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ABSTRACT

We propose a novel method for unsupervised image-to-image translation, which
incorporates a new attention module and a new learnable normalization func-
tion in an end-to-end manner. The attention module guides our model to fo-
cus on more important regions distinguishing between source and target do-
mains based on the attention map obtained by the auxiliary classifier. Unlike
previous attention-based method which cannot handle the geometric changes be-
tween domains, our model can translate both images requiring holistic changes
and images requiring large shape changes. Moreover, our new AdaLIN (Adap-
tive Layer-Instance Normalization) function helps our attention-guided model to
flexibly control the amount of change in shape and texture by learned param-
eters depending on datasets. Experimental results show the superiority of the
proposed method compared to the existing state-of-the-art models with a fixed
network architecture and hyper-parameters. Our code and datasets are available
at https://github.com/taki0112/UGATIT or https://github.com/znxlwm/UGATIT-
pytorch.

1 INTRODUCTION

Image-to-image translation aims to learn a function that maps images within two different domains.
This topic has gained a lot of attention from researchers in the fields of machine learning and com-
puter vision because of its wide range of applications including image inpainting (Pathak et al.
(2014); Iizuka et al. (2017)), super resolution (Dong et al. (2016); Kim et al. (2016)), colorization
(Zhang et al. (2016; 2017)) and style transfer (Gatys et al. (2016); Huang & Belongie (2017)). When
paired samples are given, the mapping model can be trained in a supervised manner using a con-
ditional generative model (Isola et al. (2017); Li et al. (2017a); Wang et al. (2018)) or a simple
regression model (Larsson et al. (2016); Long et al. (2015); Zhang et al. (2016)). In unsupervised
settings where no paired data is available, multiple works (Anoosheh et al. (2018); Choi et al. (2018);
Huang et al. (2018); Kim et al. (2017); Liu et al. (2017); Royer et al. (2017); Taigman et al. (2017);
Yi et al. (2017); Zhu et al. (2017)) successfully have translated images using shared latent space (Liu
et al. (2017)) and cycle consistency assumptions (Kim et al. (2017); Zhu et al. (2017)). These works
have been further developed to handle the multi-modality of the task (Huang et al. (2018)).

Despite these advances, previous methods show performance differences depending on the amount
of change in both shape and texture between domains. For example, they are successful for the
style transfer tasks mapping local texture (e.g., photo2vangogh and photo2portrait) but are typically
unsuccessful for image translation tasks with larger shape change (e.g., selfie2anime and cat2dog)
in wild images. Therefore, the pre-processing steps such as image cropping and alignment are often
required to avoid these problems by limiting the complexity of the data distributions (Huang et al.
(2018); Liu et al. (2017)). In addition, existing methods such as DRIT (Lee et al. (2018)) cannot
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Figure 1: The model architecture of U-GAT-IT. The detailed notations are described in Section
Model

acquire the desired results for both image translation preserving the shape (e.g., horse2zebra) and
image translation changing the shape (e.g., cat2dog) with the fixed network architecture and hyper-
parameters. The network structure or hyper-parameter setting needs to be adjusted for the specific
dataset.

In this work, we propose a novel method for unsupervised image-to-image translation, which in-
corporates a new attention module and a new learnable normalization function in an end-to-end
manner. Our model guides the translation to focus on more important regions and ignore minor
regions by distinguishing between source and target domains based on the attention map obtained
by the auxiliary classifier. These attention maps are embedded into the generator and discrimina-
tor to focus on semantically important areas, thus facilitating the shape transformation. While the
attention map in the generator induces the focus on areas that specifically distinguish between the
two domains, the attention map in the discriminator helps fine-tuning by focusing on the difference
between real image and fake image in target domain. In addition to the attentional mechanism, we
have found that the choice of the normalization function has a significant impact on the quality of
the transformed results for various datasets with different amounts of change in shape and texture.
Inspired by Batch-Instance Normalization(BIN) (Nam & Kim (2018)), we propose Adaptive Layer-
Instance Normalization (AdaLIN), whose parameters are learned from datasets during training time
by adaptively selecting a proper ratio between Instance normalization (IN) and Layer Normaliza-
tion (LN). The AdaLIN function helps our attention-guided model to flexibly control the amount of
change in shape and texture. As a result, our model, without modifying the model architecture or
the hyper-parameters, can perform image translation tasks not only requiring holistic changes but
also requiring large shape changes. In the experiments, we show the superiority of the proposed
method compared to the existing state-of-the-art models on not only style transfer but also object
transfiguration. The main contribution of the proposed work can be summarized as follows:
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• We propose a novel method for unsupervised image-to-image translation with a new atten-
tion module and a new normalization function, AdaLIN.

