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Abstract

We derive the explicit action of the U-duality group of the STU model on both
BPS and non-BPS extremal multi-center solutions. As the class of known non-BPS
extremal solutions is not closed under U-duality, we generate in this way new solutions.
These should represent the most general class of extremal non-BPS multi-center under-
rotating solutions of the STU model.
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1 Introduction

The physics of supersymmetric multicenter black hole solutions in four dimensions is surpris-
ingly rich. Besides allowing one to study the decay of states along lines of marginal stability
in the moduli space [1], or to understand the quantization of spacetimes [2], some of these
solutions descend from five-dimensional smooth horizonless solutions [3, 4] that have the
same charges and mass as a black hole, and thus provide prime candidate for “microstate
geometries” of extremal BPS black holes. Furthermore, as it has been becoming clear over
the past few years, in the vicinity of the five-dimensional smooth solutions obtained by the
uplift of four-dimensional multicenter solutions there exists an infinite-dimensional family
of smooth horizonless solutions parameterized by several arbitrary functions of one variable
[5], whose quantization may yield an entropy that has the same parametric dependence on
charges as that of black holes, and thus establish that Mathur’s conjecture [6, 7, 8, 9] applies
to extremal BPS black holes.

It is important to understand how much of the beautiful physics of BPS multicenter
solutions extends to non-BPS multicenter solutions, and it is clear that none of the issues
discussed above can be satisfactorily addressed in the absence of explicit supergravity solu-
tions. Unfortunately, constructing such solutions is no easy task, essentially because even the
simplest multicenter solutions depend on functions of two variables, and solving the under-
lying second-order Einstein’s equations from scratch is essentially impossible in the absence
of supersymmetry, or of another guiding principle.

This formidable problem was therefore left untouched, until it was noted that also non-
BPS single center extremal configurations allow for a first-order description both in four [10]
and in five dimensions [11] and that, by changing a few signs in the equations that govern five-
dimensional supersymmetric solutions [12, 13, 3], one can obtain a set of first-order equations
that govern a certain class of nonsupersymmetric extremal multicenter solutions [14]. The
supersymmetry of these solutions is broken in a very “weak” manner (hence the solutions
are also called almost-BPS solutions). It is clear what this weak supersymmetry breaking
means from the perspective of D-branes: the almost-BPS solutions describe the multicenter
generalization of the D2-D2-D2-D6 system (which is T-dual to the D4–D4–D4–D0 system),
whose supersymmetry is broken because one of the component branes is not compatible to
the supersymmetries preserved by the other three, and upon removing any one of the four
charges supersymmetry is restored. However, from a supergravity perspective, characterizing
solutions with controllable supersymmetry breaking is no easy task and these new ideas have
been the cornerstone for subsequent developments. An interesting independent approach to
extremal non-BPS solutions has been taken in [15, 16, 17], where the authors, making use
of the symmetries of the solutions, reduce the problem to the study of a σ-model in one
dimension less. Then, using the classification of nilpotent orbits, they are able to find non-
BPS solutions, and to understand how they relate to the BPS ones (at least when the σ-model
is given by a homogeneous manifold).

In [18], two of the authors with Bena and Warner have proposed a supergravity criterion
for constructing non-BPS solutions where the equations of motion factorize: the existence of
a “floating brane”, or in more formal terms, the existence of a calibration. Upon imposing
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that in the supergravity ansatz a probe M2 brane feels no force, the supergravity equations
of motion indeed factorize. The most general solution is constructed starting from an Israel–
Wilson base space, and solving a set of linear equations for the fluxes and for the warp factor
[18]. The solutions with an Israel–Wilson base are more general than both the BPS and
the almost-BPS solutions, and reduce to them in certain limits. Hence, in the presence of
calibrations, the equations of motion factorize, and this allows one to construct non-BPS
solutions with relative ease. This phenomenon has also been observed in the construction of
non-BPS flux compactifications [19, 20].

While the almost-BPS solutions and solutions with an Israel–Wilson base that have been
explicitly constructed [21, 22, 18] comprise a large family of physically interesting geometries,
and they allow one to understand, for example, the decay of multicenter non-supersymmetric
solutions across lines of marginal stability in the moduli space, these solutions are not the
most general multicenter extremal solutions. For instance, a group-theoretical analysis of
the possible horizon configurations for two-centre solutions [23, 24, 25] shows an interesting
landscape of stability regions and charge configurations that are not fully covered by the
solutions in [18, 21, 22] and for which explicit solutions should be constructed in order to
put the analysis of [23, 24, 25] on firm grounds. Other hints for the existence of new non-BPS
extremal solutions were also given in [17].

One route to enlarge the class of multicenter extremal solutions and to understand the
structure underlying it is to perform a so-called spectral flow transformation [26], which
rotates some of the charges into others. This transformation leaves the class of BPS solu-
tions invariant, but transforms for example almost-BPS solutions in Israel–Wilson solutions.
However, writing this transformation explicitly is cumbersome, to say the least. A more
straightforward, though technically challenging route, is to take a known nonextremal so-
lution in type IIA supergravity compactified on a six-torus, and perform six T-dualities on
it. This transforms, for example, the rotating D2-D2-D2-D6 solution found in [21] into a
rotating D4-D4-D4-D0 black hole, which uplifts to the five-dimensional non-BPS extremal
rotating M5-M5-M5-P of [17]. From a 4-dimensional perspective, both spectral flow trans-
formations and T-dualities are just part of the same U-duality group of transformations that
map the equations of motion and Bianchi identities into each other and hence map solu-
tions into new solutions of the same system of equations. One way to generate the most
general multicenter extremal solution would be to first identify the 4-dimensional quantities
related to a specific “seed” solution and then use an appropriate U-duality transformation
to construct new configurations with arbitrary charges.

The purpose of this paper is to show explicitly how these duality transformations work,
both from the perspective of eleven-dimensional supergravity compactified on T 6, and from
the perspective of four-dimensional supergravity. Moreover, we concentrate on extremal
multicenter non-BPS geometries of the under-rotating type, i.e. geometries that, like the ex-
tremal Reisner-Nordström black hole, have a conformally flat three-dimensional base. These
solutions are different from the extremal Kerr-type solutions, in which the three spatial
non-compact directions are described by a non-conformally flat metric. Within this under-
rotating class, we obtain the most general explicit extremal multicenter solution of the STU
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model.
As a first step, we check the action of the duality group on the BPS solutions. From

the ten-dimensional point of view, we show that starting from a BPS solution determined
by 8 harmonic functions and performing 6 T-dualities, one obtains a BPS solution whose
harmonic functions are simply interchanged. From the four-dimensional point of view, we
also show that this is just a special case of the most general U-duality action, which rotates
the harmonic functions by a symplectic matrix.

We then display the action of the duality transformations on almost BPS solutions. One
of the features of these solutions is that one can turn on arbitrary Wilson lines at infinity
(corresponding to axion vacuum expectation values in four dimensions) without changing the
warp factors or the field strengths. However, when performing six T-dualities, two solutions
that differ only in the axion vev at infinity are transformed into drastically-different solutions:
the duality transformation that relates these two solutions is nothing but the spectral flow
transformation of [26]. It should be recalled that, despite the fact that they have a clear
CFT dual interpretation, spectral flow transformations are from a supergravity perspective
far from simple, and the way they are encoded inside the U-duality group was everything but
clear. The relation we find between spectral flows, T-duality and large gauge transformations
is therefore highly non trivial, and helps us understanding the status of the spectral flows
inside the U-duality group. Once again, this structure becomes more clear from a four-
dimensional perspective, where all these transformations are part of the same duality group.
We go on to compute the general U-duality action on the almost BPS solutions for the STU
model and show that for a specific choice of the duality parameters one recovers the solution
generated by applying six T-dualities, spectral flow transformations and axion shifts to the
ten-dimensional solutions.

We then see that the general class of extremal non-BPS multicenter under-rotating solu-
tions presents a surprisingly rich structure: T-dualities and axion shifts can be used to relate
different sub-classes of solutions and to generate, starting from the known almost-BPS so-
lutions, more general multicenter solution for the STU model. This solution is obtained
by solving essentially the same equations as for almost-BPS solutions, except that the warp
factors and electric fields are now complicated square roots of quadratic polynomials of the
functions satisfying the almost-BPS equations. Our solution generating technique has useful
physical applications, both for understanding the physics of multicenter extremal solutions
and for constructing smooth microstates geometries for under-rotating extremal black holes
in four and five dimensions. We leave the analysis of the physics of black hole and microstate
solutions that can be constructed by our methods to later works.

In Section 2 we review BPS and non-BPS seed solutions in terms of eleven-dimensional
supergravity. For our purposes, we reduce them first to solutions of type IIA supergravity,
and then to solutions of the STU model in four-dimensional N=2 supergravity. In Section 3
we work out, for our ansatz, the general field expressions after 6 T-dualities along each of the
internal T 6 directions. We then apply these tranformations first to BPS solutions in section
4 and second to non-BPS ones in section 5. For the BPS case, we also find a relation between
spectral flow transformations, T-dualities and axion shifts. This relation being more involved
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for the non-BPS solutions, we study it independently in section 6. Section 7 is devoted to
some interesting subcases. In particular, we find a new rotating black string, and recover
the class of solution based on an Israel-Wilson space. Finally, we generalized in section 8 the
dualities performed before to the full U-duality group. This is done using a four-dimensional
point of view. Technical details of the dimensional reduction and dualization of the gauge
fields are given respectively in appendix A and B. Appendix C and D give details of the
subcases studied in section 7.

Note added: Just before this paper was submitted, we received reference [27], which derives
a new set of first order equations for non-BPS multi-center black holes in 4-dimensional
supergravity. We expect that a detailed comparison with the solutions presented here could
shed light on how to construct the most general solution for an arbitrary scalar manifold.

2 The setup

2.1 The 11-dimensional ansatz

The solutions we consider in the following are both supersymmetric and non-supersymmetric
configurations of 11-dimensional supergravity carrying various M2, M5 and KK6 monopole
and momentum charges. We start by assuming a compactification to 5 dimensions by em-
ploying (T 2)3 ' T 6/Z2×Z2 as internal space. This is a simple prototype of compactifications
on Calabi–Yau manifolds, which are natural extensions of our work. We also fix the volume
of the internal space to 1, as well as all the complex structure deformations. The resulting
ansatz for the metric and 3-form is

ds2
11 = −Z−2(dt+ k)2 + Zds2

4 +
3∑
I=1

Z

ZI
ds2

I ,

A(3) =
3∑
I=1

A
(3)
I ∧ dTI =

3∑
I=1

(
−dt+ k

ZI
+ aI

)
∧ dTI ,

(2.1)

where the warp factor is fixed to Z = (Z1Z2Z3)1/3 and where ds2
I and dTI are the metric

and the volume form on the I-th 2-torus, respectively. In detail, ds2
I = dy2

I,1 + dy2
I,2 and

dTI = dyI,1 ∧ dyI,2. Since we are also interested in the possibility of further reducing these
configurations to 4 dimensions, we further specialize the metric ds2

4 to that of a Gibbons–
Hawking space

ds2
4 = V −1(dψ + A)2 + V ds2

3(~x) , (2.2)

with
? dA = ±dV, (2.3)

where ? denotes Hodge duality in the 3-dimensional flat space ds2
3(~x) and the sign specifies

the orientation. Different choices of orientation lead to different types of solution. In par-
ticular, the plus sign corresponds to BPS configurations, while the minus sign leads to non
supersymmetric solutions.
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Once the 4-dimensional base space has been specialized, we need to decompose the 1-
forms aI and k accordingly

aI = PI (dψ + A) + wI , k = µ (dψ + A) + ω , (2.4)

so that wI and ω are 1-forms on ds2
3(~x). At this point, the equations of motion governing

the solutions to the 11-dimensional supergravity theory reduce to differential conditions in
terms of the coordinates ~x of the 3-dimensional base of the Gibbons–Hawking space. They
read

d ? dZI =
CIJK

2
d ? d(V PJPK),

?dwI = −d(V PI), (2.5)

?dω = V dµ− µ dV − V ZIdPI ,

for the BPS case (here CIJK = |εIJK |), i.e. for the choice of plus sign in (2.3), and

d ? dZI =
CIJK

2
V d ? d(PJPK),

?dwI = PI dV − V dPI , (2.6)

?dω = d(µV )− V ZIdPI ,

in the non-BPS case, i.e. minus sign in (2.3). Solutions to the latter set of equations are also
called almost-BPS, following [14, 21].

