
147

U-Net/SLE: A Java-based user-customizable

virtual network interface

Matt Welsh ∗, David Oppenheimer and
David Culler

Computer Science Division, University of California,

Berkeley, Berkeley, CA 94720, USA

Tel.:+1 510 643 7566; Fax:+1 510 642 5775;

E-mail: {mdw,davidopp,culler}@cs.berkeley.edu

We describe U-Net/SLE (Safe Language Extensions), a

user-level network interface architecture which enables

per-application customization of communication seman-

tics through downloading of user extension applets, imple-

mented as Java classfiles, to the network interface. This ar-

chitecture permits applications to safely specify code to be

executed within the NI on message transmission and recep-

tion. By leveraging the existing U-Net model, applications

may implement protocol code at the user level, within the

NI, or using some combination of the two. Our current im-

plementation, using the Myricom Myrinet interface and a

small Java Virtual Machine subset, allows host communi-

cation overhead to be reduced and improves the overlap of

communication and computation during protocol processing.

1. Introduction

Recent work in high-speed interconnects for dis-

tributed and parallel computing systems, particularly

workstation clusters, has focused on development of

network interfaces enabling low-latency and high-

bandwidth communication. Often, these systems by-

pass the operating system kernel to achieve high per-

formance; however, the features and functionality pro-

vided by these different systems vary widely. Several

systems, such as U-Net [14] and Active Messages [15],

virtualize the network interface to provide multiple

applications on the same host with direct, protected

network access. Other systems, including Fast Mes-

sages [10] and BIP [11], eschew sharing the network in

lieu of design simplicity and high performance. In ad-

dition, fast network interfaces often differ with respect

*Corresponding author.

to the communication semantics they provide, rang-

ing from “raw” access (U-Net) to token-based flow-

control (Fast Messages) to a full-featured RPC mech-

anism (Active Messages). Complicating matters fur-

ther is the spectrum of network adapter hardware upon

which these systems are built, ranging from simple,

fast NICs which require host intervention to multiplex

the hardware [18] to advanced NICs incorporating a

programmable co-processor [14].

Application programmers are faced with a wide

range of functionality choices given the many fast net-

working layers currently available: some applications

may be able to take advantage of, say, the flow-control

strategy implemented in Berkeley Active Messages,

while others (such as continuous media applications)

may wish to implement their own communication se-

mantics entirely at user level. Additionally, the jury

is still out on where certain features (such as flow-

control and retransmission) are best implemented. It

is tempting to base design choices on the results of

microbenchmarks, such as user-to-user round-trip la-

tency, but recent studies [7] have hinted that other fac-

tors, such as host overhead, are far more important in

determining application-level performance.

Given the myriad of potential application needs, it

may seem attractive to design for the lowest common

denominator of network interface options, namely, the

interface which provides only fast protected access to

the network without implementing other features, such

as RPC or flow-control, below the user level. This de-

sign enables applications to implement protocols en-

tirely at user level and does not restrict communica-

tion semantics to some arbitrary set of “built-in” fea-

tures. However, experience has shown [5] that in the

interest of reducing host overhead, interrupts, and I/O

bus transfers, it may be beneficial to perform some

protocol processing within the network interface itself,

for example on a dedicated network co-processor [4].

Such a system could be used to implement a multi-

cast tree directly on the NI, allowing data to be retrans-

mitted down branches of the tree without intervention

of the user application, eliminating overheads for I/O

Scientific Programming 7 (1999) 147–156

ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

148 M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface

bus transfer and context switch. Another potential ap-

plication is packet-specified receive buffers, in which

the header of an incoming packet contains the buffer

address in which the payload should be stored. Being

able to determine the packet destination buffer address

before any I/O DMA occurs enables true zero-copy

as long as the sender is trusted to specify receive ad-

dresses.

A number of systems have incorporated these NI-

side features in an ad hoc manner – it would seem de-

sirable to have a consistent and universal model for fast

network access which subsumes all of these features.

We have designed an implemented U-Net/SLE (Safe

Language Extensions), a system which couples the U-

Net user-level network interface architecture with user

extensibility by allowing the user to download cus-

tomized packet-processing code, in the form of Java

applets, into the NI. With this design, it is possible

for multiple user applications to independently cus-

tomize their interface with the U-Net architecture with-

out compromising protection or performance. Applica-

tions which are content with the standard model pro-

vided by U-Net are able to use “direct” access and are

not penalized for features provided by the underlying

system which they do not use.