• Our attention module helps the model to know where to transform intensively by distin-
guishing between source and target domains based on the attention map obtained by the
auxiliary classifier.

• AdaLIN function helps our attention-guided model to flexibly control the amount of change
in shape and texture without modifying the model architecture or the hyper-parameters.

2 UNSUPERVISED GENERATIVE ATTENTIONAL NETWORKS WITH ADAPTIVE

LAYER-INSTANCE NORMALIZATION

Our goal is to train a function Gs→t that maps images from a source domain Xs to a target domain
Xt using only unpaired samples drawn from each domain. Our framework consists of two generators
Gs→t and Gt→s and two discriminators Ds and Dt. We integrate the attention module into both
generator and discriminator. The attention module in the discriminator guides the generator to focus
on regions that are critical to generate a realistic image. The attention module in the generator gives
attention to the region distinguished from the other domain. Here, we only explain Gs→t and Dt

(See Fig 1) as the vice versa should be straight-forward.

2.1 MODEL

2.1.1 GENERATOR

Let x ∈ {Xs, Xt} represent a sample from the source and the target domain. Our translation model
Gs→t consists of an encoder Es, a decoder Gt, and an auxiliary classifier ηs, where ηs(x) represents
the probability that x comes from Xs. Let Ek

s (x) be the k-th activation map of the encoder and

E
kij

s (x) be the value at (i, j). Inspired by CAM (Zhou et al. (2016)), the auxiliary classifier is
trained to learn the weight of the k-th feature map for the source domain, wk

s , by using the global

average pooling and global max pooling, i.e., ηs(x) = σ(Σkw
k
sΣijE

kij

s (x)). By exploiting wk
s ,

we can calculate a set of domain specific attention feature map as(x) = ws ∗ Es(x) = {wk
s ∗

Ek
s (x)|1≤k≤n}, where n is the number of encoded feature maps. Then, our translation model Gs→t

becomes equal to Gt(as(x)). Inspired by recent works that use affine transformation parameters in
normalization layers and combine normalization functions (Huang & Belongie (2017); Nam & Kim
(2018)), we equip the residual blocks with AdaLIN whose parameters, γ and β are dynamically
computed by a fully connected layer from the attention map.

AdaLIN(a,γ, β) = γ · (ρ · âI + (1− ρ) · âL) + β,

âI =
a− µI

√

σ2
I + ǫ

, âL =
a− µL

√

σ2
L + ǫ

,

ρ← clip[0,1](ρ− τ∆ρ)

(1)

where µI , µL and σI , σL are channel-wise, layer-wise mean and standard deviation respectively, γ
and β are parameters generated by the fully connected layer, τ is the learning rate and ∆ρ indicates
the parameter update vector (e.g., the gradient) determined by the optimizer. The values of ρ are
constrained to the range of [0, 1] simply by imposing bounds at the parameter update step. Generator
adjusts the value so that the value of ρ is close to 1 in the task where the instance normalization is
important and the value of ρ is close to 0 in the task where the LN is important. The value of ρ is
initialized to 1 in the residual blocks of the decoder and 0 in the up-sampling blocks of the decoder.

An optimal method to transfer the content features onto the style features is to apply Whitening
and Coloring Transform (WCT) (Li et al. (2017b)), but the computational cost is high due to the
calculation of the covariance matrix and matrix inverse. Although, the AdaIN (Huang & Belongie
(2017)) is much faster than the WCT, it is sub-optimal to WCT as it assumes uncorrelation between
feature channels. Thus the transferred features contain slightly more patterns of the content. On
the other hand, the LN (Ba et al. (2016)) does not assume uncorrelation between channels, but
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sometimes it does not keep the content structure of the original domain well because it considers
global statistics only for the feature maps. To overcome this, our proposed normalization technique
AdaLIN combines the advantages of AdaIN and LN by selectively keeping or changing the content
information, which helps to solve a wide range of image-to-image translation problems.

2.1.2 DISCRIMINATOR

Let x ∈ {Xt, Gs→t(Xs)} represent a sample from the target domain and the translated source
domain. Similar to other translation models, the discriminator Dt which is a multi-scale model
consists of an encoder EDt

, a classifier CDt
, and an auxiliary classifier ηDt

. Unlike the other
translation models, both ηDt

(x) and Dt(x) are trained to discriminate whether x comes from Xt or
Gs→t(Xs). Given a sample x, Dt(x) exploits the attention feature maps aDt

(x) = wDt
∗ EDt

(x)
using wDt

on the encoded feature maps EDt
(x) that is trained by ηDt

(x). Then, our discriminator
Dt(x) becomes equal to CDt

(aDt
(x)).

2.2 LOSS FUNCTION

The full objective of our model comprises four loss functions. Here, instead of using the vanilla
GAN objective, we used the Least Squares GAN (Mao et al. (2017)) objective for stable training.