The BPS equations (2.5) admit simple solutions in terms of 8 harmonic functions named
{V,KI ,M,LI} or {HΛ, HΛ} in the context of the 11-dimensional analyses of [3] and in the
context of 4-dimensional supergravity [1], respectively. The relations with the functions
appearing in (2.5) is

PI =
KI

V
, (2.7)

ZI = LI +
CIJK

2

KJKK

V
, (2.8)

µ = M +
LIKI

2V
+
CIJK

6

KIKJKK

V 2
, (2.9)

and, furthermore,

V = −
√

2H0, KI = −
√

2HI , LI =
√

2HI , M =
1√
2
H0. (2.10)

The almost BPS equations (2.6), on the other hand, cannot be solved in general only in
terms of harmonic forms [21]. Also in this case, however, V is harmonic and one can easily
verify that so is PI = KI .
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In order to understand the detail of the chain of duality transformations we are going to
perform in the following, it is useful to rewrite the configurations discussed above in terms
of type IIA supergravity in 10 dimensions, as well as in terms of N = 2 supergravity in 4
dimensions.

2.2 Fields in type IIA

The type IIA configurations can be obtained by a direct reduction along the ψ coordinate,
which is a U(1) isometry of our solutions. This leads to the following system of relations
for the metric (in the string frame), dilaton and form-field potentials and the functions and
forms of the 3-dimensional base defined above:

ds2
10 = −e2U(dt+ ω)2 + e−2Uds2

3 +
3∑
I=1

e−2U

V ZI
ds2

I ,

e−2Φ = e6U V 3Z3 ,

B(2) =
3∑
I=1

B
(2)
I dTI =

3∑
I=1

(
PI −

µ

ZI

)
dTI , (2.11)

C(1) = A− µV 2e4U(dt+ ω) ,

C(3) =
3∑
I=1

C
(3)
I ∧ dTI =

3∑
I=1

[
−dt+ ω

ZI
+

(
PI −

µ

ZI

)
A+ wI

]
∧ dTI ,

where we introduced the positive definite quantity

e−4U = Z1Z2Z3V − µ2V 2 . (2.12)

The Neveu–Schwarz (NSNS) 3-form and the Ramond–Ramond (RR) field strengths follow
by simple differentiations of the above potentials

H(3) =
3∑
I=1

H
(3)
I ∧ dTI =

3∑
I=1

dB
(2)
I ∧ dTI , (2.13)

and

F (2) = dC(1) , F (4) =
3∑
I=1

F
(4)
I ∧ dTI =

3∑
I=1

(
dC

(3)
I −H

(3)
I ∧ C

(1)
)
∧ dTI . (2.14)

Since we are interested in performing a series of T-duality transformations on the solutions
to the (2.5) and (2.6) systems of equations, we give here also the dual gauge fields C(5) and
C(7), which are related to the dual field strengths

F (6) = − ∗10 F
(4) = dC(5) −H(3) ∧ C(3) , (2.15)

F (8) = ∗10F
(2) = dC(7) −H(3) ∧ C(5) (2.16)
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(∗10 is the Hodge dual with respect to the 10-dimensional string metric).
The details of the computations are given in the Appendix B for the BPS case, but the

non-BPS case follows exactly in the same way. Once again, the structure of the original
ansatz dictates the explicit form of these tensor fields, which can be summarized as

C(5) =
3∑

J,K=1

C
(5)
JK ∧ dTJ ∧ dTK , (2.17)

where

C
(5)
JK =

µ

ZJZK
(dt+ ω)− CJKI vI +

(
PJ −

µ

ZJ

)(
PK −

µ

ZK

)
A

+

(
PJ −

µ

ZJ

)
wK +

(
PK −

µ

ZK

)
wJ , (2.18)

and

C(7) =

[
C

(7)
t (dt+ ω)− v0 −

(
PI −

µ

ZI

)
vI +

(
P1 −

µ

Z1

)(
P2 −

µ

Z2

)(
P3 −

µ

Z3

)
A

+
CIJK

2

(
PI −

µ

ZI

)(
PJ −

µ

ZJ

)
wK
]
∧ dT1 ∧ dT2 ∧ dT3 . (2.19)

Although the general structure of these forms is the same in the BPS and non-BPS cases, the
detailed expressions for the time component of C(7) and the 1-forms v0 and vI are different
in the two cases. These are given by

? dv0 = 2 d

[
µ− 1

2
ZIPI +

1

2
V P1P2P3

]
= 2 dM , (2.20)

?dvI = dZI −
CIJK

2
d [V PJPK ] = dLI , (2.21)

C
(7)
t =

e−4U

V 2Z3
, (2.22)

for the BPS case and

? dv0 = ZIdPI − PIdZI + V d(P1P2P3)− (P1P2P3)dV , (2.23)

?dvI = dZI −
CIJK

2
[V d(PJPK)− PJPKdV ] , (2.24)

C
(7)
t =

e−4U

V 2Z3
− 2

V
, (2.25)

for the almost-BPS solutions.
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2.3 Fields in 4-dimensional N = 2 supergravity

The combined reduction on the ψ direction and on the T 6/Z2 × Z2 internal space gives a
4-dimensional configuration that can be expressed in the language of N = 2 supergravity
coupled to 3 vector multiplets, whose scalar manifold parameterizes the STU model. The
bosonic lagrangian of the reduced theory is specified by few data that can be expressed in
terms of the functions appearing in the ansatz employed at the beginning of this section.

The bosonic sector of Einstein–Maxwell N = 2 supergravity is

L4d =
1

2
R− gī∂µzi∂µz̄ ̄ +

1

8
IΛΣF

Λ
µνF

Σµν +
1

8
RΛΣF

Λ
µν(∗4F )Σµν , (2.26)

where I runs over the number of vector multiplets (in our case I = 1, 2, 3), Λ = {0, I}
includes also the index associated to the graviphoton, so that FΛ = dAΛ and ∗4 is the Hodge
duality operation in 4 dimensions (which we defined via ε0123 = 1).

The configurations we study in this paper are solutions to the equations of motion of this
system with a specific ansatz for the various fields. We give the details on the identification
procedure in appendix A, but we quote the results here. The 4-dimensional metric is given
by

ds2
4d = −e2U(dt+ ω)2 + e−2Uds2

3(~x), (2.27)

which is the appropriate form for studying stationary solutions including generic multi-
center as well as extremal under-rotating single center black hole configurations. The 11-
dimensional ansatz used to derive both BPS and almost-BPS solutions implies a constrained
form for the three scalar fields, which read

zI =
(V ZIPI − V µ)− i e−2U

V ZI
(2.28)

and for the vector fields AΛ, which are

A0 = w0 + e4U µV 2(dt+ ω), w0 = −A, (2.29)

AI = wI − e4UV

ZI
(Z1Z2Z3 − µV PIZI) (dt+ ω). (2.30)

The remaining couplings of the 4-dimensional theory are functions of the scalar fields and
are constrained by the geometry of the scalar manifold for the STU model, namely

Mscalar =

[
SU(1, 1)

U(1)

]3

. (2.31)

The metric of the scalar σ-model gIJ̄ follows from the Kähler potential

K = − log(−i(z1 − z̄1)(z2 − z̄2)(z3 − z̄3)) (2.32)

and the gauge kinetic couplings I and R are detailed in the appendix A.
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Also in 4 dimensions it is useful to introduce the dual field strengths GΛ. These are
defined as

GΛ = RΛΣF
Σ − IΛΣ ∗4 F

Σ, (2.33)

so that the Bianchi identities of these field strengths coincide with the equations of motion
of the original vector fields AΛ. Since the equations of motion of the vector fields in (2.26)
are dGΛ = 0, we can introduce (locally) dual vector potentials AΛ, so that GΛ = dAΛ. Given
the form of the ansatz presented previously and the form of the 4-dimensional metric, we
can split the electric AΛ and magnetic AΛ vector fields as

AΛ = wΛ + χΛ(dt+ ω), (2.34)

AΛ = vΛ + ψΛ(dt+ ω). (2.35)

Using these expressions in the relation (2.33) we can obtain an explicit procedure to compute
the dual potentials. First we use the electric vector fields components to obtain ψΛ

dψΛ = e2UIΛΣ ?
(
dwΣ + χΣdω

)
+RΛΣdχ

Σ (2.36)

(consistency imposes d2ψΛ = 0), and then plug the solution into

? dvΛ = −e−2UIΛΣ dχ
Σ +RΛΣ ?

(
dwΣ + χΣdω

)
− ψΛ ? dω. (2.37)

to obtain the expression for vΛ.

2.3.1 The BPS case

As explained above, in the BPS case, the solutions can be expressed in terms of eight
harmonic functions as in (2.10). This simplifies further the expression of the various 4-
dimensional quantities. The warp factor reduces to

e−4U = V L1L2L3 − 2MK1K2K3 −M2V 2 −MV
∑
I

LIKI

+
1

2

∑
I<J

LIKILJKJ −
1

4

∑
I

L2
IK

2
I = I4(HΛ, HΛ) ,

(2.38)

where
I4(pΛ, qΛ) = −

(
pΛqΛ

)2
+ 4

∑
I<J

(pIqIp
JqJ)− 4p0q1q2q3 + 4q0p

1p2p3 (2.39)

is the so-called quartic invariant of the STU model. We point out that the sign of the last
term depends on the definitions of the invariant and usually it is taken with a minus sign
in papers dealing with the 10-dimensional constructions [28], while it is taken with a plus
in supergravity literature [29]. Also the scalar fields (2.28) can be expressed in terms of the
harmonic functions by

zI =
HI + i

∂
√
I4

∂HI

H0 + i
∂
√
I4

∂H0

, (2.40)
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which agrees with the known solution for the scalar fields in a BPS solution [30]. The
4-dimensional gauge potentials can also be identified by plugging in (2.29) and (2.30) the
solutions (2.7)–(2.10). This implies

χ0 =
√

2 e4U
[
H0HΛHΛ − 2H1H2H3

]
, (2.41)

χI =
√

2 e4U

[
HI

(
HΛHΛ − 2

∑
J 6=I

HJHJ

)
+ CIJKH

0HJHK

]
, (2.42)

as well as
? dwΛ =

√
2 dHΛ. (2.43)

The dual gauge potentials are obtained by solving (2.36):

ψ0 = −
√

2 e4U
[
H0H

ΛHΛ + 2H1H2H3

]
, (2.44)

ψI =
√

2 e4U

[
−HI

(
HΛHΛ − 2

∑
J 6=I

HJHJ

)
+ CIJKH0H

JHK)

]
. (2.45)

We then use this solution (2.37) to determine the expression for vΛ, which, again in terms
of the harmonic functions, reaches the simple form

? dvΛ =
√

2 dHΛ. (2.46)

The factors of
√

2 appearing in front of the harmonic functions are related to the normal-
ization of the vector fields used in the lagrangian (2.26), which follows from the reduction
procedure presenting in the appendix. A canonical normalization of the vector field terms
in (2.26) by a factor of 1/4 rather than 1/8 would get rid of the square roots. However,
we preferred to keep these factors, so that we can identify the 4-dimensional vector fields
directly with the related components of the C(3), C(5) and C(7) form fields.

2.3.2 The almost-BPS case

The generic non-BPS solution cannot be expressed entirely in terms of harmonic functions,
but in the special case of single centre non supersymmetric black holes. However, we can
associate the functions PI to harmonic functions (KI in [21]). The initial data are then

χ0 = e4UµV 2, χI = e4UV

(
µV KI −

1

2
CIJKZJZK

)
,

?dw0 = dV, ?dwI = KIdV − V dKI .

(2.47)

Once again, from the definition of the Hodge dual gauge potentials (2.36), we get

ψ0 = e4U
[
Z1Z2Z3 − µV (V K1K2K3 +

∑
I ZIKI) + V

∑
J<K(KJKKZJZK)

]
,

ψI = e4UV
[
ZI

(
µ−

∑
J 6=I KJZJ

)
+ CIJK

2
V µKJKK

] (2.48)
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and, plugging this result into (2.37),

? dv0 = ZIdKI −KIdZI + V d(K1K2K3)− (K1K2K3)dV, (2.49)

?dvI = dZI −
CIJK

2
[V d(KJKK)−KJKKdV ]. (2.50)

In the single center case, one can express the most general solution in terms of 4 harmonic
solutions [11, 31, 32]. The generic solution in this case can be obtained by acting with the
duality group on a so-called seed solution, which falls in our ansatz whenever it is constituted
by D2 and D6 charges. In this instance the non-BPS equations (2.6) are solved by setting
PI = 0 and by introducing a Taub-NUT charge in

V =
√

2H0, (2.51)

which is given by a harmonic function, and electric charges in

ZI =
√

2HI , (2.52)

which also become harmonic. Finally a non-trivial axion can be turned on by imposing

µ =
b

V
. (2.53)

This means that
e−4U = 4H0H1H2H3 − b2, (2.54)

which is now identified with −I4 when b = 0 and we approach the horizon of the black hole
solution. This is consistent with the fact that the quartic invariant changes sign between the
BPS and non-BPS single centre solutions.