With the U-Net/SLE model, for example, it is pos-

sible for an application to implement specialized flow-

control and retransmission code as a Java applet which

is executed on the network interface. For instance, the

semantics of the Active Messages layer could be im-

plemented as a combination of Java and user-level li-

brary code. Those applications which require Active

Messages may use those features without forcing all

applications on the same host to go through this in-

terface, while still being able to take advantage of NI-

level processing rather than pushing all protocol code

to user level.

We have built a prototype of the U-Net/SLE ar-

chitecture using the Myricom SBus Myrinet inter-

face (which includes a programmable co-processor, the

LanAI) and JIVE, a subset of the Java Virtual Machine.

The key contributions of this paper are the defini-

tion of a programmatic network interface architecture

in which NIC functionality is directly exposed to user

applications; the exploitation of this architecture for

user customization of network interface behavior; and

analysis of Java as a safe language for user extensions

executed in the critical path of communication.

Section 2 of this paper describes the U-Net/SLE de-

sign in more detail. Section 3 describes JIVE, our im-

plementation of the Java Virtual Machine used in U-

Fig. 1. U-Net endpoint data structure.

Net/SLE. Section 4 summarizes the performance of

our prototype, while Section 5 describes related work.

Section 6 concludes and raises issues for future work.

2. Design and implementation

U-Net/SLE is based on U-Net [14], a user-level

network interface architecture which multiplexes the

NI hardware between multiple applications such that

each application has transparent, direct, protected ac-

cess to the network. U-Net may be implemented either

in hardware, software, or a combination of both, and

does not presume any particular NIC design. On NICs

with a programmable co-processor, for instance, U-Net

multiplexing/demultiplexing functions may be imple-

mented directly on the co-processor, while on a non-

programmable NIC a protected co-routine on the host

may be used to enforce protection.

In the U-Net model an endpoint serves as an applica-

tion’s interface to the network and consists of a buffer

area and transmit, receive, and free buffer queues (see

Fig. 1). The buffer area is a pinned region of physical

host RAM mapped into the user’s address space; in or-

der to ensure that the NI may perform network buffer

DMA at any time, all transmit and receive buffers are

located in this region.1 In order to transmit data, the

user constructs the data in the buffer area and pushes

a descriptor on the transmit queue indicating the loca-

tion and size of the data to be transmitted as well as

a channel tag, which indicates the intended recipient

of the data. U-Net transmits the data and sets a flag in

the transmit queue entry when complete. When data

arrives from the network, U-Net determines the recipi-

ent endpoint for the packet, pops a buffer address from

that endpoint’s free buffer queue and transfers the data

1The U-Net/MM architecture [20] extends this model to permit

arbitrary virtual-memory buffers to be used.

M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface 149

into the buffer. Once the entire PDU (which may span
multiple receive buffers) has arrived, U-Net pushes a
descriptor onto the user receive queue indicating the
size, buffer address(es), and source channel tag of the
data. As an optimization, small messages may fit en-
tirely within a receive queue descriptor. The user may
poll the receive queue or register an upcall (e.g., a sig-
nal handler) to be invoked when new data arrives.

U-Net/SLE allows each user endpoint to be associ-
ated with a Java classfile implementing the user exten-

sion applet for that endpoint. This applet consists of
a single class which must implement three methods: a
class constructor, doTx (invoked when a user pushes
an entry onto the transmit queue), and doRx (invoked
when a packet arrives for the given endpoint). In addi-
tion the class must contain the field RxBuf, an unal-
located array of byte. This array is initialized by U-
Net/SLE to point to a temporary buffer used for data
reception. When an endpoint is created, if the user has
supplied a classfile it is loaded into the network in-
terface, parsed, and initialized by executing the applet
constructor. This constructor could, for example, allo-
cate array storage for future outgoing network packets,
or initialize counters.

During normal operation, U-Net/SLE polls the trans-
mit queues for each user endpoint while simultane-
ously checking for incoming data from the network.
When a user pushes a descriptor onto their transmit
queue, U-Net/SLE first checks if the endpoint has a
classfile associated with it. If not, U-Net/SLE transmits
the data as usual. Otherwise, the applet doTx method
is invoked with three arguments: the length of the data
to be transmitted, the destination channel, and the off-
set into the user’s buffer area at which the payload re-
sides. The doTx method may then inspect and mod-
ify the packet contents before transmitting it to the net-
work (if at all). Multiple packets may be injected into
the network as a result of the doTx call.