Adversarial loss An adversarial loss is employed to match the distribution of the translated images
to the target image distribution:

Ls→t
lsgan =(Ex∼Xt

[(Dt(x))
2] + Ex∼Xs

[(1−Dt(Gs→t(x)))
2]). (2)

Cycle loss To alleviate the mode collapse problem, we apply a cycle consistency constraint to the
generator. Given an image x ∈ Xs, after the sequential translations of x from Xs to Xt and from
Xt to Xs, the image should be successfully translated back to the original domain:

Ls→t
cycle = Ex∼Xs

[|x−Gt→s(Gs→t(x)))|1]. (3)

Identity loss To ensure that the color distributions of input image and output image are similar,
we apply an identity consistency constraint to the generator. Given an image x ∈ Xt, after the
translation of x using Gs→t, the image should not change.

Ls→t
identity = Ex∼Xt

[|x−Gs→t(x)|1]. (4)

CAM loss By exploiting the information from the auxiliary classifiers ηs and ηDt
, given an image

x ∈ {Xs, Xt}. Gs→t and Dt get to know where they need to improve or what makes the most
difference between two domains in the current state:

Ls→t
cam = −(Ex∼Xs

[log(ηs(x))] + Ex∼Xt
[log(1− ηs(x))]), (5)

LDt

cam = Ex∼Xt
[(ηDt

(x))2] + Ex∼Xs
[(1− ηDt

(Gs→t(x))
2]. (6)

Full objective Finally, we jointly train the encoders, decoders, discriminators, and auxiliary classi-
fiers to optimize the final objective:

min
Gs→t,Gt→s,ηs,ηt

max
Ds,Dt,ηDs ,ηDt

λ1Llsgan + λ2Lcycle + λ3Lidentity + λ4Lcam, (7)

where λ1 = 1, λ2 = 10, λ3 = 10, λ4 = 1000. Here, Llsgan = Ls→t
lsgan + Lt→s

lsgan and the other losses

are defined in the similar way (Lcycle, Lidentity , and Lcam)
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(a) (b) (c) (d) (e) (f)

Figure 2: Visualization of the attention maps and their effects shown in the ablation experiments:
(a) Source images, (b) Attention map of the generator, (c-d) Local and global attention maps of the
discriminator, respectively. (e) Our results with CAM, (f) Results without CAM.

3 EXPERIMENTS

3.1 BASELINE MODEL

We have compared our method with various models including CycleGAN (Zhu et al. (2017)), UNIT
(Liu et al. (2017)), MUNIT (Huang et al. (2018)), DRIT (Lee et al. (2018)), AGGAN (Mejjati et al.
(2018)), and CartoonGAN (Chen et al. (2018)). All the baseline methods are implemented using the
author’s code.

3.2 DATASET

We have evaluated the performance of each method with five unpaired image datasets including
four representative image translation datasets and a newly created dataset consisting of real photos
and animation artworks, i.e., selfie2anime. All images are resized to 256 x 256 for training. See
Appendix C for each dataset for our experiments.

3.3 EXPERIMENT RESULTS

We first analyze the effects of attention module and AdaLIN in the proposed model. We then com-
pare the performance of our model against the other unsupervised image translation models listed
in the previous section. To evaluate, the visual quality of translated images, we have conducted a
user study. Users are asked to select the best image among the images generated from five different
methods. More examples of the results comparing our model with other models are included in the
supplementary materials.

3.3.1 CAM ANALYSIS

First, we conduct an ablation study to confirm the benefit from the attention modules used in both
generator and discriminator. As shown in Fig 2 (b), the attention feature map helps the generator to
focus on the source image regions that are more discriminative from the target domain, such as eyes
and mouth. Meanwhile, we can see the regions where the discriminator concentrates its attention to
determine whether the target image is real or fake by visualizing local and global attention maps of
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(a) (b) (c) (d) (e) (f)

Figure 3: Comparison of the results using each normalization function: (a) Source images, (b) Our
results, (c) Results only using IN in decoder with CAM, (d) Results only using LN in decoder with
CAM, (e) Results only using AdaIN in decoder with CAM, (f) Results only using GN in decoder
with CAM.

the discriminator as shown in Fig 2 (c) and (d), respectively. The generator can fine-tune the area
where the discriminator focuses on with those attention maps. Note that we incorporate both global
and local attention maps from two discriminators having different size of receptive field. Those
maps can help the generator to capture the global structure (e.g., face area and near of eyes) as well
as the local regions. With this information some regions are translated with more care. The results
with the attention module shown in Fig 2 (e) verify the advantageous effect of exploiting attention
feature map in an image translation task. On the other hand, one can see that the eyes are misaligned,
or the translation is not done at all in the results without using attention module as shown in Fig 2
(f).

