized into sections that discuss general analytical 

and interpretational errors made in qualitative 

research, regardless of which methodologies are 

being referenced. On the other hand, the second 

component is divided into two major parts. The first 

part, mirroring the qualitative component, discusses 

general analytical and interpretational errors made in 

quantitative research, irrespective of the underlying 

technique(s). The second part provides common 

analytical and interpretational misconceptions for 

each of the major data-analytic techniques, including: 

bivariate correlational analyses, multiple regression, 

analysis of variance, analysis of covariance, 

multivariate analysis of variance, multiple analysis of 

covariance, discriminant analysis, exploratory factor 

analysis, confirmatory factor analysis, and structural 

equation modeling, as well as hierarchical linear 

modeling. Because of the inclusion of this second 

section, the quantitative component is much longer 

than is the qualitative component. However, the 

discrepancy in length should not be interpreted to 

mean that one paradigm is more important than is the 

other or that one paradigm leads to better quality 

research than does the other. 

Errors in Qualitative Research 

Many data analytic and interpretational 

errors permeate qualitative research. Therefore, the 

section below highlights the most common and 

pervasive errors encountered in the literature. In 

addition to discussing general errors made in 

qualitative research, the authors would have liked to 

have outlined the most prevalent analytical and 

interpretational errors that have been found to occur 

for each of the major data-analytic techniques-similar 

to that undertaken for quantitative research. 

However, this goal was beyond the scope of the 

present article for the following reasons. First and 

foremost, there is not the same level of agreement 

among qualitative researchers concerning available 

data-analytic approaches as there is among 

quantitative researchers. Indeed, whereby specific 

terms have been given to very specific quantitative 

(i.e., statistical) analyses (e.g., t-test, analysis of 

variance, multiple regression), the interactive nature 

of qualitative data analysis renders it much more 

difficult to provide labels for each type of analysis. 

For example, what one qualitative researcher might 

refer to as the method of constant comparison (e.g., 

Lincoln & Guba, 1985), another researcher might call 

a thematic analysis (e.g., Boyatzis, 1998). Second, 

whereas quantitative data analysis typically 

represents a distinct stage in the research process 

(Onwuegbuzie, in press-a), qualitative data-analysis 

tends to be much more interactive, recursive, and 

iterative. More specifically, in qualitative research, 

the research design/data collection, data analysis, and 

data interpretation stages are often non-linear in 

nature, and it is not unusual for these three stages to 

be inseparable. As a result, only general analytical 
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and interpretational errors that have been found to 

occur in qualitative research are presented. 

General errors in qualitative research. 

Failure to legitimize research findings. With respect 

to qualitative research methodologies, analytical 

errors include a failure, often for philosophical 

reasons, to legitimize research findings and 

interpretations through documentation of validity 

(e.g., credibility, relativism, external criticism) and 

reliability (e.g., inter-rater reliability, internal 

consistency). With respect to the former, although the 

importance of validity has long been recognized by 

quantitative researchers, this issue has been the 

subject of disagreement among qualitative 

researchers. At the one end of the qualitative 

continuum are those (e.g., Goetz & LeCompte, 1984; 

Miles & Huberman, 1984) who contend that validity 

for qualitative research should be interpreted in the 

same manner as for quantitative research. At the 

other end of the continuum, some post-modernists 

(e.g., Wolcott, 1990) question the appropriateness of 

validity in qualitative research, asserting that the goal 

of providing evidences of validity is utopian. 

Disturbingly, a common definition of validity among 

relativists is that it represents whatever the 

community agrees it should represent. Unfortunately, 

such a definition is ambiguous, and, consequently, 

does not help beginning qualitative researchers to 

design their studies and to assess the legitimacy and 

trustworthiness of their findings. 

It appears that a reason for the rejection of 

validity by some qualitative researchers stems from 

their perceptions that the positivist definition and 

interpretation of validity serves as the yardstick 

against which all other standards are evaluated. Thus, 

these extremists believe that in order to reject 

positivism, they must reject validity (Onwuegbuzie, 

2002a). However, this is tantamount to throwing out 

the baby with the bath water. 

Unfortunately, many qualitative researchers 

adopt an "anything goes" relativist attitude 

(Onwuegbuzie, 2002a), culminating in a failure to 

assess the credibility of their data interpretations. Yet, 

as contended by Onwuegbuzie (2002a), in order to be 

taken seriously, qualitative researchers must be 

accountable fully at all phases of their research study, 

including the data collection, analysis, and 

interpretation stages. Such accountability can only 

come to the fore by providing evidence of 

representation and legitimation. 

Thus, rigor in research is needed, regardless 

of whether quantitative or qualitative research 

techniques are utilized. With respect to the latter, it is 

important that qualitative researchers assess the 

legitimacy of their interpretations. This can be 

undertaken by re-defining the concept of validity in 

qualitative research, for example, by deeming 

validity as representing an examination of rival 

interpretations and hypotheses (Polkinghorne, 1983), 

or by re-conceptualizing validity as being multi-

dimensional (e.g., credibility, transferability, 

dependability, confirmability; Lincoln & Guba, 

1985). In fact, Onwuegbuzie (2000b) identified 24 

techniques for assessing the legitimacy of qualitative 

findings and interpretations. 

A myriad of methods for assessing the truth 

value of findings and interpretations in qualitative 

research have emerged in the literature. These 

include triangulation, prolonged engagement, 

persistent observation, leaving an audit trail, member 

checking, weighting the evidence, checking for 

representativeness of sources of data, checking for 

researcher effects, making contrasts/comparisons, 

checking the meaning of outliers, using extreme 

cases, ruling out spurious relations, replicating a 

finding, assessing rival explanations, looking for 

negative evidence, obtaining feedback from 

informants, peer debriefing, clarifying researcher 

bias, and thick description (Creswell, 1998; Maxwell, 

1996; Miles & Huberman, 1984, 1994). Utilizing and 

documenting such techniques should help to reduce 

methodological errors in qualitative research. 

Another analytical error in qualitative 

research is the failure to assess the reliability of 

observed findings. Although reliability is generally 

conceived of as an important concept in analyzing 

quantitative data, it is important to note that 

reliability is actually pertinent with regard to 

qualitative data (Madill, Jordan, & Shirley, 2000). In 

qualitative research, information gleaned from 

observations, interviews, and the like must be 

"trustworthy" (Eisenhart & Howe, 1992; Lincoln & 

Guba, 1985); otherwise any themes that emerge from 

these data will not be credible. An important 

component of trustworthiness is "dependability" 

(Lincoln & Guba, 1985). Interestingly, dependability 

is analogous to reliability (Eisenhart & Howe, 1992). 

Techniques for evaluating this dimension of 

trustworthiness include triangulation, which involves 

the use of multiple and different methods, 

investigators, sources, and theories to obtain 

corroborating evidence (Ely, Anzul, Friedman, 

Garner, & Steinmetz, 1991; Glesne & Peshkin, 1992; 

Lincoln & Guba, 1985; Merriam, 1988; Miles & 

Huberman, 1984, 1994; Patton, 1990). Triangulation 

reduces the possibility of chance associations, as well 

as of systematic biases prevailing due to only 

qualitative (or quantitative) methods being utilized, 

thereby allowing greater confidence in any 

interpretations made (Fielding & Fielding, 1986; 

Maxwell, 1992). 
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According to Denzin (1978), three outcomes 

arise from triangulation: convergence, inconsistency, 

and contradiction. Each of these outcomes clearly 

represents issues pertaining to reliability. 

Nevertheless, many interpretivists refrain from using 

the term "reliability" when pertaining to qualitative 

data, probably because of an attempt to distance 

qualitative analytical techniques from statistical 

method (Madill et al., 2000). However, this line of 

thinking is counterproductive. Indeed, as noted by 

Constas (1992, p. 255), unless methods for 

examining rival hypotheses in qualitative research are 

developed, "the research community will be entitled 

to question the analytical rigor of qualitative 

research"--where rigor is defined as the attempt to 

make data and categorical schemes as public and as 

replicable as possible (Denzin, 1978). Fortunately, 

reliability as a concept in qualitative data analysis is 

increasingly gaining acceptance. In particular, it is no 

longer unusual for qualitative researchers to report 

either intrarater (e.g., consistency of a given rater's 

scores or observations) or interrater (e.g., consistency 

of two or more independent raters' scores or 

observations) reliability estimates (Gay & Airasian, 

2000; Worthen, Borg, & White, 1993). Evidence of 

this can be gleaned from the fact that a leading 

theory-building qualitative software program called 

NUD.IST (non-numerical unstructured data indexing 

searching & theorizing) allows data analysts to 

determine inter-coder reliability (QSR International 

Pty Ltd., 2002). 

Generalizing findings beyond sample. 
Interpretative errors in qualitative research include 

the tendency to generalize findings rather than to use 

qualitative techniques to obtain insights into 

particular educational, social, and familial processes 

and practices that existed within a specific location 

(Connolly, 1998). Only when relatively large 

representative samples are utilized is it fully justified 

for researchers to generalize findings from the sample 

to the population. While obtaining large, 

representative samples typically is the goal in 

quantitative research, this is not the case in 

qualitative research, where purposive sampling of 

relatively few cases is more the norm. Yet, some 

qualitative researchers find it difficult to resist the 

temptation to generalize their results (e.g., thematic 

representations) to the underlying population. 

Failure to estimate and interpret effect 

sizes. Recently, the American Psychological 

Association (APA) Task Force advocated strongly 

that researchers should "always present effect sizes 

for primary outcomes...[and]...reporting and 

interpreting effect sizes...is essential to good 

research" (Wilkinson & the Task Force on Statistical 

Inference, 1999, pp. 10-11). However, the title of 

their report (i.e., "Statistical Methods in Psychology 

Journals: Guidelines and Explanations"), suggests 

that these stipulations are pertinent only to 

quantitative data. Moreover, the APA Task force did 

not provide any recommendations that effect sizes be 

reported and interpreted when analyzing qualitative 

data. Yet, as advanced by Onwuegbuzie (in press-b), 

there are many situations in which effect sizes would 

provide a richer, thicker description of underlying 

qualitative data. Indeed, it appears that failure to 

utilize effect sizes by qualitative researchers stems, at 

least in part, from educational researchers associating 

effect sizes with the quantitative paradigm. Yet, 

ironically, the use of effect sizes actually results in 

empirical data being qualitized (Tashakkori & 

Teddlie, 1998), which, in turn, facilitates the 

assessment of whether an observed effect is small, 

medium, large, or the like (Cohen, 1988). Simply put, 

these effect size interpretations represent qualitative 

categorizations (Onwuegbuzie & Teddlie, 2002). 

At its most basic form, providing an effect 

size in qualitative research involves obtaining counts 

of the frequency of an observed phenomenon. 

Interestingly, as noted by Sechrest and Sidani (1995, 

p. 79), "qualitative researchers regularly use terms 

like 'many,' 'most,' 'frequently,' 'several,' 'never,' and 

so on. These terms are fundamentally quantitative." 

Moreover, it could be argued that terms such as 

"many" are "frequently" are relative; that is, they 

depend on the context from which the data were 

obtained. Using such phrases without supplementing 

them with the counts, forces the reader to accept the 

writer's interpretation. Conversely, by providing 

counts, readers can make up their own mind as to 

what adjective best depicts the underlying 

phenomenon. As a result, qualitative researchers 

often can extract more meaning by obtaining counts 

of observations in addition to their narrative 

descriptions (Sandelowski, 2001). 

