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a. Introduction: 

Agriculture is a resource-intensive activity. It currently uses a substantial portion of the Earth’s natural 

resources: crop production, pasture and livestock grazing systems occupy around 40% of total land area, 

nitrogen fertilizer applied to agricultural land comprises more than half of the global reactive nitrogen 

attributable to human activity and agricultural production consumes more fresh water than any other 

human activity since it accounts for 80% of all freshwater consumption (Cassman 2003). Water is one of 

the key determinants of agricultural land productivity. Adequate water supply to crops is essential to 

achieve maximum yield and greater stability, enabling also greater scope for diversification. The success 

of irrigation in improving food security and fostering rural welfare during the last decades is undeniable 

but inappropriate water management can contribute to a series of environmental problems. 

The dramatic increase in world crop production observed over the 40-year period from 1960 to 2000 was 

greater than the increase in the demand for these products producing a decrease in the real prices of the 

agricultural commodities. This increase in production was attributed to land expansion, but it was also the 

result of increasing yields due to new technologies and management techniques, mechanization and an 

increase in the use of chemicals, fertilizers, pesticides and water from irrigation systems (Tilman et al., 

2001). However, during the last decade several authors observed a reduction in global yield growth rates 

for corn, wheat, rice and soybeans (Alston et al., 2010 and World Bank Report, 2008) that was followed 

by an increase in prices after 2008 marking the end to the period of low agricultural commodity prices. 

Looking at total factor productivity (TFP)
1
 growth, several authors found a slowdown in North America 

(United States and Canada), Oceania and Sub-Saharan Africa (Fuglie (2012), Ball et al. (2013) and 

USDA-ERS (2015)) when comparing the period 1990-2010 with previous years. 

Looking into the future, it is estimated that world population will increase by 30% to reach more than 9 

billion people by 2050; and given expected higher income, per capita consumption of protein will induce 

                                                           
1
 TFP growth rate is a multifactor productivity measure given by the growth rate of an output index minus the 

growth rate of an index of inputs. The growth rate of yields is a partial productivity measure referring to the growth 

of output per unit of land.  
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an increase in cereal production of at least 70% over current levels; quantity attainable without 

incorporating new land if the yield growth rates increase at least 1.33% per year (Fulginiti and Perrin, 

2010). If the observed decline in agricultural productivity growth continues, the average global yield 

growth rate for the main crops could fall below 1.3% increase per year, lower than the amount needed to 

reach the production goal for 2050. Thus, the food production increases needed to satisfy future demand 

will put greater stress on existing cropland and natural resources; additionally, if the prices rise there will 

be also greater pressure to convert natural ecosystems to cropland. Climate change, a final source of 

concern, is likely to aggravate the situation.  

During the last decades it has been a widespread accepted idea that climate is being severely affected by 

anthropogenic increases in CO2 levels in the atmosphere. There are three channels through which this is 

likely to affect agricultural production: a) higher amount of CO2 in the atmosphere may have a positive 

effect on some crop plants (but also on weeds) given that it can act as a carbon fertilizer; b) higher 

temperatures might produce an increase in the level of the oceans that could result in floods in coastal 

areas and salinization of the underground aquifers; and c) changes in temperature, precipitation and solar 

radiation will affect yields with different intensity across regions (Ruttan 2002).  Focusing on this last 

issue, considering different scenarios of future trends in climate, several authors have found that the 

impact that climate change will have over agriculture production will most likely be negative (Lobell, 

2007 and Schlenker and Roberts, 2009).  

Most agronomic studies of the effects of weather on crop yields are based on field experiments and are 

aimed to account for the biological effect of different temperatures on specific crops (Ritchie and 

Nesmith, 1991). Other studies use historical data to look into the effect of climate on crop yield from 

different regions. Lobell (2007) uses national crop yield data for 1961-2002 and climate and crop location 

datasets to estimate the impact of changes in the diurnal temperature range (DTR = Tmax - Tmin) on the 

cereal grain yields of the major producing countries, finding a non-linear negative response of yields to 

increases in average temperature and a generally non-significant effect of increases in DTR with positive 
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or negative effect depending on the region. This study does not account for the effect of changes in 

precipitation, solar radiation and CO2 fertilization changes.  

Another global study that includes average monthly temperature but also precipitation and changes in the 

growing season has been done by Lobell et al. (2011). They analyze at country scale the changes in recent 

climate trends (1980-2008) during the growing season of major crop yields (maize, wheat, rice and 

soybeans). Their results reveal significant positive trends in temperature changes for nearly all major 

growing areas (excluding the United States) and significantly smaller precipitation trends with mixed 

results across regions. Additionally, no consistent global shift in growing season of average precipitation 

was found. When analyzing the effect of these trends on the major crops yields, they found statistically 

significant impacts of average temperature and precipitation. A 1ºC increase in average temperature 

decreases yields by up to 10% for low latitude countries and has mixed results for high latitude countries 

depending on the crop; increases in precipitation have a positive effect on yields for most crops and 

countries up to the point at which further increases become harmful; observed average precipitation was 

higher than this threshold value thus the median estimate was negative. Additionally, the effect of 

precipitation was found to be less important than the effect of temperatures. 

All the studies mentioned above use average temperature to measure the effect of different temperatures 

on yield. Another measure that is increasingly used is the agronomic measure “growing degree days” 

(Zalom, 1983 and Snyder, 1985)
2
. Schlenker and Roberts (2009) use this measure to estimate the effect of 

weather on aggregate farm yields in the United States. They regress corn, wheat and cotton yields in 

counties east of the 100º meridian on weather variables during the years 1950-2005 with different 

specifications finding that there is an increasing positive relation between temperatures and crop yield up 

to 29-32ºC (depending on the crop). Temperatures above these thresholds are found to reduce yields 

significantly at an increasingly negative rate. The effect of precipitation was found to be significant and 

                                                           
2
 A degree day is defined as 24 hours with the temperature one degree above certain threshold.  



4 

 

with an inverted U shape with different levels of yield maximizing values depending on the crop (25 

inches for corn and 27.2 inches for soybeans). 

Finally, Roberts et al. (2012) also use the growing degree days measure to try to estimate the impact of 

temperatures on Illinois corn yields for 1950-2010. They also consider a measure of extreme temperatures 

(extreme heat degree days), precipitation and vapor pressure deficit (VPD). Extreme temperatures were 

found to have a robust negative effect on yields, particularly in rain fed areas. Precipitation again was 

found to have an inverted U shape with yield maximizing level lower than the observed mean in the 

specification without VPD and higher in the specification with VPD. This study does not consider the 

effect of purchased farm inputs either.  

Mentioned estimations have two important omissions. First, they only consider counties with rain-fed 

agriculture, those east of the 100º meridian, while production increases have also been related to irrigation 

developments mostly west of the 100º meridian. Second, their studies control for natural characteristics 

like precipitation but do not allow for purchased farm inputs that capture embodied innovations and 

reflect profit maximizing behavior of producers. These inputs have had a pivotal role in increased yields 

and are under the control of the farmer; it is important then to understand the contribution of these versus 

other inputs not under farmers’ control. 

All of the studies mentioned above omit applying agent-based decision models; prices, farmers’ behavior 

and other human inputs are not taken into account when testing their hypotheses and in their estimations.  

The economic perspective 

The econometric estimation of production functions took impulse after the work of Cobb and Douglas in 

1928. Initially it was mainly used for macroeconomic analysis but after a methodological paper by 

Tintner (1944) it was increasingly used in empirical agricultural microeconomic analysis (Tintner and 

Brownlee (1944), Heady and Dillon (1961) and Mundlak (1961)). The analysis was extended with the 

parallel development of the "dual" literature on cost functions, factor demand systems, and flexible 
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functional forms that became more prevalent after the 1970s. The basic idea of duality is that every point 

in the production function is related uniquely with a vector of price ratios and vice versa. Hence, 

variations in prices will produce variations in quantities. Under duality, the technology is summarized by 

profit, cost or revenue functions (Mundlak, 2001). There is still a pending debate about the benefits and 

weakness of each type of approach with no conclusive results about which one is better. 