3 T-dualities and Buscher’s rules

Starting from the BPS and the non-BPS configurations described in section 2, we will now
apply various duality transformations to generate new solutions. In particular, we will focus
on the action of T-duality along all the directions of T 6: z1,1, z1,2, . . . z3,1, z3,2. This part of
the computation equally applies to the BPS and non-BPS case.

As it is known [33, 34], T-duality transformations act on the supergravity fields mixing
them according to Buscher’s rules, which we now summarize in order to fix our conventions.
If we assume that y is the direction along which one performs the T-duality trasformation
and that the string metric, B-fields and RR gauge fields C(p) split according to

ds2
10 = Gyy(dy + Aµdx

µ)2 + ĝµνdx
µdxν ,

B(2) = Bµydx
µ ∧ (dy + Aµdx

µ) + B̂(2) , (3.1)

C(p) = C(p−1)
y ∧ (dy + Aµdx

µ) + Ĉ(p) ,

12



where the forms B̂(2), C
(p−1)
y and Ĉ(p) do not have legs along y and are functions only of the

xµ coordinates, the T-duality transformed fields are

ds̃2
10 = G−1

yy (dy −Bµydx
µ)2 + ĝµνdx

µdxν , e2Φ̃ =
e2Φ

Gyy

,

B̃(2) = −Aµdxµdy + B̂(2) , (3.2)

C̃(p) = Ĉ(p−1) ∧ (dy −Bµydx
µ) + C(p)

y .

Equivalently, the rules on the RR forms can be written as

C̃(n)
µ...ναy = C(n−1)

µ...να − (n− 1)
C

(n−1)
[µ...ν|yg|α]y

gyy
,

C̃
(n)
µ...ναβ = C

(n+1)
µ...ναβy + nC

(n−1)
[µ...ναBβ]y + n(n− 1)

C
(n−1)
[µ...ν|yB|α|yg|β]y

gyy
.

(3.3)

In the case at hand, the IIA fields we are dealing with have a special form that simplify
the expression of the dual fields if we apply a sequence of couples of T-dualities along the
directions of the same two-torus. In fact, the structure of the metric and form fields is

ds2
10 = ds2

4d +
∑
I

GIds
2
I , B(2) =

∑
I

BIdTI , (3.4)

C(3) =
∑
I

C
(3)
I ∧ dTI , C(5) =

∑
I<J

C
(5)
IJ ∧ dTI ∧ dTJ , C(7) = C(7) ∧ dT1 ∧ dT2 ∧ dT3 ,

and the sequence of two T-dualities along zI,1, zI,2 on the NSNS fields can be seen as a simple
inversion of the matrix

EI =

(
GI BI

−BI GI

)
, (3.5)

which means

EI −→ ẼI = E−1
I =

1

∆I

(
GI −BI

BI GI

)
, ∆I = G2

I +B2
I , (3.6)

and a rescaling of the dilaton

e2Φ −→ e2Φ̃ =
e2Φ

∆I

. (3.7)
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At the same time, the RR fields transform as

C̃(1) = −C(3)
I +BIC

(1) , (3.8)

C̃
(3)
I = ∆−1

I (BIC
(3)
I +G2

IC
(1)) , C̃

(3)
J = −C(5)

JI +BIC
(3)
J (J 6= I) , (3.9)

C̃
(5)
IJ = ∆−1

I (BIC
(5)
IJ +G2

IC
(3)
J ) (J 6= I) , (3.10)

C̃
(5)
JK = −C(7) +BIC

(5)
JK (J 6= K, J,K 6= I) , (3.11)

C̃(7) = ∆−1
I (BIC

(7) +G2
I

CIJK
2

C
(5)
JK) . (3.12)

Iterating these rules on the three 2-tori, one finds the fields after 6 T-dualities:

ds̃2
10 = ds2

4d +
∑
I

GI

∆I

ds2
I , B̃(2) = −

∑
I

BI

∆I

dTI , (3.13)

e2Φ̃ =
e2Φ

∆1∆2∆3

, (3.14)

C̃(1) = −C(7) +
CIJK

2
BIC

(5)
JK −

CIJK
2

BIBJC
(3)
K +B1B2B3C

(1) , (3.15)

C̃
(3)
I = ∆−1

I

[
BIC

(7) −BICIJKBJC
(5)
IK +G2

I

CIJK
2

C
(5)
JK

+B1B2B3C
(3)
I −G

2
ICIJKBJC

(3)
K +G2

I

CIJK
2

BJBKC
(1)
]
, (3.16)

C̃
(5)
IJ = (∆I∆J)−1

[
−BIBJC

(7) +B1B2B3C
(5)
IJ − CIJK(G2

IBJC
(5)
JK +G2

JBIC
(5)
IK)

+CIJKBK(G2
IBJC

(3)
J +G2

JBIC
(3)
I )−G2

IG
2
JCIJKC

(3)
K +G2

IG
2
JCIJKBKC

(1)
]
, (3.17)

C̃(7) = (∆I∆J∆K)−1
[
B1B2B3C

(7) +
CIJK

2
(G2

IBJBKC
(5)
JK +G2

IG
2
JBKC

(3)
K ) +G2

1G
2
2G

2
3C

(1)
]
.

4 Dualities and the BPS solutions

Having set the stage in detail in the previous sections, we can now apply the duality relations
to the BPS configurations, solutions of (2.5). Comparison of the results of section 2.2 with
those of section 3, we identify the IIA metric, dilaton and B-field with

GI =
e−2U

ZIV
=

e−2U

LIV + CIJK

2
KJKK

, (4.1)

BI =
KI

V
− µ

ZI
=
−2MV + 2LIKI −

∑
A LAKA

2(LIV + CIJK

2
KJKK)

, (4.2)

e−2Φ = e6UZ3V 3 = e6U
∏
I

(LIV +
CIJK

2
KJKK) (4.3)
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and, similarly, the fields obtained after 6 T-dualities on the directions of the T 6 are

G̃I =
e−2U

−2MKI + CIJK

2
LJLK

, (4.4)

B̃I =
−2MV + 2LIKI −

∑
A LAKA

2(−2MKI + CIJK

2
LJLK)

, (4.5)

e−2Φ̃ = e6U
∏
I

(−2MKI +
CIJK

2
LJLK) . (4.6)

A simple comparison of the two sets of expressions above shows that the series of 6 T-duality
transformations on T 6 can be summarized by an exchange of the harmonic functions

Ṽ = 2M , K̃I = LI , L̃I = −KI , M̃ = −V
2
, (4.7)

or
H̃Λ = −HΛ, H̃Λ = HΛ. (4.8)

These transformations do not change the quartic invariant I4, which explains its name.
Actually, the I4 combination is actually a full U-duality invariant, as we will see later on.

For the RR fields, using again the explicit expressions of the fields in terms of harmonic
functions appropriate for the BPS case, one can verify that the transformed RR fields C̃(p) are
related to the starting ones C(p) by the transformation (4.7), together with the corresponding
transformation on the 1-forms

Ã = v0 , w̃I = −vI , ṽ0 = −A , ṽI = wI . (4.9)

We thus reach the conclusion that T-duality on T 6 is equivalent, in the BPS case, to the
transformations (4.7)-(4.9).

4.1 The BPS black string

Since we are going to discuss a non-BPS black string in section 7.1, we will now quickly
review how one can obtain a BPS black string.

As we have seen above, performing 6 T-dualities exchanges V with M and KI ’s with
LI ’s. The physical meaning of this operation is to exchange D0-branes with D6-branes
and D2-branes with D4-branes. One can therefore obtain a BPS black string, which has
D4-D4-D4-D0 charges, by performing 6 T-dualities on a D6-D2-D2-D2 black hole.

One might also ask if the D4-D4-D4-D0 black string solution is already contained in the
original (i.e. before T-duality) BPS ansatz (2.1-2.5), which in general carries also D6 and
D2 charges. At first sight this might seem impossible, because the general BPS solution
preserves the supersymmetries corresponding to the D6-D2-D2-D2 system, and not those of
the D0-D4-D4-D4 system. To obtain a black string one should take the limit V = 0 and
LI = 0 in the general BPS solution, and in this limit the quantities describing the solution –
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ZI , aI , µ – diverge. It turns out however that these quantities combine in such a way as to
give a finite limit for the full physical metric: for example, though Z = (Z1Z2Z3)1/3 diverges
as V −1, the 3-dimensional part of the metric is proportional to ZV and is thus finite in the
limit.

One then obtains the following solution

ds2
11 = − 2

K
dtdψ − 2M

K
dψ2 +K2ds2

3 +
∑
I

KI

K
ds2

I , (4.10)

A(3) =
∑
I

wI ∧ dTI ,

where the quantity K = (K1K2K3)1/3 has been introduced. Taking

− 2M = 1 +
Q(D0)

r
, KI = 1 +

Q
(D4)
I

r
(4.11)

this solution reproduces the well known black string solution, although in a system of coor-
dinates which is not explicitly asymptotically flat. To rewrite the metric in a frame which is
explicitly flat at asymptotic infinity one has to perform the coordinate redefinition

ψ′ = ψ − t , (4.12)

and it is this change of coordinates which effectively transforms the supersymmetries pre-
served by the solution from those associated to D6-D2-D2-D2 to those of D0-D4-D4-D4.

4.2 Gauge transformations, T-dualities and spectral flow

We have discussed until now only a small subset of the duality group of the system, given by
T-dualities along the directions of T 6. Another important set of transformations that can be
used to generate new solutions is given by spectral flows [26]. A spectral flow transformation
is the composition of a U-duality transformation from the M2-M2-M2 to the D1-D5-P frame,
where the D1 and D5 branes share the direction y of T 6, and the coordinate redefinition

ψ → ψ + γ y . (4.13)

As there are three inequivalent choices for the direction y inside T 2 × T 2 × T 2, there are
three different spectral flow transformations, whose parameters we will denote as γI . The
physical interest of this transformation stems from the fact that it is dual to a well-known
symmetry of the D1-D5 CFT, and it can be used to relate 2-charge (D1-D5) solutions to
3-charge (D1-D5-P) solutions [35, 36, 37, 38, 39, 40].

We will show in this subsection that spectral flows are equivalent to a combination of
T-dualities and large gauge transformations of the type IIA B-field.

Consider a large gauge transformation that shifts the asymptotic value of the IIA B-field

B(2) → B(2) −
3∑
I=1

γI dTI , (4.14)
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and leaves the other fields invariants. This transformation is equivalent to the following
redefinitions of the harmonic functions:

V̂ = V , ω̂ = ω , K̂I = KI − γIV ,

L̂I = LI + CIJKγJKK −
1

2
CIJKγJγKV , (4.15)

M̂ = M +
1

2
γILI +

1

4
CIJKγIγJKK −

1

12
CIJKγIγJγKV .

This operation maps solutions of (2.5) to new solutions of the same set of equations. Notice
that this transformation acts trivially on solutions with four non-compact spatial directions:
since in that case the harmonic function V vanishes at infinity, the transformation does not
change the asymptotic value of the fields, and hence it reduces to a proper gauge trans-
formation. The situation is different in the case of interest for this paper, in which ψ is a
compact direction and correspondingly V goes to a constant non-zero value at infinity. In
this case solutions related by the transformation (4.15) are physically inequivalent, as they
have different values for the Wilson lines of the B-field. Though this might seem a quite
trivial difference, we will see that the large gauge transformation (4.15) combined with T-
dualities will give rise to more drastic effects, including different values for the asymptotic
charges.