Similarly, when data arrives from the network, U-
Net/SLE first determines the destination endpoint. If
this endpoint has a classfile associated with it, the ap-
plet’s doRx method is invoked with the packet length
and source channel as arguments. The packet at this
point resides in the applet’s RxBuf buffer, although
implementations may choose not to implement this
feature (if, for example, a direct network-to-host DMA
engine is available). This method may process the
packet contents, allocate and fill user free buffers, push
descriptors into the user’s receive queue, or generate
and transmit new network messages. If no applet is as-
sociated with this endpoint the data is pushed to the
user application as described above.

Native methods are provided for applets to DMA

data to and from the user’s host buffer area, push a

packet to the network, allocate user free buffers, and fill

in user receive FIFO entries. The exact nature of these

native methods depends on the facilities provided by

the NIC; for example, if separate transmit and receive

DMA channels are available, they could be managed

independently by different native methods.

These native methods enforce protection between

user applets and in essence virtualize the network inter-

face resources themselves (such as memory and DMA

channels). In effect this technique exposes a program-

matic interface to the NIC which is a lower-level ab-

straction than either an endpoint data structure (as in

the case of U-Net) or a message-passing API (such

as Active Messages). This allows user applications

and extension applets to exploit the core subcompo-

nents of the NIC to their immediate advantage, while

U-Net/SLE handles virtualization, protection, and re-

source allocation. Higher-level abstractions (such as

message passing, memory channels, and a wide vari-

ety of network protocols) can be easily be constructed

from the programmatic interface in an application-

specific manner; different applications on the same ma-

chine can implement different communication abstrac-

tions on the same NIC.

2.1. Myrinet prototype implementation

Our prototype implementation uses the Myricom

Myrinet SBus interface, which incorporates 256K of

SRAM and a 37 MHz programmable processor (the

LanAI), with a raw link speed of 160 MBytes/sec. The

host is a 167 MHz UltraSPARC workstation running

Solaris 2.6. U-Net/SLE is implemented directly on the

LanAI processor, with the raw U-Net functionality be-

ing very similar to that of the FORE Systems SBA-

200/PCA-200 implementations described in [14,19].

JIVE, our implementation of the Java virtual ma-

chine which runs on the LanAI, executes user exten-

sion applets in response to transmit request and mes-

sage receive events. Native methods such as

doHtoLDMA (DMA data from user to LanAI mem-

ory) and txPush (push a packet from LanAI memory

to the network) are provided which enforce protection

between user applets while exposing NIC resources –

applets are not allowed to read or write host memory

outside of the associated user’s U-Net buffer area, for

example.

Fig. 2 shows sample U-Net/SLE applet code that

implements the standard U-Net mechanism; that is, it

150 M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface

Fig. 2. Sample U-Net/SLE applet source code.

simply transmits and receives data without modifying
it. For simplicity the applet assumes that a single re-
ceive buffer will be sufficient to hold incoming data.
A more complicated applet could modify the packet
contents before transmission, or generate acknowledg-
ment messages for flow-control in the receive process-
ing code. Section 4 evaluates the performance of sev-
eral applets.

3. Java Virtual Machine implementation

In this section we discuss the design and implemen-
tation of the Java virtual machine subset used in our
prototype, Java Implementation for Vertical Extensions
(or JIVE).

3.1. JIVE design

JIVE implements a subset of the Java Virtual Ma-
chine [6] and executes on the LanAI processor of

the Myrinet network interface. Our goals in designing

JIVE were simplicity, a small runtime memory foot-

print, and reasonable execution speed even on a rela-

tively slow processor. All three goals stem from char-

acteristics common in an embedded processor environ-

ment like that of the LanAI: a limited runtime sys-

tem, limited memory resources, and a CPU slower than

those found in workstations of the same generation.

JIVE classfiles can be generated by any standard Java

compiler.

We compare JIVE to the standard Java VM in three

areas: type-related features, class- and object-related

features, and runtime features.

JIVE supports the byte, short, and int data-

types, and one-dimensional arrays of those datatypes.