To the more restrictive Cobb Douglas functional form, more flexible forms were added; the most 

important were the constant elasticity of substitution (CES) function (Arrow et al., 1961), quadratic 

functions (Heady and Dillon, 1961) and quadratic functions in logarithms (translog) (Christensen et al., 

1973). These quadratic functional forms are considered to be flexible because they provide a second order 

approximation to the unknown true functional form. The problem with these forms is that they contain 

many variables that usually move together and, given the paucity of data, the estimated parameters 

usually have low precision. Under rational economic behavior, first order conditions of profit 

maximization allow estimation of a system of equations that includes the production function and the 

derived demand for inputs (or factor shares) allowing a more robust estimation given the additional 

information. (Mundlak 2001).  

Griliches and Mairesse (1995) state that the empirical implementation of econometric production 

functions is affected by a number of issues such as the imposition of the correct functional form, the 

relevancy and the possibility of measurement errors in the data and the incorrect assumption of 

independence of the input variables. The problem of the independence of the variables is broadly 

explained by Marschak and Andrews (1944); in summary, the economist cannot assume that the amount 

of fertilizer or other inputs employed by the firm is independent of the firm's output because these inputs 

are chosen by the producer himself on a maximizing behavior, making the inputs endogenous and 

therefore the OLS estimates of the production function will be biased and will lack the desired 

econometric properties. One way to solve the simultaneity issue is to assume profit maximization and use 
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the observed factor shares as estimates of the relevant production function parameters (Griliches and 

Mairesse, 1995).  

Either by using a primal or a dual approach authors have estimated the incidence of different inputs on 

agricultural production in the United States. Griliches (1963) and Hayami and Ruttan (1970) estimate the 

production elasticity of fertilizer to be between .10 and .20; for chemicals, Ball (1985) estimates an 

increasing cost share, from 0.028 in 1948 to 0.08 in 1979. These two results differ from Antle and 

Capalbo (1988) who found lower values for the combined cost shares of fertilizer and chemicals, 

increasing from 0.04 in 1960 to 0.06 in 1980. For the rates of technical change there is even more 

variability; while Ray (1982) and Capalbo and Denny (1986) report increases between 1.3 and 1.8 percent 

per year for the period between 1962 and 1978, other authors found rates of technical change near zero or 

even technological regression (Hazilla and Kopp (1986) and Brown and Christensen (1981)). For further 

details and a review of the evolution of empirical work on production functions see Antle and Capalbo 

(1988) and Mundlak (2001). 

While all the economic production function estimation studies account for human inputs and generally 

account for farmers’ behavior and the prices of inputs, they neglect environmental variables. An 

important step towards understanding the evolution of agricultural production under different climate 

scenarios is to carefully estimate the effect that different temperatures and precipitation have on 

agricultural productivity without disregarding the inputs under farmers’ control. Another issue of 

importance, given the developments of the last 60 years, is the study of rain-fed as well as irrigated 

agriculture. These are the objectives of our analysis; we do not know of any other study with these 

objectives that considers this set of variables and assumptions. 

Another important characteristic of our analysis is its study area. We look at 101 counties spread along 

the 41
st
 parallel north, from the Rocky Mountains to the Mississippi River; this is a major cereal 

production area in the United States and in the world. It includes a vast gradient of weather but also soil 
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and underground water characteristics that are representative of agriculture in Nebraska and Iowa but also 

other regions in the world. This agro-ecosystem ranges from rain fed crops with high precipitation and 

high soil carbon in the east to highly irrigated crops with low precipitation and moderate soil carbon in the 

west. Given the broad characteristics of this area, results obtained from this study are relevant to several 

other temperate crop regions in the world. 

The remaining sections of this article are organized as follows. In the next two sections the theoretical and 

empirical models are described. The data used is presented after the empirical model followed by the 

results and the conclusions.  

b. Theoretical framework 

We assume that production decisions are made by profit-maximizing farmers who operate under perfect 

competition in all commodities and factor markets. Farmers choose their optimum production and input 

requirements subject to a vector of output and input prices and the characteristics of the environment 

(weather, soil organic matter and year). Factors are assumed to be mobile and their rental prices are 

determined by their marginal product. We denote the variable input vector by X, output per acre or yield 

by Y, the corresponding price vectors as w and p respectively and the environment variables vector as e. 

The production possibility set T is defined as the set of all feasible input and output combinations given 

the environmental characteristics and is assumed to be closed, bounded, strictly convex and to exhibit 

constant returns to scale. Under these conditions, and since profit maximization is assumed, the 

competitive equilibrium can also be characterized at any point in time as the solution to the problem of 

maximizing profits subject to the technology, the environment and a vector of positive output and input 

prices:  

max𝑋  𝜋 =   𝑝 ∙ 𝑌 − 𝑤 ∙ 𝑋  ; (𝑒; 𝑋, 𝑌) ∈ 𝑇;  𝑝 ≫ 0,𝑤 ≫ 0 (1) 

The first order conditions are given by differentiation of the profit by each of the j inputs, 
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∂𝜋∂𝑋𝑗 = 𝑝 ∙ ∂𝑌∂𝑋𝑗 − 𝑤 = 0, j = 1,… , J (1.a) 

where Xj is the input j.  

We can now define the primal yield meta-production function (common underlying production function 

of each county) that will take the general form: 

𝑌 =  𝑓(𝑋, 𝑒) (2) 

Where, under constant returns to scale, the output and all the inputs have been scaled down by the land 

factor. An estimation of an average yield function is preferable if the data being analyzed are subject to 

heteroskedasticity (Jacobs et al., 2006).   

 Given profit maximization and perfect competition, from equations (1.a) and (2):  

𝜕 ln 𝑓(𝑋, 𝑒)∂ln𝑋𝑗  = ∂ 𝑓(𝑋, 𝑒)∂ 𝑋𝑗 ∙ 𝑋𝑗𝑓(𝑋, 𝑒) =  𝑤𝑗𝑝 ∙ 𝑋𝑗𝑌 = 𝑠𝑗 (3) 

where 𝑠𝑗 is the share of the input j in the total cost of production. The derivative of the log of the 

production function with respect to the log of the input j (i.e. the production elasticity of j) is equal to the 

cost share of that input in the total cost. 

Single equation estimates are likely to be affected by biases and identification issues; a system of 

equations that estimates jointly the production function and first-order conditions of profit maximizing 

including equality and cross-equation parameter constraints, robustly captures the production and 

technical parameters since it is based on the assumption that the sample reflects both optimizing behavior 

as well as the technology. (León-Ledesma et al., 2010). The factor shares variations observed in the 

sample can be attributed to differences in the input ratios given the different possible locations along the 

production function (Mundlak, 2000). From the econometric point of view, the system of equations when, 

containing cross-equation parameter constraints, augments the degrees of freedom and might enhance the 

efficiency of the estimation and parameter identification (León-Ledesma et al., 2010).  
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Additionally, quadratic production functions with many parameters relative to the number of observations 

might suffer from low precision and might result in imprecise parameters. The joint estimation of the 

factor shares and the production function, with or without the binding constraint between the estimates of 

the production function and the share equations, leads to higher efficiency since the higher information 

present in the joint estimation can compensate for the information inadequacy in the production function 

alone (Ray, 1982).  

Joint estimation of a system that includes the production functions and the factor shares allows estimation 

of technological change and its factor biases. As Antle and Capalbo (1988) explain, this change refers to 

variations in the production process as a result of improved ways of using existing resources 

(disembodied technical change), through variations in input quality (embodied technical change); or 

through the implementation of new processes and new inputs. If there is disembodied technological 

change, then it can be modeled as a shift in the production surface. 