For example, Witcher, Onwuegbuzie, and 

Minor (2001) conducted a qualitative study to 

ascertain preservice teachers' perceptions of 

characteristics of effective teachers. A 

phenomenological analysis resulted in the emergence 

of six characteristics of effective teaching (as 

perceived by the preservice teachers). By counting 

the frequency of the emergent themes, these 

researchers found that of the six identified 

characteristics of effective teachers, student-

centeredness was the most commonly-cited trait 

(cited by 80% of the preservice sample). This was 

followed by enthusiasm for teaching (40%), 

ethicalness (39%), classroom and behavior 

management (33%), teaching methodology (32%), 

and knowledge of subject (32%). This example 

provides support for Dey's (1993) contention that 
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meaning and number can be inextricably intertwined. 

Obtaining counts of the themes prevented the 

researchers from over-weighting or under-weighting 

the emergent themes (Sandelowski, 2001). 

The development of themes, categories, 

typologies, and the like is commonplace in 

qualitative data analysis (Boyatzis, 1998; Constas, 

1992). Such development is based on the frequency 

with which a facet occurs (Miles & Huberman, 

1994). More specifically, every time a qualitative 

researcher reduces data to categories or themes, 

he/she is utilizing the "numbered nature of 

phenomena for their analysis" (Sandelowski, 2001, p. 

231). In fact, at least three rationales prevail for 

counting themes: (a) to identify patterns more easily, 

(b) to maintain analytic integrity, and (c) to verify a 

hypothesis (Miles & Huberman, 1994). Further, by 

adding numerical accuracy to their descriptive 

accounts, Witcher et al. (2001) were able to leave an 

audit trail, which involved a more extensive 

documentation of the observed data. Interestingly, 

audit trails are advocated by qualitative researchers as 

a means of evaluating legitimation or increasing 

legitimation, or both (Halpern, 1983; Lincoln & 

Guba, 1985). 

Counting themes is a manifestation of what 

Tashakkori and Teddlie (1998, p. 126) referred to as 

"quantitizing" data, in which qualitative data are 

transformed into numerical codes that can be 

represented statistically. As stated by Sandelowski 

(2001), in quantitizing, "qualitative 'themes' are 

numerically represented, in scores, scales, or clusters, 

in order more fully to describe and/or interpret a 

target phenomenon" (p. 231). Also, Boyatzis (1998, 

p. 129) referred to the counting of themes as 

"quantitative translation." 

Onwuegbuzie (in press-b) presented a 

typology of effect sizes in qualitative research. This 

typology was divided into what he termed manifest 

effect sizes (i.e., effect sizes pertaining to observable 

content) and latent effect sizes (i.e., effect sizes 

pertaining to non-observable, underlying aspects of 

the phenomenon under observation). For example, 

when conducting thematic analyses, qualitative 

analysts usually only classify and describe emergent 

themes. However, much more information can be 

ascertained about these themes. In particular, these 

themes can be quantitized (i.e., quantified) by 

determining the frequency of occurrence (e.g., 

least/most prevalent theme) and intensity of each 

identified theme (Onwuegbuzie, in press-b). 

Moreover, by unitizing the themes and utilizing what 

he termed as intra-respondent matrices (i.e., unit x 

theme matrices) and inter-respondent matrices (e.g., 

subject x theme matrices and subject x unit matrices), 

Onwuegbuzie demonstrated how exploratory factor 

analyses and cluster analyses can be undertaken on 

these matrices such that the hierarchical structure of 

the themes (i.e., meta-themes) and their inter-

relationships can be identified. Onwuegbuzie also 

illustrated how effect sizes (e.g., eigenvalues and 

proportion of variance explained by each theme) 

pertaining to the thematic structure and relationships 

among themes and meta-themes can be estimated. 

Onwuegbuzie (in press-b) introduced the 

concept of adjusted effect sizes in qualitative 

research, in which the frequency and intensity of 

themes are adjusted for the time occurrence and 

length of the unit of analysis (e.g., observation, 

interview, text). For instance, with regard to the 

length of unit analysis, the frequency of the emergent 

theme could be divided by the number of words, 

sentences, paragraphs, and/or pages analyzed. Such 

adjusted effect sizes help to minimize bias that is 

inherent in the data (Onwuegbuzie, in press-b). 

Consistent with Onwuegbuzie's 

conceptualization of effect sizes in qualitative 

research, nearly one-half a century ago, Barton and 

Lazarsfeld (1955) advocated the use of what they 

coined as "quasi-statistics" in qualitative research. 

According to these authors, quasi-statistics refer to 

the use of descriptive statistics that can be extracted 

from qualitative data. Interestingly, Becker (1970, pp. 

81-82) contended that "one of the greatest faults in 

most observational case studies has been their failure 

to make explicit the quasi-statistical basis of their 

conclusions." As noted by Maxwell (1996):  

Quasi-statistics not only allow you to test 

and support claims that are inherently 

quantitative, but also enable you to assess 

the amount of evidence in your data that 

bears on a particular conclusion or threat, 

such as how many discrepant instances exist 

and from how many different sources they 

were obtained. (p. 95) [emphasis in original] 

Indeed, Becker, Geer, Hughes, and Strauss 

(1961/1977) provided more than 50 tables and graphs 

in their qualitative work. These tables and graphs 

facilitate effect size interpretations of their qualitative 

data. 

Errors in Quantitative Research 

As is the case for qualitative research, there 

are many data analytic and interpretational errors that 

prevail in existing research that uses quantitative data 

regardless of the statistical analysis used. Thus, the 

first part of this section provides a summary of the 

major errors that are not dependent on the statistical 

technique used. In the second part of this section, we 

outline the errors in quantitative research that are 

dependent, at least for the most part, on the method 

used. Specifically, we present the major analytical 

and interpretational errors that have been found to 
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prevail for each of the major data-analytic 

techniques, namely, bivariate correlational analyses, 

reliability analyses, analysis of variance, analysis of 

covariance, multiple regression, multivariate analysis 

of variance, multiple analysis of covariance, 

discriminant analysis, canonical correlation analysis, 

principal component and factor analysis, 

confirmatory factor analysis, path analysis, structural 

equation modeling, and hierarchical linear modeling. 

General errors in quantitative research. 

As noted by Onwuegbuzie (in press-a), threats to 

internal validity in quantitative research occur at both 

the data analysis (i.e., analytical errors) and data 

interpretation (i.e., interpretational errors) stages. 

Indeed, Onwuegbuzie (in press-a) described several 

types of errors that occur at both these stages. 

According to this researcher, data analytical errors 

can stem from several sources, including the 

following: mortality, non-interaction seeking bias, 

researcher bias, treatment replication error, violated 

assumptions, multicollinearity, and mis-specification 

error. Each of these sources of error is summarized 

briefly below. (For a more detailed discussion of 

these sources of error, see Onwuegbuzie, in press-a.) 

Mortality. It is not uncommon for 

researchers to delete some cases from their final data 

sets. There are many reasons why such a practice 

occurs. Specifically, cases may be deleted if they 

appear to represent outlying observations. 

Alternatively, the size of a data set may be reduced in 

an attempt to analyze groups with equal or 

approximately equal sample sizes (i.e., to conduct a 

"balanced" analysis). Such removal of cases can lead 

to analytical errors in the first situation if one or more 

participants who are deleted represent valid cases, 

and in the second situation if one or more participants 

who are removed from the data set are different than 

those who remain. In either event, the reduction of 

the data set introduces or adds bias into the analysis, 

thereby influencing the effect size in an unknown 

manner (Onwuegbuzie, in press-a). In the same way, 

using casewise deletion and listwise deletion 

strategies in the presence of missing data, a very 

common practice among researchers, also can lead to 

analytical errors. 

Non-interaction seeking bias. When testing 

hypotheses and theory, some researchers do not 

examine the presence of interactions. This likely is 

more often to occur for correlational-based analyses 

(e.g., correlations, regression, canonical correlation, 

path analysis, structural equation modeling) than for 

OVA-type methods (e.g., factorial analysis of 

variance, multivariate analysis of variance). Non-

interaction seeking bias can not only lead to errors at 

the data analysis stage, but it can also induce 

interpretational errors. Moreover, by not formally 

testing for the presence of interactions, researchers 

may end up interpreting a model that does not 

accurately or validly represent the underlying nature 

of reality (Onwuegbuzie, in press-a). 

Researcher bias. The form of researcher 

bias that is more prevalent at the data analysis stage 

is the halo effect. The halo effect occurs when a 

researcher is scoring open-ended responses, or the 

like, and allows her or his prior knowledge of or 

experience with the participants to influence the 

scores given. This biases the data, leading to 

analytical errors. 

Treatment replication error. As noted by 

McMillan (1999), a common mistake made by 

analysts involves the use of an inappropriate unit of 

analysis. For example, a researcher might use 

individuals as the unit of analysis to compare groups 

when analyzing available group scores would have 

been more appropriate. In particular, analyzing 

individual data when groups received the intervention 

violates the independence assumption, thereby 

inducing an analytical error through the inflation of 

both the Type I error rate and effect size estimates. 

Violated assumptions. Several authors (e.g., 

Keselman et al., 1998; Onwuegbuzie, 2002b) have 

noted that the majority of researchers do not 

adequately check the underlying assumptions 

associated with a particular statistical test. Regardless 

of the inferential statistical technique used, unless 

assumptions are checked, the extent to which an 

analytical error prevails is unknown. With knowledge 

of the extent to which assumptions are violated, 

researchers are in a position to interpret findings 

within an appropriate context. However, when it is 

unknown whether assumptions have been met, data 

interpretation can be extremely misleading and 

invalid. 

Multicollinearity. Multicollinearity occurs 

when two or more independent variables are highly 

related. When one independent variable is perfectly 

correlated with other independent variables, the 

parameter estimates are not uniquely determined. A 

strong, but less-than-perfect, linear relationship 

among independent variables, as is more often the 

case, results in unstable (least-squares) coefficients 

with large standard errors and wide confidence 

intervals (Fox, 1997). Multicollinearity often is 

associated with multiple regression; however, 

multicollinearity is an issue for other members of the 

general linear model, including OVA methods. Thus, 

multicollinearity should not only be assessed when 

multiple regression is involved but for all analysis 

involving two or more independent variables. 

Mis-specification error. Mis-specification 

error involves omitting one or more important 

variables from the final model. This is an error that 
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can be committed with any inferential analysis. As 

noted by Onwuegbuzie (in press-a), mis-specification 

error often arises from a weak or non-existent 

theoretical framework for building a statistical model. 

This inattention to a theoretical framework leads 

many researchers to (a) undertake univariate analyses 

when the phenomenon is multivariate, (b) utilize 

data-driven techniques such as stepwise multiple 

regression procedures, and (c) omit the assessment of 

interactions. All of these approaches lead to mis-

specification error. Unfortunately, mis-specification 

error, although likely common, is extremely difficult 

to detect, especially if the selected non-optimal 

model, which does not include any interaction terms, 

appears to fit the data adequately. 

As noted by Onwuegbuzie (in press-a), 

interpretational errors, can arise from the following: 

effect size, confirmation bias, distorted graphics, 

illusory correlation, crud factor, positive manifold, 

and causal error. Each of these sources of error is 

summarized briefly below. (For a more detailed 

discussion of these sources of error, see 

Onwuegbuzie, in press-a.) 

