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U-PROCESSES: RATES OF CONVERGENCE!

BY DEBORAH NOLAN AND DAVID POLLARD

Yale University

This paper introduces a new stochastic process, a collection of U-statis-
tics indexed by a family of symmetric kernels. Conditions are found for the
uniform almost-sure convergence of a sequence of such processes. Rates of
convergence are obtained. An application to cross-validation in density esti-
mation is given. The proofs adapt methods from the theory of empirical
processes.

1. Introduction. The theory of U-statistics parallels the theory for sums of
independent random variables. Hoeffding (1948) proved a central limit theorem
and [(1961), according to Serfling (1980), page 191] a strong law of large numbers
for these statistics. In this paper we extend the strong-law results to families of
U-statistics, obtaining uniform limit theorems analogous to those for empirical
processes. In a subsequent paper [Nolan and Pollard (1988)], we will prove
analogues of the central limit theorem for empirical processes.

Let £, &,,... be independent observations taken from a distribution P on a
set &, and Z be a class of real-valued symmetric functions on 2'® Z. Define
Sn(f)= Z f(gi’ g_/)’ fOl'f in g

l<i#j<n
With a [n(n — 1)]7! standardization, S( f) would become a U-statistic in the
sense adopted by Serfling (1980, Chapter 5). We treat S, as a stochastic process
indexed by &#. We call it the U-process.

Our initial motivation for studying these U-processes was the paper of Stone
(1984) on cross-validation in density estimation, which generalized and improved
upon results of Hall (1983). The kernel density estimator

b.(x) = (n)ZK( %)

c

depends upon the choice of the smoothing parameter o. Cross-validation gives
methods for determining a suitable ¢ from the data. Stone’s analysis of one
cross-validatory estimator involves sums such as

ADIORIE ZK(ﬁ)

This is a deterministic function, K(0)/ne, plus a standardized U-process indexed
by o.
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Hall (1982) had extracted a similar process, for which he obtained rates of
pointwise convergence, from an analysis of cross-validation via maximization of a
pseudolikelihood. Hall (1983) measured the distance between p, and the true
density p(-) by the integrated squared error,

L,(o) = [(5,-p)".

The function

()= [o2 = 2lom(n - 1) £ & 22) + [

1#)
is a plausible estimate of the unknown function L,(c). Hall showed that the
value g;, that minimized M,, also came close to minimizing the mean integrated
squared error PL . (Throughout this paper we use linear functional notation; the
expected value of a random variable X is denoted PX.) He applied a strong
approximation theorem for empirical processes to prove a uniform convergence
result for L, — M,,, which translated into information about the locations of the
minima.

Stone (1984) recognized that L, — M, could be decomposed into a sum of an
empirical process and what we are calling a U-process. Much of his proof was
devoted to establishing a rate of convergence for the U-process, by means of a
delicate Poissonization argument. The U-process took the form S,( ), where

f(x’y)=f(x)y)_Pf(x)')_Pf(':y)+P®P(f)'
The centering ensures that Pf(x, -) = 0 for every x; that is, f is P-degenerate.
This is a variation on the projection method of Hoeffding (1948), which is useful
for eliminating cross-product terms in the calculation of moments of U-statistics.
Stone bounded tail probabilities using high-order moments of U-statistics.

In this paper we generalize these almost-sure limit theorems to cover U-
processes indexed by a class of symmetric functions. By means of the projection
method, we reduce the problem to a search for probabilistic bounds on sup 4|8, f|
for classes of P-degenerate functions.

Our approach parallels the approach to the theory of empirical processes
exposited in Chapters II and VII of Pollard (1984). However, there are significant
differences between the two theories.

Empirical processes are constructed from sums of independent random vari-
ables, whereas U-processes are like quadratic forms. This difference shows up in
the behavior of tail probabilities. For the increments of empirical processes, tail
probabilities decrease like the Gaussian distribution; for the increments of
U-processes, they are more like the exponential distribution. Another difference
shows up in a symmetrization argument based on the familiar empirical process
technique. To exploit P-degeneracy of U-processes, we symmetrize to get in-
equalities for expectations rather than inequalities for tail probabilities.

These inequalities, which are presented in Section 2, are key to the limit
theorems proved in Sections 3 and 4. Section 3 gives sufficient conditions for the
uniform almost-sure convergence of U-processes. Section 4 strengthens these to
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find rates of convergence, which include Stone’s result as an application. Section
5 summarizes some results about covering numbers, which we need in the earlier
sections.

Throughout the paper we ignore measurability difficulties. For a discussion of
the appropriate precautions, consult Chapter 10 of Dudley (1984).

2. Inequalities. Observations £, £,,... are drawn from a fixed distribution
Pon a space Z. Let % be a class of real-valued, symmetric functions on 2 ® 4,
with a nonnegative envelope F:

F(-,-) 2|f(-,-)], if feF.
For each f in &% we define the symmetric sum
S.(f) = L f(4.4)

i#j
Here, and throughout the paper, the range of summation is the set of all
n{(n — 1) pairs with1 <i#j < n.