After specifying a functional form for the yield production function, the complete system that includes the 

production function and derived demand equations for inputs can be estimated jointly. The estimated 

parameters are then used to obtain elasticities, marginal effects, and other characteristics of the 

technology.  

c. Empirical Model: 

For the empirical application the production function in (2) is assumed to follow a semi transcendental 

logarithmic functional form (Christensen et al., 1973). Assuming a translog specification allows for more 

flexibility since it does not impose a priori restrictions on the structure of the technology (it allows for a 

non-linear relationship between the dependent variable and the factors of production) and provides a local 

second order approximation to any production frontier. The following semi translog production function 

is estimated: 
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(4) 

𝑦𝑖𝑡 = 𝛼0 + ∑ 𝛽𝑗𝑥𝑖𝑗𝑡3𝑗=1 + 12 ∑ ∑ 𝛽𝑗𝑘𝑥𝑖𝑗𝑡𝑥𝑖𝑘𝑡3𝑘=13𝑗=1 + ∑ 𝜔𝑤𝑑𝑖𝑤𝑡3𝑤=1 + ∑ 𝜔𝑤3𝑑𝑖𝑤𝑡𝑥𝑖3𝑡3𝑤=1 + 𝜃1 𝑟𝑖𝑡 +
            12 𝜃11 𝑟𝑖𝑡2 + 𝜃13𝑟𝑖𝑡𝑥𝑖3𝑡 + 𝜃2 𝑠𝑜𝑚𝑖𝑡 + 𝜃23𝑠𝑜𝑚𝑖𝑡𝑥𝑖3𝑡 + 𝜏1 𝑡𝑖 + 12 𝜏2 𝑡𝑖2 + ∑ 𝜑𝑗𝑡𝑖𝑥𝑖𝑗𝑡3𝑗=1 ,  

where i = 1,…,101 are the counties; t = 1,…,49 are the time periods; j = k = 1,…,3 are factors of 

production, w = 1,…,3 are the temperature degree day intervals, som is level of soil organic matter and r 

is precipitation. The coefficients α0, α1, βj, βjk, τ1, τ2, φj, ωw, ωw3, θ1, θ11, θ2 and θ23 are the parameters to be 

estimated. For each county i, yt is log of biomass yield Yt produced at year t; xjt is a vector of log of 

fertilizer, log of chemicals and percentage of irrigated land at year t; tt a proxy for technical change and it 

is the number of years since the beginning of the analysis where 1960 = 1 and diwt is a vector of degree 

days intervals.  

As we mentioned in the previous section, the shortcoming of the high flexibility of this functional form is 

that since the number of interaction terms explodes easily, usually there are high levels of collinearity that 

are likely to decrease the precision of the estimated parameters.  We included the full set of interactions of 

variables that are under farmer’s control and can motivate changes in his behavior (fertilizer, chemicals 

and irrigation) and those relative to the time trend (to account for technical change and its biases). We do 

not include the full set interactions of the environmental variables (soil organic matter, intervals of degree 

days and precipitation) that are not controlled by the farmer. Given the importance that irrigation has in 

this region, we do include the interactions of irrigation with soil organic matter, to account for the benefits 

of irrigation on different degrees of land quality; the degree-days intervals, to study how irrigation is used 

to mitigate heat stress; and with precipitation, to study how irrigation is used to mitigate water stress and 

to account for the substitutability of water from precipitation and water from irrigation. For simplicity, the 

descriptions presented in this section do not include these interactions between irrigation and the 

environmental variables but they are included in the estimation and their effects are described in the 

results section.  
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(6) 

(7) 

Given that the translog production function satisfies symmetry (Young’s Theorem) equation (4) includes 

half of the possible second order parameters, i.e. we include 10 (∑ 𝑗)4𝑗=1  second order interaction terms 

instead of 20. 

The translog production function is additively separable if 𝛽𝑗𝑘 = 0 ∀ 𝑗 ≠ 𝑘 and strongly separable if 𝛽𝑗𝑘 = 0 ∀ 𝑗, 𝑘, and equivalent to a Cobb-Douglas production function with input biases of technological 

change. Since the Cobb-Douglas production function is nested into the Translog production function, we 

can test if the former is a better specification than the latter by restricting the second order coefficients to 

be equal to zero and doing a Wald test. 

Monotonicity requires the marginal product of all inputs to be positive or that the estimated share to be 

nonnegative. Monotonicity will be tested at each data point.  

Given the translog specification defined in equation (4) and the assumptions of profit maximization and 

perfect competition, the factor shares are, 

Share of fertilizer 𝑆𝐻𝑡𝑖1 = 𝛽1 + 𝛽11𝑥𝑖1𝑡 + 𝛽12𝑥𝑖2𝑡 + 𝛽13𝑥𝑖3𝑡 + 𝛽51𝑡𝑖𝑡 
Share of chemicals 𝑆𝐻𝑡𝑖2 = 𝛽2 + 𝛽21𝑥𝑖1𝑡 + 𝛽22𝑥𝑖2𝑡 + 𝛽23𝑥𝑖3𝑡 + 𝛽52𝑡𝑖𝑡 
We have included only share equations for the purchased farm inputs since they have observable prices 

and are part of the variable cost of the farmer.
3
 

Equations (4), (6) and (7) are jointly estimated using a three stage least square approach (Zellner & Theil, 

1962). This system includes cross-equation parameter due to equality and symmetry constraints that relate 

the share equations coefficients with coefficients in the production function.  

The flexible nature of the translog production function does not impose a priori restrictions on the value 

of the output elasticities, returns to scale, elasticities of substitution or technical change.  

                                                           
3
 We lack county level information on labor and capital. 
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The first derivative of the translog production function with respect to the log of each of the inputs j 

corresponds to the production elasticities that, given our assumptions of profit maximization and perfect 

competition, are equal to the factor shares. These elasticities are both time and county specific and vary 

with input use. Let them be equal to γijt and be defined as:  

𝛾𝑖𝑗𝑡 = (𝜕𝑦𝑖𝑡𝜕𝑥𝑖𝑗𝑡) =  ( 𝜕𝑌𝑖𝑡𝜕𝑋𝑖𝑗𝑡) ∙ (𝑥𝑖𝑗𝑡𝑦𝑖𝑡 ) = 𝛽𝑗 + ∑ 𝛽𝑗𝑘𝑥𝑖𝑘𝑡 + 𝜑𝑗𝑡𝑖4
𝑘≠𝑗  (8) 

Production function estimates of scale economies can be obtained as the sum of the production elasticities 

of each output. We define the elasticity of scale as 

𝑅𝑇𝑆(𝑋𝑖𝑗𝑡 , 𝑡) = ∑𝛾𝑖𝑗𝑡3
𝑗=1 = ∑ 𝜕𝑦𝑖𝑡𝜕𝑥𝑖𝑗𝑡

3
𝑗=1  (9) 

A production function is said to exhibit constant returns to scale (CRS) if ∑ 𝛽𝑗𝑥𝑖𝑗𝑡 = 1𝐾𝑘=𝑖 . Given that our 

estimation of the production function per unit of land input assumes the existence of CRS on the inputs 

included, the difference of the elasticity of scale from one is accounting for land.  

When the estimation includes a time trend t as a proxy for technical change, the first derivative of the 

production function with respect to the time trend t can be interpreted as the primal rate of technical 

change. Given our specification, it is defined as: 

𝑑𝑦𝑖𝑡𝑑𝑡 = 𝜏1 + 𝜏2 𝑡𝑖 + ∑𝜑𝑗𝑥𝑖𝑗𝑡3
𝑗=1  (10) 

This measure is both time and county specific and varies with input use. According to its effects on 

relative input utilization, the rate of technical change can be further decomposed into effects due to pure 

technical change and biased technical change, where the latter show the effect of technology on the use of 

various inputs, indicating changes in their productivity. Following Chambers (1988), the biases of 

technical change can be defined as  
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𝐵𝑗 = 𝜕𝑠𝑗𝜕𝑡 =  𝜑𝑗 , ∀ 𝑗 (11) 

The translog production function is Hicks neutral if t is separable from all of the j inputs. This will be 

given if 𝜑𝑗 = 0 , ∀ 𝑗. Technical change is also said to be unbiased (or share neutral) if it does not affect 

the relative cost shares (i.e. the derivative of the logarithm of the share with respect to time must be the 

same for all shares). In our specification this will imply that 𝜑𝑗 = 𝜑𝑘 , ∀ 𝑗, 𝑘. Hence, Hicks neutrality 

implies share neutrality. If 𝜑𝑗 > 𝜑𝑘 the technical change is said to be biased toward input j; if 𝜑𝑗 < 𝜑𝑘 

the technical change is said to be biased toward input k. Additionally, if 𝜑𝑗 > 0 it is said that technical 

change was input j using and if the opposite inequality holds the technical change it is said to be input j 

saving. 