To understand this point, let us compare the two following solutions:
1) start from a solution encoded by the harmonic functions (V,KI , LI ,M) and perform on

it 6 T-dualities, to arrive at the solution (Ṽ , K̃I , L̃I , M̃), given in eq. (4.7);
2) on the solution (V,KI , LI ,M) perform first a large gauge transformation, giving the

solution (V̂ , K̂I , L̂I , M̂) in eq. (4.15), and then 6 T-dualities; the resulting harmonic functions

(
˜̂
V ,
˜̂
KI ,

˜̂
LI ,
˜̂
M) are given by:

˜̂
V = 2M̂ = 2M + γILI +

1

2
CIJKγIγJKK −

1

6
CIJKγIγJγKV , (4.16)˜̂

KI = L̂I = LI + CIJKγJKK −
1

2
CIJKγJγKV ,˜̂

LI = −K̂I = −KI + γIV ,˜̂
M = − V̂

2
= −V

2
. (4.17)

Let us now compare the two solutions (Ṽ , K̃I , L̃I , M̃) and (
˜̂
V ,
˜̂
KI ,

˜̂
LI ,
˜̂
M):

˜̂
V = Ṽ + γIK̃I −

1

2
CIJKγIγJ L̃K +

1

3
CIJKγIγJγKM̃ ,˜̂

KI = K̃I − CIJKγJ L̃K + CIJKγJγKM̃ ,˜̂
LI = L̃I − 2γIM̃ ,˜̂
M = M̃ . (4.18)
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Solution 2Solution 1

Solution 3Solution 1’

Transformation

6 T−dualities

Spectral

6 T−dualities

Flow
Gauge

Figure 1: We depict the commutative diagram expressing the link between spectral flow, large gauge
transformations and T-duality. If one starts from a given BPS solution (solution 1), one can perform 6
T-dualities on it to obtain solution 2. On the other hand, one can first perform a large gauge transformation
(4.15) on solution 1 to obtain solution 1’, that only differs from solution 1 by the values of the B-field Wilson
lines. If one then perform 6 T-dualities on solution 1’, one obtains solution 3. Solution 2 and solution 3 are
related by a spectral flow transformation [26].

The transformation above is exactly the spectral flow transformation as given in [26]. Since
the T-duality map (4.7) is obviously invertible, we can equivalently state the result (4.18)
via the identity

F(γI) = T6 ◦ G(γI) ◦ T −1
6 , (4.19)

where F(γI) is the spectral flow operation, G(γI) is a large gauge transformation acting on
the B-field, and T6 is the map resulting from 6 T-dualities on T 6. We have shown that the
identity (4.19) holds on BPS solutions.

5 T-dualities and the almost BPS solutions

As we have shown in eq. (4.7), performing 6 T-dualities on a BPS solution simply exchanges
the various harmonic functions defining the solution. Hence, after such an operation we end
up in the same class of solutions we started from. The situation in the almost BPS case is
not as simple, but also much richer: the subset of almost BPS solutions is not closed under
T-duality, and thus we can use T-duality to construct new classes of solutions.

We present in this section the general solution obtained by applying 6 T-dualities on
a generic almost-BPS solution, and we will discuss several interesting particular cases in
section 7. Since almost BPS solutions cannot be written in general in a closed form, we will
not write explicit expressions for the ZI and µ functions, but use their implicit definitions
given via the differential equations (2.6). We will use the harmonic functions V and PI = KI

to describe the 4D base metric and the dipole gauge fields aI .
Buscher’s rules reviewed in section 3 give us the type IIA solution obtained by applying

6 T-dualities on the almost-BPS solution of section 2. After dualities, the NSNS fields are
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given by

ds2
10 = −e2U (dt+ ω)2 + e−2U ds2

3 +
3∑
I=1

e−2U

ZI∆IV
ds2

I ,

e−2Φ = e6UZ3∆3V 3 , (5.1)

B(2) = −
3∑
I=1

1

∆I

(
KI −

µ

ZI

)
dTI ,

where we recall that the ∆I are given by (3.6):

∆I = G2
I +B2

I =
CIJK

2

ZJZK
V ZI

+K2
I − 2

KIµ

ZI
(5.2)

and we have defined ∆ = (∆1∆2∆3)1/3. The RR-fields are

C(1) = e4U

(
Z3 − V µZIKI + V

∑
I<J

KIZIKJZJ −K3V 2µ

)
(dt+ ω) + v0 ,

C
(3)
I =

1

V ZI∆I

(∑
J

(ZJKJ − 2ZIKI −K3V )(dt+ ω)

)
− vI −

1

∆I

(
KI −

µ

ZI

)
v0 ,

C
(5)
JK =

1

V 2ZJZK∆J∆K

[
(KJKKV + CIJKZI)(ZJZK + CIJKKIV µ) (5.3)

−V (KJZJ +KKZK)(CIJKKIZI + µ)
]
(dt+ ω)− CIJKwI

+
1

∆J

(
KJ −

µ

ZJ

)
vK +

1

∆K

(
KK −

µ

ZK

)
vJ +

1

∆J∆K

(
KJ −

µ

ZJ

)(
KK −

µ

ZK

)
v0 ,

C(7) =
[ 1

V 2Z3∆3

(
2Z3µ− (KIZI +K3V )(Z3 + V µ2) + 2V µ

∑
I<J

ZIKIZJKJ

)
(dt+ ω)

+A+
1

∆I

(
KI −

µ

ZI

)
wI − CIJK

2

1

∆J∆K

(
KJ −

µ

ZJ

)(
KK −

µ

ZK

)
vI

− 1

∆3

CIJK
6

(
KI −

µ

ZI

)(
KJ −

µ

ZJ

)(
KK −

µ

ZK

)
v0

]
∧ dT1 ∧ dT2 ∧ dT3 ,

where we used once more that K = (K1K2K3)1/3. In the language of 11-dimensional super-
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gravity, the above solution can be recast in the simpler form

ds2
11 =

e−4U

Z2∆2V 2

[
(dψ + v0) + C

(1)
t (dt+ ω)

]2

− e4UZ∆V (dt+ ω)2 + Z∆V ds2
3

+
∑
I

Z∆

ZI∆I

ds2
I , (5.4)

A(3) =
∑
I

[
1

V ZI∆I

(∑
J 6=I

ZJKJ − ZIKI −K3V

)
(dt+ ω)

− 1

∆I

(
KI −

µ

ZI

)
(dψ + v0)− vI

]
∧ dTI . (5.5)

This general class of solutions can be split in two broad subclasses: those solutions for
which gtt vanishes and those for which it does not. This is controlled by the quantity

F 2 = e4UZ3∆3V 3 − e−4UC
(1)
t

2
(5.6)

= K2
IZ

2
I − 2

∑
I<J

KIZIKJZJ − 2(KIZI)K
3V +K6V 2 + 8K3V µ ,

in terms of which one can write

gtt = −F 2/(Z∆V )2 . (5.7)

Of course the metric component gtt vanishes when F does. We will consider the case of
vanishing gtt in the following, so let us first concentrate on the generic situation in which gtt
is non-zero. In this case, F 2 has to be positive for ∂t to be timelike. Completing the squares
with respect to dt

ds2
11 = − F 2

Z2∆2V 2

(
dt+ ω − e−4UC

(1)
t

F 2
(dψ + v0)

)2

+
Z∆V

F 2
(dψ + v0)2

+Z∆V ds2
3 +

∑
I

Z∆

ZI∆I

ds2
I , (5.8)

we can rewrite the 11-dimensional metric and 3-form gauge field in a form identical to (2.1)

ds2
11 = −Z̃−2

(
dt+ k̃

)2

+ Z̃ds̃2
4 +

3∑
I=1

Z̃

Z̃I
ds2

I ,

A(3) =
∑
I

[
− 1

W̃I

(dt+ k̃) + ãI

]
∧ dTI . (5.9)
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The new 4-dimensional base is

ds̃2
4 = Ṽ −1(dψ + Ã)2 + Ṽ ds2

3 with Ṽ = F and Ã = v0 , (5.10)

where the three-dimensional metric ds2
3 is flat. The various other quantities describing the

solution (5.9) are given by

Z̃I =
ZI∆IV

F
, Z̃ = (Z̃1Z̃2Z̃3)1/3 (5.11)

k̃ = µ̃(dψ + Ã) + ω̃ , (5.12)

µ̃ =
1

F 2

(
−Z3 + V µZIKI − V

∑
I<J

KIZIKJZJ +K3V 2µ

)
, ω̃ = ω , (5.13)

W̃I = − V ZI∆I∑
J 6=I ZJKJ − ZIKI −K3V

, (5.14)

ãI = P̃I(dψ + Ã) + w̃I , (5.15)

P̃I = − 1

∆I

(
KI −

µ

ZI

)
+

µ̃

W̃I

, w̃I = −vI . (5.16)

From the explicit expressions given above, we can make two general observations. First,
the functions W̃I that appear in the time component of the gauge field A(3), and thus encode
the M2-brane charges of the solution, are in general not equal to the functions Z̃I that give
the warp factors of the metric ds2

11. This is unlike our original 11-dimensional ansatz (2.1),
that was characterized by the fact that the same functions ZI appeared both in the metric
and in the gauge field. Solutions of this latter kind have the property that a probe M2-
brane feels no force when placed in such a geometry: as explained in [18], where an ansatz
of the type (2.1) was denoted by the name “floating brane” ansatz, this property implies
crucial simplifications in the construction of the solutions. As we have just seen, generically
T-duality maps “floating brane” solutions into “non-floating brane” ones, and could thus
provide important clues for the construction of a more general class of non-BPS geometries.

Secondly, the 4D base metric one obtains after 6 T-dualities (5.10), like the original
Gibbons-Hawking metric (2.2), has the form of a U(1)-fibration over a flat 3-dimensional

space: however the quantities Ṽ = F and Ã = v0 that describe this fibration are far from
being of the Gibbons-Hawking type, generically. This is another manifestation of the fact
that T-dualities produce solutions that lie in a much larger class than the original almost-
BPS class. We will leave the task of analyzing further the generic solutions in (5.9) for the
future, and in the following we will concentrate on some simpler particular cases.

6 T-dualities, gauge transformations and spectral

flows in the non-BPS case

We have seen in section 4.2 that, in the supersymmetric case, spectral flow transformations
and large gauge transformations are related by T-dualities, a relation that is summarized in
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eq. (4.19).
We investigate in this section whether the relation found in the supersymmetric case

holds in the non-supersymmetric one as well.
We face however a technical difficulty: The action of one spectral flow transformation on

almost-BPS solutions was derived in [18]. In principle one could iterate the calculation of
[18] to find how almost-BPS solutions transform under a general (triple) spectral flow. This
computation however seems too cumbersome to be carried out explicitly. We thus do not
know how to compute the left hand side of eq. (4.19) on almost-BPS solutions. The best we
can do, for almost-BPS solutions, is to compute the right hand side of (4.19) and perform
some partial checks on the identity. Turning things around, we can assume the validity of
(4.19) when applied to almost-BPS solutions and use it to derive the action of a general
spectral flow transformation on almost-BPS geometries.

Let us then compute the action of the left hand side of (4.19) on an almost-BPS solution.
In section 5, we have obtained the general form of the geometry resulting from the action
of 6 T-dualities on an almost BPS solution. For our purposes we need the inverse of this
transformation, which, as can be easily checked, is given by itself, up to reversing the sign of
all the RR fields. We can then perform on this solution a large gauge transformation, which
amounts to shift B(2) by the constant term −γIdTI , giving

B(2) = −
3∑
I=1

[
1

∆I

(
KI −

µ

ZI

)
+ γI

]
dTI , (6.1)

where we recall that the ∆I are given by (3.6):

∆I = G2
I +B2

I =
CIJK

2

ZJZK
V ZI

+K2
I − 2

KIµ

ZI
. (6.2)

We can now apply one more time the rules for 6 T-dualities. The final solution is

ds2
10 = −e2U(dt+ ω)2 + e−2Uds2

3 +
∑
I

e−2U

NI

ds2
I ,

e−2φ = e6UN3 , (6.3)

B(2) = −V ZI
NI

(
KI −

µ

ZI
+

1

γI

)
+

1

γI
,

C(1) = e4U
[
− T 3 V 2µ+

CIJK
2

(γI V TJZJTKZK)− CIJK
2

γJγK TIZIV µ+ γ3 Z3
]
(dt+ ω)

+A− γI wI −
CIJK

2
γJγK vI + γ3 v0 , (6.4)

C
(3)
I =

1

NI

(
−T 3V − CIJK

2
γJγK TIZI + CIJKγIγJ TKZK

)
(dt+ ω)

+
1

NI

[
TIZIV

(
KI −

µ

ZI

)
+ γI

(
CIJK

2
ZJZK −KIV µ

)](
A− γI wI −

CIJK
2

γJγK vI + γ3 v0

)
+wI + CIJKγJ vK −

CIJK
2

γJγK v0 .
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We have defined the new functions

TI = 1 + γI KI , NI =
CIJK

2
γ2
I ZJZK + V T 2

I ZI − 2γI V TIµ , (6.5)

and, as usual, we use the short-hand notations K3 = K1K2K3, Z3 = Z1Z2Z3, γ3 = γ1γ2γ3,
T 3 = T1T2T3 and N3 = N1N2N3.