Effect size. The non-reporting of effect sizes 

likely represents the most common interpretational 

error in quantitative research. Failure to report effect 

sizes often culminates in misinterpretation of p-

values. In particular, a p-value tends to be under-

interpreted when the sample size is small and the 

corresponding non-reported effect size is large. On 

the other hand, a p-value tends to be over-interpreted 

when the sample size is large and the non-reported 

effect size is small (e.g., Daniel, 1998a). The lack of 

reporting of effect sizes led the APA Task Force to 

recommend strongly that researchers "always present 

effect sizes for primary outcomes...[and]...reporting 

and interpreting effect sizes...is essential to good 

research" (Wilkinson & the Task Force on Statistical 

Inference, 1999, p. 599). More recently, the latest 

version of the American Psychological Association 

(APA), version 5 (2001), contained the following 

statement: 

When reporting inferential statistics (e.g., t 

tests, F tests, and chi-square), include information 

about the obtained magnitude or value of the test 

statistic, the degrees of freedom, the probability of 

obtaining a value as extreme as or more extreme than 

the one obtained, and the direction of the effect. Be 

sure to include sufficient descriptive statistics (e.g., 

per-cell sample size, means, correlations, standard 

deviations) so that the nature of the effect being 

reported can be understood by the reader and for 

future meta-analyses. This information is important, 

even if no significant effect is being reported. (p. 22) 

A few pages later, APA (2001) states  

Neither of the two types of probability value 

directly reflects the magnitude of an effect 

or the strength of a relationship. For the 

reader to fully understand the importance of 

your findings, it is almost always necessary 

to include some index of effect size or 

strength of relationship in your Results 

section. (p. 25) 

On the next page, APA states that  

The general principle to be followed, 

however, is to provide the reader not only 

with information about statistical 

significance but also with enough 

information to assess the magnitude of the 

observed effect or relationship. (p. 26) 

Confirmation bias. Confirmation bias is the 

tendency for interpretations and conclusions based on 

the current data to be overly consistent with a priori 

hypotheses (Greenwald, Pratkanis, Leippe, & 

Baumgardner, 1986). Unfortunately, confirmation 

bias is a common source of error at the data 

interpretation stage. Confirmation bias tends to 

prevail when the researcher attempts to test theory, 

because testing a theory can "dominate research in a 

way that blinds the researcher to potentially 

informative observation" (Greenwald et al., 1986, p. 

217). When hypotheses are not supported, some 

researchers interpret their data as if the theory 

underlying the hypotheses is still likely to be correct. 

In so doing, many researchers are not aware that the 

purpose of their research no longer can be described 

as theory testing but theory confirming. 

However, confirmation bias, per se, does not 

necessarily lead to interpretational errors. Such errors 

occur only when one or more plausible rival 

explanations to underlying findings exist that could 

have been demonstrated as being superior if given the 

opportunity (Greenwald et al., 1986). However, 

because the vast majority of findings generate rival 

explanations, researchers should always assess their 

interpretations for the possibility of confirmation 

bias. 

Distorted graphics. The interpretation of 

graphs can be a source of error. For example, it is not 

unusual for histograms to suggest normality, when 

numerical data (e.g., skewness and kurtosis) indicate 

non-normality. Distorted graphs could be the result of 

an inappropriate scale. Alternatively, interpretation 

errors can ensue even if the graph is not distorted, 

especially when the researcher has a confirmation 

bias (e.g., desperately wants to demonstrate that the 

normality assumption holds). 

Illusory correlation. The illusory correlation 

is a propensity to overestimate relationships among 

variables that are either not related or only slightly 

related. The illusory correlation often arises from a 



Current Issues in Education Vol. 6 No. 2 
 
confirmation bias. The illusory correlation also may 

arise from a false consensus bias, in which 

researchers falsely believe that most other persons 

share their interpretations of a relationship (Johnson 

& Johnson, 2000). 

Crud factor. Meehl (1990) observed that 

given a large enough sample size, many trivial 

relationships can emerge as being statistically 

significant because to some degree, "everything 

correlates to some extent with everything else" (p. 

204). Meehl referred to this tendency to reject null 

hypotheses when the true relationships are trivial as 

the crud factor. This crud factor leads some 

researchers to interpret trivial relationships, leading 

to interpretational errors. 

Positive manifold. Positive manifold can 

occur when individuals who perform well on one 

ability or attitudinal measure tend to perform well on 

other measures in the same domain (Neisser, 1998). 

As such, positive manifold can lead to an over-

interpretation of relationships. Thus, analysts should 

be careful when interpreting relationships found 

among two or more sets of cognitive test scores or 

affective measures. 

Causal error. Some researchers cannot 

resist interpreting large relationships as suggesting 

causality. However, causality is a function of the 

research design and not the analytic technique used. 

Thus, regardless of the complexity of the analysis, 

cause-and-effect relationships should only be inferred 

confidently from experimental studies. In the absence 

of an experimental design, any causal statements 

made likely will represent interpretational errors. 

Additional general analytical and 

interpretational errors. Daniel and Onwuegbuzie 

(2000) have identified 10 analytical and 

interpretational errors associated with statistical 

significance testing. They labeled these errors as 

Type I to Type X. The first four errors are known to 

all statisticians as Type I (falsely rejecting the null 

hypothesis), Type II (incorrectly failing to reject the 

null hypothesis), Type III (incorrect inferences about 

result directionality), and Type IV (incorrectly 

following-up an interaction effect with a simple 

effects analysis). Daniel and Onwuegbuzie (2000) 

identified and described the following six additional 

types of error: (a) Type V error--internal replication 

error-measured via incidence of Type I or Type II 

errors detected during internal replication cycles 

when using methodologies such as the jackknife 

procedure; (b) Type VI error--reliability 

generalization error--measured via linkages of 

statistical results to characteristics of scores on the 

measures used to generate results (a particularly 

problematic type of error when researchers fail to 

consider differential reliability estimates for 

subsamples within a data set); (c) Type VII error--

heterogeneity of variance/regression--measured via 

the extent to which data examined via analysis of 

variance/covariance are not appropriately screened to 

determine whether they meet homogeneity 

assumptions prior to analysis of group comparison 

statistics; (d) Type VIII error--test statistic 

distribution error--measured as the extent to which 

researchers express alternative hypotheses as 

directional yet evaluate results with two-tailed tests; 

(e) Type IX error--sampling bias error--measured via 

disparities in results generated from numerous 

convenience samples across a multiplicity of similar 

studies; and (f) Type X error--degrees of freedom 

error--measured as the tendency of researchers using 

certain statistical procedures (mainly stepwise 

procedures) erroneously to compute the degrees of 

freedom used in these methods. 

Method-dependent errors in quantitative 

research. Correlation coefficients. With respect to 

quantitative research methodologies, perhaps the 

most common analytical/interpretational error stems 

from a failure to realize that all parametric analyses 

(i.e., univariate and multivariate techniques), with the 

exception of predictive discriminant analyses, are 

subsumed by a general linear model (GLM), and that, 

consequently, all analyses are correlational (Cohen, 

1968; Henson, 2000; Knapp, 1978; Roberts & 

Henson, 2002; Thompson, 1998a). In particular, 

many researchers are unaware that even correlation 

coefficients are specific cases of the GLM, and are 

therefore bounded by its assumptions (Onwuegbuzie 

& Daniel, 2002a). Moreover, Onwuegbuzie and 

Daniel (2002a) identified several inappropriate 

practices undertaken by researchers while utilizing 

correlational coefficients for inferential purposes, 

including failure to consider the statistical 

assumptions underlying correlation coefficients, 

failure to interpret confidence intervals and effect 

sizes of correlation coefficients, failure to interpret p-

calculated values in light of familywise Type I error, 

failure to consider the power of tests of hypotheses, 

failure to consider whether outliers are inherent in the 

data set, failure to recognize how measurement error 

can affect correlation coefficients, and failure to 

evaluate empirically the replicability of correlation 

coefficients (i.e., internal replication). 

Based on these observations, Onwuegbuzie 

and Daniel (2002a) made the following 10 

recommendations for utilizing and interpreting 

correlation coefficients: 

1. Always check statistical assumptions prior 

to using Pearson's r to conduct tests of 

statistical significance, as well as after the 

correlation has been computed. Use non-
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parametric correlation (e.g., Spearman's rho) 

if the normality assumption is violated. 

2. Always adjust for Type I error when 

conducting multiple NHSTs [null hypothesis 

statistical tests] of correlations. 

3. Always be cognizant of the power of 

NHSTs of correlations, preferably before the 

data collection stage, and, at the very least, 

at the data analysis stage. 

4. When making inferences about the Pearson r 

value, always interpret effect sizes. 

5. Do not conduct "nil" null tests of statistical 

significance for reliability and validity 

coefficients (i.e., do not test whether 

reliability and validity coefficients are 

statistically significantly greater than zero). 

6. Do not report disattenuated correlation 

coefficients without also presenting the raw 

coefficients. 

7. Do not correlate variables without a 

theoretical framework. 

8. Avoid inferring causation from a correlation 

coefficient, regardless of its magnitude. 

9. Do not use Hotelling's t-test when 

comparing correlation coefficients arising 

from the same sample. 

10. Conduct external replications when possible, 

and, in their absence, always undertake 

internal replications. 

Regarding recommendation (10) above, 

Onwuegbuzie and Daniel (2002a) coined the term 

"Type V error" to describe internal replication error 

rates (as noted earlier), which provides information 

about how stable the computed p-value is across 

multiple re-samples of the same dataset. Using the 

framework of Onwuegbuzie (in press-a), non-

interaction seeking bias, violated assumptions, and 

mis-specification error are analytical errors that are 

particularly pertinent for correlation coefficients, 

whereas effect size, confirmation bias, illusory 

correlation, crud factor, positive manifold, and causal 

error are pertinent interpretational errors. 

Reliability of scores. Authors of statistics 

textbooks routinely report that statistical power is 

affected by at least three components: (a) sample 

size, (b) level of statistical significance, and (c) effect 

size. However, a fourth component should be added, 

namely, the reliability of scores. Reliability, which 

typically ranges from 0 (measurement is all error) to 

1 (no error in measurement), is the proportion of 

variance in the observed scores which is free from 

error. (Reliability coefficients also can be negative.) 

Unfortunately, relatively few researchers 

report reliability coefficients for data from their 

samples (Meier & Davis, 1990; Onwuegbuzie, 

2002b; Onwuegbuzie & Daniel, 2002a, 2002b; 

Thompson & Snyder, 1998; Vacha-Haase et al., 

1999; Willson, 1980). For example, Willson (1980) 

noted "That reliability ...is unreported in almost half 

of the published research...[and is] inexcusable at this 

late date" (pp. 8-9). Unfortunately, more than two 

decades later, Vacha-Haase et al. (1999), who 

reviewed practices regarding the reporting of 

reliability coefficients in three journals from 1990 to 

1997, found that 64.4% of articles did not provide 

reliability coefficients for the data being analyzed. 

Similarly, Vacha-Haase (1998), who identified 628 

articles in which the Bem Sex Role Inventory (Bem, 

1981) was utilized, found that 86.9% of the articles 

did not present any score reliability information for 

the underlying data. Simmelink and Vacha-Haase 

(1999) reported that 75.9% fell into this category 

with respect to the use of the Rosenberg Self-Esteem 

Instrument (Rosenberg, 1965). 

The trend of not reporting current-sample 

reliability coefficients stems, in part, from a failure to 

realize that reliability is a function of scores, not of 

instruments (Thompson & Vacha-Haase, 2000).The 

dearth in the reporting of reliability estimates led the 

APA Task Force on Statistical Inference recently to 

recommend that authors "provide reliability 

coefficients of the scores for the data being analyzed 

even when the focus of their research is not 

psychometric" (Wilkinson & the Task Force on 

Statistical Inference, 1999, p. 21). Further, the 

American Educational Research Association, 

American Psychological Association, and National 

Council on Measurement in Education 

[AERA/APA/NCME] (1999) stated that good 

standards for reporting results necessitate researchers 

to provide reliability estimates and standard errors for 

"each total score, subscore, or combination of scores 

that is to be interpreted" (p. 31). 

Without information about score reliability, 

it is impossible to assess accurately the extent to 

which statistical power is affected. Thus, reliability 

coefficients always should be reported for the 

underlying data. Moreover, the use of confidence 

intervals around reliability coefficients is advocated, 

considering that reliability coefficients represent only 

point estimates. In fact, confidence intervals around 

reliability coefficients can be compared to 

coefficients presented in test manuals to assess 

generalizability (Onwuegbuzie & Daniel, 2002b). 