From the marginal product (MP) it can be easily estimated the marginal rate of technical substitution 

(MRTS) between two production factors as,  

−𝑀𝑅𝑇𝑆𝑗𝑘𝑡 =  𝑀𝑃𝑘𝑖𝑡 𝑀𝑃𝑗𝑖𝑡 =  𝑋𝑖𝑗𝑡 𝑋𝑖𝑘𝑡  𝛽𝑘 + ∑ 𝛽𝑗𝑘𝑥𝑖𝑘𝑡3𝑗=1 + 𝜑𝑘𝑡𝑖𝛽𝑗 + ∑ 𝛽𝑗𝑘𝑥𝑖𝑗𝑡3𝑘=1 + 𝜑𝑗𝑡𝑖  (12) 

This marginal rate of technical substitution will show us the additional amount of input j that is needed to 

replace one unit of input k when output is constant. Input substitution is a critical issue in determining the 

capacity of firms to adapt to changing economic conditions. Allen’s partial elasticity of substitution 

measures the change in the MRTS as we move along the isoquant between two inputs or, in other words, 

the degree of substitutability of inputs while holding output constant and allowing them to adjust 

optimally to factor prices changes.  It can be computed by first estimating the second derivatives of the 

Translog function. This is, 

𝑓𝑗𝑘 = 𝜕2𝑌𝑖𝑡𝜕𝑋𝑗𝜕𝑋𝑘 = 𝛽𝑗𝑘𝑌𝑖𝑡𝑋𝑗𝑋𝑘 +  𝑀𝑃𝑗𝑖𝑡  𝑀𝑃𝑘𝑖𝑡𝑌𝑖𝑡 − 𝛿𝑗𝑘  𝑀𝑃𝑗𝑖𝑡𝑋𝑗  (13) 

where 𝛿𝑗𝑘 is the Kronecker’s delta between j and k with 𝛿𝑗𝑘=1 if j=k and 𝛿𝑗𝑘= 0 if j ≠ k. Then, let us 

define fj = MPj and the bordered Hessian matrix F as 
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(14) 
F = [  

  0 𝑓1 𝑓2𝑓1 𝑓11 𝑓12 𝑓3 𝑓4𝑓13 𝑓14𝑓2 𝑓21 𝑓22𝑓3 𝑓31 𝑓32𝑓4 𝑓41 𝑓42
𝑓23 𝑓24𝑓33 𝑓34𝑓43 𝑓44]  

  
 

We can now define Allen’s partial elasticities of substitution as 

𝜎𝑗𝑘𝑎 = ∑ 𝑋𝑗𝑓𝑗4𝑗=1𝑋𝑗𝑋𝑘 𝐹𝑗𝑘|𝐹| (15) 

where |𝐹| is the determinant of the bordered Hessian F and 𝐹𝑗𝑘 is the cofactor of F for the inputs j and k. 

If 𝜎𝑗𝑘𝑎 <0 the inputs are substitutes and if 𝜎𝑗𝑘𝑎 >0 the inputs are complements. If the production function is 

separable in inputs Xj and Xk, then a change in the quantity of another input does not change the optimal 

factor proportions between these two inputs. The Allen partial elasticities of substitution are the most used 

measures of substitution but they are not free of critics (Chambers (1988), Blackorby and Russell (1989)). 

After estimating the Allen partial substitution elasticities, following Chambers (1988) the Morishima 

elasticity of substitution can be easily derived as, 

𝜎𝑗𝑘𝑚 = 𝑋𝑘𝑓𝑘𝑋𝑗𝑓𝑗 (𝜎𝑗𝑘𝑎 − 𝜎𝑘𝑘𝑎 ) (16) 

This elasticity is not symmetric since 𝜎𝑗𝑘𝑚 ≠ 𝜎𝑘𝑗𝑚. Inputs j and k are Morishima substitutes if 𝜎𝑗𝑘𝑚<0 and 

they are Morishima complements if 𝜎𝑗𝑘𝑚> 0. When inputs are Allen substitutes, they are also Morishima 

substitutes, but the converse does not always hold. The Morishima elasticity is a more economically 

relevant concept since it is an exact measure of how the j, k input ratio responds to a change in wk 

(Chambers, 1988), for this reasons, our estimation of the Allen elasticities of substitution is just a means 

to obtain the Morishima elasticities of substitution. 

Since the farmers take decisions about the desired yield and the amount of fertilizer and chemicals needed 

to produce it simultaneously, an instrumental variables approach is used to avoid endogeneity issues. For 

this purpose, indexes of prices of these inputs were used as instrumental variables. Given that the 
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interactions of the instrumented inputs, fertilizer and chemicals, with themselves and with the other 

variables are also endogenous, instruments for these interactions were also created. 

The STATA package version 12.0 was used for the econometric estimations. 

 

Data description: 

The area of analysis consists of 101 counties spread along the 41º N latitude parallel in the U.S.   

Midwest; this is a 800-mile climatic gradient from the Rocky Mountains to the Mississippi River  that 

includes 47 counties in Nebraska, 47 counties in Iowa, 4 counties in Colorado and 3 counties in Wyoming 

(Figure 1). This area ranges from rain-fed crops with high precipitation and high soil carbon in the east to 

highly irrigated crops with low precipitation and moderate soil carbon in the west. This vast gradient of 

weather, soil and underground water characteristics makes this region representative of agriculture of 

other temperate regions in the world. 

 

The dependent variable is the log of the total amount of agricultural biomass produced per hectare planted 

from all crops. As it can be seen in figure 2, the most important commodities produced in the area during 

the period were, in order of quantity, corn, soybean, wheat and hay; with greater concentration on these 

commodities in the last decades.  
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The unit of measurement is megagrams (Mg) of above-ground dry matter produced. Coefficients to 

convert to metric tons (i.e. tonnes) from bushels were 0.0254 for corn, sorghum and rye and 0.0272 for 

wheat and soybeans. 

The unharvested biomass for each crop was calculated by multiplying the reported harvested production 

by one minus the respective harvest index, where this index is the fraction of the above-ground biomass 

that is usually harvested according to the literature (Hay, 1995; Unkovich et at., 2010). The following 

harvest indexes were used: corn and sorghum for grain 50%; corn and sorghum for silage and hay 100%; 

soybeans, rye and barley 40% and other minor crops 35-85%.  

The harvested and unharvested estimated production for each crop was converted to dry matter (DM) by 

multiplying the metric tons produced by one minus the respective moisture index of that crop. The 

indexes used follow Loomis & Connors (1992): corn and sorghum for grain, barley and rye 14.5%; corn 

and sorghum for silage 55%; wheat 13.5%; soybeans and beans 13% and other minor crops 10-78%. 

The county-level yields were obtained by dividing the estimated DM total biomass produced by the total 

planted area for all crops for each county. Annual harvested production and planted land data were 

obtained from the U.S. Department of Agriculture’s National Agricultural Statistical Service (USDA-

NASS).  Figure 2 depicts the evolution of the share of produced biomass per crop and the average yield 

per hectare planted for the main crops.  
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Figure 2 – Share of total biomass produced and yield (tons per hectare planted) through time per crop 

 

 

 

During the last decades there was greater concentration in the production of corn and soybeans. There 

was an important increase in the average yield that was mainly motivated by a substantial increase in corn 

productivity; soybeans and wheat also had increases in yield but they were modest.  

The independent variables consist of the traditional inputs that are under farmers’ control and of 

environmental variables. The inputs considered are fertilizer, chemicals and irrigation, and the 

environmental variables are soil organic matter, precipitation and degree days. Indexes are constructed for 

all variables at the county level.  