We will reduce most calculations with U-statistics to the degenerate case. We
will call f degenerate, or P-degenerate if there is any doubt about the underlying
distribution, if Pf(x,-) = 0 for all x.

The norm || - || will indicate a supremum over % . For example, ||S,|| stands for
supz|S,(f)|. Where the advantages of clarity outweigh the disadvantages of
mild abuse of notation we will also make free use of expressions like ||S,(f)|| or
1S,(£ 2l

The steps towards our main inequality (Theorem 6) all have empirical process
analogues.

Symmetrization inequality. As with empirical processes, probabilistic bounds
on ||S,|| can be obtained by first transforming to a symmetrized version of the

process. Independently take a double sample x,,..., x,, from P and a sample
0y .., 0, from the distribution that gives each of +1 and —1 probability i. If
o, = +1define §; = x,; and 0, = x,;_,; if 0; = —1define £, = x,;,_, and 7, = x,,.

Both {£;} and {#,} are independent samples from P. Define
Sr:( f ) = Z f(gi’ 71,-),

i)
Sr:,(f) = Zf(ni) 'nj)’

1£37) )
Tno(f) = Sn(f) - 2Sr:(f) + Sr{'(f) = Zoiojfij;

i®j
where
fij = f(xg;, x2j) — f(xg;, x2j—1) = f(xgi_1, x2j) + f(x9;_1, x2j—1)'

Write T, for the measure that places mass one at each of the 4n(n — 1) pairs
(x,, x5) appearing in the definition of the f;;. Clearly, |T,%f| < T,,|f| for every f;
the measure 7, puts mass 1 at each support point of T.,%. Notice that with the
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addition of 2n extra support points T, would be built up to a measure with the
same distribution as S,,,.

LeEmMA 1. For each class F of P-degenerate, P ® P-integrable functions,
P(IS,Il < PIT)|.

Proor. Denote expectations over the {n,}, with the {£,} held fixed, by P,.
For a fixed P-degenerate f,

1S/l =[S, f) — 2P, S;(f) + P, Sy ()| < PIT(F)].

Take the supremum over .# then average out over the {{,}. O

Covering numbers. We will bound P||T.0] by working conditionally on the
double sample {x,}. As with empirical processes, the argument will build up
approximations to ||7)0|| from the values of T°f on finite subclasses of %.
Because |T.0f| < T,|f|, the subclasses will be chosen to give good approximations
in the sense of the #XT,) or £?T,) norms. The success of the argument will
depend upon the existence of good bounds for the size of the approximating
subclasses, that is, bounds on random covering numbers.

DEFINITION 2. Let S be a set equipped with a pseudometric d. The covering
number N(e, d, S) is defined as the smallest value of N for which there exist N
closed balls of radius ¢, and centers in S, whose union covers S.

The concept is of interest only when N(e, d, S) is finite. It requires that there
is a subset S* of S, with cardinality N(e, d, S), for which

mind(s,s*) <e, foreachsinS.
S*

Even if S happens to be contained in some larger set, the definition insists that
S* be a subset of S. In the literature this constraint is not always imposed.

If the class % has an envelope F, and @ is a measure on £ ® 2 for which
0 < Q(F?) < oo, we define the distance dg , » on # by

do . r(f,8) = [QUf — &IP)/Q(FP)]'”.

We write Nj(e,Q, #, F) for the covering number N(e, dg , p, #). Thus
N,(e, @, #, F) is the smallest cardinality for a subclass .# * of # such that

IgiPQV — [ *P < ePQ(FP), foreach f in #.

Notice that N, (¢, @, #, F) is unchanged if @ is replaced by a constant multiple
of Q. We will use N, covering numbers only for the cases p =1 and p = 2.
Section 5 summarizes some of the results for covering numbers that will be
needed in Sections 3 and 4.

Exponential inequality. Application of an approximation argument based on
random covering numbers depends upon the existence of good probabilistic



784 D. NOLAN AND D. POLLARD

bounds for the increments of T,?, conditional on the {x,}. For empirical process,
the Hoeffding inequality gives an exponential bound on the conditional tail
probabilities of a symmetrized empirical process. A similar exponential in-
equality is available for T,?. (We thank G. Pisier and J. Zinn for the proof of the
next lemma.)

LEmMA 3. For each real symmetric matrix A = [a;;] with %, , ja?; < (47%)71,

P exp( D oiojaij) < exp( 2y a,])

i#*j i*]

Proor. Let {g;} be independent N(0,1) random variables that are also
independent of the {q;}. Write V for the constant 2 /7, the square of the expected
value P|N(0, 1)|. The left-hand side of the asserted inequality equals

P exp( Y oiojV‘1P|g,~gj|aij).
i%j

Because ¢;|g;| has the same distribution as g;, Jensen’s inequality bounds this

expectation by

P exp(V‘1 Y gigjaij).
i%j
We may assume that the diagonal elements of A are zero. Rotate to a new
coordinate frame in which A is represented by a diagonal matrix of eigenvalues

{A;}. The {g;} are transformed by the matrix of eigenvectors into {k;}, a new
collection of independent N(0, 1) random variables. The expectation becomes

[Pexp(ZAih?/V) =TIa-2a/v)™'2

Observe that
ZA,» = trace(A) = 0,

Z)\2 = trace(Az) = Eau < V2/16.
i, Jj

So, by virtue of the inequality log(l —x) > —x — x? for |x| < 1, the expecta-
tion is bounded by exp[4¥,(2A,/V)?], which equals the asserted upper bound. O

COROLLARY 4.
P{TYf > ¢} < 2exp( 5e(T,£2) %),
where P, denotes expectation conditional on the double sample.