Additionally, as noted by Onwuegbuzie and 

Daniel (2002b), the recommendations of the APA 

Task Force and AERA/APA/NCME (1999) regarding 

the reporting of current-sample reliability coefficients 

do not go far enough. Indeed, it is argued that 

reliability coefficients should not only be reported for 

the full sample at hand, but also for sample 

subgroups. For example, in a two-sample case, it is 



Current Issues in Education Vol. 6 No. 2 
 
possible to obtain a moderate reliability estimate for 

the full sample, whereby the reliability coefficient of 

one group is relatively large but the coefficient for 

the other group is relatively small. It is likely that 

such a case would produce a different outcome in 

terms of statistical and practical significance than 

would a scenario in which the ratio of reliability 

coefficients is much smaller. Simply put, comparing 

subgroups with different reliability coefficients can 

affect Type I and Type II error rates, as well as effect 

size estimates. In such circumstances, Type VI error 

(reliability generalization error; Daniel & 

Onwuegbuzie, 2000) prevails. Thus, in summary, we 

recommend that subgroup reliability coefficients be 

reported whenever possible, alongside their 

confidence intervals. 

When current-sample reliability coefficients 

are not available, researchers, at the very least, should 

compare the sample composition and variability of 

scores of the present sample with those of the 

inducted (i.e., norm) group (Vacha-Haase, Kogan, & 

Thompson, 2000). The results of these comparisons 

should be delineated. Specifically, as noted by 

Vacha-Haase et al. (2000), assuming that previously-

reported reliability coefficients generalize to the 

present sample is only marginally justified if the 

compositions and the score variabilities of the two 

samples are similar. Additionally, Magnusson's 

(1967) formula could be used to predict the reliability 

of the present sample, based on the reliability of the 

inducted sample and the standard deviations of the 

 
inducted and current samples, as follows: 

where Rc = the predicted reliability of the current 

sample, Ri = the predicted reliability of the inducted 

sample, is the variance of the current sample, and 

is the variance of the inducted sample. However, 

it should be noted that the predicted reliabilities are 

purely theoretical. (For an example of the use of this 

formula see Diamond & Onwuegbuzie, 2001.) 

Independent/Dependent Samples t-test. 
When researchers are interested in comparing two 

independent samples, assuming normality, they must 

choose between the pooled and non-pooled t-test. 

This selection depends on whether the variances are 

equal or unequal, respectively. When the variances 

are equal, the pooled t-test should be used. On the 

other hand, when the variances are unequal, or when 

there is doubt about their equality, the non-pooled t-

test should be employed. That is, if the homogeneity 

of variance assumption does not hold, then the t-test 

formula for separate variances should be used 

(Maxwell & Delaney, 1990). Under the assumption 

of variance homogeneity, the pooled t-test is only 

slightly more powerful (i.e., smaller Type II error 

probability) than is the non-pooled t-test. At the same 

time, in the presence of variance heterogeneity, use 

of the pooled t-test can increase greatly the chances 

of an invalid conclusion, especially when the sample 

sizes also are unequal.  

Some statisticians recommend that the 

analyst first test the equal variance hypothesis: 

 
If H0 is rejected, then they conclude that the 

population variances are not equal and proceed with 

the non-pooled t-test. If H0 is not rejected, then they 

advise that the pooled t-test procedure be used. 

However, this is a misuse of the variance test, 

because it may result in failing to reject the null 

hypothesis that without knowing the 

probability of a Type II error. It should be noted that 

when the researcher fails to reject a null hypothesis, it 

is inappropriate to conclude that the null is true, but 

only that there is not enough evidence to justify its 

rejection. In addition, the probability of a Type I error 

is changed by performing two tests. Thus, we 

recommend the use of the pooled t-test only when 

prior knowledge, experience, or theory suggests that 

the population variances are approximately equal. If 

there is any doubt about the equality of the variances, 

the non-pooled t-test should be used. Unfortunately, 

presently, it appears that many analysts utilize the 

pooled version of the t-test. Such a practice typically 

will result in Type VII error (heterogeneity of 

variance/regression; Daniel & Onwuegbuzie, 2000). 

Disturbingly, Keselman et al. (1998) found that 

variance homogeneity was evaluated in only 8.20% 

of articles involving between-subjects univariate 

designs (n = 61) published in 17 prominent 

educational and behavioral science research journals 

in the 1994 or 1995 issues that were selected for 

review. This trend must be reversed in order to 

strengthen the conclusion validity stemming from 

independent/dependent t-tests. Using the framework 

of Onwuegbuzie (in press-a), non-interaction seeking 

bias, violated assumptions, and mis-specification 

error are analytical errors that are particularly 

pertinent for independent/dependent samples t-tests, 

whereas effect size, confirmation bias, and causal 

error are common interpretational errors. 

Analysis of variance tests. Research 

suggests that analysis of variance (ANOVA) is the 

most popular statistical procedure for conducting null 

hypothesis statistical significance tests among 

educational researchers (Elmore & Woehlke, 1998; 

Goodwin & Goodwin, 1985; Onwuegbuzie, 2002b). 

Unfortunately, the ANOVA test is often misused. 

Specifically, lacking the knowledge that nearly all 
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parametric analyses represent the general linear 

model, many analysts inappropriately categorize 

variables in non-experimental designs using 

ANOVA, in an attempt to justify making causal 

inferences, when all that occurred typically is a 

discarding of relevant variance (Cliff, 1987; 

Pedhazur, 1982; Prosser, 1990; Thompson, 1986, 

1988a, 1992a). For example, Cohen (1983) calculated 

that the Pearson product-moment correlation between 

a variable and its dichotomized version (i.e., divided 

at the mean) was .798, which suggests that the cost of 

dichotomization is approximately a 20% reduction in 

correlation coefficient. In other words, an artificially 

dichotomized variable accounts for only 63.7% as 

much variance as does the original continuous 

variable. Interestingly, more recently, Peet (1999) 

found that for the one-way ANOVA framework, as 

the number of categorized groups decreases 

(minimum number = 2), less variance in the 

dependent variable is accounted for by the categorical 

variable, compared to the continuous variable. 

Specifically, Peet noted that with four groups, almost 

90% of the variance accounted for by the continuous 

variable was explained by the categorical variable; 

however, with two groups, only approximately 50% 

of the original variance accounted for was explained 

by the categorical variable. It follows that with 

factorial ANOVAs, when artificial categorization 

occurs, even more power is sacrificed. For instance, 

in the 2 x 2 ANOVA framework, when the 

correlation is between .2 and .5, double 

dichotomization at the mean culminates in a 

discarding of 60% of the sample members at both the 

two-tailed 5% and 1% levels. Thus, as stated by 

Kerlinger (1986), we recommend that researchers 

avoid artificially categorizing continuous variables, 

unless compelled to do so as a result of the 

distribution of the data (e.g., bimodal). Indeed, rather 

than categorizing independent variables, in many 

cases, regression techniques should be used, because 

they have been shown consistently to be superior to 

OVA methods (Daniel, 1989a; Kerlinger & 

Pedhazur, 1973; Lopez, 1989; Nelson & 

Zaichkowsky, 1979; Thompson, 1986). 

Disturbingly, it is clear that most users of 

ANOVA tests do not adequately check the 

underlying assumptions. This is evidenced by the 

paucity of researchers who provide information about 

the extent to which ANOVA assumptions are met. 

For example, Keselman et al. (1998) reported that 

less than one-fifth of articles (i.e., 19.7%) "indicated 

some concern for distributional assumption 

violations" (p. 356). Similarly, Onwuegbuzie (2002b) 

found that only 11.1% of researchers discussed the 

extent to which OVA assumptions were violated. The 

fact that, when conducting univariate comparisons, 

ANOVA tests are almost exclusively used is a 

serious cause for concern, bearing in mind that (a) 

ANOVA relies on the assumptions of normality and 

homogeneity of variance; and (b) only the minority 

of data utilized in the field of educational research 

tends to satisfy ANOVA assumptions (Micceri, 1989; 

Wilcox, Charlin, & Thompson, 1986). Unfortunately, 

non-normality and variance heterogeneity lead to a 

distortion of Type I and/or Type II error rates, 

particularly if the group sizes are very different 

(Keselman et al., 1998). Thus, researchers always 

should check the ANOVA assumptions. In particular, 

if the normality assumption is violated, analysts 

should consider using the non-parametric 

counterparts, for example, the Mann-Whitney U test 

(for the two-group case) or the Kruskal-Wallis test 

(when three or more groups are being compared). 

When the homogeneity of variance assumption is 

violated (Type VII error; Daniel & Onwuegbuzie, 

2000), techniques such as Welch, James, and Brown 

and Forsythe tests could be utilized because they are 

reasonably robust when heterogeneity of variance 

prevails (Maxwell & Delaney, 1990). 

Additionally, some researchers unwisely use 

omnibus ANOVA tests (i.e., protected tests) followed 

by post-hoc comparisons instead of testing planned 

contrasts (i.e., unprotected tests). Use of omnibus 

tests when planned comparisons are of interest results 

in reduced statistical power. We recommend use of 

planned comparisons as these comparisons tend to be 

more consistent with carefully structured research 

questions and serve to limit the number of statistical 

tests needed (Pedhazur & Schmelkin, 1991). 

However, in cases in which researchers insist on 

using omnibus ANOVAs followed by post hoc tests, 

we suggest that the Dunn-Bonferroni procedure for 

unprotected tests be utilized because it appears to 

provide the best control of Type I error (Barnette & 

McLean, 1998). (Presently, only 12% of researchers 

use the Dunn-Bonferroni procedure for making 

pairwise multiple comparisons; Keselman et al., 

1998). Moreover, as recommended by Maxwell and 

Delaney (1990), when conducting pairwise 

comparisons, the pooled (omnibus) error term should 

only be used if the variance homogeneity assumption 

is met--otherwise, a separate error term should be 

utilized which involves only data representing the 

levels of interest in the particular comparison. Using 

the framework of Onwuegbuzie (in press-a), 

mortality, violated assumptions, and mis-

specification error are analytical errors that are 

particularly pertinent for ANOVA, whereas effect 

size, confirmation bias, and causal error are pertinent 

interpretational errors. 

Analysis of covariance tests. Most 

comparisons made in educational research involve 
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intact groups that may have pre-existing differences. 

Unfortunately, these differences often threaten the 

internal validity of the findings (Gay & Airasian, 

2000). Thus, in an attempt to minimize this threat, 

some analysts utilize analysis of covariance 

(ANCOVA) techniques in which there is an attempt 

to control statistically for pre-existing differences 

between the groups being studied. 

Prior research suggests that ANCOVA is 

undertaken in approximately 4% of published 

research (Elmore & Woehlke, 1988; Goodwin & 

Goodwin, 1985; Willson, 1980). Unfortunately, most 

of these published works have inappropriately used 

ANCOVA because one or more of the assumptions 

have either not been checked or met--particularly the 

homogeneity of regression slopes assumption (Glass, 

Peckham, & Sanders, 1972). As noted by Maxwell 

and Delaney (1990), ANCOVA represents an 

ANOVA after adjusting for the regression of the 

dependent variable on the covariate. In other words, 

the aim of an ANCOVA is to allocate a percentage of 

the variance in the dependent variable that would 

otherwise have been attributed to error in a 

conventional analysis of variance, to a potentially 

confounding variable (i.e., the covariate). This 

partitioning of the variance culminates in a reduction 

in the sum of squared errors and, consequently, the 

mean square error. In theory, this subsequent 

decrease in "noise" helps to clarify the relationship 

between the independent and dependent variables 

(Loftin & Madison, 1991). 