There is no support for char, double, float, or

long, or multi-dimensional arrays. We feel that this

latter set of datatypes is unlikely to be needed by an

applet that performs simple packet processing, which

is the design target for JIVE.

M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface 151

Because a JIVE applet consists of a single class,
JIVE need not support non-array objects except for a
single instance of the applet’s class. Array objects are
supported, and arrays are treated as objects (e.g., it is
legal to invoke the arraylength operation on an
array reference). Dynamic class loading is not neces-
sary because a class is associated with an endpoint at
the time the endpoint is instantiated. Arbitrary user-
defined methods are fully supported. Since only one
instance of the applet class will ever exist at a time, the
semantics of static and non-static functions and class
variables are identical.

JIVE does not support interfaces, exceptions, threads,
or method overloading. These features would increase
the runtime overhead and code size of JIVE and many
useful packet processing applets can be written without
them. The current prototype implementation of JIVE
does not support garbage collection; while garbage col-
lection is an important issue for future work, we feel
that it can be circumvented in this by defining a simple
persistence model on created objects (for example, that
objects created within the doTx or doRx methods live
only though that method invocation, while those cre-
ated in the class constructor live for the duration of the
class).

The current implementation of JIVE assumes a
trusted Java compiler. Bytecode verification should be
incorporated into a trusted host daemon that is invoked
when a JIVE classfile is loaded into the network inter-
face, thus removing this assumption. In addition to the
standard bytecode verification for safety, a bytecode
verifier for JIVE should also ensure that the classfile
being loaded conforms to the subset of the Java VM
that JIVE supports.

3.2. Java as an extension language

We selected Java as the user extension language for
U-Net/SLE for a number of reasons:

• Safety. Java’s safety features mesh well with the
U-Net model of protected user-level access to
the network interface. An unsafe language with-
out some external safety mechanism, such as
Software Fault Isolation [16] or Proof-Carrying
Code [8], requires trusting the compiler that gen-
erated the code. The Java sandbox, as enforced by
the bytecode verifier and runtime checks, protects
applets from one another.

• Speed. Java bytecode can be interpreted or com-
piled to native machine code; future work will ex-
plore the use of Just-in-Time (JIT) compilation
with respect to JIVE.

• Compact program representation. Java class files

are very compact. Many operations take their

operands from, and push their result to, the stack,

and can therefore be encoded in a single byte be-

cause the source and destination are implicit.

• Portability. Because Java bytecodes are platform-

independent, a JIVE applet can be written and

compiled once, and then run on any network inter-

face with a Java virtual machine implementation.

A Java classfile could be sent as part of a network

packet in an active network [12] and could run on

any network interface or router with a JIVE run-

time system.

• Development environment. A number of high-

quality Java development environments are cur-

rently available, making development of Java

code relatively easy on almost any platform.

Moreover, Java is gaining popularity as an embed-

ded programming language, so we expect a prolif-

eration of development tools targeted to the needs

of embedded systems.

On the other hand, certain Java features are unnec-

essary for our purposes, such as rich object orienta-

tion and threads. We feel that small extension applets

running on a network interface can be written without

many of the features provided by the Java program-

ming environment.

3.3. JIVE implementation

As mentioned earlier, JIVE aims for a small code

size and small runtime memory overhead. In the first

respect, the JIVE library for the LanAI is only 43K

compiled, representing about 2700 lines of C source

code. In contrast, Kaffe [21], a free Java Virtual Ma-

chine that implements most of the Java Virtual Ma-

chine specification, is about 15,000 lines of C source

code, even when the code for just-in-time compila-

tion and garbage collection is removed. Also, JIVE as-

sumes no runtime library (e.g., no libc): functions for

operations such as memory allocation and string ma-

nipulation are an explicit part of the JIVE library.

4. U-Net/SLE prototype performance

In this section we discuss the performance of the

U-Net/SLE Myrinet prototype with JIVE for various

micro-benchmarks and a variety of user extension ap-

plets running on the LanAI processor.

152 M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface

Fig. 3. Round-trip latency vs. message size.