PrOOF. The left-hand side is less than Pexp(—e/c + T.%f/c). Put ¢ =
13(T, f®)"/? then bound £, ;f.2 by

2 2
AT, f2=43 f( f x2i’x2j) + f(xg5, %9, 1) + f(xzi—pxzj) + f(xzi—l:xzj—l)z-

i#j

The 2 is a convenient upper bound for exp(i724,/169). O
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Chaining inequality. For the proof in Section 3 of a uniform convergence
result analogous to the uniform strong law of large numbers for empirical
processes, the exponential inequality of Lemma 3 and a bound on the size of
covering numbers will suffice. For results on rates of convergence [and for the
analogues of the empirical central limit theorem in Nolan and Pollard (1988)], we
will need a sharper bound, based on a chain of approximations built up from a
sequence of #*(T,) approximating classes for %#. We use a variation on a result
of Pisier (1983). We modify Pisier’s proof slightly to accommodate a slight
relaxation of the condition on his ¥ function, and to avoid the appeal to his
subtle Lemma 1.7. ‘

We state the theorem in terms of a stochastic process {Z(s): s € S}, where S
is an index class equipped with a pseudometric d(-,-). To avoid some cir-
cumlocution regarding separable versions, we assume Z has continuous sample
paths. [For the #*(T,) pseudometric on %, the paths of T are continuous.]

LEMMA 5. Let ¥ be a convex, strictly increasing function on [0, ) with
0 < ¥(0) < 1. Suppose Z satisfies:

() if d(s, t) = 0, then Z(s) = Z(t) almost surely;

(i) if d(s, t) > 0, then PY(JZ(s) — Z(t)|/d(s, t)) < 1;
(iii) there exists a point s, in S for which supgd(s, s,) < 0;
(iv) the sample paths of Z are continuous.

Then
Paup|Z(s) - Z(s,)| < 8];0?‘1(N(x, d, S)) dx,

where 8 equals one quarter of the supremum in (iii).

Proor. The assumptions about ¥ enter the proof through a simple in-
equality. Suppose X, ..., X, are random variables, and A is a real number such
that P¥(]X;|/A) < 1 for each i. Then

P max|X,;| < A¥"Y(N).
12
This follows from Jensen’s inequality:

¥P(max|X,|/A) < YP¥(X]/A) < N.

We will apply the bound to the increments of Z.
Define 8, = §/2'"! for i = 0,1,... . Construct maximal subsets {s,} = S, C
S; € --- of S with the property

d(s,t) > 28, ifs,t€S;and s +¢t.

By the definition of maximality, there is a map vy, from S into S; for which
d(s, v;8) < 28,. We may assume that y;s = s if s isin S,. Also S; can contain no
more than N, = N(§,, d, S) points: Otherwise some 8-ball of a covering family
would have to contain two distinct points of S;.
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Choose a positive integer k. For the moment hold it fixed; at the end of the
proof it will be sent off to infinity. For each s in S, define a chain of points

S, =8, 8,_1=Yr_15ks+-+5 81 = Y182, Sp-
By construction d(s,, s;_;) < 28,_, = 8(6; — §,..,). Thus,
k
)y Pmsax|Z(si) = Z(s;-1)|

i=1 4

% 8(6, - 8, )¥ (N

IA

PnggXIZ(s) = Z(s,)|

IA

< sf:‘\Ir—I(N(x, d, S)) dx.

Let %k tend to infinity, invoking monotone convergence and the continuity of the
sample paths, to complete the proof. O

Maximal inequality. To bound P|S,|, we apply Lemma 5 to the symme-
trized process, conditioning at first on the double sample.

THEOREM 6. If F is a P-degenerate class with envelope F, then there exists
a universal constant C such that
P|IS,I| < CP(6, + 7,J,(6,/7,)),
where
Ji(s) = [log Ny(x,T,, #, F) dx,
0
n=(TF%)", 6, = ysup(T,[2)""
F
ProoOF. Define
Z(f)=T(f)/m,
¥(x) = fexp(x/dm — }),
d(f,8)" = T(f-g)’/n.
Write P, to denote expectation over the {o;}, conditioning on the double sample
{x,}. Check the nonobvious conditions, (ii) and (iii), of Lemma 5. Since d( f,0) <

48 /7,, condition (iii) is satisfied. Check condition (ii) for Z(g,) — Z(g,). Put
f =g, — &, Bound e*! by e* + e~* then apply Lemma 3. As in Corollary 4,

i? < 4Tnf2 = 4Tnzd(g1’ g2)2’
i#j

Pexp(|Z(g,) — Z(g,)|/And(g,, &5)) = P.,exp(ITn"fI/4vr(Tnf2)1/2)

< 4exp(%772 Y fi§/167T2Tnf2)

1]

< 4dexp(3).
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The invariance property that we built into the definitions of N (s Q,Z,F)
ensures that the covering numbers for d are the same as Ny(x, T,, %, F), which
we abbreviate to Ny(x). Apply Lemma 5.