Fertilizer and Chemical inputs are measured in implicit quantity indexes per hectare planted. These 

indexes were estimated from the county expenditures on these inputs published by the Census of 

Agriculture as reported by USDA, National Agricultural Statistics Service.  The quantity indexes were 

constructed for each census year by dividing the reported expenditure by price indexes obtained from 

USDA, ERS for fertilizers and USDA, NASS for chemicals (base 1990-1992=100).  These implicit 

quantities were then divided by total planted area to obtain indexes of quantities applied per hectare by 

county and census year. Since the census is done generally every five years, the missing years were 
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estimated by linear interpolation of these county quantity indexes between census years (implying an 

inelastic demand for these inputs between census years).  Finally, these indexes were divided by the index 

in Adams County, Nebraska, for year 1960 converting them to a multilateral index. Figure 3 shows the 

evolution of these indexes for the aggregate of the study area. It is noticeable the rapid increase in 

chemicals use and the stagnation in the use of fertilizers.  

Figure 3 - Average indexes of fertilizer and chemical use per hectare planted (1960-2008) 

 

 

The irrigation variable is the ratio of planted land that has been irrigated to total planted land. There is an 

important variability in percentage of irrigated land across time and space with higher values in the center 

of Nebraska and zero values in Iowa
4
.  Figure 4 illustrates the time path of the irrigation ratio by state; 

Figure 5 depicts the geographical distribution of irrigation ratio in 2008. 

 

 

 

                                                           
4
 Given the minimal levels of irrigation present in Iowa, USDA does not report the amount of planted land that was 

irrigated.  
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Figure 4 – Average irrigation ratios per state (1960-2008) 

 

 

 

Figure 5 - Irrigated land as a fraction of planted land (2008)  

 

To account for the differences in soil quality we include the megagrams of soil organic matter (SOM) per 

hectare for each county. This variable was obtained from Lakoh (2012). Using 2010 data on Soil Organic 

Carbon (SOC) from the Soil Survey Geographic Database (SSURGO), Lakoh estimated SOC levels for 

the period 1960-2008 retroactively from 2010 initial values using modified versions of the DK model 

(Liska et al 2014). An approximate SOC to soil organic matter (SOM) conversion factor of 2.0 was then 
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applied to obtain the series for SOM (Liska et al (2014)).  As figure 6 illustrates, this variable shows 

higher values for central and eastern Iowa and decreasing values as we move to the west.  

Figure 6 - Soil organic matter (SOM) in Mg/ha, 2008 

 

Turning to the weather variables, data on degree days and precipitation were estimated from weather 

stations’ data collected from the High Plains Regional Climate Center
5
.  From this data, a daily 

precipitation value (in centimeters) and daily maximum and minimum temperatures were estimated for 

each county in the sample and for each day during the growing season (March to August). The method 

used for this estimation was a linear interpolation from the 5 closest stations to the center of each county. 

Using a Shepard inverse distance function: 

𝑢(𝑥𝑘) = ∑ 𝑤𝑖𝑘 𝑥𝑖∑ 𝑤𝑗𝑘5𝑗=05𝑖=0  ,   where 𝑤𝑖𝑘 = 1𝑑𝑖𝑘2  , 

 

where xk denotes the interpolated value for county k, xi is the measurement at weather station i, and d is 

the distance from the weather station i to the center of county k. These daily data was then used to 

estimate the yearly precipitation and degree day intervals that we use in the estimation.  

To measure the impact of temperatures on yield we use an adaptation of the agronomic measure “growing 

degree days.” Following this literature, a growing degree day is defined as the amount of time (in days) 

                                                           
5
 http://www.hprcc.unl.edu/data/historical/index.php 

http://www.hprcc.unl.edu/data/historical/index.php
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where the temperature is above a certain threshold; one degree-day is accumulated when the temperature 

is one degree above the threshold for a 24-hour period (Ritchie et al. 1991). Given the particular 

importance that is given to climate impacts in this study, we estimated several intervals of degree days. 

Each interval accounts for the proportion of each day during the growing season (March to August) when 

the temperature was inside its boundaries. Our set of three intervals covers all the temperatures higher 

than 0ºC. The lower temperature interval, DD0029, covers the degree days from 0ºC to less than 30ºC, the 

next interval, DD3035, covers the range 30ºC to less than 35ºC and the higher temperatures interval, 

DD35plus, covers temperatures equal or higher than 35ºC.   

To estimate the degree days we adapt Snyder (1984) method. By using a sine curve he approximates 

diurnal temperatures from maximum and minimum data, daily degree accumulations are estimated by 

integrating the area under the sine curve. The estimation algorithm differs depending on the position of 

the selected temperature interval with respect to the minimum and maximum temperature observed. There 

are three different cases: 

Case 1: When the daily minimum temperature is above the upper bound of the interval being considered, 

the degree days for that day and interval are equal to 0. 

Case 2: When the interval being considered lies between the daily minimum and maximum temperatures 

the following equation is used: 

𝑎𝑏𝑠𝐷𝐷𝐿𝑂𝑊𝑈𝑃 = [(𝑀𝐿𝑂𝑊 − 𝑇𝐻𝑅𝐿𝑂𝑊) (𝜋2 − 𝜃) + 𝑊 cos(𝜃)]𝜋 − [(𝑀𝑈𝑃 − 𝑇𝐻𝑅𝑈𝑃) (𝜋2 − 𝜃) + 𝑊 cos(𝜃)]𝜋  

where   𝜃 = arcsin[𝑖−𝑀𝑤 ],   M= 𝑀𝑎𝑥+𝑀𝑖𝑛2 ,  𝑊 = 𝑀𝑎𝑥−𝑀𝑖𝑛2 , LOW and UP are the lower and upper bounds 

respectively and i is the lower or upper bound temperature.  

Case 3: When the daily maximum temperature is below the lower bound of the interval being considered, 

the degree days for that interval are equal to 0. 
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In our adaptation the value obtained for each interval was divided by the total number of degree days 

observed for that day, this way we convert the values into fractions of a day with temperature ranging in 

that interval. 

We initially estimated 40 degree day intervals, one for each unitary change in temperature from 0ºC to 

40ºC
6
. We then aggregated this intervals to obtain the desired degree day intervals: we summed the values 

of all the intervals from 0ºC to 29ºC to obtain the DD0029 interval, we summed the values from the 

intervals from 30ºC to 34ºC to obtain the DD3035 interval and finally we summed the values of all the 

intervals from 35ºC to 40ºC to obtain the DD35plus interval.  

Figure 7 depicts the numbers of degree days for the 2008 growing season for the two higher degree day 

intervals (DD3035 and DD35plus). It can be seen that there is an increasing amount of days with 

temperatures higher than 30ºC towards the west, from eastern Iowa to western Nebraska. 

Figure 7 – Number of degree days with more than 30ºC (2008 growing season) 

 

The precipitation variable measures, in centimeters, the total amount of precipitation registered during the 

growing season. To estimate these values, for each county, the estimated daily values for each county 

(that were obtained by interpolation) were added for each year to have an estimate of total precipitation. 

                                                           
6
 Since the 40ºC degree interval does not have an upper bound it also accounts for temperatures higher than 40ºC. 
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Figure 8
7
 includes 3 figures that characterize precipitation in our dataset. As it can be seen in figure 8.a, 

there is a substantial decrease in average precipitation towards the West; while in counties in East Iowa 

the average yearly precipitation was over 90 cm, in counties in West Nebraska, Colorado and Wyoming 

the average yearly precipitation was 30cm.  Figure 8.b evidences a normal distribution for precipitation 

with around 90% of the observations receiving between 10cm and 30cm of precipitation. Finally, figure 

8.c shows that although there is no trend in precipitation during the period, there is high variability 

between years, with 1993 showing the highest amount of precipitation and 1994 showing one of the 

lowest level observed during the period of analysis. Additionally, figure 8.c shows that generally, there is 

higher amount of precipitation in Iowa than in Nebraska, Colorado and Wyoming
8
 (NCW). 