4.1. Latency and bandwidth measurements

Fig. 3 shows round-trip latency as a function of mes-

sage size for four configurations: A standard applet im-

plementing basic U-Net semantics; a simplified applet

assuming that packets will consume a single receive

buffer (shown in Fig. 2); an applet which performs

pingpong operations between user extension applets

only, without propagating messages to user level; and

standard U-Net without the use of SLE. The standard

U-Net applet adds between 41.2 µsec (for small mes-

sages) and 99.7 µsec (for large messages) of overhead

in each direction, while the simplified U-Net applet

reduces large-message overhead to 42.5 µsec. These

overheads are detailed in the next section. As can be

seen, round-trip latency between Java applets alone is

very low, ranging between 64 and 119 µsec. This sug-

gests that synchronization between user extension ap-

plets on different NIs can be done very rapidly.

Fig. 4 shows bandwidth as a function of message

size for a simple benchmark which transmits bursts

of up to 25 messages of the given size before re-

ceiving an acknowledgment from the receiver. This is

meant to simulate a simple token-based flow-control

scheme. The applets demonstrated include the standard

U-Net applet; an applet which implements the receiver-

acknowledgment between applets only (without noti-

fying the user process); an applet which transmits a

burst of 25 messages for each transmit request posted

by the user; and one which does not perform transmit-

side DMA, meant to simulate data being generated by

the applet itself.2

There is a notable drop in bandwidth due to the

higher overhead of DMA-setup and packet process-

ing code as implemented in Java; however, we believe

that user applications which are able to utilize the pro-

grammability of the network interface to implement

more interesting protocols will be able to avoid worst-

case scenarios such as those shown here. For instance,

the SLE applet which implements token-based flow-

control relieves the programmer from dealing with this

issue at user level, allowing the application to treat U-

Net/SLE as providing reliable transmission (a feature

not provided by the standard U-Net model). In this way

an application will be able to asynchronously receive

data into its buffer area while performing other com-

putation; no application intervention is necessary to

keep the communication pipeline full. It should also be

noted that applications are not required to use SLE fea-

tures for all communication, and may wish to transmit

high-bandwidth data through the standard U-Net inter-

2The base U-Net and U-Net/SLE bandwidth can be improved by

using both Myrinet DMA engines in parallel; this is not supported

by the current LCP.

M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface 153

Fig. 4. Bandwidth vs. message size.

face while utilizing SLE extensions for other protocol-

processing code.3

4.2. U-Net/SLE overhead breakdown

Fig. 5 shows the breakdown of overheads for vari-

ous U-Net/SLE operations as executed on the LanAI

processor. Note that these times do not include, for in-

stance, DMA transfer and packet transmission times;

instead they measure only the overheads for these

operations, as executed through JIVE and the U-

Net/SLE native methods, over the standard U-Net

code. The transmit overhead regardless of message size

is 24.5 µsec, while receive overhead is 16.7 µsec for

messages 56 bytes or smaller, and 42.5 µsec for mes-

sages larger than 56 bytes.

The overhead for Java operations can be attributed

partly to the fact that JIVE interprets Java bytecodes

(rather than using just-in-time compilation), and the

relatively slow clock speed of the LanAI processor

(37 MHz) compared to modern workstation CPUs.

The results in the previous section suggest that apply-

3While these micro-benchmarks are unable to directly represent

application-specific protocol performance using the SLE extensions,

we believe that they characterize the range of performance that can

be expected from our prototype. In the final version of this paper we

plan to demonstrate higher-level application benchmark results.

ing JIT to U-Net/SLE should result in significant per-

formance advantages. Likewise we believe these re-

sults should encourage designers of high-performance

network interfaces to consider higher clock speeds

for the network co-processor; chips such as the DEC

StrongARM run at 200 MHz and are intended for such

embedded applications. While there is some amount of

software optimization possible in our design, we be-

lieve that NIC-side processing can benefit greatly from

higher performance NIC designs, allowing more com-

plex processing tasks to be executed on the network

co-processor.

5. Related work

U-Net/SLE draws on past work in the areas of pro-

grammable I/O controllers and user-supplied protocol

handlers.

5.1. Programmable I/O controllers

One of the earliest examples of a programmable

I/O controller was the I/O control units of the IBM

System/360 [1]. These processors served as the inter-

face between an I/O device’s controller and the CPU.