3.3.2 ADALIN ANALYSIS

As described in Appendix B, we have applied the AdaLIN only to the decoder of the generator.
The role of the residual blocks in the decoder is to embed features, and the role of the up-sampling
convolution blocks in the decoder is to generate target domain images from the embedded features.
If the learned value of the gate parameter ρ is closer to 1, it means that the corresponding layers rely
more on IN than LN. Likewise, if the learned value of ρ is closer to 0, it means that the corresponding
layers rely more on LN than IN. As shown in Fig 3 (c), in the case of using only IN in the decoder, the
features of the source domain (e.g., earrings and shades around cheekbones) are well preserved due
to channel-wise normalized feature statistics used in the residual blocks. However, the amount of
translation to target domain style is somewhat insufficient since the global style cannot be captured
by IN of the up-sampling convolution blocks. On the other hand, As shown in Fig 3 (d), if we
use only LN in the decoder, target domain style can be transferred sufficiently by virtue of layer-
wise normalized feature statistics used in the up-sampling convolution. But the features of the
source domain image are less preserved by using LN in the residual blocks. This analysis of two
extreme cases tells us that it is beneficial to rely more on IN than LN in the feature representation
layers to preserve semantic characteristics of source domain, and the opposite is true for the up-
sampling layers that actually generate images from the feature embedding. Therefore, the proposed
AdaLIN which adjusts the ratio of IN and LN in the decoder according to source and target domain
distributions is more preferable in unsupervised image-to-image translation tasks. Additionally, the
Fig 3 (e), (f) are the results of using the AdaIN and Group Normalization (GN) (Wu & He (2018))
respectively, and our methods are showing better results compared to these.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Visual comparisons on the five datasets. From top to bottom: selfie2anime, horse2zebra,
cat2dog, photo2portrait, and photo2vangogh. (a)Source images, (b)U-GAT-IT, (c)CycleGAN,
(d)UNIT, (e)MUNIT, (f)DRIT, (g)AGGAN

Table 1: Kernel Inception Distance×100±std.×100 for ablation our model. Lower is better. There
are some notations; GN: Group Normalization, G CAM: CAM of generator, D CAM: CAM of
discriminator

Model selfie2anime anime2selfie

U-GAT-IT 11.61 ± 0.57 11.52 ± 0.57

U-GAT-IT w/ IN 13.64 ± 0.76 13.58 ± 0.8

U-GAT-IT w/ LN 12.39 ± 0.61 13.17 ± 0.8

U-GAT-IT w/ AdaIN 12.29 ± 0.78 11.81 ± 0.77

U-GAT-IT w/ GN 12.76 ± 0.64 12.30 ± 0.77

U-GAT-IT w/o CAM 12.85 ± 0.82 14.06 ± 0.75

U-GAT-IT w/o G CAM 12.33 ± 0.68 13.86 ± 0.75

U-GAT-IT w/o D CAM 12.49 ± 0.74 13.33 ± 0.89

Also, as shown in Table 1, we demonstrate the performance of the attention module and AdaLIN
in the selfie2anime dataset through an ablation study using Kernel Inception Distance (KID)
(Bińkowski et al. (2018)). Our model achieves the lowest KID values. Even if the attention mod-
ule and AdaLIN are used separately, we can see that our models perform better than the others.
However, when used together, the performance is even better.

3.3.3 QUALITATIVE EVALUATION

For qualitative evaluation, we have also conducted a perceptual study. 135 participants are shown
translated results from different methods including the proposed method with source image, and
asked to select the best translated image to target domain. We inform only the name of target
domain, i.e., animation, dog, and zebra to the participants. But, some example images of target
domain are provided for the portrait and Van Gogh datasets as minimum information to ensure
proper judgments. Table 2 shows that the proposed method achieved significantly higher score
except for photo2vangogh but comparable in human perceptual study compared to other methods.
In Fig 4, we present the image translation results from each method for performance comparisons.
U-GAT-IT can generate undistorted image by focusing more on the distinct regions between source
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Table 2: Preference score on translated images by user study.

Model selfie2anime horse2zebra cat2dog photo2portrait photo2vangogh

U-GAT-IT 73.15 73.56 58.22 30.59 48.96

CycleGAN 20.07 23.07 6.19 26.59 27.33

UNIT 1.48 0.85 18.63 32.11 11.93

MUNIT 3.41 1.04 14.48 8.22 2.07

DRIT 1.89 1.48 2.48 2.48 9.70

Table 3: Kernel Inception Distance×100±std.×100 for difference image translation mode. Lower
is better.

