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The relation of the recently proposed Es5d critical point symmetry with the interacting boson model is

investigated. The large-N limit of the interacting boson model at the critical point in the transition from U(5)

to O(6) is obtained by solving the Richardson equations. It is shown explicitly that this algebraic calculation

leads to the same results as the solution of the Bohr differential equation with a b4 potential.

DOI: 10.1103/PhysRevC.68.041302 PACS number(s): 21.60.Fw, 21.10.Re

The study of phase transitions is one of the most exciting
topics in physics. Recently the concept of critical point sym-
metry has been proposed by Iachello [1]. These kinds of
symmetries apply when a quantal system undergoes transi-
tions between traditional dynamical symmetries. In Ref. [1]
the particular case of the Bohr Hamiltonian [2] in nuclear
physics was worked out. In this case, in the situation in
which the potential energy surface in the b-g plane is g
independent and the dependence in the b degree of freedom
can be modeled by an infinite square well, the so-called Es5d
symmetry appears. This situation is expected to be realized
in actual nuclei when they undergo a transition from spheri-
cal to g-unstable deformed shapes. The Es5d symmetry is
obtained within the formalism based on the Bohr Hamil-
tonian, but it has also been used in connection with the in-
teracting boson model (IBM) [3]. Although this is not the
form it was originally proposed [1], it has been in fact argued
that moving from the spherical to the g-unstable deformed
case within the IBM one should reobtain, at the critical point
in the transition, the predictions of the Es5d symmetry. This
correspondence is supposed to be valid in the limit of large
number N of bosons, but the calculations with the IBM
should provide predictions for finite N as stated in Ref. [4].
In this paper, on one hand we calculate exactly the large-N
limit of the IBM at the critical point in the transition from
U(5) (spherical case) to O(6) (deformed g-unstable case). On
the other hand, we solve the Bohr differential equation for a
b4 potential. Both calculations lead to the same results and
are not close to those obtained by solving the Bohr equation
for an infinite square well [Es5d symmetry]. We also show
with two schematic examples that the corrections arising
from the finite number of bosons are important. With this in
mind, the IBM calculations still provide a tool for including
corrections due to the finite number of bosons.

In Ref. [1] the Bohr Hamiltonian is considered for the
case of a g independent potential, described by an infinite
square well in the b variable. In that case, the Hamiltonian is
separable in both variables and if we set

Csb, g, uid = fsbdFsg, uid , s1d

where ui stands for the three Euler angles, the Schrödinger
equation can be split in two equations. The solutions of

the sg ,uid part were studied in Ref. f5g and tabulated in
Ref. f6g. Iachello solved the b part and found that the fsbd
functions are related to Bessel functions. The main results
are illustrated in Table I and Fig. 1 of Ref. f1g. These
results are obtained from a geometrical picture and we
would like to investigate its relation with the interacting
boson model.

The geometrical interpretation of the abstract IBM Hamil-
tonian can be obtained by introducing a coherent state [7–9]

which allows to associate to it a geometrical shape in terms
of the deformation variables sb,gd. The basic idea of this
formalism is to consider that the pure quadrupole states are
globally described by a boson condensate of the form

ug;N, b, gl =
1

ÎN !
sGg

†dNu0l , s2d

where the basic boson is given by

Gg
† =

1

Î1 + b2Fs† + b cos gd0
† +

1

Î2
b sin gsd2

† + d−2
† dG ,

s3d

which depends on the b and g shape variables. The energy
surface is defined as

ENsb, gd = kg;N, b, guĤug;N, b, gl , s4d

where Ĥ is the IBM Hamiltonian. Here we are interested
in the case in which the Hamiltonian undergoes a transi-
tion from Us5d to Os6d and, consequently, the correspond-
ing potential energy surfaces are g independent.

In order to investigate the geometrical limit of the IBM in
the transitional class going from U(5) (spherical) to O(6)

(deformed g-unstable) the most general (up to two-body
terms) IBM Hamiltonian is
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Ĥ = «dn̂d + k0P̂†P̂ + k1L̂ · L̂ + k2Q̂x=0 · Q̂x=0 + k3T̂3 · T̂3