PIITS/mll < 8 [/ ™4} (Ny(x) d

s Lo

< 8/ "ie + 4m log 4N,(x) dx

< w(4 + 32log4)8,/7, + 32nJ,(6,/7,).

Multiply through by 7,, and then average out over the {x,}. An appeal to the
symmetrization inequality of Lemma 1 completes the proof. O

3. Uniform almost-sure convergence. For a fixed P ® P-integrable f, the
sequence {S,(f)/n(n — 1)} is a reversed martingale [Serfling (1980), Lemma
5.1.56B]. It converges almost surely to its expected value P ® Pf. We will
strengthen the result by giving sufficient conditions for the convergence to hold
uniformly over %.

The conditions imposed on % and the method of proof will be similar to the
conditions and methods for the uniform strong law for empirical processes
[Pollard (1984), Section IL.5]. But there are a few extra difficulties to overcome,
because the symmetrization inequality for U-processes involves expectations.
The corresponding inequality for empirical processes involves tail probabilities.

THEOREM 7. Let F be a class of symmetric functions with P ® P-integrable
envelope F, and P, be the empirical measure. If for each ¢ > 0,

(1) log Nl(es Tn’ f; F) = Op(n)’
(ii) log N(¢, P,® P, #,F) = (1),
(iii) Ny(e, P® P, #, F) < oo,

then |(S,/n(n — 1)) — P ® P|| — 0 almost surely.

ProoF. For notational convenience write a,, for n(n — 1). As with empirical
processes, the supremum involved in the definition of ||- | and the reversed
martingale property of S, make

R, =|S,/a, - P® P

a reversed submartingale. It converges almost surely. To prove the asserted
convergence it therefore suffices to prove, for each ¢ > 0, that

limsupP{R, > ¢} <e.

For a suitably large value of M the contributions from functions f{F > M} can
be made small

P{IS,f{F>M}/a,— P® P{{F> M}| > ¢
< e ![PS,F{(F> M) /a,+ P® PF(F > M}]
=2¢7'P ® PF{F > M)
< g, if M islarge enough.
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So, with fixed ¢ > 0, we may as well assume that f = 0 outside {F < M}, for
each f in %#. The value of M will depend on ¢. This convenient simplification
leaves intact assumptions (i), (ii) and (iii).

We decompose S,/a, — P® P into a sum of an empirical process plus a
degenerate U-process. Define

f(x7y)=f(x’y)_Pf(x")_Pf("y)+P®Pf'

Clearly f is degenerate. The corresponding decomposition for the U-process is

S.(f)/a, =P8 P(f)=S(f)/a,+2(P, - P)®P(f).

Write P# for the class of all functions on % of the form Pf(x, -) with f in &.
From assumption (ii) and Lemma 20 (proved in Section 5 at the end of this
paper), we get

log Ny(¢, P,, PF, PF) = o,(n).

This implies [Theorem 11.24 of Pollard (1984)] uniform convergence to zero of
the contribution from the empirical measure. It remains to show that ||S,( { )|/«
converges in probability to zero.

We will prove that P||S,( f )|l/a, — 0, by means of Lemma 1. Because fis

degenerate, P||S, f|| < P||T.°f|. We bound the conditional expectation over the
{0;}, with the {x,} held fixed, by means of an approximation based on covering
numbers for the measure

p,=T,+2a,PL,® P+ a,P®P.

n

The assumptions placed on the covering numbers for 7,, P,® P and P® P
imply that

log Ny(8, p,,, #, F) = 0,(n),
for each fixed 8 > 0. As Corollary 15 in Section 5 will show, this is a simple
consequence of the definition of covering numbers. Let % * be a subclass of %,

of size N,(8, u,, #, F), with the property: to each f in % thereis an f* in
F * for which

Because

I TX(F = *)| < walf = £ 41,
it follows that '
of of
PITF I < 8, F + P, max|TF]).
For a fixed f with |f| < 4M, the exponential inequality of Lemma 3 gives

P,,exp(|Tn°f~|/nD) < 2exp(§772 Y fi?/n2D2) < 4,

i#j

if the constant D is chosen large enough (D = 87#M would suffice). Apply this to
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each f, for f in F*:
P,IITf || < 8, F + nDlog Y, Pexp(T,%f|/nD)
‘g'*

< 8u,F + nDlog(4N,(8, p,, #, F)).

Because p,F/a, > 4P ® P(F) almost surely and log Ny(§, p,,, #, F) = o,(n),
we deduce that

P,|ITf ||/, = 0, in probability.