 

 

 

 

 

 

                                                           
7
 While Figure 8.a represents yearly precipitation, figures 8.b and 8.c represent precipitation during the growing 

season (March to August).   
8
 In this study, counties will frequently be divided between counties in Iowa and counties in Nebraska, Colorado and 

Wyoming (NCW). Given the lack of irrigation in Iowa and higher precipitation, this differentiation is done to check 

for differences in the estimates for counties with and without irrigation.  

Figure 8 – Precipitation (cm)  

Figure 8.a – Yearly average precipitation (cm)  
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As seen in figure 7 and figure 8, the area of study shows a rich variability in weather variables.  

Precipitation increases towards the East and temperature degree days increases toward the West. 

Summary statistics are presented in table 1 in the Appendix.  

 

d. Results: 

The parameters obtained by the joint estimation of equations 4, 6 and 7 can be seen in Table A.1 in the 

Appendix. 22 out of 26 estimated parameters are significantly different from zero at the 99% confidence 

level and 1 parameter at 95% confidence level. The production function estimation’s pseudo R squared is 

.6853. Although the standard goodness of fit cannot be interpreted as the proportion of the variance 

explained when estimating a three-stage least squares system of equations, it still provides a useful 

indication of the overall predictive power of the estimators (Toft and Bjørndal, 1997).  

A Wald test was conducted to compare the translog specification versus the Cobb-Douglas specification; 

results reject the nested Cobb-Douglas form as a better specification. The Wald test on the 𝛽𝑗𝑘 

coefficients equal to zero rejects the hypothesis that all the inputs are additively separable (∀ 𝑗, 𝑘 ) and 

strongly separable (∀ 𝑗 ≠ 𝑘).  

Figure 8.b – Precipitation frequency  Figure 8.c – Precipitation per year  
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A multicollinearity test by variance inflator factor (vif) on the independent variables was done to quantify 

the severity of possible multicollinearity. This test provides a measure of how much the variance of the 

estimated regression is increased by multicollinearity. Our highest estimate was a value of 6.57 for 

chemicals, lower than the 10 critical value used for absence of multicollinearity.   

Given that the presence of outliers (among other reasons) can lead to heteroskedastic errors we proceed to 

employ a “pairs bootstrap” methodology (Freedman, 1981) for the estimation. Following McKinnon 

(2002) and Flachaire (2004) pairs bootstrapping gives robust estimates under heteroskedasticity. 

Additionally, a standard 3SLS estimation was done to check for consistency of the results finding no 

qualitative changes in the significance of the estimated parameters. 

Evaluated at the average of the observations, the technology is monotone for all the inputs but this is not 

true at each data point. Given the lack of irrigation in Iowa we exclude this state for the estimation of 

monotonicity and quasiconcavity violations since it is not possible to estimate the bordered Hessian 

matrix for a translog form when some inputs are equal to 0. The percentages of monotonicity violations 

are 1.07% for fertilizer, 1.29% for chemicals and 12.24% for irrigation. Looking at the bordered Hessian 

determinants we can estimate quasiconcavity violations at each data point, 50.4% of the observations do 

not fulfill the quasiconcavity condition.  

The elasticities of production estimated as described in equation 8 are shown in Table 1. Since the 

translog specification allows the estimation of the elasticities for each data point, we only show average 

elasticities for each variable. The p-values included in the table are at their means and were estimated 

using the delta method.   
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Table 1 - Elasticities of production estimated at their means 

Variable Elasticity P-Value 

Fertilizer            0.074                  0.002  

Chemicals            0.050                  0.002  

Irrigation ratio            0.234                  0.019  

Soil organic matter            0.072                  0.051  

Time Trend            0.011                  0.000  

 

All the production elasticities with the exception of irrigation are significantly different from zero at the 

99% confidence level, while irrigation is significant at the 95% confidence level. Our estimate of the 

production elasticity of fertilizer (0.07) is similar to Saha et al. (1997) but is lower than the .10-.17 

estimated by Headley (1968), Hayami and Ruttan (1970) and Griliches (1983). Our estimate of the 

production elasticity of chemicals (0.05) is similar to Ball’s (1985) parametric share of 0.057. Our 

estimate of the production elasticity of irrigation tells us that approximately one fourth (0.23) of the 

agricultural production in our study area can be associated to the use of irrigation; if we convert a hectare 

of land from rain-fed to irrigated, we should expect, on average, a 23% increase in yields. This estimate is 

higher than Coelli and Rao (2005) estimate of the shadow share (0.141) of irrigation in the United States 

for the period 1980-2000. Considering the evolution of the elasticity during the period of analysis we 

observe a positive trend, from .12 during the 1960s to 0.30 during the 2000s. If we only account for the 

counties that have any irrigation (counties in Nebraska, Colorado and Wyoming (NCW)) the average 

elasticity of irrigation rises to 0.43; the exclusion of Iowa significantly shifts our estimated elasticity. 

Figure 9 depicts a scatterplot of biomass yield and levels of irrigation.  
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As shown in the figure, observations with higher levels of irrigation tend to be associated with higher 

yields. Additionally, given the high levels of precipitation and no irrigation in Iowa we can observe that 

the remaining states in the sample compensate lower levels of precipitation with higher levels of 

irrigation; by increasing the amount of irrigated land they are able to obtain yields attainable by counties 

in Iowa that are not irrigated.   

Table 1 additionally includes the average production elasticity of soil organic matter. This elasticity was 

found to be positive and significant at the 95% confidence level, indicating that soil quality accounts for 

7% of the variability in yields. Disaggregating these estimates between Iowa and the remaining states 

shows that this variable is highly significant for Iowa’s productivity, its average elasticity is .16, while the 

estimate for the remaining states is around zero and non-significant.  

Our estimate of the primal rate technical change is included in Table 2 and it was estimated as determined 

by equation (10). To estimate the weighted average values, the estimated technical change of each 

observation was weighted by the share of that county in the total output produced during the same year. 

Our estimated average rate of technical change during 1960-2009 is 1.13%. This average change is lower 
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Figure 9 – Yield (Mg per ha) and Percentage of irrigated land. 
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than the total factor productivity (TFP) growth rate of 1.78% estimated Alston et al. (2010) for 1949-2002 

and the USDA-ERS (2015) TFP change of 1.56% for 1960-2008. Figure 10 depicts a scatterplot with the 

evolution of technical change for each county and the weighted average technical change. 

Figure 10 – Estimated technical change per year for each county 

 

Looking into figure 10, we observe a positive but decreasing growth rate of technical change for counties 

from both groups, from an average of 0.98% in the 1960s to 1.20% in the 2000s. This slowdown in the 

growth rate of technical change is similar to the USDA-ERS (2015) estimate for the TFP change in U.S. 

agriculture. A Wald test on the 𝜑𝑗 coefficients rejects the hypothesis of Hicks neutral technical change. 

Table 3 shows the biases of technical change and their p-values. The technological change was fertilizer- 

and chemical-using (biased towards fertilizer) and irrigation-saving. These results can be taken as 

evidence of a shift in the production technology that induced the use of commercial inputs and an increase 

in the efficiency of water use for irrigation. 
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Table 3 - Biases of technical change 

Input Bias P-Value 

Fertilizer 0.0006 0.0000 

Chemical 0.0005 0.0000 

Irrigation -0.0020 0.0200 

 

The estimated marginal rate of technical substitution between fertilizer and chemicals on average was 

found to be equal to 3.5. This means that if we reduce the amount of fertilizer used in one unit, we can 

keep the yield constant by increasing the amount of chemicals used in 3.5 units
9
. As figure 11 shows, this 

relation has changed during the period of analysis.   