+ k4T̂4 · T̂4 s5d

where n̂d is the d boson number operator, and

P̂† = 1
2 sd† · d† − s† · s†d , s6d

L̂ = Î10sd† 3 d̃ds1d, s7d

Q̂x=0 = ss† 3 d̃ + d† 3 s̃ds2d, s8d

T̂3 = sd† 3 d̃ds3d, s9d

T̂4 = sd† 3 d̃ds4d. s10d

The scalar product is defined as T̂L · T̂L

= oM s−1dMT̂LMT̂L−M, where T̂LM corresponds to the M

component of the operator T̂L. The operators d̃m

= s−1dmd−m and s̃=s are introduced to ensure the correct
tensorial character under spatial rotations. The corre-
sponding energy surface is obtained from Eq. s4d,

EsN, bd =
N

1 + b2F5k2 + b2S«d + 6k1 + k2 +
7

5
k3 +

9

5
k4DG

+
NsN − 1d

s1 + b2d2F s1 − b2d2

4
k0 + 4b2k2 +

18

35
b4k4G .

s11d

The condition to find the critical point is

fd2EsN, bd/db2gb=0 = 0 s12d

and gives the following relation among the Hamiltonian
parameters:

«d = − 6k1 + 4k2 − 7
5k3 − 9

5k4 + sN − 1dsk0 − 4k2d . s13d

Thus the most general energy surface at the critical point
in the Us5d-Os6d phase transition is

EcritsN, bd = 5Nk2 + NsN − 1d

3Fk0

4
+ Sk0 − 4k2 +

18

35
k4D b4

s1 + b2d2G . s14d

These expressions are consistent with those obtained in
Ref. f10g for a slightly different Hamiltonian. Note that
Eq. s14d completely defines the form of the potential up to
a scale and an energy translation. The expansion of this
critical energy surface around b=0 is

EcritsN, bd < 5k2N +
k0

4
NsN − 1d + NsN − 1d

3Sk0 − 4k2 +
18

35
k4Dfb4 − 2b6 + ¯ g ,

s15d

whose leading term is b4. Alternatively, one can carry out

the transformation b2 / s1+b2d→b2 and find b4 as the criti-
cal potential.

In order to make some calculations to illustrate the large-
N limit in the IBM at the critical point in the U(5)-O(6)

phase transition and the corresponding finite N corrections,
we propose two schematic transitional Hamiltonians. The
first one is

ĤI = xn̂d +
1 − x

N − 1
P̂†P̂ . s16d

The corresponding energy surface is obtained from Eq.
s11d with «d=x, k0= s1−xd / sN−1d and all the rest of the
parameters equal to 0,

EIsN, bd = NFx
b2

1 + b2 +
1 − x

4
S1 − b2

1 + b2D2G . s17d

The condition to localize the critical point, Eq. s13d, gives

in this case xc
I =0.5. In Fig. 1 we represent as an example

the energy surfaces for Hamiltonian s16d sleft paneld with
three selections for the order parameter x: one at the criti-
cal point, one above that value, and one below it. For
x.xc an equilibrium spherical shape is obtained, while for
x,xc the equilibrium shape is deformed. The value xc

gives a flat b4 surface close to b=0.

TABLE I. Excitation energies for a b4 potential relative to the

energy of the first excited state.

j=1 j=2 j=3 j=4

t=0 0.00 2.39 5.15 8.20

t=1 1.00 3.63 6.56 9.75

t=2 2.09 4.92 8.01 11.34

t=3 3.27 6.26 9.50 12.95
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FIG. 1. Representation of the energy surfaces for N=20 as func-

tions of the shape parameter b obtained for two schematic Hamil-

tonians, Eq. (16) (left panel) and Eq. (18) (right panel). In each case

three values of the order parameter are presented, one at the critical

value, one above, and one below that value. The curves have been

arbitrarily displaced in energy so as to show clearly the behavior.
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The second schematic Hamiltonian we propose is

ĤII = xn̂d −
1 − x

N
Q̂x=0 · Q̂x=0. s18d

The corresponding energy surface is obtained from Eq.
s11d with «d=x, k2=−s1−xd /N and all the rest of the pa-
rameters equal to 0,

EIIsN, bd = − s5 + b2d
1 − x

1 + b2 + N x
b2

1 + b2

− 4sN − 1ds1 − xd
b2

s1 + b2d2 . s19d

Condition s13d gives in this case the critical point xc
II

= s4N−8d / s5N−8d that in the large-N limit gives 4/5.
In Fig. 1 the corresponding energy surfaces are plotted in

the right panel. Same comments as in the preceding case are
in order. Thus, we conclude that, in the transition from
spherical systems with g-unstable deformed ones, the critical
point in IBM should be associated to a b4 potential rather
that to an infinite square well. The question is then how
different are the Es5d predictions from those obtained with a
b4 potential? In order to investigate this point we have
solved numerically the Bohr Hamiltonian for a potential b4.
The results for energies are presented in Table I and in Fig. 2.
Here we keep the label j used in the Es5d case. It is related to
the label nb=snd−td/2, sometimes used in the U(5) classifi-
cation, by nb=j−1, where nd is the U(5) label and t is the
O(5) label. Particularly interesting are the energy ratios given
in Table II which have been used in recent works to identify
possible nuclei as critical. In this table the Es5d and b4 values
are shown for comparison. The labeling of the states is Lj,t .