The left-hand side is uniformly bounded by 4M, by virtue of our simplifying
assumption that f = 0 outside {F < M}. Thus

PIIS, fll/e, < PITf Il /e, = O

as asserted. O

4. Rates of convergence. Under more stringent conditions on %, the
uniform convergence result of Theorem 7 can be improved to give a rate for the
uniform almost-sure convergence of the U-process. In this section we will assume
&% to be P-degenerate. The same decomposition as in the proof of Theorem 7
would reduce calculations for a general % to the degenerate case. We also
impose stronger conditions on the covering numbers.

DEFINITION 8. Call a class of functions % Euclidean for the envelope F if
there exist constants A and V such that

N(e,Q, #,F) <Ae™ Y, forO0<e<l,
whenever 0 < QF < oo. Call A and V the Euclidean constants for F.

If # is Euclidean, then for each p > 1,
N,(e,Q, Z,F) < A2PY¢ PV, for0 <e <1,

whenever 0 < QFP < oo. This follows from the definition of N,(2(¢/2)?, u, F, F)
for the measure p(-) = Q(-(2F)P™1).

The name Euclidean hints at an analogy with the finite-dimensional space RV,
where the number of closed balls of radius & needed to cover a bounded set
increases like ¢ V. For many purposes Euclidean classes do indeed behave
somewhat like bounded subsets of finite-dimensional spaces. Simple criteria for
identifying Euclidean classes will be discussed in Section 5. These will suffice for
the application to cross-validation of kernel density estimators in Example 11 at
the end of this section.

With a degenerate f, the random variables n~!S,(f) have a nontrivial
limiting distribution [Serfling (1980), Theorem 5.5.2]. We should expect therefore
to have to downweight S,(f) by slightly more than n~! to get almost-sure
convergence to zero. The appropriate weighting factor will depend on f.
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THEOREM 9. Let # be a Euclidean class of P-degenerate functions with
envelope 1. Let W(n, x) be a bounded weight function that is decreasing in both
arguments and satisfies

f‘, n~! fOIW(n,x)(l + log(1/x)) dx < oo.

nw=1

If v(-) is a function on F for which v(f) > supy Plf(x, )|, then
n“”W(n, v(f )I/Z)Sn( f) || — 0, almost surely.

Here is the idea behind the proof. The precise details will be given after a
preliminary lemma. We will use the maximal inequality of Theorem 6 and a
stratification argument. We will stratify % into subclasses on which »(f) is
almost constant; %; will contain those f for which §,;,, < »(f)V2 < §,, with
{6;} decreasing geometrically. We will write || -||; instead of | -| when the
supremum is restricted to the subclass %, If w,, is a bound for W(n, »( f )}/?) on
#,, then

P{”W(n, v(£)%)8,/n, = e} < e 1w P|S,/n|,.

Because ||S,/n(n — 1)||; is a reversed submartingale, an even stronger, maximal
inequality will hold; the random variable in the left-hand side can be increased
to a maximum over a block of n with only a doubling of the upper bound.

For a Euclidean class, the covering integral [{log Ny(x, T,, #,1) dx is bounded
by a constant multiple of

H(s) =s[1+log(1/s)].
For a suitably large constant C,, the maximal inequality of Theorem 6 gives
PIIS./nll; < C,PH(IIT, f%I/*/n).

Because PT, f2/n? is less than 8 for each f in %, optimistically one might
hope to bound H(||T, f ?||}/2/n) by some multiple of H($,). The integral condi-
tion of the theorem controls the sum of w,;H(8;) over the strata. The next
lemma, an analogue of Le Cam’s (1983) square-root trick, will justify the
optimistic upper bound, but only when §, is bigger than n~'log n. We will be
forced to stop the stratification at a k(n), where 84(n) is approximately n~'log n.
The remaining functions, for which »(f) is too small, will form a single class
Frny On Fp,y We must use a pessimistic lower bound: »( f) > 0. Boundedness
of the weight function takes care of the contributions from the %, ,, classes.

LEmMMA 10. Let 9 be a Euclidean class of functions, with 0 < g < 1 for each

g in 9. There exists a positive constant B, which depends only upon the
Euclidean constants A and V of 9 ( for the envelope 1), such that: If

t> max{ sup sup ( Pg(x, -))"?, nlog n},
g
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then
P{supSng > B2n2t2} < 2Aexp(—nt).
g

ProoF. Construct independent samples {¢,} and {n;} as for the symmetriza-
tion inequality in Section 2. Define S and S, as before. For each fixed g,

P,{S:(g) < 2n%?} > 1 - P,S;(g)/2n%* > L.
On the set where {supyS,g > B%n’t?), there is a G for which
(S,G)"? > Bnt.

From the lower bound on the conditional probability,
P{supS,g > Bn’t?) < P[(S,G > Bn%*)2P,(S/G < 2n%t2)]
@
=2P{(S,G)"* > pnt,(28,G)"* < 2nt)
< 2P{sup(Sng +87g) — (28:8)* > (8 - 2)nt}.
¥

Write {(g) for (S,g + S;’g)'/* — (28,;8)"/2.