The 11-dimensional lift of this solution writes as

ds2
11 = −Z̃−2

(
dt+ k̃

)2

+ Z̃ ds2
4 +

∑
I

Z̃

Z̃I
ds2

I , (6.6)

A(3) =
∑
I

[
− 1

W̃I

(dt+ k̃) + P̃I (dψ + Ã) + w̃I
]
∧ dTI , (6.7)

where

ds2
4 = Ṽ −1(dψ + Ã)2 + Ṽ ds2

3 with

Ṽ =

[
CIJK

2
γ2
Jγ

2
KT

2
I Z

2
I − CIJKγ2

IγJγKTJZJTKZK (6.8)

−T 3V (CIJKγJγKTIZI) + T 6V 2 + 8γ3T 3V µ
]1/2

,

Ã = A− γI wI −
CIJK

2
γJγK vI + γ3 v0

and

Z̃I =
NI

Ṽ
, (6.9)

k̃ = µ̃(dψ + Ã) + ω with (6.10)

µ̃ =
1

Ṽ 2

(
−γ3 Z3 +

CIJK
2

γJγK ZITIV µ−
CIJK

2
γI V TJZJTKZK + T 3V 2µ

)
, (6.11)

W̃I =
NI

T 3V + CIJK

2
γJγK TIZI − CIJKγIγJ TKZK

, (6.12)

P̃I =
1

NI

(
V ZITIKI +

CIJK
2

γI ZJZK − (2T1 − 1)V µ
)

+
µ̃

W̃I

, (6.13)

w̃I = wI + CIJKγJ vK −
CIJK

2
γJγK v0 (6.14)

and Z̃ = (Z̃1Z̃2Z̃3)1/3.
We can now compare the solution above with the one produced by a spectral flow trans-

formation on an almost-BPS solution, and thus verify the relation (4.19). As we explained
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before, we can only do this explicitly when a single spectral flow parameter is non-vanishing.
Thanks to the symmetry of the solution in (6.8)-(6.9) with respect to the indices I = 1, 2, 3
we can pick the non-vanishing parameter to be γ1. Setting γ2 = γ3 = 0 in (6.9) we find

Ṽ = T3 V , Ã = A− γ3w
3 ,

Z̃1 = W̃1 =
Z1

T3

, Z̃2 = W̃2 =
Z2

T3

,

Z̃3 = W̃3 =
P3

V T3

, µ̃ =
µ

T3

− γ3
Z1Z2

V T 2
3

, (6.15)

P̃1 = K1 − γ3
Z2

V T3

, P̃2 = K2 − γ3
Z1

V T3

, P̃3 =
K3

T3

,

w̃1 = w1 + γ3 v2 , w̃2 = w2 + γ3 v1 , w̃3 = w3 .

These are exactly the data describing the solution obtained in [18] from one spectral flow.
Although this is an important non-trivial check of the relation (4.19) in the almost-BPS
case, it, of course, leaves open the possibility that the relation might be violated by terms
of order higher than linear in the γI ’s. We think this possibility, however, to be quite
unlikely. As we have already recalled, spectral flow is a well defined element of the U-duality
group, G =SU(1,1)3, of the STU model, resulting from the composition of a certain U-
duality transformation and a rotation inside T 6 × S1

ψ. The relation (4.19) expresses a quite
non-obvious identity between two, a priori different, elements of G. It is possible that this
relation, as an identity in G, be actually corrected as

F(γI) = T6 ◦ G(γI) ◦ T −1
6 ◦ R(γI) , (6.16)

with R(γI) some element in G, symmetric in the parameters γI ’s. We have shown, however,
that R(γI) = id when γ2 = γ3 = 0 and when acting on BPS solutions: hence we advance
the natural conjecture that R(γI) = id identically in G.

It might be useful to note that the solution (6.6)-(6.9) contains, as particular limits, both
the original almost-BPS solution (2.1)-(2.6) and the solution (5.9)-(5.11) obtained from it
after 6 T-dualities. The general solution (6.6)-(6.9) obviously reduces to the almost-BPS
solution when the gauge transformation parameters are set to zero: γI = 0, for I = 1, 2, 3.
It is a bit more subtle to recover the T-dualized solution (5.9)-(5.11): for this purpose one
has to take the limit of large γI ’s, i.e. γ1 = γ2 = γ3 = γ → ∞. Let us make this point
more precise: Remember that the solution (6.6)-(6.9) has been obtained by first performing
6 T-dualities, followed by a large gauge transformation and again 6 T-dualities. We look
for a limit in which the last two steps essentially reduce to the identity map. After a large
gauge transformation

BI → BI − γ (6.17)

the factors ∆I that appear in T-duality transformation rules become

∆I = γ2 − 2γBI + (B2
I +G2

I) . (6.18)
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From the T-duality map given in section 3, one then sees that under the combination of a
gauge transformation and 6 T-dualities, and in the large γ limit, the NSNS fields transform
as

e2φ̃ ∼ e2φ

γ6
, G̃I ∼

GI

γ2
, B̃I ∼

1

γ
+
BI

γ2
. (6.19)

Thus, up to a renormalization by the appropriate factors of γ, this transformation reduces
to the identity map on the dilaton and the metric components GI ’s. The B-field components
BI ’s, because this is where the gauge transformations acted in the first step, behave a bit
differently: at leading order in 1/γ they just reduce to a constant term 1/γ, and one has to
keep the next to leading corrections, of order 1/γ2, to recover the original BI ’s. From the
transformation rules for the RR-fields (3.13), one sees that for γ →∞:

C̃(1) ∼ γ3C(1) , C̃
(3)
I ∼ γ C

(3)
I , C̃

(5)
JK ∼ γ−1C

(5)
JK , C̃(7) ∼ γ−3C(7) , (6.20)

and thus even on RR fields the map under consideration reduces to the identity, up renor-
malization by appropriate factors of γ. One concludes that in the large γ limit the series of
transformations that lead to the solution (6.6)-(6.9) reduces to just the 6 T-duality trans-
formation of section 3, and the solution (6.6)-(6.9) reduces to (5.9)-(5.11).

To summarize, the geometry given in eqs. (6.6)-(6.9) is the most general solution we
have obtained so far. We will examine several interesting subcases in section 7.

6.1 Generic Calabi–Yau compactifications

As we already mentioned previously, the internal space we used to reduce the theory to 5
dimensions can be considered as a simple prototype of a generic Calabi–Yau manifold. In
fact, T 6/Z2 × Z2 is a Ricci-flat SU(3) holonomy space (actually, the holonomy is Z2 × Z2 ⊂
SU(3)). The 5- and 4-dimensional supergravity models resulting from such a compactification
process are then specified by the cubic scalar couplings defined by the CIJK coefficients. In
our example (the STU model), these coefficients are simply CIJK = |εIJK |, where I =
1, 2, 3. However, one could rather easily replace our internal space with a generic Calabi–
Yau manifold and still solve all the equations of motion. In the generic case, the CIJK
coefficient are going to be related to the triple intersection numbers of the manifold and the
index I = 1, ..., h(1,1) labels the number of 2-cycles on the manifold, which, for M-theory/IIA
reductions, give the number of vector multiplets nV .

For a general Calabi–Yau manifold, the resulting 4-dimensional model will not have all
the symmetries that are present in the special STU case. However, it was shown [41, 42, 43]
that any such compactification will have at least nV + 1 residual symmetries, related to
the isometries of the vector multiplet scalar manifold. One of these is the 4-dimensional S-
duality transformation, while the remaining nV ones can be identified with the Peccei–Quinn
symmetries of the axion fields in each vector multiplet. These transformations are precisely
the ones we used in our work, because, as we will see more in detail later, the combined action
of the 6 T-duality transformations can be identified with the 4-dimensional S-duality action
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exchanging each scalar field with its inverse and the gauge transformations described by the
γI parameters are identified with the shift symmetries of the axions. We therefore conclude
that the final solution we constructed should give the most general non-BPS multicentre
configuration for a generic Calabi–Yau compactification.

7 Interesting subcases after 6 T-dualities

In this section, we examine particular cases of the non-BPS solutions (5.9)-(5.11), that are
simple enough to be analyzed in detail.

7.1 From black holes to black strings

7.1.1 A non BPS black string solution

The simplest almost-BPS solutions are the ones without any magnetic fields: K1 = K2 =
K3 = 0, w1 = w2 = w3 = 0. They describe single center non-BPS rotating black holes (or
multiple non-interacting rotating black holes). In the absence of magnetic fields, the solution
drastically simplifies and can be written in a closed form in terms of five harmonic functions
V , M and LI , I = 1, 2, 3. The single center black hole of this kind was analyzed in detail
in [21]: It is given by a geometry of the form (2.1), where the various quantities have the
following explicit expressions (written in polar coordinates on R3):

V = 1 +
Q6

r
, A = −Q6 cos θdφ ,

K1 = K2 = K3 = 0 , ZI = LI = 1 +
QI

r
, (7.1)

M = m0 +
m

r
+ α

cos θ

r2
, µ =

M

V
, ω = m cos θdφ− αsin2 θ

r
dφ .

Regularity requires m to be zero. This ensures that the metric be regular for the range of
parameters for which the warp factor

e−4U = L1L2L3V −M2 , (7.2)

is everywhere positive (i.e. for 1−m2
0 > 0 and Q1Q2Q3Q6 − α2 > 0).

We want to consider the geometry obtained by applying 6 T-dualities on the above
solution. The analogous operation in the BPS case produced the BPS black string of section
4.1. We thus expect to find by this method a non-BPS black string.

The 10-dimensional solution, that can be easily obtained as a particular case of the
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solution of section 5 is given by

ds2
10 = −e2U (dt+ ω)2 + e−2U ds2

3 +
e−2U

L3

3∑
I=1

LIds
2
I ,

e−2Φ = (eUL)6 , (7.3)

B(2) =
M

L3

3∑
I=1

LIdTI ,

and

C(1) = L3e4U(dt+ ω) ,

C(3) = −
3∑
I=1

vI ∧ dTI ,

C
(5)
JK = CIJK

1

LI
(dt+ ω)− M

L3
(LJvK + LKvJ) , (7.4)

C(7) =

(
2M

L3
(dt+ ω)− M2

L3

∑
I

vI
LI

+ A

)
∧ dT1 ∧ dT2 ∧ dT3 ,

where we defined L = (L1L2L3)1/3, and we recall that ?dvI = dLI .
The 11-dimensional lift of this solution produces a geometry for which gtt = 0 and, hence,

which does not fall in the generic class of solutions described in section 5. The 11-dimensional
configuration one obtains is instead given by

ds2
11 =

2

L
(dt+ ω)dψ +

e−4U

L4
dψ2 + L2ds2

3 +
∑
I

(
LI
L
ds2

I

)
, (7.5)

A(3) =
∑
I

(
M

L3
LIdψ − vI

)
∧ dTI . (7.6)

In the following we discuss the physical properties of this solution, and show that it indeed
describes a non-BPS black string.

7.1.2 Physical properties

Let us first investigate the regularity of the solution. Absence of Dirac-Misner strings requires
the φ component of 1-form ω to vanish on the φ-axis of rotation, i.e. at both at θ = 0 and
θ = π; hence, as in the solution before T-dualities, one must set

m = 0 . (7.7)

One can moreover verify that in the allowed range of parameters (Q1Q2Q3Q6 − α2 > 0 and
1 −m2

0 > 0) e−4U and e−4Ur2 sin2 θ − ω2 are always positive, as is required for the absence
of closed time-like curves.
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Let us now look at the asymptotic (large r) limit of the metric:

ds2
∞ = 2dtdψ + (1−m2

0)dψ2 + ds2
3 +

∑
I

ds2
I . (7.8)

In this form the metric does not appear to be asymptotically flat, but this can be easily
remedied by the change of coordinates

dψ →
√

1−m2
0

(
dψ − 1

1−m2
0

dt

)
, dt→ 1√

1−m2
0

dt , (7.9)

which brings the metric to the form

ds2
∞ = −dt2 + dψ2 + ds2

3 +
∑
I

ds2
I . (7.10)

Assuming the identifications (φ, ψ) ∼ (φ+ 2π, ψ) ∼ (φ, ψ+ 2πRψ), for an arbitrary Rψ, this
is the regular flat metric of R1,3 × S1 × T 6.