Besides the excitation energies, BsE2d transition prob-
abilities can be calculated using the quadrupole operator

Tm
sE2d = t b FDm0

s2dsuidcos g +
1

Î2
fDm2

s2dsuid + Dm−2
s2d suidgsin gG ,

s20d

where t is a scale factor. In Table II two important BsE2d
ratios are given for Es5d and b4 cases. In Fig. 2 the BsE2d
values for a b4 potential are shown besides the arrows.
They are given normalized to the BsE2;21,1→01,0d value
which is taken as 100.

Comparing Fig. 1 and Table I in Ref. [1] with the present
Fig. 2 and Table I we can observe important differences be-
tween Es5d and b4 potentials. In order to see which is the
actual large-N limit of IBM we have performed calculations
with the IBM codes for Hamiltonians HI [Eq. (16)] and HII

[Eq. (18)] at the critical point for different number of bosons.
These codes allow to manage a small number of bosons,
typically 20. In Fig. 3 the results of these calculations are
shown with a full line for Eq. (16) and with a dashed line for
Eq. (18). The values for Es5d and b4 potentials are shown as
dotted lines as references. The last two panels labeled R1 and
R2 refer to the BsE2d ratios presented in Table II.

From Fig. 3 it is clear that the finite N effects are impor-
tant and depend on the precise form of the Hamiltonian used.
However, it is difficult to conclude whether Es5d or b4 is the
large-N limit of the corresponding IBM Hamiltonian. It is
necessary to perform calculations with larger values of N.
Fortunately, Dukelsky et al. [11] have recovered an exactly
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TABLE II. Energy and BsE2d transition rate ratios in the Es5d symmetry and for the b4 potential.

E41,2
/E21,1

E02,0
/E21,1

E01,3
/E21,1

E02,0
/E01,3

R1=
BsE2;41,2→21,1d

BsE2;21,1→01,0d
R2=

BsE2;02,0→21,1d

BsE2;21,1→01,0d

Es5d 2.20 3.03 3.59 0.84 1.68 0.86

b4 2.09 2.39 3.27 0.73 1.82 1.41
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solvable model for pairing proposed by Richardson in the
1960’s [12]. Following Ref. [11] we have solved Richard-
son’s equations and obtained the exact eigenvalues for
Hamiltonians (16) and (18) up to N=1000, so approaching
the large-N limit of the corresponding IBM Hamiltonians.
Details of this method will be given in a longer publication.
In Fig. 4 we present the results of these calculations for
energy ratios up to N=1000 and BsE2d ratios up to N=40
together with the corresponding values for the Es5d symme-
try and the b4 potential. From this figure it clearly emerges

that the large-N limit for the studied IBM Hamiltonians, cor-

responds to the b4 potential. Both Hamiltonians Eqs. (16)

and (18) converge to the same results in the large-N limit,

although the corresponding corrections for finite N are quite

different (see Fig. 3).

We conclude that the large-N limit of the IBM Hamil-

tonian at the critical point in the transition from U(5) (spheri-

cal) to O(6) (deformed g-unstable) is represented in the geo-

metrical model by a b4 potential. The results are similar but

not close to those of an infinite square well as in the Es5d
critical point symmetry. The analysis of the IBM energy sur-

face followed by an IBM calculation, as presented in Ref.

[13], can provide the appropriate finite N corrections and

thus lead to the identification of nuclei at the critical points.

In that work a systematic study of the properties of the Ru

isotopes allowed to select the appropriate form of the Hamil-
tonian. Once it is fixed the construction of the energy sur-
faces identify the critical nucleus (104Ru in that case). The
corresponding IBM calculation for the critical nucleus then
provides the correct finite N corrections. We believe that this
is a fundamental step if we wish to robustly identify the
spectroscopic properties that signal the presence of criticality
in the atomic nucleus.
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