The first step of ANCOVA is to regress the 

dependent variable on the covariate, ignoring group 

membership. After this is undertaken, an ANOVA is 

conducted on the residualized dependent variable. If 

the analysis goes as anticipated, holding everything 

else constant, the ANOVA F-statistic is increased 

because the error variance is smaller than it would 

have been if the influence of the covariate had not 

been removed. The all- important assumption that 

must be met (i.e., homogeneity of regression slopes) 

implies that the covariate must be highly correlated 

with the dependent variable but not related to the 

independent variable. However, as noted by Henson 

(1998), few covariates exist that meet these criteria--

especially when study participants are not randomly 

assigned to groups (i.e., in quasi-experimental 

designs), which are endemic to educational research. 

Unfortunately, if an appreciable correlation exists 

between the covariate and the independent variable, 

as is often the case, then the covariate also can reduce 

the variance in the independent variable--culminating 

in reduced power and effect size. Thus, the 

homogeneity of regression assumption means that the 

regression slopes of the covariate and the dependent 

variable in each group must be identical, or at least 

similar, if the single pooled regression slope can be 

utilized accurately with all groups. To the extent that 

the individual regression slopes are different, the part 

correlation of the covariate-adjusted dependent 

variable with the independent variable will more 

closely mirror a partial correlation, and the pooled 

regression slope will not provide an adequate 

representation of some or all of the groups. In this 

case, the ANCOVA will introduce bias into the data 

instead of providing a "correction" for the 

confounding variable (Loftin & Madison, 1991). 

Ironically, ANCOVA typically is appropriate when 

used with randomly assigned groups; however, it is 

typically not justified when groups are not randomly 

assigned (Henson, 1998). 

Another argument against the use of 

ANCOVA is that after using a covariate to adjust the 

dependent variable, it is not clear whether the 

residual scores are interpretable (Thompson, 1992b). 

Disturbingly, some researchers utilize ANCOVA as a 

substitute for not incorporating a true experimental 

design, believing that methodological designs and 

statistical analyses are synonymous (Henson, 1998; 

Thompson, 1994a). Thus, we recommend that 

researchers should use ANCOVA sparingly and with 

extreme caution. However, when it is utilized, an 

assessment of the homogeneity of regression 

assumption always must be undertaken and 

documented. If the data are shown to violate this 

assumption (e.g., via a statistically significant Levene 

test result), the researcher will make a serious 

mistake in proceeding with the ANCOVA analysis. If 

ANCOVA is undertaken in the presence of 

heterogeneity of regression slopes then a Type VII 

error will prevail (Daniel & Onwuegbuzie, 2000). 

Using the framework of Onwuegbuzie (in press-a), 

mortality, violated assumptions, and mis-

specification error are analytical errors that are 

particularly pertinent for ANCOVA, whereas effect 

size, confirmation bias, and causal error are pertinent 

interpretational errors. 

Multiple regression. In their review of 

articles published in the American Education 

Research Journal, Educational Researcher, and 

Review of Educational Research over a 20-year 

period, Elmore and Woehlke (1998) found that 

multiple regression was the third-most popular 

statistical technique utilized. Unfortunately, the 

majority of researchers use multiple regression in 

inappropriate ways. Undoubtedly the most common 

error in regression is the use of stepwise regression 

procedures (i.e., forward selection, backward 

selection, stepwise selection). Indeed, the use of 

stepwise regression in educational research is 

rampant (Huberty, 1994), probably due to its 

widespread availability on statistical computer 
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software programs. As a result of this apparent 

obsession with stepwise regression, as stated by Cliff 

(1987, pp. 120-121), "a large proportion of the 

published results using this method probably present 

conclusions that are not supported by the data." 

Perhaps Bruce Thompson has been the most 

vocal critic of the use of stepwise regression. He and 

others (Beasley & Leitner, 1994; Davidson, 1988; 

Edirisooriya, 1995; Lockridge, 1997; Moore, 1996; 

Thompson, 1994a, 1995, 1998a, 1999; Welge, 1990) 

have identified at least three problems associated 

with this technique. First, at every step of the 

analysis, computer packages use incorrect degrees of 

freedom in computing statistical significance (Type 

X error; Daniel & Onwuegbuzie, 2000). 

Unfortunately, these incorrect degrees of freedom 

tend to bias statistical significance tests in favor of 

declaring trivial effects as statistically significant. 

Second, not only does undertaking k steps of analysis 

not necessarily lead to the best predictor set of size k, 

it is possible that none of the predictors entered in the 

first k steps are even among the best predictor set of 

size k. Third, because the order in which the 

independent variables are entered in the model is 

influenced by sampling error, which, at any step, can 

lead to mis-specification of the model, and because 

stepwise regression typically involves several steps, 

this technique often produces results that are very 

difficult to replicate (Thompson, 1995). A fourth 

problem identified by the present authors is that 

because stepwise regression utilizes a series of 

statistical significance tests, it is subject to actual 

Type I error rates that can be much greater than its 

nominal alpha value. For example, a stepwise 

regression procedure which takes 5 steps to select a 

final model, with the entry criterion being set at .05 

(which is the default value for statistical packages 

such as SPSS), results in the probability of at least 

one Type I error rate being .23 (i.e., 1 - (1 - .05)
5
) 

(see for example, Maxwell & Delaney, 1990). If 

some variables that are entered are then subsequently 

removed, then the Type I error rate can increase even 

more. 

Moreover, stepwise regression, more than 

any other regression technique, tends to capitalize on 

chance, often resulting in an overfitting of data 

(Tabachnick & Fidell. 1996) and yielding results that 

are based on randomness rather than carefully 

articulated theoretical models. Specifically, decisions 

about which variables are included in the final 

regression model are based on p-values, which are 

extremely sample-dependent. For an extensive 

discussion of the major flaws associated with 

stepwise regression, see Huberty (1989) and 

Thompson, Smith, Miller, and Thomson (1991). 

As advocated by Thompson (1995), instead 

of conducting a stepwise regression, an all possible 

subsets (APS) (i.e., setwise) multiple regression 

should be performed. Using this technique, all 

possible models involving some or all of the 

independent variables are examined. Indeed, in APS 

regression, separate regressions are computed for all 

independent variables singly, all possible pairs of 

independent variables, all possible trios of 

independent variables, and so forth, until the best 

subset of independent variables is identified 

according to some criterion such as the maximum 

proportion of variance explained (R
2
), which 

provides an important measure of effect size (Cohen, 

1988). Similarly, these repeated subsets can be useful 

in conducting a regression commonality analysis 

(Newton & Spurrell, 1967; Rowell, 1996; Seibold & 

McPhee, 1979). (For an example of an APS multiple 

regression, see Onwuegbuzie, Slate, Paterson, 

Watson, and Schwartz, 2000; for an example of 

commonality analysis, see Daniel, 1989a.) 

Unfortunately, statistical software programs such as 

the Statistical Package for the Social Sciences (SPSS; 

SPSS Inc., 2001) do not allow analysts to conduct 

APS regression analyses directly, although the 

Statistical Analysis System (SAS Institute Inc., 1999) 

does, and no commonly available packages include 

computations for commonality analyses. It should be 

noted that both APS regression and commonality 

analyses represent exploratory model-building tools, 

as opposed to a model-testing techniques 

(Tabachnick & Fidell, 1996). As such, APS 

regression models and commonality analysis results 

should never be treated as definitive. Rather, they 

should be subjected to both internal and external 

replications. 

Alternative forms of linear regression 

techniques that are acceptable are hierarchical (i.e., 

sequential) multiple regression and standard multiple 

regression. In hierarchical multiple regression, 

independent variables are entered into the regression 

equation in an order specified a priori by the 

researcher. Each independent variable is then 

evaluated with respect to its own contribution to the 

model at its own point of entry. Independent 

variables can be entered one-at-a-time or in blocks in 

a specified order based on the researcher's theoretical 

considerations (Tabachnick & Fidell, 1996). 

Hierarchical regression can be conducted 

interactively via any statistical software. However, it 

is likely that many users shy away from this 

technique because it is not fully automated, unlike 

stepwise regression. Standard multiple regression 

involves entering all variables into the regression 

equation simultaneously (i.e., "direct" variable entry) 

and assessing the contribution of each (via partial and 
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semi-partial correlations) as if it had been entered 

into the model after all other variables had been 

entered. Both hierarchical multiple regression and 

standard multiple regression represent model-testing 

approaches, and are thus recommended for 

confirmatory purposes. 

In any case, whichever technique is used 

(i.e., APS regression, hierarchical regression, 

standard regression), it should be noted that the 

choice of regression variables is just as important as 

with any other regression technique. That is, the 

variables that are selected for the initial multiple 

regression model must be based on theoretical and/or 

practical considerations (Daniel & Onwuegbuzie, 

2001). 

In reporting the results of a multiple 

regression model, most researchers only present 

unstandardized and/or standardized regression 

coefficients (b or weights), and regression structure 

coefficients (Thompson & Borrello, 1985; Henson, 

2002) typically are omitted from the analysis. Yet, 

structure coefficients, which describe the relationship 

between scores on a given manifest (i.e., observed) 

variable with the scores on a given latent (i.e., 

synthetic) variable, when considered alongside 

standardized weights, can provide vital information 

about the relative importance of each of the 

regression variables (Courville & Thompson, 2001; 

Henson, 2002). Specifically, the extent to which the 

standardized weights and the structure coefficients 

are identical for each variable indicates how 

uncorrelated the predictor variables are (Thompson, 

1998a). Second, if both standardized and structure 

coefficients of a variable are trivial (i.e., near-zero), 

the variable is not a practicable predictor of the 

outcome measure. Third, if a variable has a near-zero 

standardized coefficient but a large structure 

coefficient, the variable plays a role in explaining the 

dependent variable, but the variable is collinear with 

at least one additional predictor variable. Finally, if a 

variable has a near-zero structure coefficient but a 

large standardized coefficient, this indicates that the 

variable is a suppressor variable. Suppressor 

variables are variables which assist in the prediction 

of dependent variables (i.e., they increase the effect 

size) due to their correlation with other independent 

variables (Tabachnick & Fidell, 1996). Specifically, 

suppressor variables improve the predictive power of 

the other independent variables in the model by 

suppressing variance that is irrelevant to this 

prediction, as a result of the suppressor variable's 

relationship with the other independent variables. 

Although the proportion of variance 

explained (i.e., R
2
) is routinely reported, very rarely 

is the corrected estimate of explained variance 

(adjusted R
2
) reported. Yet, this adjusted measure 

helps to reduce the positive bias that is inherent in R
2
 

(Ezekiel, 1930; Wherry, 1931) when sample size is 

small, correlation is trivial, or the number of 

predictor variables is large. Another mistake that 

analysts make when conducting multiple regression 

analyses is that they do not consider in result 

interpretation the context-specificity of analytical 

weights (Thompson, 1998a). This often leads to over-

interpretation of regression weights (Cliff, 1987). 

Thus, as recommended by Thompson (1998a), 

regression weights always should be interpreted with 

extreme caution. Additionally, few researchers 

provide an analysis of the residuals to assess the 

extent to which the selected multiple regression 

model fits the underlying data (i.e., meets the 

regression assumption of constancy of error 

variance). Even less frequent is the examination of 

influence diagnostics to determine whether any 

observations (i.e., cases) exert an undue amount of 

influence on the regression results (Fox, 1997). Such 

influence typically is counterproductive; however, if 

the case diagnostics indicate a serious deficiency in 

the regression model, it is very likely that the given 

observation will provide valuable information to the 

analyst. 

As noted by Myers (1986), influence 

diagnostics include the following: (a) the number of 

estimated standard errors (for each regression 

coefficient) that the coefficient changes if the ith 

observation were set aside (i.e., DFBETAS); (b) the 

number of estimated standard errors that the 

predicted value changes if the ith point is removed 

from the data set (i.e., DFFITS); and (c) the reduction 

in the estimated generalized variance of the 

coefficient over what would have been produced 

without the ith data point (i.e., COVRATIO). (For an 

example of the use of influence diagnostics, see 

Onwuegbuzie et al., 2000.) 