One can now compute the charges of the solution. We define the asymptotic charges as
the integrals of the RR field strengths F (i+1) given in (2.14)-(2.16) over cycles of the form
S2
∞×T i−1 (i = 1, 3, 5, 7), with S2

∞ the two sphere at asymptotic infinity in R3. Note however
that the Chern-Simons terms H(3) ∧ C(i−2) do not contribute to the integrals. Hence the
charges are given by

QD6 =

∫
S2
∞

dC(1) = 0 ,

QD4
JK =

∫
S2
∞×T 2

I

dC(3) = CIJKQI , (7.11)

QD2
I =

∫
S2
∞×T 4

JK

dC(5) = m0CIJKQJ ,

QD0 =

∫
S2
∞×T 6

dC(7) = Q6 +m2
0(Q1 +Q2 +Q3) .

The solution also has angular momentum in the R3 space transverse to the string: it is
encoded in the large r limit of the 1-form ω, giving the dtdφ term of the 10D metric, and it
is equal to

J = α . (7.12)

Let us finally examine the horizon geometry. The horizon is identified with the t = const.,
zI,i = const., r = 0 submanifold of the 11D metric. The metric induced on the horizon is:

ds2
hor = Q2dθ2 +Q2 Q6Q

3 − α2

Q6Q3 − α2 cos2 θ
sin2 θdφ2 (7.13)

+
Q6Q

3 − α2 cos2 θ

Q4

(
dψ − Q3α

Q6Q3 − α2 cos2 θ
sin2 θdφ

)2
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where we defined Q = (Q1Q2Q3)1/3. The space spanned by the coordinates θ, φ is topologi-
cally, though not metrically, a 2-sphere (note that the coefficient of dφ2 becomes Q2 sin2 θ for
θ = 0, π, a property which ensures the regularity of the horizon at the two poles of S2). The
coordinate ψ identifies an S1 whose radius varies over the S2, but never vanishes. Though
this S1 is non-trivially fibered over the S2, the fibration 1-form, Q3α

Q6Q3−α2 cos2 θ
sin2 θdφ, is glob-

ally defined on S2, and defines a topologically trivial U(1) bundle (this is a manifestation of
the fact that the solution has vanishing D6 charge). One can thus conclude that the horizon
has the topology of S2 × S1. As ψ is a compact coordinate at infinity, this is really a black
string.

It is easy to compute the area of the horizon manifold (7.13), from which one derives the
entropy of the solution:

S ∝
√
Q1Q2Q3Q6 − α2 . (7.14)

This is a formula identical to the one giving the entropy of a black hole with charges
Q1, Q2, Q3, Q6 and angular momentum α: it might at first appear surprising that it also
applies to our black ring solution, whose charges are given by (7.11) and are not to be con-
fused with Q1, Q2, Q3, Q6. There is actually no contradiction. Indeed one can verify that the
quartic invariant defined in (2.39), evaluated for the charges

p0 = − 1√
2
QD6 , pI = −CIJK

2
√

2
QD4
JK , qI =

1√
2
QD2
I , q0 =

√
2QD0 , (7.15)

reduces to

I4(QD6, QD4, QD2, QD0) = −1

4
Q1Q2Q3Q6 . (7.16)

Therefore, the entropy is given by the expected formula

S ∝
√
−I4(QD6, QD4, QD2, QD0)− α2 =

√
Q1Q2Q3Q6 − α2 . (7.17)

7.1.3 Comparison with known solutions

To the best of our knowledge, the rotating non-BPS extremal black string solution of the STU
model derived above represents an original result. However, if one sets to zero the angular
momentum parameter α, our solution reduces to a non-rotating non-BPS black string which
was already known in the literature. It was first found in [31] by Gimon, Larsen and Simon
(GLS) in terms of a four dimensional black hole, and then by Kim, Lindman, Palmkvist and
Virmani (KLPV) in the context of five dimensional minimal supergravity in [17].

The map between our solution (with α = 0) and the one of [31], section 4.2, is straight-
forward, and is given by the following identifications

√
2H i

(GLS) = LI , H0(GLS) = V and B(GLS) = m0 . (7.18)

The solution in [17], section 6.1.3, is given in conventions different from ours, and the
map with our solution is a bit more involved. First of all, the paper [17] works in 5D
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minimal supergravity: our solution is easily reduced to that frame by taking all the D4
charges to be equal: Q1 = Q2 = Q3 = Q (and hence L1 = L2 = L3 = L). Moreover,
by comparing our definition of the asymptotic charges, explained before (7.11), with the
one of [17], one sees that the two differ by

∫
d(B(2) ∧ C(3)) , for the D2 charge, and by∫

d(B(2)∧C(5)) + d(B(2)∧B(2)∧C(3)), for the D0-charge. This difference becomes irrelevant
if the B-field vanishes asymptotically: this is already the case for the KLPV solution, but
not for ours. We thus need to cancel the asymptotic value of our B-field by the large gauge
transformation

BI → BI −m0 , I = 1, 2, 3 . (7.19)

Notice that, as only dB(2) appears in our definition of the RR field strengths , this transfor-
mation does affect our values of the charges, and we can continue to use the values listed in
(7.11). We can now compare the asymptotic charges of our solution with the ones of KLPV.
This leads to the following identification:

QD4 = Q =
q(KLPV )

2
, QD2 = 2m0Q = Q(KLPV ) , Q

D0 = Q6 + 3m2
0 =

3

2
(q −∆)(KLPV ),(7.20)

which implies that L = V(KLPV ), and e−4U = g(KLPV ). Using this map, and taking into
account the shift of the B-field, one can verify that both the metric and the gauge fields of
our solution and of the one in [17] exactly match.

Let us finish this subsection with a small remark on the charges (7.11) of the black string.
Since the D2 charges are proportional to the parameter m0, which gives the asymptotic value
of the B-field, one might think that they are only an effect of having a non-zero Wilson line of
the B-field at infinity. We have seen, however, that the D2 charges persist even after canceling
this Wilson line. One should thus think of the D2 charges as real, intrinsic charges, arising
from the interactions between the other charges and the fluxes of the solution.

7.2 A new look at Israel–Wilson spaces

We have until now looked at the solutions generated by 6 T-dualities on almost-BPS solutions
with vanishing D4 fluxes (KI = 0). The next simplest case to consider is when the starting
solution has one non-vanishing D4 flux (K3 6= 0, K1 = K2 = 0). The case with generic
K3 will produce solutions of a kind already considered in [18], characterized by having a
4-dimensional base metric given by a Israel-Wilson space. The particular case with K3 = 1,
which we discuss in the last subsection, gives a new class of non-BPS solutions: as the almost-
BPS solutions, they are built on a Gibbons-Hawking space, but their magnetic fluxes, warp
factors and angular momentum vector satisfy a system of differential equations which is
different from the one (2.6) describing almost-BPS solutions.

7.2.1 Israel–Wilson spaces

Consider an almost-BPS solution with K3 6= 0, K1 = K2 = 0. In this case, one enjoys the
drastic simplification that all the warp factors ZI ’s are harmonic

ZI = LI , (7.21)
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and only µ cannot be written, in general, in a closed form but is given by the solution of

d ? d(V µ) = d(V L3) ∧ ?dK3 . (7.22)

Let us look at the geometry obtained by applying 6 T-dualities on this solution, referring
to the results of section 5. The geometry of the 4D base is controlled by the function F 2

defined in (5.6). In this case it simplifies to a perfect square,

F 2 = (K3L3)2 . (7.23)

Hence, if we rename

Ṽ+ = K3 , Ṽ− = L3 (7.24)

the 4D base has the form

ds2
4 = Ṽ −1(dψ + Ã)2 + Ṽ ds2

3 , (7.25)

Ṽ = Ṽ+Ṽ− , ?dÃ = Ṽ−dṼ+ − Ṽ+dṼ− ,

where the equation for the vector Ã = v0 is the simplification of (2.23) for K1 = K2 = 0.
This is the form of a Israel–Wilson metric. In [18], it was found that one can indeed find non-
BPS 11-dimensional solutions based on Israel–Wilson spaces. It is interesting to compare the
solution produced here by T-duality with the general class of Israel-Wilson type solutions of
[18]. Let us then look at the remaining quantities describing the 11-dimensional metric and
3-form gauge field, that we derive from the results of section 5:

Z̃1 =
L2

K3

, Z̃2 =
L1

K3

, Z̃3 =
L1L2

L3K3

+ V (K3 − 2
µ

L3

) ,

µ̃ = − L3

(L3K3)2
+

V µ

L3K3

,

W̃1 = = −L2

K3

, W̃2 = −L1

K3

, W̃3 =
L1L2

L3K3

+ V (K3 − 2
µ

L3

) ,

P̃1 =
L1

K3L3

, P̃2 =
L2

K3L3

, P̃3 = − 1

K3

, w̃I = −vI . (7.26)

We observe that, though the new warp factors Z̃I ’s are not given by harmonic functions,
they are still equal, up to sign, to the electric components of the gauge-fields, given by W̃I .
More precisely one has W̃1 = −Z̃1, W̃2 = −Z̃2 and W̃3 = Z̃3. The sign mismatch in the first
two identities has no physical meaning, and can be remedied, for example, by renaming the
coordinates (y1

1, y
1
2) → (−y1

1,−y1
2), so as to flip the sign of the gauge field components C

(3)
1

and C
(3)
2 . This coordinate redefinition results in the changes

W̃I → −W̃I , P̃I → −P̃I and w̃I → −w̃I for I = 1, 2 . (7.27)

In the new coordinates the solution is in the form of the “floating brane” ansatz considered
in [18]. In Appendix C, we check that the solution that we obtain here indeed solves the
linear system of equations characterizing the family of geometries found in [18].
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7.2.2 New “almost-BPS” solutions

The previous class of geometries assumed a generic function K3. If one considers the partic-
ular sub-case with K3 = 1, or, in other words, in one starts from an almost-BPS geometry
with trivial magnetic charges but a non-zero value for the Wilson line of B

(3)
3 , the family of

geometries one finds after 6 T-dualities has a quite different structure than the one discussed
in the previous subsection.

For K3 = 1 the function Ṽ+ = K3 that describes the Israel-Wilson base space becomes a
constant, and the Israel-Wilson metric reduces to a simpler Gibbons-Hawking metric, whose
associated harmonic function is Ṽ = Ṽ− = L3:

Ṽ = L3 , ?dÃ = −dṼ . (7.28)

As indicated by the relation above, the orientation of this Gibbons-Hawking space is nega-
tive. Despite the fact that this solution is built on a Gibbons-Hawking space with negative
orientation, it is not in the almost-BPS class of solutions. To see this we should look at the
rest of the geometry, which is encoded in the functions:

Z̃1 = L2 , Z̃2 = L1 , Z̃3 = V − 2M

L3

+
L1L2

L3

,

P̃1 = −L1

L3

, w̃1 = v1 , P̃2 = −L2

L3

, w̃2 = v2 , (7.29)

P̃3 = −1 , w̃3 = −v3 ,

µ̃ =
M

L3

− L1L2

L2
3

, ω̃ = ω .

From the form of P̃I and w̃I , one sees that the field strengths of the dipole gauge fields
ãI = P̃I(dψ+ Ã) + w̃I do not have definite self-duality with respect to the Gibbons-Hawking
base metric. This is unlike the almost-BPS solutions, which are characterized by having
self-dual dipole field strengths. Despite this fact these new type of non-BPS solutions still
menage to solve the full equations of motion.

We have thus seen that the action of 6 T-dualities on almost-BPS solutions with trivial
magnetic charges but non-trivial values for the B-field Wilson lines produces a new class of
non-BPS solutions based on Gibbons-Hawking base spaces.

8 Generalisation to the full U-duality group

As we mentioned in the introduction, our configurations can also be seen as solutions to
a specific N=2 4-dimensional supergravity theory, with 3 vector multiplets parameterizing
the STU model. We can therefore use the 4-dimensional U-duality group to generate new
solutions starting from the ones following from our original ansatz, satisfying (2.5) in the BPS
case and (2.6) in the non-BPS case. U-duality is a generalization of the electric–magnetic
duality symmetry that maps Bianchi identities and equations of motions of the vector fields
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among them, leaving the other equations of motion untouched. This means that it maps
solutions of the equations of motion to new solutions of the same system of equations.