They operated independently of the CPU and could

154 M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface

Fig. 5. U-Net/SLE transmit/receive operation overhead.

access main memory directly. The Peripheral Control

Processors (PPU’s) of the CDC 6600 [13] were based

on a similar idea. Programs running on the PPU’s

were loaded by the system operator, but this architec-

ture and that of the IBM System/360 represent early

systems with support for programmable I/O proces-

sors.

U-Net/SLE takes advantage of “intelligent” network

interfaces by downloading packet processing code to

the NI. Unlike early programmable I/O controllers,

however, U-Net/SLE allows multiple applications to

simultaneously use the network interface without in-

terfering with one another. The operating system is not

involved in providing this protection as it was in these

early systems.

5.2. User-supplied protocol handlers

A number of systems have recently been developed

that allow users to supply their own protocol handlers

in place of a generic operating system handler.

Application Specific Handlers (ASHs) [17] are user-

supplied functions that are downloaded into the oper-

ating system and are invoked when a message arrives

from the network. U-Net/SLE differs from ASHs in

several respects. First, ASHs run on the host proces-

sor, while U-Net/SLE extensions run within the con-

text of the network interface (which may be embod-

ied on a smart network co-processor or the host, or

some combination of the two). In addition, ASHs are

triggered only when a message is received, while U-

Net/SLE extensions are triggered both on receive and

transmit. This second difference limits the range of

uses for ASHs compared to U-Net/SLE extensions: for

example, ASHs cannot turn a single user-level message

send into a packet transmission to many hosts (i.e., a

multicast) while U-Net/SLE can.

SPIN [3] also allows users to download code into the

kernel. SPIN’s networking architecture, Plexus, runs

user protocol code within the kernel in an interrupt

handler. Extensions are written in Modula-3 [9], and

the compiler that generates the extensions is trusted to

generate non-malicious code.

SPINE [4] extends the the ideas of SPIN to the

network interface, and is the system most similar to

U-Net/SLE in design and scope. Underlying SPINE

is a Modula-3 runtime executing on the NI, the

current prototype implementation of which uses the

Myrinet interface. SPINE differs from U-Net/SLE

in several ways. First, SPINE targets server appli-

cations (e.g., it does not include fine-grain parallel

communication as part of its design goals), while

U-Net/SLE targets both server and cluster applica-

tions. Second, SPINE requires a trusted compiler,

while U-Net/SLE takes advantage of the safety fea-

tures of Java. Finally, the use of Java bytecodes in

U-Net/SLE allows user extension applets to be trans-

ported across the network and run on any network in-

terface with a Java virtual machine, while SPINE’s

compiled Modula-3 code is architecture-specific. We

believe, however, that both SPINE and U-Net/SLE will

serve as useful platforms for future research in the

areas of user-extensible networks and network inter-

faces.

M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface 155

6. Conclusions and future work

We have presented U-Net/SLE, a fast network inter-

face architecture permitting user extensibility through

the downloading of Java applets which run within the

network interface itself, and are triggered by transmit

and receive events on the network. We believe this de-

sign enables a wide range of applications to be built

which customize the network interface in order to ob-

tain new communication semantics, more efficiently

implement protocols, and reduce host and application

overhead by moving elements of protocol processing

into the NI.

U-Net/SLE extends the concept of programmable

I/O controllers by exposing a direct programmatic in-

terface to the I/O controller resources; in this case, the

DMA channels, memory, and network hardware of the

network interface. Pushing the level of virtualization

down to the hardware components of the NIC enables

a rich set of higher-level abstractions to be constructed

which utilize the hardware in an application-specific

way.

The performance of our prototype implementation

on the Myrinet LanAI processor, while lagging that of

the standard U-Net interface, is promising in that the

use of interpreted Java bytecodes for packet process-

ing has not resulted in a larger performance penalty (as

one might expect). We believe that the use of just-in-

time compilation and incorporation of a faster proces-

sor onto the network interface will greatly reduce U-

Net/SLE overheads and eventually allow the full flexi-

bility of safe extensions on the network interface to be

realized with minimal overhead. We hope to study the

use of garbage collection and applet scalability in more

detail.

In the future we would like to explore the design

space of user-programmable network interfaces and

I/O controllers in general. Now that our proof-of-

concept design has demonstrated the feasibility of user

extensibility in the NI, we hope that future implemen-

tations will further exploit the benefits of application-

customized I/O processing. For example, one could

implement the remote memory access operations of

the Split-C [2] language directly as a U-Net/SLE ex-

tension without requiring the application to execute

Active Message handlers for these operations, or im-

plement application-specific protocols (such as video

and audio streaming) as a user extension applet. Un-

derstanding the tradeoffs of executing protocol code

within the NI as opposed to application level, in gen-

eral, is an area for future research.