Most analysts do not appear to evaluate 

multicollinearity among the regression variables. 

Multicollinearity leads to inflated regression 

coefficients or "bouncing betas." Thus, 

multicollinearity should routinely be assessed in 

multiple regression models. Techniques for assessing 

multicollinearity include (a) variance inflation 

factors (VIFs), which indicate the extent to which the 

variance of an individual regression coefficient has 

been inflated by the presence of collinearity, and (b) 

condition numbers, which represent the ratio of the 

largest to the smallest eigenvalues based on a 

principal components analysis of the regression 

coefficients yielded by a given analysis, and which 

serve as measures of the strength of linear 

dependency among the regression variables (Sen & 

Srivastava, 1990). VIFs and condition numbers less 
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than 10 indicate that multicollinearity is not 

appreciably present (Fox, 1997; Myers, 1986). 

Another error that appears to be a common 

feature of multiple regression analyses is an 

inadequate case-to-independent variable ratio. Green 

(1991) recommended using the following guideline 

for determining an appropriate sample size for a 

multiple regression analysis that takes into account 

the effect size. According to Green, the sample size 

should be greater than or equal to (8 / F
2
) + (I - 1), 

where F
2
 = R

2
/(1 - R

2
). The sample size should 

exceed this value if the dependent variable is skewed, 

if one or more of the variables yield low score 

reliability, or if cross-validation is needed to test the 

generalizability of the regression model. 

Finally, we recommend the use of internal 

replications, in order to avoid Type V error (internal 

replication error; Daniel & Onwuegbuzie, 2000). The 

three most common classes of internal replication 

utilize either cross-validation, jackknife, or bootstrap 

techniques (Thompson, 1994b). For regression 

analyses, cross-validation involves dividing the 

sample into two approximately equally sized sub-

samples (although equality of sub-samples is not 

required), computing the regression coefficients for 

the first sub-sample, and then using the second sub-

sample to attempt to confirm the results of the first 

sub-sample. Also, the results of the second subgroup 

can be confirmed via the first subsample's data. 

Jackknife techniques involve conducting separate 

analyses, with groups of participants of an equal size 

(usually one at a time) being deleted from each 

analysis once only until all cases/groups have been 

dropped. The regression results at each stage would 

be compared to determine stability. Finally, bootstrap 

methods involve resampling the same dataset 

repeatedly (i.e., thousands of times), and then 

computing the regression coefficients and R
2
 values 

for each sample. These coefficients are then 

compared to the original regression coefficients from 

the full sample in order to assess stability. Using the 

framework of Onwuegbuzie (in press-a), non-

interaction seeking bias, violated assumptions, 

multicollinearity, and mis-specification error are 

analytical errors that are particularly pertinent for 

multiple regression, whereas effect size, confirmation 

bias, illusory correlation, positive manifold, and 

causal error are pertinent interpretational errors. 

Multivariate analysis of variance/  

covariance. With the increased availability of 

comprehensive statistical software, more researchers 

are utilizing multivariate statistical techniques. For 

example, in a review of 36 research articles published 

in the 1998 volume of the British Journal of 

Educational Psychology, Onwuegbuzie (2002b) 

found that multivariate analysis of variance 

(MANOVA) was the second most common technique 

utilized. Specifically, this technique was undertaken 

in nearly one-fourth of the articles examined. Elmore 

and Woehlke (1998) found that MANOVA was 

utilized in 12.4% of the articles contained in journals 

published by the American Educational Research 

Association from 1978 to 1997. 

Unfortunately, several flaws are associated 

with use of multivariate analyses of variance. For 

example, some researchers undertake one-way 

repeated measures analyses of variance (ANOVAs) 

in order to determine whether there are statistically 

significant differences among multiple measures (i.e., 

an omnibus test), and then, if a statistical significant 

difference is found, follow up with a series of 

univariate analyses with Type I error rate protection 

(e.g., Scheffé tests). However, this practice is now 

outdated. Moreover, many statisticians criticize this 

technique because analyses involving repeated 

measures test "linear combinations of the outcome 

variables (determined by the variable 

intercorrelations) and therefore do not yield results 

that are in any way comparable with a collection of 

separate univariate tests" (Keselman et al., 1998, p. 

361). In fact, using ANOVA as a follow-up to 

MANOVA is a variant of Type IV error (see Daniel 

& Onwuegbuze, 2000). 

Moreover, although as many as 37.5% of 

researchers conduct a MANOVA followed by a 

univariate analyses (i.e., a MANOVA-univariate data 

analysis strategy) (Onwuegbuzie, 2002b), as noted by 

Keselman et al. (1998, p. 361), "there is very limited 

empirical support for this strategy. Indeed, Keselman 

et al. (1998) stated that "If the univariate effects are 

those of interest, then it is suggested that the 

researcher go directly to the univariate analyses and 

bypass MANOVA. . . . Focusing on results of 

multiple univariate analyses preceded by a 

MANOVA is no more logical than conducting an 

omnibus ANOVA but focusing on the results of 

group contrast analyses (Olejnik & Huberty, 1993)" 

(pp. 361-362). Furthermore, because this technique 

relies on a statistically significant MANOVA 

omnibus test as a precursor to using ANOVA on a 

post hoc basis, the incompatibility of MANOVA and 

ANOVA, due to the differences in their respective 

mean square errors and error degrees of freedom, 

results in a post hoc ANOVA test that has lower 

statistical power than if the ANOVA test had been 

used as a planned comparison. 

Thompson (1999) also criticized researchers 

who perform several univariate analyses to analyze 

multivariate data. He maintained that because 

univariate analyses can be viewed as assessing the 

contribution of one or more independent variables to 

a solitary dependent variable, it typically does not 
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honor, in the optimal sense, the nature of reality that 

most researchers are interested in studying. This is 

because most phenomena involve multiple effects. As 

Tatsuoka (1973) asserted: 

The often-heard argument, "I'm more 

interested in seeing how each variable, in its 

own right, affects the outcome" overlooks 

the fact that any variable taken in isolation 

may affect the criterion differently from the 

way it will act in the company of other 

variables. It also overlooks the fact that 

multivariate analysis-precisely by 

considering all the variables simultaneously-

-can throw light on how each one 

contributes to the relation. (p. 273) 

Thus, we recommend that researchers avoid 

using the MANOVA-ANOVA analytical strategy, 

and focus instead on conducting analyses that most 

appropriately reflect the underlying multivariate 

reality of interest. (For a more extensive discussion of 

MANOVA versus multiple ANOVAs, see Huberty 

and Morris, 1989.) 

Also, we suggest that researchers use the 

multivariate approach to analyzing repeated-

measures data (which basis its analysis on the 

difference scores) rather than the mixed-methods 

(i.e., with one factor representing the between-

subjects factor(s) and the other factor representing the 

within-subject factor(s)) approach because the latter 

necessitates an assumption that is not required by the 

former. Specifically, the mixed-model approach 

requires a homogeneity of treatment-difference 

variances (i.e., sphericity) assumption. Simply put, 

this assumption requires that every measure must 

have the same variance, and all correlations between 

any pair of measures must be the same (Maxwell & 

Delaney, 1990). However, it should also be noted that 

the multivariate approach itself requires multivariate 

normality. As such, researchers always should assess 

the viability of this assumption. 

Another oversight of researchers employing 

MANOVA techniques is the failure to report the 

criteria used for determining statistical significance. 

These criteria include Wilk's Lambda, Pillai's criteria, 

Hotelling's trace criterion, and Roy's GCR criterion. 

Under certain conditions (e.g., when the independent 

variable has two levels), the first three criteria are 

identical. However, there are times when these 

techniques will yield different p-values. Thus, 

researchers always should specify which criteria were 

used. 

Finally, as for the case of ANCOVA, 

multivariate analysis of covariance (MANCOVA) 

should be used with extreme caution. This is because 

MANCOVA is subject to the same assumptions as 

for ANCOVA. However, not only is MANCOVA 

based on the multivariate normal distribution, but it is 

also assumed that the regression between covariates 

and the dependent variables in one group is the same 

as the regression in other groups (i.e., homogeneity of 

regression) such that using the mean regression to 

adjust for covariates in all groups is appropriate 

(Tabachnick & Fidell, 1996). Using the framework of 

Onwuegbuzie (in press-a), mortality, violated 

assumptions, and mis-specification error are 

analytical errors that are particularly pertinent for 

MANOVA and MANCOVA, whereas effect size, 

confirmation bias, and causal error are pertinent 

interpretational errors. 

Descriptive discriminant analysis/predictive 

discriminant analysis. Huberty and his colleagues 

(Huberty, 1994; Huberty & Barton, 1989; Huberty & 

Wisenbaker, 1992) have eloquently differentiated 

between descriptive discriminant analysis (DDA) and 

predictive discriminant analysis (PDA). According to 

Huberty (1994), DDA describes the differences on 

dependent variables that are measured on the interval 

or ratio scale with respect to a nominally-scaled 

variable, namely group membership. On the other 

hand, PDA involves predicting group membership 

from response variables that are interval- or ratio-

scaled. In PDA, the percentage of correct 

classification is of particular interest, whereas in 

DDA, the function and structure coefficients are the 

focus, with the hit rate being immaterial (Thompson, 

1998a). Also, as Thompson (1998a) noted, whereas 

DDA is a member of the general linear model, PDA 

is not a direct family member. One of the biggest 

flaws in interpreting DDA results is a failure to 

interpret both the discriminant function coefficients 

and the structure coefficients. 

Whether DDA or PDA is utilized, many 

researchers do not report the criteria used for 

statistical significance (e.g., Wilks' Lambda, Pillai's 

criteria, Hotelling's trace criterion, and Roy's GCR 

criterion). In addition, many analysts utilize stepwise 

discriminant analysis techniques. As is the case for 

stepwise multiple regression, stepwise discriminant 

analysis contains serious flaws (e.g., Type X error; 

Daniel & Onwuegbuzie, 2000). Thus, this technique 

should never be used. Instead, standard discriminant 

analysis or hierarchical discriminant analysis could 

be utilized. Using the framework of Onwuegbuzie (in 

press-a), non-interaction seeking bias, violated 

assumptions, and mis-specification error are 

analytical errors that are particularly pertinent for 

discriminant analysis, whereas effect size, 

confirmation bias, positive manifold, and causal error 

are pertinent interpretational errors. 

Both PDA and DDA are subject to the 

assumption of multivariate normality. This 

assumption means that scores on the predictor 
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variables are independently and randomly sampled 

from a population, and that the sampling distribution 

of any linear combination of predictors is normally 

distributed. Unfortunately, these procedures are not 

robust to departures from normality if the group sizes 

are very unequal. Indeed, logistic regression is more 

appropriate than is discriminant analysis in the 

presence of non-normality and unequal group sizes 

(Tabachnick & Fidell, 1996), and thus could be 

utilized in this case. In fact, logistic regression is 

more versatile than is discriminant analysis because 

less stringent assumptions are needed. Specifically, 

logistic regression makes no assumptions about the 

distributional properties of the regression variables--

in particular, the predictors do not have to be 

normally distributed; nor do they have to linearly 

related or have equal variances within each group. 

Also, the regression variables can be discrete, 

continuous, or a combination of the two. It is thus 

surprising how infrequent logistic regression is used 

in educational research--despite its popularity in the 

health sciences. Because logistic regression is a 

discrete response-variable analog to multiple 

regression, the recommendations made above for the 

latter (e.g., non-use of stepwise methods, examining 

residuals, and conducting internal replications) are 

pertinent for using the former. 