The generic action of the duality group is given by a symplectic rotation matrix acting
on the gauge field strengths FΛ and their duals GΛ, defined as

FΛ = dAΛ
4 , GΛ = RΛΣF

Σ − IΛΣ ∗4 F
Σ = dA4 Λ, (8.1)

while at the same time the scalar fields are redefined by an action of the group of isometries
of the scalar manifold: (

FΛ

GΛ

)
→ S

(
FΛ

GΛ

)
, δSz

I = ξI(S, z). (8.2)

We point out that the definition of the dual curvatures GΛ is consistent with the fact that
the complex symplectic vector constructed with the gauge field-strengths transforms exactly
like the symplectic sections, i.e.(

F−Λ

G−Λ

)
=

(
F−Λ

NΛΣF
−Σ

)
, (8.3)

with F± ≡ 1
2
(F ∓ i ∗4 F ). For the STU model this implies that S ∈ SU(1, 1)3 ⊂ Sp(8,R),

which can be represented by a 9-parameter matrix [29, 44]

S = ST U , (8.4)

where

S =



d1 c1

b1 a1

d1 c1

d1 c1

a1 −b1

−c1 d1

b1 a1

b1 a1


, (8.5)

T =



d2 c2

d2 c2

b2 a2

d2 c2

a2 −b2

b2 a2

−c2 d2

b2 a2


, (8.6)

33



U =



d3 c3

d3 c3

d3 c3

b3 a3

a3 −b3

b3 a3

b3 a3

−c3 d3


, (8.7)

and the parameters aI , bI , cI and dI satisfy aIdI − bIcI = 1 for each I and act as an SU(1,1)
action on the scalars

zI → aIz
I + bI

cIzI + dI
(no sum). (8.8)

We can use a more compact notation by introducing three matrices MI , where

MI =

(
aI bI
cI dI

)
. (8.9)

The combined action of the STU duality group on a generic symplectic vector (V Λ, VΛ) can
be obtained by introducing the transformation

a′abc = (M1)a
d(M2)b

e(M3)c
f adef , (8.10)

where
a222 = V 0, a211 = V1, a121 = V2, a112 = V3,

a111 = −V0, a122 = V 1, a212 = V 2, a221 = V 3.
(8.11)

It interesting to notice that the quantity I4(HΛ, HΛ) defined in (2.39) is invariant under the
application of a generic duality transformation. The outcome of this discussion is that if we
apply a generic duality transformation discussed above to a solution of the 4-dimensional
system of equations of motion we generate a new solution.

Given the structure of the gauge vector potentials and their duals in the ansatz we
employed in this paper (2.34)–(2.35), we can see that the action of the U-duality group can
be realized as a matrix rotation by S = ST U on the symplectic vector of potentials (χΛ, ψΛ)
and of 1-forms (wΛ, vΛ).

8.1 The BPS case

Using now the simple procedure described previously, we can construct the most general
BPS U-duality invariant solution by applying the duality transformation (8.10) to the scalar
fields and gauge potentials defined in (2.41)–(2.46). Once more, the outcome can be entirely
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expressed in terms of harmonic functions

? dw0 =
√

2

[
CIJK

2

(
cIcJdKdHK + dIdJcKdH

K
)
− c1c2c3dH0 + d1d2d3dH

0

]
, (8.12)

?dwI =
√

2

[
CIJK

2
(−aIcJcKdH0 + bIdJdKdH

0) + CIJKdJcK(aIdHJ + bIdH
K)

+
CIJK

2
(aIdJdKdH

I + bIcJcKdHI)

]
, (8.13)

where the last one is summed over J and K, but not over I, and, similarly,

χ̃0 =
CIJK

2

(
cIcJdKψK + dIdJcKχ

K
)
− c1c2c3ψ0 + d1d2d3χ

0, (8.14)

χ̃I =
CIJK

2
(−aIcJcKψ0 + bIdJdKχ

0) + CIJKdJcK(aIψJ + bIχ
K)

+
CIJK

2
(aIdJdKχ

I + bIcJcKψI), (8.15)

where the vector (χΛ, ψΛ) has beed constructed in (2.41)–(2.42).
The special case of 6 T-dualities can be obtained by taking aI = dI = 0 and bI = −cI =

−1,

M1 = M2 = M3 =

(
0 −1
1 0

)
, (8.16)

which reduces to

S =

(
0 −14

14 0

)
(8.17)

mapping
H̃Λ = −HΛ, H̃Λ = HΛ (8.18)

and therefore

zI → − 1

zI
. (8.19)

In fact, the harmonic functions also define a symplectic vector (HΛ, HΛ), which rotates
covariantly under duality transformations, as can be deduced from the differential relations
between the harmonic functions and the vector fields. This is exactly the same conclusion
we reached in section 4. From the analysis presented here, however, we also see that also
the generic U-duality transformation leaves the original ansatz invariant, acting as a simple
exchange of harmonic functions. We will see that this is not the case for non-BPS solutions
anymore.
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8.2 The non-BPS branch

Single centre non supersymmetric black holes in the STU model are given in terms of 4
harmonic solutions and can be generated from the seed solution we reviewed in section 2.3.2.
Following the procedure outlined in the previous section and already mentioned in [31], we
can obtain this general single centre solution starting from a simple seed solution with only
4 charges and a non-trivial expectation value for the axion fields at infinity and acting on
it with the U-duality group. In fact, in the STU model, the most general single centre
configuration is specified by 5 parameters out of the 8 charges and 6 real asymptotic values
of the scalar fields. The remaining 9 parameters can be generated by an arbitrary SU(1,1)3

duality transformation.
More generally, whenever the scalar manifold of the 4-dimensional supergravity theory

is given by a coset space G/H, the U-duality group is identified with the isometry group
G. Since the scalar fields parameterize the coset, we can always fix their asymptotic value
at infinity to an arbitrary number by means of a non-compact transformation in G/H. At
this point, by using the remaining compact generators we leave the scalars invariant, but we
can still transform the charges. Hence the number of necessary parameters are the number
of the charges minus the number of generators of the compact subgroup that have a non-
trivial action on the same charges. In the simple case at hand, this tells us that we need 5
parameters in total.

The result is the configuration obtained by acting with the most general duality matrices
S, T and U generating (S = ST U)

? dwΛ = SΛ
0 dV + SΛI dZI (8.20)

and
χ̃Λ = SΛ

Σ χ
Σ + SΛΣ ψΣ, (8.21)

where χΛ and ψΛ were given in (2.47) and (2.48). The outcome gives the solution already
presented in [32].

An analogous operation is possible in the case of multi-center solutions, where we also
associate PI to harmonic functions (KI in [21]). The outcome is that the most general
solution is given by the scalar fields

zI =
bI V ZI + aI(−V µ+ V KIZI − i e−2U)

dI V ZI + cI(−V µ+ V KIZI − i e−2U)
(8.22)
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and by the vector potentials following from

χ0 = e4U
[
µV 2(d1 + c1K1)(d2 + c2K2)(d3 + c3K3)− c1c2c3Z1Z2Z3 (8.23)

+µV
CIJK

2
cIcJZK(dK + cKKK)− V CIJK

2
cIZJZK(dJ + cJKJ)(dK + cKKK)

]
,

χI = e4U
∑
J,K

CIJK
2

[
µV 2(bI + aIKI)(dJ + cJKJ)(dK + cKKK)

+µV cJcK(bI + aIKI)ZI + 2µV aIcJ(dK + cKKK)ZK (8.24)

−2V (bI + aIKI)(dJ + cJKJ)cKZIZJ

−V aIZJZK(dJ + cJJJ)(dK + cKKK)− aIcJcKZIZJZK ] ,

and

? dw0 = (d1 + c1K1)(d2 + c2K2)(d3 + c3K3)dV

+
CIJK

2
(dI + cIKI)dZIcJcK −

CIJK
2

cIdKIV (dJ + cJKJ)(dK + cKKK)

−CIJK
2

cIdKIZIcJcK , (8.25)

?dwI =
CIJK

2
[dZI(bI + aIKI)cJcK + 2aIdZJ(dJ + cJKJ)cK

+(bI + aIKI)(dJ + cJKJ)(dK + cKKK) dV+

−V aIdKI (dJ + cJKJ)(dK + cKKK)− aIZIdKIcJcK

−2V (bI + aIKI)(dJ + cJKJ) cKdKK − 2aIcJZJdKJcK ] . (8.26)

Since the result reported in this section gives the most general non-BPS configuration
that can be obtained by acting with the full U-duality group on the original solution obtained
by employing the ansatz of section 2, the solution obtained by a combination of 6 T-dualities
with the spectral flow presented in (6.8) should be a special subcase of the one presented
here. This is indeed the case, provided we identify the duality matrices with

MI =

(
1 0
γI 1

)
=

(
0 1
−1 0

)(
1 −γI
0 1

)(
0 −1
1 0

)
, (8.27)

which is the combination of 6 T-dualities, an axion shift (B → B − γIdTI) and again 6
T-dualities back.
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9 Conclusion

In this paper we have studied a class of extremal non-supersymmetric solutions of the STU
model, or equivalently of eleven-dimensional supergravity compactified on S1×(T 6/Z2×Z2).
We have shown how, starting from a solution inside the “floating brane” Ansatz, one can
use the U-duality group to generate a general extremal non-supersymmetric solution1.

This has been done in two ways: from the point of view of the ten-dimensional T-
dualities, and from the one of the U-duality group of the STU model in four dimensions.
This not only allows us to build an explicit map between the two equivalent formalisms, but
also gives us complementary physical insights. Indeed, while the four-dimensional approach
is computationally more efficient, the ten-dimensional one allows us to keep track of the
D-brane interpretation of the solutions.

Analyzing the action of T-duality in ten dimensions also led us understand the status of
spectral flow transformations within the U-duality group. While it was clear that spectral
flow transformations were in the group, how they related to the other ones was not evident.
Spectral flow is originally defined by conjugating a rotation in S1 × (T 6/Z2 × Z2) by the U-
duality transformation relating the M2-M2-M2 to the D1-D5-P frame [26]. In these terms,
spectral flow appears as a complicated, and computationally impractical, operation. We have
shown here that spectral flow has a simpler realization as the conjugation of a large gauge
transformation shifting the axions by the action of 6 T-dualities on T 6. In the light of how
spectral flows have already been useful in may different contexts [18, 35, 36, 37, 38, 39, 40],
we think that this result might be fruitful for the construction of new classes of solutions.

One should emphasize that the role dualities play in exploring the space of non-
supersymmetric solutions is far more relevant than for BPS solutions. In the BPS case,
indeed, one knows the general class of solutions, which is defined by the system (2.5), and
U-duality transformations transform solutions within this class. On the other hand the sys-
tem (2.6) only defines a subset of the full family of extremal non-BPS solutions, which is not
closed under the U-duality group. The main motivation of the present paper is that acting
with U-duality on the solutions in (2.6) allows us to construct many new solutions, such
as black strings, the underrotating Rasheed–Larsen black hole [45, 46] or solutions based
on an Israel-Wilson space. It would obviously be very interesting to have independent,
first-principle, ways to construct general extremal non-BPS solutions: this would require
to understand how to implement the extremality condition, thus generalizing the “floating
brane” Ansatz, and how to reduce the general Einstein’s equations to a first order system of
equations describing generic extremal solutions.

1We recall that we only studied here extremal Reisner-Nordström-like solutions, i.e. solutions with a flat
three-dimensional base. We leave the study of extremal Kerr-like solutions for future investigations.
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Appendix A. The reduction to 4 dimensions

We report here some details on the identification of the fields of 11-dimensional supergrav-
ity with the ones of 4-dimensional supergravity for the ansatz used in this paper. Some
additional details of these identifications can be found in [44].

A.1 The reduction from 11d to 5d

The reduction from 11 to 5 dimensions follows from the reduction ansatz of the metric

ds2
11 = ds2

5d +X1(dy2
1,1 + dy2

1,2) +X2(dy2
2,1 + dy2

2,2) +X3(dy2
3,1 + dy2

3,2) (A.1)

and of the 3-form

A(3) =
3∑
I=1

AI5 ∧ dTI , (A.2)

inserted in the Lagrangian

2κ2
11 S =

∫ √
−g11

(
R11 −

1

48
FMNPQF

MNPQ

)
− 1

6

∫
F (4) ∧ F (4) ∧ A(3). (A.3)

The ansatz we took for the metric is such that in the reduction to 5 dimensions we keep
only the vector multiplet vectors and scalars, while we set to zero all the hypermultiplet (we
froze the overall volume and all the complex structure moduli of the tori). For an internal
manifold of fixed volume (g6 = 1) we therefore get the reduced Ricci Einstein–Hilbert action

2κ2
11 S =

∫
M5×Y6

√
−g11R11 =

∫
M5

√
−g5

(
R5 −

1

4
gligjk∂Mgij∂

Mgkl

)
, (A.4)
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which in our case becomes (κ2
5 = κ2

11/Vol(Y6))

2κ2
5 S5 =

∫
M5

√
−g5

(
R5−

1

2

[
1

(X1)2
∂MX

1∂MX1+
1

(X2)2
∂MX

2∂MX2+
1

(X3)2
∂MX

3∂MX3

])
.