References

[1] C. Bashe, L. Johnson, J. Palmer and E. Pugh, IBM’s Early

Computers, MIT press, Cambridge, MA, 1986.

[2] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy,

S. Lumetta, T. von Eicken and K. Yelick, Introduction to split-

c, in: Proceedings of Supercomputing ’93, 1993.

[3] M.E. Fiuczynski and B.N. Bershad, An extensible protocol ar-

chitecture for application-specific networking, in: Proceedings

of the USENIX 1996 Annual Technical Conference, 1996.

[4] M.E. Fiuczynski and B.N. Bershad, Spine – a safe pro-

grammable and integrated network environment, in: SOSP 16

Works in Progress, 1997.

[5] K. Langendoen, R. Hofman and H.E. Bal, Challenging applica-

tions on fast networks, in: Fourth International Symposium on

High-Performance Computer Architecture (HPCA-4), Febru-

ary 1998.

[6] T. Lindholm and F. Yellin, The Java(tm) Virtual Machine Spec-

ification, Addison-Wesley, Reading, MA, 1997.

[7] R. Martin, A. Vahdat, D. Culler and T. Anderson, Effects of

communication latency, overhead, and bandwidth in a cluster

architecture, in: International Symposium on Computer Archi-

tecture, Denver, Colorado, June 1997.

[8] G.C. Necula and P. Lee, Safe kernel extensions without run-

time checking, in: Proceedings of the Second Symposium on

Operating Systems Design and Implementation (OSDI ’96),

October 1996.

[9] G. Nelson (ed.), Systems Programming with Modula-3,

Prentice-Hall, Englewood Cliffs, NJ, 1991.

[10] S. Pakin, M. Lauria and A. Chein, High performance messag-

ing on workstations illinois fast messages (fm) for myrinet,

in: Proceedings of Supercomputing ’95, San Diego, California,

1995.

[11] L. Prylli and B. Tourancheau, Protocol design for high perfor-

mance networking: a myrinet experience. Technical Report 97-

22, LIP-ENS Lyon, 69364 Lyon, France, 1997.

[12] D.L. Tennenhouse and D.J. Wetherall, Towards an active net-

work architecture, Computer Communication Review 26(2)

(April 1996).

[13] J.E. Thornton, Design of a Computer: The Control Data 6600,

Foresman and Company, Glenview, IL, 1970.

[14] T. von Eicken, A. Basu, V. Buch and W. Vogels, U-Net: A user-

level network interface for parallel and distributed computing,

in: Proceedings of the 15th Annual Symposium on Operating

System Principles, December 1995.

[15] T. von Eicken, D.E. Culler, S.C. Goldstein and K.E. Schauser,

Active messages: A mechanism for integrated communication

and computation, in: Proceedings of the 19th Annual Interna-

tional Symposium on Computer Architecture, May 1992.

[16] R. Wahbe, S. Lucco, T. Anderson and S. Graham, Efficient

software-based fault isolation, in: Proceedings of the Four-

teenth ACM Symposium on Operating System Principles, 1993.

[17] D.A. Wallach, D.R. Engler and M. Frans Kaashoek, Ashs:

Application-specific handlers for high-performance messag-

ing, in: Proceedings of ACM SIGCOMM ’96, August 1996.

156 M. Welsh et al. / U-Net/SLE: A Java-based user-customizable virtual network interface

[18] M. Welsh, A. Basu and T. von Eicken, Low-latency commu-

nication over fast ethernet, in: Proceedings of EUROPAR ’96,

August 1996.

[19] M. Welsh, A. Basu and T. von Eicken, A comparison of fast

ethernet and atm for low-latency communication, in: Proceed-

ings of the 3rd International Symposium on High-Performance

Computer Architecture, February 1997.

[20] M. Welsh, A. Basu and T. von Eicken, Incorporating memory

management into user-level network interfaces, in: Proceed-

ings of Hot Interconnects V, August 1997.

[21] T. Wilkinson, Kaffe: A virtual machine to run java code,

http://www.kaffe.org/.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