Model selfie2anime horse2zebra cat2dog photo2portrait photo2vangogh

U-GAT-IT 11.61 ± 0.57 7.06 ± 0.8 7.07 ± 0.65 1.79 ± 0.34 4.28 ± 0.33

CycleGAN 13.08 ± 0.49 8.05 ± 0.72 8.92 ± 0.69 1.84 ± 0.34 5.46 ± 0.33

UNIT 14.71 ± 0.59 10.44 ± 0.67 8.15 ± 0.48 1.20 ± 0.31 4.26 ± 0.29

MUNIT 13.85 ± 0.41 11.41 ± 0.83 10.13 ± 0.27 4.75 ± 0.52 13.08 ± 0.34

DRIT 15.08 ± 0.62 9.79 ± 0.62 10.92 ± 0.33 5.85 ± 0.54 12.65 ± 0.35

AGGAN 14.63 ± 0.55 7.58 ± 0.71 9.84 ± 0.79 2.33 ± 0.36 6.95 ± 0.33

CartoonGAN 15.85 ± 0.69 - - - -

Model anime2selfie zebra2horse dog2cat portrait2photo vangogh2photo

U-GAT-IT 11.52 ± 0.57 7.47 ± 0.71 8.15 ± 0.66 1.69 ± 0.53 5.61 ± 0.32

CycleGAN 11.84 ± 0.74 8.0 ± 0.66 9.94 ± 0.36 1.82 ± 0.36 4.68 ± 0.36

UNIT 26.32 ± 0.92 14.93 ± 0.75 9.81 ± 0.34 1.42 ± 0.24 9.72 ± 0.33

MUNIT 13.94 ± 0.72 16.47 ± 1.04 10.39 ± 0.25 3.30 ± 0.47 9.53 ± 0.35

DRIT 14.85 ± 0.60 10.98 ± 0.55 10.86 ± 0.24 4.76 ± 0.72 7.72 ± 0.34

AGGAN 12.72 ± 1.03 8.80 ± 0.66 9.45 ± 0.64 2.19 ± 0.40 5.85 ± 0.31

and target domain by exploiting the attention modules. Note that the regions around heads of two
zebras or eyes of dog are distorted in the results from CycleGAN. Moreover, translated results
using U-GAT-IT are visually superior to other methods while preserving semantic features of source
domain. It is worth noting that the results from MUNIT and DRIT are much dissimilar to the source
images since they generate images with random style codes for diversity. Furthermore, it should be
emphasized that U-GAT-IT have applied with the same network architecture and hyper-parameters
for all of the five different datasets, while the other algorithms are trained with preset networks or
hyper-parameters. Through the results of user study, we show that the combination of our attention
module and AdaLIN makes our model more flexible.

3.3.4 QUANTITATIVE EVALUATION

For quantitative evaluation, we use the recently proposed KID, which computes the squared Max-
imum Mean Discrepancy between the feature representations of real and generated images. The
feature representations are extracted from the Inception network (Szegedy et al. (2016)). In con-
trast to the Fréchet Inception Distance (Heusel et al. (2017)), KID has an unbiased estimator, which
makes it more reliable, especially when there are fewer test images than the dimensionality of the
inception features. The lower KID indicates that the more shared visual similarities between real
and generated images (Mejjati et al. (2018)). Therefore, if well translated, the KID will have a
small value in several datasets. Table 3 shows that the proposed method achieved the lowest KID
scores except for the style transfer tasks like photo2vangogh and photo2portrait. However, there is
no big difference from the lowest score. Also, unlike UNIT and MUNIT, we can see that the source
→ target, target → source translations are both stable. U-GAT-IT shows even lower KID than the
recent attention-based method, AGGAN. AGGAN yields poor performance for the transformation
with shape change such as dog2cat and anime2selfie unlike the U-GAT-IT, the attention module of
which focuses on distinguishing not between background and foreground but differences between
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two domains. CartoonGAN, as shown in the supplementary materials, has only changed the over-
all color of the image to an animated style, but compared to selfie, the eye, which is the biggest
characteristic of animation, has not changed at all. Therefore, CartoonGAN has the higher KID.

4 CONCLUSIONS

In this paper, we have proposed unsupervised image-to-image translation (U-GAT-IT), with the
attention module and AdaLIN which can produce more visually pleasing results in various datasets
with a fixed network architecture and hyper-parameter. Detailed analysis of various experimental
results supports our assumption that attention maps obtained by an auxiliary classifier can guide
generator to focus more on distinct regions between source and target domain. In addition, we have
found that the Adaptive Layer-Instance Normalization (AdaLIN) is essential for translating various
datasets that contains different amount of geometry and style changes. Through experiments, we
have shown that the superiority of the proposed method compared to the existing state-of-the-art
GAN-based models for unsupervised image-to-image translation tasks.
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A RELATED WORKS