(A.5)
The full reduced action is

2κ2
5 S5 =

∫
M5

√
−g5

(
R5−GAB∂MX

A∂MXB− 1

2
GABF

A
MNF

BMN

)
− 1

3

∫
CABCF

A ∧ FB ∧ AC5 ,

(A.6)
where

C123 =
1

2
, K =

1

6
CABCX

AXBXC =
1

2
, (A.7)

and

GAB = −1

2
(∂A∂B logK)|K=1/2. (A.8)

A.2 The reduction from 5d to 4d

The reduction ansatz from 5d to 4d follows from

ds2
5d = ∆2ds2

4d +
1

∆4

(
dψ − A0

)2
, (A.9)

for the metric,
AI5 = AI4 + CI(dψ − A0) (A.10)

for the vectors and

zI = CI − i X
I

∆2
(A.11)

for the scalars. In this way we reduce to the 4d STU model, for a lagrangian of the form

L4 =
1

2
R− gī∂µzi∂µz̄ ̄ +

1

8
IΛΣF

Λ
µνF

Σµν +
1

8
RΛΣF

Λ
µν(∗4F )Σµν , (A.12)

with (∗4F )µν = 1
2

√
−g εµνρσF ρσ. Relabelling the scalar fields as zI = {S = σ − i s, T =

τ − i t, U = υ − i u}, the metric of the scalar σ-model gIJ̄ follows from the Kähler potential

K = − log(8 stu), (A.13)

the gauge kinetic couplings are

I = −stu


1 + σ2

s2
+ τ2

t2
+ υ2

u2
− σ
s2
− τ
t2
− υ
u2

− σ
s2

1
s2

0 0

− τ
t2

0 1
t2

0

− υ
u2

0 0 1
u2

 . (A.14)
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and the axionic couplings are

R =


2στυ −τυ −συ −στ
−τυ 0 υ τ
−συ υ 0 σ
−στ τ σ 0

 , (A.15)

Moreover, we are looking for a 4d metric that describes multi-center black hole configu-
rations, hence

ds2
4d = −e2U(dt+ ω)2 + e−2Uds3(~x)2 , (A.16)

where ds3(~x)2 is the flat three-dimensional metric. By comparison of the two metrics

ds2
5d = −Z−2(dt+ ω + µ(dψ + A))2 + V Zd~x2 +

Z

V
(dψ + A)2

= −∆2e2U(dt+ ω)2 + ∆2e−2Ud~x2 +
1

∆4
(dψ + A+ α(dt+ ω))2

(A.17)

we get that

α = − V µ

Z3 − V µ2
, (A.18)

∆4 =
Z2/3V

Z3 − V µ2
(A.19)

and
e−2U =

√
V Z3 − V 2µ2 =

√
V Z1Z2Z3 − µ2V 2. (A.20)

Comparing the vectors and scalars we also get the expression for the 4-dimensional vector
fields:

A0
4 = −A+ e4U µV 2(dt+ ~ω), (A.21)

AI4 = wI − e4UV

ZI
(Z1Z2Z3 − µV PIZI) (dt+ ~ω), (A.22)

and finally

zI =
(V ZIPI − V µ)− i e−2U

V ZI
, (A.23)

where ZIPI is not summed over I.
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Appendix B. The computation of the dual gauge fields

In this Appendix, we compute the gauge potentials C(5) and C(7) dual to C(1) and C(3) given
in (2.11) for supersymmetric solutions. We recall that the field strength are given by

H(3) =
3∑
I=1

H
(3)
I ∧ dTI =

3∑
I=1

dB
(2)
I ∧ dTI ,

F (2) = dC(1) , (B.1)

F (4) =
3∑
I=1

F
(4)
I ∧ dTI =

3∑
I=1

(dC
(3)
I −H

(3)
I ∧ C

(1)) ∧ dTI .

The dual fields strengths are

F (6) = − ∗10 F
(4) = dC(5) −H(3) ∧ C(3) =

∑
J,K

(1

2
dC

(5)
JK −H

(3)
J ∧ C

(3)
K

)
∧ dTJ ∧ dTK , (B.2)

F (8) = ∗10F
(2) = dC(7) −H(3) ∧C(5) = dC(7) −

∑
I,J,K

1

2
H

(3)
I ∧C

(5)
JK ∧ dTI ∧ dTJ ∧ dTK . (B.3)

∗10 denotes the Hodge dual with respect to the string metric ds2
10.

In order to have an explicit expression for the potentials, one now need to specify the to
the particular solutions (2.1)-(2.5):

H
(3)
I = d

(KI

V
− µ

ZI

)
, (B.4)

F (2) = (dt+ ω) ∧ d
(
e4U V 2µ

)
+ e4U ?

[
V 3µZId

(KI

V

)
− V 3µdµ+ Z3V dV

]
, (B.5)

F
(4)
I = e4U(dt+ ω) ∧

[
V Z3dZ−1

I +
V 2µ

ZI
dµ− V 2µ d

(KI

V

)]
+
V

ZI
?
[
ZAd

(KA

V

)
− dµ

]
, (B.6)

∗10F
(4) =

{ZI
Z3

(dt+ ω)
[
ZAd

(KA

V

)
− dµ

]
+ ?

[
dZI −

V µZI
Z3

dµ+
V µZ2

I

Z3
d
(KI

V

)]}
∧ CIJK

2
dTJ ∧ dTK , (B.7)

∗10F
(2) =

{
(dt+ ω) ∧

[µZI
Z3

d
(KI

V

)
− µ

Z3
dµ− dV −1

]
− e−8U

V 3Z3
? d
(
e4U V 2µ

)}
∧ dT1 ∧ dT2 ∧ dT3 . (B.8)

In the non-BPS case, the computation is similar. One can now integrate to obtain C(5) and
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C(7):

C
(5)
JK =

µ

ZJZK
(dt+ ω)− CIJKvI +

(KJ

V
− µ

ZJ

)(KK

V
− µ

ZK

)
A

+
(KJ

V
− µ

ZJ

)
wK +

(KK

V
− µ

ZK

)
wJ , (B.9)

where
? dvI = dLI , (B.10)

and

C(7) =
{ e−4U

V 2Z3
(dt+ ω)− v0 −

(KI

V
− µ

ZI

)
vI +

(K1

V
− µ

Z1

)(K2

V
− µ

Z2

)(K3

V
− µ

Z3

)
A

+
CIJK

2

(KI

V
− µ

ZI

)(KJ

V
− µ

ZJ

)
wK
}
∧ dT1 ∧ dT2 ∧ dT3 , (B.11)

where
? dv0 = 2dM . (B.12)

Note that we have used the explicit form of the BPS solution

ZI = LI +
CIJK

2

KJKK

V
, µ = M +

LIKI

2V
+
K1K2K3

V 2
. (B.13)

Appendix C. Equations of motions for solutions on an

Israel–Wilson base

In this Appendix, we verify that the solution presented in section 7.2 falls in the class of
solutions found in [18], based on an Israel-Wilson space. In order to do that, one has to
proceed step by step. The first equation to check is the equation relating the base space
with the Maxwell fields

R̂ab = − Tab
(
Θ(3) , ω

(3)
−
)
. (C.1)

The tensor Tab is defined for any pair of 2-forms X, Y by

Tab(X, Y ) ≡ 1

2

(
Xac Ybc + Xbc Yac

)
− 1

4
δabXcd Ycd . (C.2)

We recall that Θ(I) = daI , that Θ(3) is self-dual, and that we defined ω
(3)
− by2

(
Θ(1) − ∗Θ(1)

)
= 2Z2 ω

(3)
− ,

(
Θ(2) − ∗Θ(2)

)
= 2Z1 ω

(3)
− . (C.3)

2See [18] for details.
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Using (7.26) and (C.3), one has

ã3 =
K+

Ṽ+

(dψ + Ã) + w̃3 , ?dw̃3 = −V−dK+ +K+dV− , (C.4)

ω
(3)
− = d

(
K−

Ṽ−
(dψ + Ã) + w̃−

)
, ?dw̃− = V+dK− −K−dV+ ,

with3 K+ = K− = −1. In order to solve (C.1), K+ and K− have to be harmonic, and to
verify

∂i

(K+

V+

)
∂j

(K−
V−

)
=
(
∂iV

−1
+

) (
∂jV

−1
−
)
. (C.5)

This is obviously the case here, as K+ = K− = −1. The rest of the equations to be solved
are

? dw2 = −V−dK2 +K2dV− + 2V+V−Z1d

(
K−
V−

)
,

d ? dK2 =
2

V−
d

(
V+V−Z1 ? d

(
K−
V−

))
, (C.6)

d ? dZ1 = V−d ? d

(
K2K+

V+

)
− 2 d

[
Z1K+V− ? d

(
K−
V−

)]
,

plus an analogous system of equations for w1, K1 and Z2, and

? dω = V 2
+d

(
V−
V+

µ

)
− V+V−ZI d

(
KI

V+

)
+ 2Z1Z2V+V−d

(
K−
V−

)
,

d ? d(V−µ) =
1

V+

d

[
V−V+ZI ? d

(
KI

V+

)]
− 2

V+

d

[
Z1Z2V+V− ? d

(
K−
V−

)]
, (C.7)

d ? dZ3 = V−d ? d
(K1K2

V+

)
− 2 d

[
(Z1K1 + Z2K2)V− ? d

(
K−
V−

)]

+V+V−d

(
K−
V−

)[
2 ? dµ− ZI ? d

(
KI

V+

)
+ 2Z1Z2 ? d

(
K−
V−

)]
.

Pluging in the fields given in (7.26), and using equations (7.22) and (2.6) for µ and ω, it is
lengthy but straightforward to check that we exactly solve these equations. In other words,
we have shown that performing 6 T-dualities on a solution where only one of the magnetic
charge is turned on brings us to the Israel–Wilson class of solutions discovered in [18].

3We keep the notation with generic K+ and K− for later conveniency.
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Appendix D. A lonely supertube

In the class of solution presented in section 7.2, the base is an Israel–Wilson space.

ds2
4 = (V+V−)−1(dψ + A)2 + V+V−ds

2
3 , (D.1)

?dA = V−dV+ − V+dV− .

We know that if we assume V− = L3 = 1, the solutions become BPS, and should therefore
be described by the BPS Ansatz given in section 2. We verify it here, as a consistency check.
To fix the ideas, let us imagine to start from a single “almost-BPS” supertube in Taub-NUT
space:

V = h+
Q6

r
, A = −Q6 cos θdφ ,

K1 = K2 = 0 , K3 = k3 +
d3

Σ
, ZI = LI = lI +

QI

Σ
, I = 1, 2 (D.2)

L3 = 1 , M = m0 +
m

Σ
+
m̃

r
, µ =

M

V
+
K3

2
.

In this case, the solution can be written in a closed form. As explained in [21], we know
that this “almost-BPS” supertube is secretly BPS, and therefore we expect to recover a
BPS solution even after the T-dualities. We first see that for L3 = 1, the base space is a
Gibbons-Hawking space with positive orientation:

Ṽ = Ṽ+ = K3 , ?dÃ = dṼ . (D.3)

The remaing metric functions are

Z̃1 =
L2

Ṽ
, Z̃2 =

L1

Ṽ
, Z̃3 = −2M +

L1L2

Ṽ
,

P̃1 = −L1

Ṽ
, P̃2 = −L2

Ṽ
, P̃3 = − 1

Ṽ
, (D.4)

µ̃ =
V

2
+
M

Ṽ
− L1L2

Ṽ 2
.

This is exactly the form of a BPS solution associated with the harmonic functions K̃I , L̃I ,
M̃ with

K̃1 = −L1 , K̃2 = −L2 , K̃3 = −1 , L̃1 = L̃2 = 0 , L̃3 = −2M , M̃ =
V

2
. (D.5)

The corresponding vector fields

w̃I = vI , ω̃ = ω (D.6)

verify the expected relations

? dw̃I = −dK̃I and ? dω = Ṽ dM̃ − M̃dṼ − 1

2
(K̃IdL̃I − L̃IdK̃I) . (D.7)
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This therefore checks that the solution for L3 = 1 is supersymmetric. The analysis above is
also consistent with the fact the starting “almost-BPS” supertube (D.2) can be recast in an
explicit BPS form through the redefinitions:

K̂3 = 2M , M̂ =
K3

2
(D.8)

These redefinitions, combined with the T-duality rules for BPS solutions (4.7), exactly re-
produce the relations (D.5).
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