Condition on the double sample {x,}. Because T, depends only on {x,}, the
Euclidean property of ¢ implies that there is a subclass * of ¢ with
cardinality at most A¢~2" such that: To each g in & thereisa g* in ¢* with

T.g — 8*| < t2T,(1) < 4n?2.
From the inequalities
(S.g + 5,8)* < (S,g* + Srg*)'” + (S,lg — g*1)"* + (S/1g — g*)"%,
|(S:8)'"* — (S:8*)'%| < (Silg — &*)",
it follows that
(g) <$(g*) + 2S,lg — g*| + 25/lg — g* + S/'lg — g*|)"*
={(g*) + 2(T,lg — g*))"*
< {(g*) + 4nt.
Hence, )
P,{supt(g) > (8 - 2)nt) < P maxi(g) > (B - O)nt)
@ g*
< At"VmaxP,(TS% > (B - 6)nt(T,g)"*},

because [(S,g + S,;8)"/? + (28,8)/%18(g) = T.%, and the factor in square
brackets is bigger than (T,g)"/2 Corollary 4 bounds the last conditional prob-
ability by

2At‘2"exp[ ~ (B - 6)nt(Tng/Tng2)l/2]’
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which is less than
2Aexp[2V log(1/t) — L(B — 6)nt],

because g% < g. With B large enough, the exponent is less than —nt for all ¢
greater than n~llogn. O

PROOF OF THEOREM 9. Break & into strata and group the n into blocks.
Write n(j) for 27 and v, for n~'log n. Define k() as the value of % for which
2Yn(y > 278 2 Yy
then put 8, = 27* for i = 0,..., k(j) and 8,;,,, = 0. Define

Fi={feF: 6., <v(f)"" <8},
H(J)={n:n(j) <n<n(j+1)}.

Abbreviate the supremum over %; to || - ||;.
Because W(n, »(f)?) < W(n(j),8;,,) when n € A4(j) and f€.F, and
because {||S,/n(n — 1)||;} is a reversed submartingale,

P {max [W(n, o(1))5.(1)/n], 2 ¢
< e 'W(n(5), 8., )(n(j+1) — 2)P max |S./n(n - 1),

< & W(n(1), 8, )2(n(J) = DP[S,/n(N(n() = V),
< wﬁPHSn(j)Hi/n(j),

where w;; = 2¢7'W(n(j), §,, ). Notice that this is slightly different from the w,;
used earlier.
Write H(s) for s[1 + log(1/s)]. For some constant C,, Theorem 6 gives

PlISylli/n(5) < CIPH [T, £ 212 /n( )]
Break the range of integration according to whether ||T,, ;) f 2132 /n( ) is greater

than 28§, or not, where B is the constant defined in Lemma 10. Because

0 <f?<1,and T, is less than a measure that has the same distribution as

Sonijy @04 8; 2 ¥,(j) 2 Yau;) for 0 < i < k(j), the lemma gives
P{IIT.;, £ 21172 > B2n()8,} < 2Aexp(—2n(/)8,) < 24n(;)".
Thus,
PH||T,,f 21V%/n(5)] < H(2B8,) + 2An(;) >,

For 0 < i < k(j) the right-hand side is bounded by a multiple of H(§;). Sum
over I to combine the contributions from each stratum.

P {max [W(n, »()*)8,(1)/n] =
k(J)
<G Y w;; H(9;)
i=0

< C;W(n(j),0)H(8,,,) + caf(:W(n(j), x)(1 + log1/x) dx.
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The factor H(3,;) can be bounded by a multiple of ;?27/; because W is
bounded, the first term is summable over ;. Monotonicity of W implies

W(n(j),x) < Y 2n"'W(n, x).

n(j-1)<n<n(j)

With this cosmetic substitution we get, for some constants C, and Ci;,
ZIP{max ”W(n, v(f )1/2)Sn( f )/n” > e}
j ()
<C,+ C5En_1/1W(n,x)(1 + log1/x) dx,
n 0

which is finite by assumption. The asserted almost-sure convergence now follows
by the Borel-Cantelli lemma. O

ExaMPLE 11. In improving upon an optimality theorem of Hall (1983) for
cross-validated kernel density estimators, Stone (1984) proved subtle results for
the rate of convergence of a particular U-process. A slightly different form of
Stone’s key lemma can be deduced from our Theorem 9.

To keep the exposition simple we restrict ourselves to the case of a bounded
density p(-) on the real line and smoothing by a nonnegative, symmetric density
function K(-). The extension to higher dimensions and smoothing kernels taking
both positive and negative values is straightforward.

In place of Stone’s assumption that K satisfy a Holder continuity condition
and have compact support, we impose the comparable condition that K be of
bounded variation.

The estimator of the unknown p(-) is defined by convolution of the empirical
measure with a rescaled K:

_ -§
) = (no) " LT,
Stone’s goal was to minimize the integrated squared error loss function
L(o) = [(b,—p) = [p2-2[pB, + [p".