Canonical correlation analyses. Canonical 

correlation analysis is utilized to examine the 

relationship between two sets of variables when each 

set contains more than one variable (Cliff & Krus, 

1976; Darlington, Weinberg, & Walberg, 1973; 

Thompson, 1980, 1984, 1991). Indeed, as noted by 

Knapp (1978, p. 410), "virtually all of the commonly 

encountered tests of significance can be treated as 

special cases of canonical correlation analysis.” That 

is, canonical correlation analysis can be used to 

undertake all the parametric tests which canonical 

correlation methods subsume as special cases, 

including Pearson correlation, t-tests, multiple 

regression, analysis of variance, and analysis of 

covariance (Henson, 2000; Roberts & Henson, 2002; 

Thompson, 1988b, 1998a, 1991). 

Humphries-Wadsworth (1997) reviewed 

articles published between 1988 and 1998 in which 

canonical correlation analyses were undertaken. She 

identified several problems arising from the use of 

this technique. These problems included 

inconsistencies in the terminology used to label the 

same procedure (e.g., “canonical loadings,” 

“canonical weights,” “correlation loadings,” and 

“canonical correlates”), and failure to report all the 

necessary information. 

Summarizing Thompson's (1992a) 

recommendations, Humphries-Wadsworth (1997) 

stated that when performing a canonical correlation 

analysis, (a) both the p-values pertaining to canonical 

functions and the squared canonical correlation 

coefficients (i.e., effect sizes) should be assessed; (b) 

both the canonical function coefficients and the 

canonical structure coefficients should be interpreted, 

along the lines outlined above for multiple 

regression; (c) redundancy coefficients, which are 

equal to the average of the squared multiple 

correlation of each of the variables in one set with all 

the variables in the other set (Pedhazur, 1982) should 

not be interpreted because they represent univariate 

statistics; (d) communality coefficients should be 

routinely examined; and (e) internal replications (e.g., 

cross-validation, jackknife, or bootstrap techniques) 

should be undertaken. Using the framework of 

Onwuegbuzie (in press-a), non-interaction seeking 

bias, violated assumptions, multicollinearity, and 

mis-specification error are analytical errors that are 

particularly pertinent for canonical correlation 

analyses, whereas effect size, confirmation bias, 

illusory correlation, crud factor, positive manifold, 

and causal error are pertinent interpretational errors. 

Principal component analysis and factor 

analysis. Principal component analysis (PCA) and 

factor analysis (FA) are statistical procedures 

performed on a set of variables in order to determine 

which variables in the set form logical subsets that 

are statistically independent from each other. 

Specifically, variables that are statistically related 

with each other but statistically independent from 

other subsets of variables are combined into 

components/factors. These components or factors 

thus are assumed to represent the underlying 

phenomena/constructs that are responsible for the 

observed correlations among the variables. 

The overall goals of both PCA and FA, 

which are the two most common methods of factor 

extraction, are to reduce the dimensionality of the set 

of variables, to summarize patterns of correlations 

among manifest variables, to describe an underlying 

process via the observed relationships among 

variables, or to test theories about the nature of 

underlying processes or constructs (Henson et al., 

2001; Henson & Roberts, in press; Tabachnick & 

Fidell, 1996).  

There are two major types of factor analysis: 

exploratory and confirmatory. Exploratory factor 

analysis (EFA) is an analytic technique conducted in 

the early stages of the research process with the goal 

of reducing a larger set of variables into a smaller, 

interpretable set based on the correlations among the 

variables. In so doing, the analyst hopes to 

understand better the internal structure of an 

instrument or a dataset when insufficient information 

is available about the data structure. Simply put, 

exploratory factor analyses are based on 
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mathematical solutions and do not incorporate a 

priori theoretical underpinnings (Daniel, 1989b). On 

the other hand, confirmatory factor analysis (CFA) is 

typically utilized in the latter stages of the research 

process to test a theory about the latent processes 

(Henson et al., 2001; Henson & Roberts, in press; 

Kieffer, 1999). 

A common flaw that is apparent in factor 

analysis is the use of inadequate case-to-variable ratio 

(Henson et al., 2001; Henson & Roberts, in press). 

For example, in a review of 40 articles using 

exploratory factor analysis published in the American 

Educational Research Journal (Vol. 33-36), Journal 

of Educational Research (Vol. 89-93), or The 

Elementary School Journal (Vol. 96-100), Henson et 

al. (2001) found that 14% of EFAs used subject-to-

variable ratios of less than 5:1, with two studies using 

fewer participants than variables. Similarly, Henson 

and Roberts (in press) reported that 11.86% of the 60 

EFA articles they examined had ratios less than 5:1. 

Comrey and Lee (1992) suggest that for factor 

analyses, sample sizes of 50 are very poor, 100 are 

poor, 200 are fair, 300 are good, 500 are very good, 

and 1,000 are excellent. Tabachnick and Fidell 

(1996) and Kieffer (1999) recommend that at least 

300 cases be used for factor analysis. However, these 

guidelines are too simplistic because they do not 

directly take into account the number of variables. 

We recommend using case-to-variable ratios as a 

guideline (Henson et al., 2001; Stevens, 1996, 2002). 

To this end, we suggest using 5 participants per 

variable as the bare minimum, although at least 10 

participants per variable is much more desirable 

(Gorsuch, 1983). When researchers use case-to-

variable ratios that are less than 5, this should be 

readily acknowledged in the report as posing a threat 

to internal validity (i.e., the reliability of the variable 

scores and emergent factor scores). 

The difference in PCA and FA is that the 

former utilizes the total variance of each variable to 

assess the shared variation among the variables. That 

is, PCA uses “ones” on the diagonal of the 

correlation matrix that is factor analyzed. On the 

other hand, FA utilizes estimates of common 

variance or reliability on the main diagonal (Henson 

et al., 2001; Henson & Roberts, in press; Thompson 

& Daniel, 1996). It is likely that FA better reflects 

reality better than does PCA because the latter 

assumes that each variable represents scores that are 

perfectly reliable (Kieffer, 1999). Regardless, as 

noted by Thompson and Daniel (1996), heated 

arguments prevail as to the relative merits of PCA or 

FA. Some statisticians (e.g., Daniel, 1990; 

Thompson, 1992c) have asserted that the difference 

between PCA and FA is trivial. More specifically, 

Thompson and Daniel (1996) reported that the 

difference between PCA and other extraction 

methods reduces as the number of factored variables 

increases and as scores on the factored variables 

become more reliable. However, other researchers 

(e.g., Gorsuch, 1983) have maintained that there is 

enough discrepancy between the two procedures to 

justify careful consideration of which technique to 

utilize. In any case, our position is that researchers 

should specify which extraction method they have 

used and provide a rationale for their choice. 

Analysts may even want to consider examining both 

PCA and FA results and then selecting the method 

which provides the most meaningful interpretation. 

As noted by Hetzel (1996), a common 

misunderstanding among novice factor analysts is 

incorrectly assuming that the eigenvalue for a 

specific factor after extraction is identical to the trace 

(summation of squared values in columns of the 

factor pattern/structure matrix) after the factor 

solution is rotated. This error in thinking leads to 

incorrect proportions of variance being reported for 

factors. As identified by Thompson (1997), another 

mistake made by some analysts is a failure to 

interpret both the factor pattern matrix and the factor 

structure matrix after conducting an oblique rotation 

(i.e., rotation of the factors in the factor space such 

that the angle between the factors is different than 90 

degrees). The rationale for this is the same as for 

interpreting both standardized coefficients and 

structure coefficients in multiple regression and 

discriminant analysis. Reporting only one of these 

two matrices provides only partial information 

(Henson et al., 2001; Henson & Roberts, in press; 

Thompson, 1997). On the other hand, when varimax 

rotation (i.e., orthogonal rotation of the factors in the 

factor space such that all factors are at 90-degree 

angles to each other) is utilized, the factor pattern 

matrix and the factor structure matrices are identical. 

Perhaps the most common flaw in articles 

reporting factor analyses is the lack of attention to 

detail (Henson et al., 2001; Henson & Roberts, in 

press). Indeed, of the factor-analytic studies in the 

field of counseling psychology examined by Tinsley 

and Tinsley (1987), most did not accurately and 

completely report the results. In a follow-up study by 

Hetzel (1996), none of the factor-analytic articles 

reviewed contained all of the necessary information. 

In a further replication of Tinsley and Tinsley's 

(1987) seminal work, Kieffer (1999) had very similar 

conclusions, as did Henson et al. (2001) and Henson 

and Roberts (in press). 

We recommend that exploratory factor 

analyses include as many of the following pieces of 

information as possible: initial number of variables, 

sample size, sample composition, sampling design, 

means and variances of the items, correlation matrix 
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(for replication purposes), method of factor 

extraction, criteria used for selecting the number of 

factors to be extracted, method of factor rotation, 

eigenvalues, correlation matrix of the extracted 

factors, final communality estimates, estimates of 

reliability, rotated factor pattern matrix, and rotated 

factor structure matrix (if oblique rotation is utilized) 

(cf. Hetzel, 1996). (For an example of how to report 

EFA results in table form for orthogonal rotations 

and oblique solutions, see Table 4 of Henson & 

Roberts, in press, and Henson et al., 2001, 

respectively.) We recognize that many factor analysts 

are operating under stringent page restrictions. 

Nevertheless, attempts should be made to provide as 

much as the above information as possible. 

Researchers conducting exploratory factor analysis 

also should provide an explicit justification for each 

criterion used in the analytical process (Henson & 

Roberts, in press). Using the framework of 

Onwuegbuzie (in press-a), non-interaction seeking 

bias and mis-specification error are analytical errors 

that are particularly pertinent for exploratory factor 

analyses, whereas confirmation bias, crud factor, and 

positive manifold are pertinent interpretational errors. 

Confirmatory factor analyses. When 

performing confirmatory factor analyses, some 

researchers mistakenly analyze the correlation matrix 

instead of the variance-covariance matrix (Thompson 

& Daniel, 1996). Using correlation matrices with 

confirmatory factor analyses is tantamount to 

utilizing a variance-covariance matrix wherein the 

manifest variables have been standardized to unit 

variance (Bollen, 1989), which likely does not reflect 

reality. As noted by Skehan (1991), the acceptance or 

rejection of a confirmatory factor model is not only a 

function of the difference between the model and 

reality, but it also is a function of the size of the 

sample. In particular, large samples tend to have a 

bias toward rejection of models (Skehan, 1991). 

According to Schumacker and Lomax (1996, p. 125), 

for sample sizes larger than 200, “the test has a 

tendency to indicate a significant level” and, 

consequently, to lead to a rejection of the underlying 

model. Thus, it is even more important that effect 

sizes are reported alongside values. Indeed, 

because there does not appear to be a universally 

agreed-upon index for assessing model adequacy, we 

recommend that researchers report several fit indices 

(i.e., effect size measures) such as the ratio of chi-

square to degrees of freedom , the Adjusted 

Goodness-of-Fit Index, the relative fit index (RFI), 

the incremental fit index (IFI), the Tucker-Lewis 

index (TLI), and the comparative fit index (CFI) 

(Bentler, 1990; Bentler & Bonett, 1980; Bollen, 

1986, 1989; Schumacker & Lomax, 1996). Cut-off 

values between .90 (e.g., Bentler & Bonett, 1980) and 

.95 (Hu & Bentler, 1999) have been recommended 

for demonstrating model adequacy. 

The root mean square error of 

approximation (RMSEA; Browne & Cudeck, 1993) 

is another index that researchers should consider 

reporting. The RMSEA, which is the square root of 

the difference between the population covariance 

matrix and the fitted matrix divided by the number of 

degrees of freedom for testing the model (i.e., the 

discrepancy per degree of freedom for the model), is 

used to compare the fit of two different models to the 

same data. The RMSEA is bounded below by zero 

and will be zero only if the model fits exactly 

(Browne & Cudeck, 1993). Browne and Cudeck 

(1993) asserted that (1) a RMSEA of approximately 

.05 or less is indicative of a close fit of the model in 

relation to the degrees of freedom, (2) a RMSEA 

value between .05 and .08 indicates a reasonable 

error of approximation, and (3) models with 

RMSEA's greater than 0.1 always should be rejected. 