A.1 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GAN)(Goodfellow et al. (2014)) have achieved impressive results
on a wide variety of image generation(Arjovsky et al. (2017); Berthelot et al. (2017); Karras et al.
(2018); Zhao et al. (2017)), image inpainting(Iizuka et al. (2017)), image translation(Choi et al.
(2018); Huang et al. (2018); Isola et al. (2017); Liu et al. (2017); Wang et al. (2018); Zhu et al.
(2017)) tasks. In training, a generator aims to generate realistic images to fool a discriminator while
the discriminator tries to distinguish the generated images from real images. Various multi-stage
generative models(Karras et al. (2018); Wang et al. (2018)) and better training objectives(Arjovsky
et al. (2017); Berthelot et al. (2017); Mao et al. (2017); Zhao et al. (2017)) have been proposed to
generate more realistic images. In this paper, our model uses GAN to learn the transformation from
a source domain to a significantly different target domain, given unpaired training data.

A.2 IMAGE-TO-IMAGE TRANSLATION

Isola et al.(Isola et al. (2017)) have proposed a conditional GAN-based unified framework for
image-to-image translation. High-resolution version of the pix2pix have been proposed by Wang
et al.(Wang et al. (2018)) Recently, there have been various attempts (Huang et al. (2018); Kim et al.
(2017); Liu et al. (2017); Taigman et al. (2017); Zhu et al. (2017)) to learn image translation from
an unpaired dataset. CycleGAN (Zhu et al. (2017)) have proposed a cyclic consistence loss for the
first time to enforce one-to-one mapping. UNIT (Liu et al. (2017)) assumed a shared-latent space
to tackle unsupervised image translation. However, this approach performs well only when the two
domains have similar patterns. MUNIT (Huang et al. (2018)) makes it possible to extend to many-
to-many mapping by decomposing the image into content code that is domain-invariant and a style
code that captures domain-specific properties. MUNIT synthesizes the separated content and style
to generate the final image, where the image quality is improved by using adaptive instance normal-
ization (Huang & Belongie (2017)). With the same purpose as MUNIT, DRIT (Lee et al. (2018))
decomposes images into content and style, so that many-to-many mapping is possible. The only dif-
ference is that content space is shared between the two domains using the weight sharing and content
discriminator which is auxiliary classifier. Nevertheless, the performance of these methods (Huang
et al. (2018); Liu et al. (2017); Lee et al. (2018)) are limited to the dataset that contains well-aligned
images between source and target domains. In addition, AGGAN (Mejjati et al. (2018)) improved
the performance of image translation by using attention mechanism to distinguish between fore-
ground and background. However, the attention module in AGGAN cannot help to transform the
object’s shape in the image. Although, CartoonGAN (Chen et al. (2018)) shows good performance
for animation style translation, it changes only the color, tone, and thickness of line in the image.
Therefore it is not suitable for the shape change in the image.

A.3 CLASS ACTIVATION MAP

Zhou et al. (Zhou et al. (2016)) have proposed Class Activation Map (CAM) using global average
pooling in a CNN. The CAM for a particular class shows the discriminative image regions by the
CNN to determine that class. In this work, our model leads to intensively change discriminative
image regions provided by distinguishing two domains using the CAM approach. However, not
only global average pooling is used, but global max pooling is also used to make the results better.

A.4 NORMALIZATION

Recent neural style transfer researches have shown that CNN feature statistics (e.g., Gram matrix
(Gatys et al. (2016)), mean and variance (Huang & Belongie (2017)) can be used as direct descriptors
for image styles. In particular, Instance Normalization (IN) has the effect of removing the style vari-
ation by directly normalizing the feature statistics of the image and is used more often than Batch
Normalization (BN) or Layer Normalization (LN) in style transfer. However, when normalizing
images, recent studies use Adaptive Instance Normalization (AdaIN) (Huang & Belongie (2017)),
Conditional Instance Normalization (CIN) (Dumoulin et al. (2017)), and Batch-Instance Normaliza-
tion (BIN) (Nam & Kim (2018)) instead of using IN alone. In our work, we propose an Adaptive
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Layer-Instance Normalization (AdaLIN) function to adaptively select a proper ratio between IN and
LN. Through the AdaLIN, our attention-guided model can flexibly control the amount of change in
shape and texture.