Of course, direct minimization is not possible if p(-) is unknown. However, one
can minize an estimate of the loss function
2 fo

M,(o) = [52 - 2lon(n— D] £ &[22

i+j

This estimate is suggested by the heuristic
§,—¢&
[pb, = Pb, = B,p, = (n%) ZK(TJ)

The usual cross-validation adjustment removes the over-large contributions for
i=J.



794 D. NOLAN AND D. POLLARD

Stone showed that the g,, that minimizes M, (-) does almost as well as the o,
that minimizes L,(-), in the sense that

L,(6p)/L,(0,) > 1 almost surely.

This can be proved by comparing both L, and M, with the expected value
PL,(0). Indeed the result would follow immediately from:

L,(o)
(12) sup PL (o) 1| - 0 almost surely,
’ L -M +2Z
(13) sup [Z4(2) L ("(()’) ol — 0 almost surely,
[«d n o

where Z, is a random variable that does not depend on o. These two would
imply that

Ln(o) B Mn(o) + Zn
L,(o)

— 0 almost surely,

[

whence
(1 - 0(1))Ln(6M) = Mn(oM) - Zn =< Mn(oL) - Zn = (1 + 0(1))Ln(oL)
To establish (12) we rearrange L, (o) — PL,(0) as
J(Be=po)* =P [(B, = p,)* + 2[( B, ~ P.)( P, — P),
where
p(x) =Pp, =0 fK( )p(y) dy.

The third term, the cross product, can be handled by empirical process methods.
Nolan (1986) has proved an appropriate limit theorem, using methods analogous
to those of this paper; Pollard (1988) will offer an alternative approach. The
difference between the first integral and its expectation corresponds to a degenet-
ate U-process. To see this, define

G, (%) =K(t;x) - fK(t_Ty)p(y)dy,

Fo(x) y) = 0_1 fGt, a(x)Gt, a(y) dt
A little algebra shows that

[(B =) = [(r0) " LG, (£)G,, (&) dt

= (ne) " 'T,(0,0) + (n%) " L T,(£, &)

i#]

Each T, is P-degenerate; the class of all T, is a candidate for Theorem 9.
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It is easy to check that there exists a constant C for which
sup [T,(x, y)| < C,

X, Yy, 0

supP|T,(x, )| < C(1 A o), forallo > 0.

We can rescale to make C equal to 1.

The assumption of bounded variation, which we impose upon K, is sufficient
to make the {T',} a Euclidean class. We will sketch the proof of this at the end of
Section 5, to illustrate how easy it is to establish the Euclidean property in
particular cases.

As Stone showed, there is another constant C, for which

PL,(0) > Cl[(no)_1 + (e* A 1)], for o > 0.
Thus,

[(Bs—p.)" = PI(B, — P,)
ey PL,(o)

’

< C2suplW(n, v(I‘o)l/z)n‘ISn(I‘o)

where »(I',) = 1 A 6 and W(n, x) = (1 + nx'°)~L. Since W is bounded by 1 and
/IW(n, x)(1 + log(1/x)) dx = O(n~"Ylog n),
0

the conditions of Theorem 9 are satisfied. The uniform convergence to zero of the
U-process contribution to (L, — PL,)/PL,, is established.

A similar analysis takes care of (13). Indeed,

— gi - g
Ly(o0) = M,(o) = 2lon(n — )] L[| - 25,
i*j o

which breaks into an empirical process contribution, 2( P, — P)p,, plus a U-pro-
cess constructed from the degenerate functions

fo(x, y) = K(%) — op,(x) — op,(y) + oPp,.

The empirical process methods cited above show that (P, — P)(p, — p) is small
compared to PL,(0), so we take Z, = —2(P, — P)p. Full details of this alterna-
tive to Stone’s argument have appeared in Nolan (1986).

5. Covering numbers. We collect together in this section useful facts about
covering numbers, some of which have become part of the empirical process
folklore.

Remember that N(e, d, S) denotes the smallest number of closed balls of
radius ¢, and centers in S, needed to cover S.

The first result is particularly handy for covering numbers calculated for .#?
metrics, where the underlying measure is a sum of several other measures.
Similar results were given in inequality (3.11) of Alexander (1984) and in Problem
11.24 of Pollard (1984).
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LEMMA 14. Let d, y and 8 be pseudometrics on S for which d < y + 8. Then
N(4r,d,8) < N(r,y,S)N(r, 8, S).

Proor. Let TI,...,T,, be closed balls of y radius r that cover S, and

A,..., A, be closed balls of § radius r that cover S. From each nonempty

I; N A; choose a point s; ;. There are at most mn such s;;. Every pointin I; N A;

is no further than 2r away from s;;, in both y and & distances. O

COROLLARY 15. If & is a space of functions with envelope F, and p and v

are measures for which u(FP) < o0 and v(FP) < « for some p > 1, then
Np(4r,p. +v,F,F) < Np(r,p., 9,F)Np(r,v,.97,F).