 

 

 

 

 

 

 

After a period of higher variability during 1960-1975 the average MRTS between fertilizer and chemicals 

started increasing, from 3.12 in 1975 to 4.76 in 2009 (figure 11a), this growth was not related to a 

decrease in the marginal product of chemicals but with a faster increase in the marginal product of 

fertilizers. The evolution in the MRTS can be explained by the change in the crop output mix (see figure 

2) but mainly with the increase in agricultural productivity; higher yield levels are associated with higher 

levels of fertilizer and chemicals consumption per hectare of land, thus higher quantities of chemicals are 

                                                           
9
 Where the base unit is the total amount of fertilizer or chemical used in Adams County, Nebraska, in 1960. 

Figure 11 – Marginal rate of technical substitution between fertilizer and chemicals. 

a) MRTS per year. b) MRTS per yield of biomass (2000-09). 
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required to compensate a decrease in the use of fertilizer as the yield increases (figure 11b). Additionally, 

the Morishima elasticities of substitution were estimated for each data point following equation 16. The 

average Morishima elasticities of substitution between fertilizer and chemicals were found to be negative, 

implying that these inputs are substitutes in production.  

Climate Impact 

As shown by other authors, results show a non-linear increasingly negative effect of higher temperatures 

on expected crop yields.  While temperatures lower than 30ºC where found to have a positive effect on 

yields, temperatures higher than 30ºC have an increasing negative impact. Table 4 shows the marginal 

impact of each degree day interval on expected yield. 

Table 4 - Climate Impact on Yields 

Variable Marginal effect P-Value 

DD0030 0.0043  0.0009  

DD3035 (0.0101) 0.0252  

DD3540 (0.2712) 0.0477  

Precipitation (0.0568) 0.0673  

 

On average, each extra day of temperatures between 30ºC and 35ºC is expected to reduce yields by 1.0 % 

and each extra day with temperatures greater than 35ºC is expected to decrease yields by 27.1%. For the 

lower temperature intervals, an extra day with temperatures positive but smaller than 30ºC is expected to 

have a positive effect of 0.4%. Comparing our results with Schlenker and Roberts (2009) findings, we 

find similar impacts of temperatures to 35ºC, but after this threshold our estimate indicates a more severe 

effect. Their estimate of around 6% decrease in yield is significantly lower than our estimate of 27.1%. 

Roberts et al. (2012) find similar estimates for temperatures between 10ºC and 29ºC, and for days with 

temperatures higher than 29ºC. They estimate a negative effect of 6.2% for each extra day but this 

estimate is not directly comparable to ours given the difference in temperature ranges. It is important to 

remember that these authors only looked at counties east of the 100 meridian so they do not include 
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irrigated agriculture, while this is an important component in our sample. Figure 12 depicts the marginal 

effects of temperatures under each interval for counties in Iowa versus counties in the remaining states 

(NCW). We can observe that given the lack of irrigation, the negative impact of the higher degree day 

interval is more severe in Iowa than in the states that irrigate.  

 

 

Irrigation greatly alleviates the harmful effect of higher temperatures. It can be effectively used to offset 

the negative impact of temperatures above 35ºC.  The effect of irrigation on a hectare of land converted 

from non-irrigated to irrigated is expected to outweigh the negative impact of temperatures above 35ºC.
10

   

Our estimates of the effect of precipitation on yields were not significant. These results are different  from 

those of  Lobell (2007), Schlenker and Roberts (2009) and Roberts et al. (2012) who found that the effect 

of this variable is significant and follows an inverted U shape; that is, there is a positive effect of 

precipitation until a certain threshold after which the effect becomes negative. The difference in the 

significance of the results might be explained by the area of study, While they include regions with no or 

                                                           
10

 The interaction coefficients between the degree day intervals and irrigation are the following (p-values in 

parenthesis):  DD0030: -0.0012 (0.569) – DD3035: 0.0082 (0.321) – DD35plus: 0.7379 (0.000). 
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Figure 12 – Marginal effect of Degree Day temperature intervals on Yield 
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low irrigation, our analysis additionally includes counties with a high percentage of irrigated land. For 

these counties, since farmers compensate for the lack of precipitation with higher levels of irrigation, 

variability in precipitation does not seem to be strongly associated to with variability in yields.   

To compare with results in Schlenker and Roberts (2009) we run an OLS regression of yields on weather 

variables and county dummies, similar to what they estimated. Results are presented in table 5. 

Table 5 - OLS estimated with county fix effects 

Dependent variable: Ln(Yield) 

Variable Coefficient P-Value 

dd0030 0.009 0.000 

dd3035 -0.026 0.000 

dd3540 -0.243 0.000 

Precipitation 0.387 0.029 

Precipitation sq. -0.078 0.009 

 

These results are similar to our main specification. There is a significant increasing negative effect of 

higher temperatures on crop yield, while days with positive temperatures lower than 30ºC have a small 

positive effect, each accumulated day with temperatures between 30ºC and 35ºC will decrease yields by 

3% and each accumulated day with temperatures higher than 35ºC will decrease yields by 22%
11

. Our 

estimated negative impact of the higher temperature interval is more harmful than Schlenker and Roberts’ 

(2009) estimate but, similar to them, precipitation is significant and is characterized by an inverted U 

shape. Figure 13 depicts a scatterplot of yields and precipitation (cm).  

 

 

 

 

                                                           
11

 We find the same nonlinear temperature effect if we additionally control for irrigation. 

Figure 13 – Yield (Mg per ha) and Precipitation (cm). 
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Figure 13 shows that on average counties in Iowa have higher levels precipitation, as was observed in 

Figure 8. The predicted yield line shows an inverted U shape with a maximum predicted yield attainable 

at 30cm of precipitation.  

 

e. Conclusions: 

This article has provided evidence of the interaction between climate and producer behavior in the 

production of crop output in the Great Plains. Given the climatic and hydrologic variability observed in 

our area of analysis, these conclusions might be representative of other temperate regions of the world. 

 Results quantify the critical effects that high temperatures have on agricultural productivity. After 

controlling for irrigation, other managed inputs, soil characteristics, precipitation, and technological 

change, we found a negative and substantially increasing (nonlinear) effect of temperatures over 30 ºC on 

crop yields. While a full day of temperatures between 0ºC and 30ºC  has a small positive effect on yield, a 

full day with temperatures between 30ºC and 35ºC decreases expected yield by 1% and a full day of 
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temperatures over 35ºC decreases yields by 27.1%. Precipitation was not found to have a significant 

effect on yield changes.  

Our results are qualitatively similar to the findings in Schlenker and Roberts (2009) but provide additional 

information. First, we estimate that in areas where irrigation is available, the harmful effect of 

temperatures above 35ºC can be offset by the use of irrigation. Semi-arid areas like western Nebraska and 

eastern Colorado and Wyoming, for example, compensate the higher temperatures and the lack of 

precipitation with high levels of irrigation. Hence, the transformation of rainfed to irrigated land is an 

effective mechanism to cope with possible increases in average temperatures but policy recommendations 

promoting this transformation should also consider underground water sustainability issues that increased 

irrigation could generate. Further research on this issue is needed.  

Second, the contribution of fertilizer and chemicals to yield changes is significant; production elasticities 

highlight the increasing importance of fertilizer and chemicals on yields. Studies that try to determine 

climate change impact on agricultural productivity that do not account for these human inputs might 

wrongly attribute changes in yields to changes in climatic variables, with the possibility of 

underestimating the impacts of predicted changes in temperature or precipitation.  