B IMPLEMENTATION DETAILS

B.1 NETWORK ARCHITECTURE

The network architectures of U-GAT-IT are shown in Table 4, 5, and 6. The encoder of the gener-
ator is composed of two convolution layers with the stride size of two for down-sampling and four
residual blocks. The decoder of the generator consists of four residual blocks and two up-sampling
convolution layers with the stride size of one. Note that we use the instance normalization for the en-
coder and AdaLIN for the decoder, respectively. In general, LN does not perform better than batch
normalization in classification problems (Wu & He (2018)). Since the auxiliary classifier is con-
nected from the encoder in the generator, to increase the accuracy of the auxiliary classifier we use
the instance normalization(batch normalization with a mini-batch size of 1) instead of the AdaLIN.
Spectral normalization (Miyato et al. (2018)) is used for the discriminator. We employ two different
scales of PatchGAN (Isola et al. (2017)) for the discriminator network, which classifies whether
local (70 x 70) and global (286 x 286) image patches are real or fake. For the activation function,
we use ReLU in the generator and leaky-ReLU with a slope of 0.2 in the discriminator.

B.2 TRAINING

All models are trained using Adam (Kingma & Ba (2015)) with β1=0.5 and β2=0.999. For data
augmentation, we flipped the images horizontally with a probability of 0.5, resized them to 286 x
286, and random cropped them to 256 x 256. The batch size is set to one for all experiments. We
train all models with a fixed learning rate of 0.0001 until 500,000 iterations and linearly decayed up
to 1,000,000 iterations. We also use a weight decay at rate of 0.0001. The weights are initialized
from a zero-centered normal distribution with a standard deviation of 0.02.

C DATASET DETAILS

selfie2anime The selfie dataset contains 46,836 selfie images annotated with 36 different attributes.
We only use photos of females as training data and test data. The size of the training dataset is 3400,
and that of the test dataset is 100, with the image size of 256 x 256. For the anime dataset, we have
firstly retrieved 69,926 animation character images from Anime-Planet1. Among those images,
27,023 face images are extracted by using an anime-face detector2. After selecting only female
character images and removing monochrome images manually, we have collected two datasets of
female anime face images, with the sizes of 3400 and 100 for training and test data respectively,
which is the same numbers as the selfie dataset. Finally, all anime face images are resized to 256 x
256 by applying a CNN-based image super-resolution algorithm3.

horse2zebra and photo2vangogh These datasets are used in CycleGAN (Zhu et al. (2017)). The
training dataset size of each class: 1,067 (horse), 1,334 (zebra), 6,287 (photo), and 400 (vangogh).
The test datasets consist of 120 (horse), 140 (zebra), 751 (photo), and 400 (vangogh). Note that the
training data and the test data of vangogh class are the same.

cat2dog and photo2portrait These datasets are used in DRIT (Lee et al. (2018)). The numbers
of data for each class are 871 (cat), 1,364 (zebra), 6,452 (photo), and 1,811 (vangogh). We use
120 (horse), 140 (zebra), 751 (photo), and 400 (vangogh) randomly selected images as test data,
respectively.

1http://www.anime-planet.com/
2https://github.com/nagadomi/lbpcascade animeface
3https://github.com/nagadomi/waifu2x
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D ADDITIONAL EXPERIMENTAL RESULTS

In addition to the results presented in the paper, we show supplement generation results for the five
datasets in Figs 5, 6, 7, 8, 9, 10, 11, and 12.

Table 4: The detail of generator architecture.

Part Input→ Output Shape Layer Information

Encoder Down-sampling (h, w, 3)→ (h, w, 64) CONV-(N64, K7, S1, P3), IN, ReLU

(h, w, 64)→ (h2 , w
2 , 128) CONV-(N128, K3, S2, P1), IN, ReLU

(h2 , w
2 , 128)→ (h4 , w

4 , 256) CONV-(N256, K3, S2, P1), IN, ReLU

Encoder Bottleneck (h4 , w
4 , 256)→ (h4 , w

4 , 256) ResBlock-(N256, K3, S1, P1), IN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) ResBlock-(N256, K3, S1, P1), IN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) ResBlock-(N256, K3, S1, P1), IN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) ResBlock-(N256, K3, S1, P1), IN, ReLU

CAM of Generator
(h4 , w

4 , 256)→ (h4 , w
4 , 512)

Global Average & Max Pooling,
MLP-(N1), Multiply the weights of MLP

(h4 , w
4 , 512)→ (h4 , w

4 , 256) CONV-(N256, K1, S1), ReLU

γ, β (h4 , w
4 , 256)→ (1, 1, 256) MLP-(N256), ReLU

(1, 1, 256)→ (1, 1, 256) MLP-(N256), ReLU
(1, 1, 256)→ (1, 1, 256) MLP-(N256), ReLU

Decoder Bottleneck (h4 , w
4 , 256)→ (h4 , w

4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaILN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaILN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaILN, ReLU

(h4 , w
4 , 256)→ (h4 , w

4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaILN, ReLU

Decoder Up-sampling (h4 , w
4 , 256)→ (h2 , w

2 , 128) Up-CONV-(N128, K3, S1, P1), LIN, ReLU

(h2 , w
2 , 128)→ (h, w, 64) Up-CONV-(N64, K3, S1, P1), LIN, ReLU

(h, w, 64)→ (h, w, 3) CONV-(N3, K7, S1, P3), Tanh

Table 5: The detail of local discriminator.