Lemma 16. If # and ¥ are classes of functions with envelopes F and G,

and p is a measure with w(FP) < oo and p(GP) < o0, then the class
F+9={(f+g feF, g ¥},
with envelope F + G satisfies
N,(2r+2s,u4, F+ 9, F+ G) < N(r,pn, #,F)N,(s,1,9,G).

Proor. Find functions f,,..., f,, and g,,..., g, for which

miinp.|f —filP < rPpFP, for fin ¥
mjinp|g — &, <sPuGP, forgin¥.
Then, with the appropriate i and jJ,
(ulf + &8~ fi— &))" < r(uFP)"” + s(uGP)"?
<2(r +s)(p(F + G)")'”. o

CoroLLARY 17. If % is Euclidean for envelope F and ¥ is Euclidean for
envelope G, then #+ 9 is Euclidean for envelope F + G.

A class 2 of subsets of a set S is said to be a polynomial class (or a
Vapnik—Cervonenkis class) if there exists a polynomial p(-) for which

cardinality{D N F: D € 9} < p(|F]),

for every finite subset F of S. There are several simple criteria for a class to have
this property [Dudley (1984), Section 9, and Pollard (1984), Section 11.4].

LEMMA 18.

() If 2, and 2, are polynomial classes, then so is the collectzon of all sets
D, v D,, D N D, andDc with D; € 9,.

(ii) If .(9 is a finite- dzmenszonal vector space of real functions, then the
collection of all sets of the form {g > 0} or {g <0} or {g>0}or {g<0}isa
polynomial class.
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It is not hard to prove that a class of sets 2 is a polynomial class if and only
if the corresponding class of indicator functions is Euclidean for the envelope 1.
If f is a real-valued function on a set 2, define

graph(f) = {(x,t) €eZO@R: 0 <t <f(x)or0>¢t> f(x)}.

Set theoretic properties of the graphs translate into bounds on the covering
numbers.

LemMmA 19 [Pollard (1984), Lemma I1.25]. If {graph(f): f € #} is a poly-
nomial class of sets, then % is Euclidean for the envelope sup ¢|f|.

LEMMA 20. Let % be a collection of functions on ®  with constant
envelope C. Let u and v be finite measures. Then for eachp > 1,

N,(r,p,v#,Cv(Z)) < Np(r W(Z) VP per, F, C),
where vF= {vf(x,-): f €F).
Proor. Choose functions f,,..., f,, with n = N(rv(Z) "7, p® v, #,C)

for which
minp ® »|f — fi{? < rPu ® »(CP).
1

Then, for the appropriate i,
ulrf(x,-) = vix, ) <p @ vif - fP(»(2))"", by Jensen’s inequality
< rep(Cv())?]. O

COROLLARY 21. Let % be a uniformly bounded Euclidean class of functions
on £® Z. For each finite measure v, the class v# is Euclidean.

LEMMma 22.

(i) Let p(-) be a real-valued function of bounded variation on R*. The class
of all functions on R® of the form x — p(JAx + b)), with A ranging over all
m X d matrices and b ranging over R™, is Euclidean for a constant envelope.

(ii) Let A(-) be a real-valued function of bounded variation on R. The class of
all functions on R< of the form x —» A(a’x + B), with « ranging over R¢ and
ranging over R, is Euclidean for a constant envelope.

PROOF. As the arguments for both assertions are similar, we will prove only
(i). By virtue of Lemma 16, it is enough to treat the two monotone components
of p(-) separately. Assume, without loss of generality, that p(-) is bounded and
nondecreasing, with p(0) = 0. Define p~!(-) as the usual left-continuous inverse
of p(-) on the range T = (0,sup p). Partition T into regions T, and T, such that

(p7Yt), ), ifteT,

{(zeR*:p(2) > ¢t) = [p3(t), ), ifte T
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Then the graph of p(JAx + b|) can be written
{(teT,|Ax + b >p~(t)} U {t€ Ty, |Ax + b > p~ () }.

Define g4 ,(x, t) = |Ax + b|*> — (p~'(¢))’. The functions g, (-, ) span a finite-
dimensional vector space. By part (ii) of Lemma 18, the sets {g, , > 0} and
{84,5 = 0} all belong to a polynomial class. Augment the class by the two sets
R?® T, and R? ® T,; then appeal to Lemma 18(i) and Lemma 19 to complete
the proof. O

As an illustration of the way in which these lemmas may be applied, we will
show that the class {I': ¢ > 0}, from Example 11, is Euclidean. Let » be the
finite measure that has density K. Define functions f(-, -, -) on R3, for ¢ > 0, by

f(x, y,2) =K(f——;——{ +z).

Lemma 22(ii) shows that {f,: o > 0} is a (subclass of a) Euclidean class. A
simple change of variables gives

Fa(x, y) = Vfa(x7 y:') -P® Vfa(xr'r') -P® Vfa(': y:')
+P® PR vf(,-,").

An appeal to Corollary 21, or its extension to functions of three variables, and
Lemma 16 complete the argument.

Similar arguments would work in higher dimensions if K were a linear
combination of two multidimensional distribution functions, or if K(x) were of
the form k(|x|) with k() a function of bounded variation on the real line.
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