Hu and Bentler (1999) suggest a cut-off value of .06 

for the RMSEA. With respect to the ratio, 

although some researchers (e.g., Carmines & McIver 

as cited in Arbuckle, 1997) recommend a range 

between 2 to 1 and 3 to 1 for declaring an acceptable 

fit, most researchers (e.g., Byrne, 1989) believe that 

relative chi-square ratios above 2.00 represent an 

inadequate fit. Thus, we recommend this latter value. 

It should be noted, however, that several 

Monte Carlo studies (i.e., studies in which a series of 

specific empirical sampling distributions for each 

index are examined) have demonstrated that many 

effect size indices also are affected by sample size. 

For example, Marsh, Balla, and McDonald (1988), 

who analyzed the distributions of 29 different indices 

(e.g., GFI, NFI, TLI), found several of these indices 

to be related to sample size. Notwithstanding, in most 

cases, all the fit indices obtained using ML 

techniques tend to perform much better with respect 

to accuracy of estimates and correctness of statistical 

results than those obtained using other techniques 

such as generalized least squares and the asymptotic 

distribution free method (Hu & Bentler, 1995). 

Apart from sample bias, violation of 

assumptions underlying estimation methods--

specifically, violation of distributional assumptions 

and the effect of dependence of latent variates--can 

threaten the adequacy of fit indices. In particular, Hu 

and Bentler (1995) reported that, when latent 

variables are dependent, most fit indices over-reject 

models at a sample size of 250 or less. Unfortunately, 

given that chi-square tests have a tendency to reject 

models using sample sizes greater than 200, and that 

most fit indices lead to an over-rejection of models 
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for samples smaller than 250 when latent variables 

are dependent, it is difficult, if not impossible, to 

recommend an ideal sample size for CFA studies. 

(For comprehensive examples of exploratory factor 

analysis and confirmatory factor analysis see Kieffer, 

1999, and Onwuegbuzie, Bailey, and Daley, 2000.) 

As for exploratory factor analyses, non-interaction 

seeking bias and mis-specification error are analytical 

errors that are particularly pertinent for confirmatory 

factor analysis, whereas effect size, confirmation 

bias, crud factor, and positive manifold are pertinent 

interpretational errors. 

Path analysis. Path analysis, which was 

developed in the 1920s by Sewall Wright in order to 

gain a better understanding of genetic theory, became 

popularized in behavioral and social sciences in 

1960s (Schumacker & Lomax, 1996). Path analysis is 

a technique for studying the direct and indirect 

effects of variables on one or more outcomes. Direct 

effects involve two variables (observed or latent) that 

are connected by a single directional path, which 

represents the regression of the outcome on the 

predictor. By contrast, indirect effects occur between 

two latent variables when no single direct path 

connects them, but instead when the second variable 

is logically related to the first latent variable through 

one or more other latent variables via their paths. 

Conveniently, path coefficients in path models take 

on the values of Pearson product-moment correlation 

coefficients or standardized partial regression 

coefficients. Moreover, the paths suggest whether the 

dependent variables are related to correlated effects, 

mediated effects, and/or independent effects. Unlike 

multiple regression analyses, path analysis models 

allow analysts to specify the type of relationship 

among the independent variables when predicting 

one or more dependent variables. 

Path analysis involves decomposing 

correlations and then comparing original coefficients 

with the path coefficients computed on the basis of 

the path model. Correlations between any two 

variables are decomposed into simple and complex 

paths (Schumacker & Lomax, 1996). Path 

coefficients can be tested for statistical significance 

(e.g., using t-values), whereas the overall path model 

can be tested for goodness of fit using various test 

statistics (e.g., chi-square tests). Unfortunately, 

because statistically significant chi-square values 

suggest that a model does not fit the underlying data, 

sample sizes greater than 200 have a tendency to 

reject models, as is the case for CFA. Using the 

framework of Onwuegbuzie (in press-a), non-

interaction seeking bias, violated assumptions, 

multicollinearity, and mis-specification error are 

analytical errors that are particularly pertinent for 

path analyses, whereas effect size, confirmation bias, 

illusory correlation, crud factor, positive manifold, 

and causal error are pertinent interpretational errors. 

Structural Equation Modeling. Structural 

equation models differ from path analysis in that the 

former focus on latent variables rather than observed 

variables, and combine a measurement model (i.e., 

confirmatory factor analysis) with a structural model 

(i.e., path analysis) to substantiate theory 

(Schumacker & Lomax, 1996). By first utilizing 

multiple observed variables in defining a particular 

latent variable or hypothesized construct (e.g., a 

factor), measurement error can be estimated, and, as 

such, measurement properties (i.e., structural-related 

validity) can be assessed via parameter estimates. 

As with confirmatory factor analysis, we 

recommend that researchers who utilize structural 

equation techniques report several fit indexes 

simultaneously (Thompson, 2000), because there is 

"no single statistical test of significance that identifies 

a correct model given the sample data" [emphasis in 

original] (Schumacker & Lomax, 1996, p. 120). Also, 

as recommended by Schumacker and Lomax (1996), 

we advocate that a bootstrap analysis should be 

conducted to determine the stability of path 

coefficients for the selected model. Bootstrapping 

involves re-sampling the data (with replacement) a 

specified (large) number of times to generate 

statistical estimators adjusted for case-by-case bias 

and to establish standard error bands around these 

estimators. These sample bootstrap estimates and 

standard errors are averaged and used to obtain 

confidence intervals around the average of the 

bootstrap estimates (i.e., bootstrap estimators). The 

bootstrap estimators and their corresponding 

confidence intervals are then used to determine how 

stable the sample statistic is as an estimator of the 

population parameter. 

However, it should be noted that even 

though SEM analyses often lead to models that more 

closely reflect reality, many of these resultant models 

may still be under-specified because they (a) do not 

include interaction effects, (b) do not test for non-

linear relationships, and/or (c) fail to account for a 

sufficient number of observables to identify one or 

more of the latent variables (i.e., under-identification 

of the model). Another concern surrounding SEM is 

the fact that this method of analysis also has been 

termed causal modeling. This is regrettable because 

the term causal modeling appears to give many 

researchers the impression that SEM is a method of 

identifying causes--which is not necessarily the case. 

Indeed, SEM is no less correlational in analytical 

framework than is any other member of the general 

linear model. That is, as is the case for all types of 

statistical analyses regardless of level of complexity, 

use of SEM can only allow for causal statements to 
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be made if the research design permits it (i.e., 

experimental). Using the framework of Onwuegbuzie 

(in press-a), non-interaction seeking bias, violated 

assumptions, multicollinearity, and mis-specification 

error are analytical errors that are particularly 

pertinent for SEM, whereas effect size, confirmation 

bias, illusory correlation, crud factor, positive 

manifold, and causal error are pertinent 

interpretational errors. 

Hierarchical (Multilevel) Linear Modeling. 

Hierarchical Linear Modeling (HLM) is a technique 

designed to analyze data that are structured 

hierarchically. Indeed, HLM has been found to be 

especially relevant to studies of educational settings 

because students typically are clustered together 

within classes, classes are clustered together within 

schools, schools are clustered together within local 

education authorities or school districts, and so forth 

(Bryk & Raudenbush, 1992; Goldstein, 1987, 1995; 

Gray & Wilcox, 1995; Kreft & De Leeuw, 1998). As 

HLM software has become more readily available, 

this method of data analysis is increasing in 

popularity (Onwuegbuzie, 2002b). However, due to 

its relative complexity, still relatively few researchers 

use HLM. 

In HLM, models contain one or more 

variables measured at different levels of the 

hierarchy. Models can have as few as two levels (e.g., 

students nested within classes), or many more than 

two. The lowest level measurements are referred to as 

being at the micro level, whereas all higher-level 

measurements are deemed to be at the macro level. 

Because HLM models are generalizations of multiple 

regression models (Kreft & De Leeuw, 1998), the 

same assumptions associated with multiple regression 

not only prevail when using HLM, but they are more 

complicated. Moreover, when these assumptions are 

violated, Type I and Type II errors will be imminent. 

As cautioned by Kreft and De Leeuw 

(1998), HLM should not be used for data exploration. 

Indeed, such exploration should be undertaken prior 

to the HLM stage. Additionally, when using HLM, 

researchers should refrain from testing models that 

are too complex--that is models that contain many 

independent variables, measured at all levels of the 

hierarchy, and/or that include many cross-level 

interactions (Kreft & De Leeuw, 1998). Such models 

are to be avoided, not only because they are sensitive 

to subtle changes in the system and thus contain 

unstable parameter estimates, but also because such 

models are much more difficult to interpret, as well 

as to replicate from one sample to the next. Using the 

framework of Onwuegbuzie (in press-a), non-

interaction seeking bias, violated assumptions, 

multicollinearity, and mis-specification error are 

analytical errors that are particularly pertinent for 

HLM, whereas effect size, confirmation bias, illusory 

correlation, crud factor, positive manifold, and causal 

error are pertinent interpretational errors. 

Summary 

The purpose of the present paper was to 

identify and to discuss major analytical and 

interpretational errors that occur regularly in 

quantitative and qualitative educational research. 

With respect to qualitative, interpretivist research, the 

most common errors are failure to provide evidence 

for judging the credibility (i.e., validity) of the 

findings, generalizing findings beyond the sample, 

and failure to estimate and to interpret effect sizes. 

Typical errors associated with quantitative research 

include (a) no evidence provided that statistical 

assumptions were checked; (b) no power/sample size 

considerations discussed; (c) inappropriate treatment 

of multivariate data; (d) use of stepwise procedures; 

(e) failure to report score reliability indices for either 

previous or present samples; and (f) no control for 

Type I error rate. 

However, perhaps the most prevalent two 

errors made in quantitative research, appear across all 

types of quantitative analyses, namely the incorrect 

interpretation of statistical significance and the 

related failure to report and to interpret confidence 

intervals and effect sizes (i.e., variance-accounted for 

effect sizes or standardized mean differences) 

(Daniel, 1998a, 1998b; Ernest & McLean, 1998; 

Knapp, 1998; Levin, 1998; McLean & Ernest, 1998; 

Nix & Barnette, 1998a, 1998b; Thompson, 1998b, 

2002). This error often leads to under-interpretation 

of associated p-values when sample sizes are small 

and the corresponding effect sizes are large, and an 

over-interpretation of p-values when sample sizes are 

large and effect sizes are small (e.g., Daniel, 1998a, 

1998c). Because of this common confusion between 

significance in the probabilistic sense (i.e., statistical 

significance) and significance in the practical sense 

(i.e., effect size), some researchers (e.g., Daniel, 

1998a) have recommended that authors insert the 

word "statistically" before the word "significant," 

when interpreting the findings of a null hypothesis 

statistical test. 

Conclusion 

A plethora of analytical and interpretational 

errors prevails in both quantitative and qualitative 

research. Based on the frequency of many of the 

errors identified, one has to wonder what percentage 

of published educational research findings is invalid. 

In any case, it is clear that extreme caution should be 

exercised when undertaking quantitative and 

qualitative analyses, regardless of level of 

complexity. Indeed, use of sophisticated analytical 

techniques and computer software is no substitute for 
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really getting to know the underlying data and 

carefully checking all a priori assumptions. 

We are aware that our views and 

recommendations provided throughout this essay 

represent only a portion of the larger body of meta-

thinking and appraisal in the field of education that 

has taken place for many decades. In providing what 

we believe to be current best practices for various 

data-analytic techniques, we encourage the reader 

either to endorse our recommendations or to 

demonstrate errors in our judgments. At the very 

least, we hope that we have provided a framework for 

promoting dialogue. 
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