Part Input→ Output Shape Layer Information

Encoder Down-sampling (h, w, 3)→ (h2 , w
2 , 64) CONV-(N64, K4, S2, P1), SN, Leaky-ReLU

(h2 , w
2 , 64)→ (h4 , w

4 , 128) CONV-(N128, K4, S2, P1), SN, Leaky-ReLU

(h4 , w
4 , 128)→ (h8 , w

8 , 256) CONV-(N256, K4, S2, P1), SN, Leaky-ReLU

(h8 , w
8 , 256)→ (h8 , w

8 , 512) CONV-(N512, K4, S1, P1), SN, Leaky-ReLU

CAM of Discriminator
(h8 , w

8 , 512)→ (h8 , w
8 , 1024)

Global Average & Max Pooling,
MLP-(N1), Multiply the weights of MLP

(h8 , w
8 , 1024)→ (h8 , w

8 , 512) CONV-(N512, K1, S1), Leaky-ReLU

Classifier (h8 , w
8 , 512)→ (h8 , w

8 , 1) CONV-(N1, K4, S1, P1), SN
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Table 6: The detail of global discriminator.

Part Input→ Output Shape Layer Information

Encoder Down-sampling (h, w, 3)→ (h2 , w
2 , 64) CONV-(N64, K4, S2, P1), SN, Leaky-ReLU

(h2 , w
2 , 64)→ (h4 , w

4 , 128) CONV-(N128, K4, S2, P1), SN, Leaky-ReLU

(h4 , w
4 , 128)→ (h8 , w

8 , 256) CONV-(N256, K4, S2, P1), SN, Leaky-ReLU

(h8 , w
8 , 256)→ ( h

16 , w
16 , 512) CONV-(N512, K4, S2, P1), SN, Leaky-ReLU

( h
16 , w

16 , 512)→ ( h
32 , w

32 , 1024) CONV-(N1024, K4, S2, P1), SN, Leaky-ReLU

( h
32 , w

32 , 1024)→ ( h
32 , w

32 , 2048) CONV-(N2048, K4, S1, P1), SN, Leaky-ReLU

CAM of Discriminator
( h
32 , w

32 , 2048)→ ( h
32 , w

32 , 4096)
Global Average & Max Pooling,

MLP-(N1), Multiply the weights of MLP

( h
32 , w

32 , 4096)→ ( h
32 , w

32 , 2048) CONV-(N2048, K1, S1), Leaky-ReLU

Classifier ( h
32 , w

32 , 2048)→ ( h
32 , w

32 , 1) CONV-(N1, K4, S1, P1), SN

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 5: Visual comparisons of the selfie2anime with attention features maps. (a) Source images,
(b) Attention map of the generator, (c-d) Local and global attention maps of the discriminators, (e)
Our results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang
et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)), (k) CartoonGAN
(Chen et al. (2018)).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6: Visual comparisons of the anime2selfie with attention features maps. (a) Source images,
(b) Attention map of the generator, (c-d) Local and global attention maps of the discriminators, (e)
Our results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang
et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7: Visual comparisons of the horse2zebra with attention features maps. (a) Source images,
(b) Attention map of the generator, (c-d) Local and global attention maps of the discriminators, (e)
Our results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang
et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8: Visual comparisons of the zebra2horse with attention features maps. (a) Source images,
(b) Attention map of the generator, (c-d) Local and global attention maps of the discriminators, (e)
Our results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang
et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9: Visual comparisons of the cat2dog with attention features maps. (a) Source images, (b)
Attention map of the generation, (c-d) Local and global attention maps of the discriminators, (e) Our
results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang et al.
(2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 10: Visual comparisons of the dog2cat with attention features maps. (a) Source images, (b)
Attention map of the generation, (c-d) Local and global attention maps of the discriminators, (e) Our
results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h) MUNIT (Huang et al.
(2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 11: Visual comparisons of the photo2vangogh with attention features maps. (a) Source
images, (b) Attention map of the generation, (c-d) Local and global attention maps of the discrimi-
nators, respectively, (e) Our results, (f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)),
(h) MUNIT (Huang et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 12: Visual comparisons of the photo2portrait with attention features maps. (a) Source images,
(b) Attention map of the generator, (c-d) Local and global attention maps of the discriminators,
respectively, (e) Our results,(f) CycleGAN (Zhu et al. (2017)), (g) UNIT (Liu et al. (2017)), (h)
MUNIT (Huang et al. (2018)), (i) DRIT (Lee et al. (2018)), (j) AGGAN (Mejjati et al. (2018)).
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