Finally, the technical change estimated during the period of analysis was found positive but decreasing 

with an average growth rate during the period of analysis of 1.1%. This change has been fertilizer and 

chemicals using and irrigation saving.  
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Appendix 

 

 

 

48.19    

44.52    

0.91      

316.70  

48.00    

49.50    

178.83  

12.78    

1.90      

0.25      

0.10      

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Fertilizer 21.56     6.34       0.27 44.40     17.92     8.65       0.04 48.19     

Chemicals 16.38     6.45       2.62 44.52     10.79     6.54       0.24 32.28     

Irrigation ratio 0.00 0.00 0.00 0.00 0.45       0.22       0.00 0.91       

SOM (Mg/ha) 175.89   39.01     101.08 316.70   106.33   24.12     62.67 175.80   

Precipitation (cm) 23.15     5.50       9.06 49.50     18.42     5.26       5.05 43.98     

Time period 24.00     14.15     0.00 48.00     24.00     14.15     0.00 48.00     

dd0029 165.89   5.45       147.68 178.83   163.50   5.29       148.83 177.27   

dd3035 3.21       2.09       0.14 12.78     4.92       2.13       0.26 12.05     

dd3640 0.06       0.17       0.00 1.56       0.20       0.25       0.00 1.90       

Share Fertilizer 0.06       0.02       0.00 0.16       0.06       0.03       0.00 0.25       

Share Chemicals 0.03       0.01       0.01 0.10       0.03       0.01       0.00 0.08       

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Fertilizer 15.48     6.21       1.21 32.10     10.07     4.59       0.78 21.93     

Chemicals 9.46       6.23       1.08 27.50     5.50       3.13       0.41 11.24     

Irrigation ratio 0.35       0.14       0.01 0.68       0.43       0.14       0.17 0.83       

SOM (Mg/ha) 88.31     16.26     60.44 108.30   57.00     10.71     46.55 73.20     

Precipitation (cm) 12.99     2.77       5.96 20.44     10.00     2.65       4.70 16.53     

Time period 24.00     14.18     0.00 48.00     24.00     14.19     0.00 48.00     

dd0029 161.47   4.94       148.96 174.28   160.58   4.98       147.69 172.34   

dd3035 4.41       2.12       0.27 9.18       3.04       1.72       0.26 8.09       

dd3640 0.20       0.20       0.00 0.91       0.12       0.16       0.00 0.82       

Share Fertilizer 0.06       0.02       0.00 0.11       0.05       0.03       0.00 0.15       

Share Chemicals 0.03       0.01       0.00 0.07       0.02       0.01       0.00 0.05       

Max

0.14

0.00

0.00

0.00

Table A.1 - Summary Statistics

Complete region (101 counties)

0.24

0.00

46.55

0.00

4.70

147.68

Share Fertilizer 0.06                      0.02                      

Share Chemicals 0.03                      0.01                      

dd3035 4.05                      

dd3640 0.13                      

7.88                      0.04

0.22                      

Precipitation (cm) 20.16                    6.17                      

dd0029 164.44                  5.54                      

SOM (Mg/ha) 136.53                  49.17                    

Time period 24.00                    14.14                    

Iowa (47 counties) Nebraska (47  counties)

Colorado (4 counties) Wyoming (3 counties)

Variable Mean Std. Dev.

Chemicals 13.18                    7.12                      

Irrigation ratio 0.23                      0.27                      

Fertilizer 19.28                    

Min

2.26                      
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Table A.2 – Parameters estimated 

                                                                               

     fert_chem_pr1960 

     chempr1960sq fertpr60_x1 chempr60_x1 chempr60_t fertpr60_t 

     dd0029x1 dd3035x1 dd3640x1 t tsq x1t fertpr1960 chempr1960 fertpr1960sq 

Exogenous variables:   x1 x6 lnx5 x1sq x6sq x1_x6 x15 dd0029 dd3035 dd3640 

     chemha_t 

     lnfertpha60sq lnchempha60sq x1_fertha x1_chemha fertha_chemha fertha_t 

Endogenous variables:  lny shfertpHP shchempHP lnfertpha60 lnchempha60 

                                                                               

        _cons     .0085364   .0006192    13.79   0.000     .0073228      .00975

            t     .0004568   .0000228    20.07   0.000     .0004122    .0005014

  lnchempha60     .0103626   .0012366     8.38   0.000     .0079388    .0127863

  lnfertpha60    -.0062367   .0015397    -4.05   0.000    -.0092544    -.003219

           x1    -.0043459   .0009047    -4.80   0.000    -.0061192   -.0025727

shchempHP      

                                                                               

        _cons     .0361004   .0008613    41.91   0.000     .0344122    .0377885

            t      .000649   .0000378    17.18   0.000      .000575    .0007231

  lnchempha60    -.0062367   .0015397    -4.05   0.000    -.0092544    -.003219

  lnfertpha60     .0158817   .0018429     8.62   0.000     .0122697    .0194936

           x1     .0130618   .0014324     9.12   0.000     .0102542    .0158693

shfertpHP      

                                                                               

        _cons    -2.246315   .2884751    -7.79   0.000    -2.811716   -1.680914

     chemha_t     .0004568   .0000228    20.07   0.000     .0004122    .0005014

     fertha_t      .000649   .0000378    17.18   0.000      .000575    .0007231

          x1t    -.0019801   .0008313    -2.38   0.017    -.0036093   -.0003508

          tsq     .0000161   .0000186     0.87   0.386    -.0000203    .0000525

            t     .0095509   .0010422     9.16   0.000     .0075082    .0115936

     dd3640x1     .7397308   .0855388     8.65   0.000     .5720779    .9073837

     dd3035x1     .0081963   .0073539     1.11   0.265     -.006217    .0226096

     dd0029x1    -.0011986   .0020643    -0.58   0.562    -.0052446    .0028475

       dd3640    -.4892373   .0357502   -13.68   0.000    -.5593063   -.4191682

       dd3035    -.0121009   .0028529    -4.24   0.000    -.0176925   -.0065092

       dd0029     .0045933   .0006879     6.68   0.000      .003245    .0059416

fertha_chemha    -.0062367   .0015397    -4.05   0.000    -.0092544    -.003219

          x15    -.3944665   .0464869    -8.49   0.000    -.4855791   -.3033538

        x1_x6    -.1965469   .0516825    -3.80   0.000    -.2978428   -.0952511

    x1_chemha    -.0043459   .0009047    -4.80   0.000    -.0061192   -.0025727

    x1_fertha     .0130618   .0014324     9.12   0.000     .0102542    .0158693

         x6sq    -.2834184   .0267855   -10.58   0.000    -.3359169   -.2309198

lnchempha60sq     .0103626   .0012366     8.38   0.000     .0079388    .0127863

lnfertpha60sq     .0158817   .0018429     8.62   0.000     .0122697    .0194936

         x1sq     1.289814   .0632666    20.39   0.000     1.165814    1.413814

         lnx5     .1637831   .0179693     9.11   0.000     .1285639    .1990022

           x6     1.663486   .1648163    10.09   0.000     1.340452     1.98652

  lnchempha60     .0085364   .0006192    13.79   0.000     .0073228      .00975

  lnfertpha60     .0361004   .0008613    41.91   0.000     .0344122    .0377885

           x1     2.021755   .4516406     4.48   0.000     1.136556    2.906955

lny            

                                                                               

                     Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                  Observed   Bootstrap                         Normal-based

                                                                               

 (10)  - [lny]lnchempha60 + [shchempHP]_cons = 0

 ( 9)  - [lny]lnfertpha60 + [shfertpHP]_cons = 0

 ( 8)  - [lny]chemha_t + [shchempHP]t = 0

 ( 7)  - [lny]x1_chemha + [shchempHP]x1 = 0

 ( 6)  - [lny]lnchempha60sq + [shchempHP]lnchempha60 = 0

 ( 5)  - [lny]fertha_t + [shfertpHP]t = 0

 ( 4)  - [lny]x1_fertha + [shfertpHP]x1 = 0

 ( 3)  - [lny]fertha_chemha + [shfertpHP]lnchempha60 = 0

 ( 2)  - [lny]lnfertpha60sq + [shfertpHP]lnfertpha60 = 0

 ( 1)  [shfertpHP]lnchempha60 - [shchempHP]lnfertpha60 = 0

                                                                      

shchempHP        4949      4    .0083336    0.6505    8669.87   0.0000

shfertpHP        4949      4    .0166306    0.4598    2803.97   0.0000

lny              4949     25    .2078713    0.6853  103779.63   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Three-stage least-squares regression, iterated 

Ref: X1: Irrigation ratio - lnfertpha60: ln(fertilizer) - lnchempha60: ln(chemical) - x6: ln(precipitation) 

- lnx5: ln(som) – shfertpHP: share of fertilizer – shchempHP: share of chemicals. 
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