

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-6A20-51946 July 2012

Contract No. DE-AC36-08GO28308

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro

Prepared under Task Nos. SA10.1012 and SA10.20A4

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 • www.nrel.gov **Technical Report** NREL/TP-6A20-51946 July 2012

Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401

fax: 865.576.5728

email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847

fax: 703.605.6900

email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Acknowledgments

For their valuable contributions, the authors would like to thank Paul Denholm, Craig Turchi, Sean Ong, Eason Drury, Matt Mowers, Trieu Mai, Randolph Hunsberger, Anelia Milbrandt, Marc Schwartz, Chad Augustine, Andrew Perry, and Mike Meshek of the National Renewable Energy Laboratory and Douglas Hall from the Idaho National Laboratory. The authors would also like to thank peer reviewers Irene Xiarchos from the U.S. Department of Agriculture and Phillip Brown from the Congressional Research Service.

Executive Summary

The National Renewable Energy Laboratory (NREL) routinely estimates the technical potential of specific renewable electricity generation technologies. These are technology-specific estimates of energy generation potential based on renewable resource availability and quality, technical system performance, topographic limitations, environmental, and land-use constraints only. The estimates do not consider (in most cases) economic or market constraints, and therefore do not represent a level of renewable generation that might actually be deployed.

This report is unique in unifying assumptions and application of methods employed to generate comparable estimates across technologies, where possible, to allow cross-technology comparison. Technical potential estimates for six different renewable energy technologies were calculated by NREL, and methods and results for several other renewable technologies from previously published reports are also presented. Table ES-1 summarizes the U.S. technical potential, in generation and capacity terms, of the technologies examined.

The report first describes the methodology and assumptions for estimating the technical potential of each technology, and then briefly describes the resulting estimates. The results discussion includes state-level maps and tables containing available land area (square kilometers), installed capacity (gigawatts), and electric generation (gigawatt-hours) for each technology.

Table ES-1. Total Estimated U.S. Technical Potential Generation and Capacity by Technology

Technology	Generation Potential (TWh) ^a	Capacity Potential (GW) ^a
Urban utility-scale PV	2,200	1,200
Rural utility-scale PV	280,600	153,000
Rooftop PV	800	664
Concentrating solar power	116,100	38,000
Onshore wind power	32,700	11,000
Offshore wind power	17,000	4,200
Biopower ^b	500	62
Hydrothermal power systems	300	38
Enhanced geothermal systems	31,300	4,000
Hydropower	300	60

^a Non-excluded land was assumed to be available to support development of more than one technology.

^b All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

Table of Contents

Acknowledgments	iii
Executive Summary	iv
List of Figures	
List of Tables	vii
Introduction	1
Analysis	3
Solar Power Technologies	3
Wind Power Technologies	
Biopower Technologies	5
Geothermal Energy Technologies	
Hydropower Technologies	7
Results	
Solar Power Technologies	8
Wind Power Technologies	8
Biopower Technologies	9
Geothermal Energy Technologies	9
Hydropower Technologies	9
Discussion	
	21
Appendix A. Exclusions and Constraints, Capacity Factors, and Power Densities	24
Appendix B. Energy Consumption by State	32

List of Figures

Figure 1. Levels of potential	1
Figure 2. Total estimated technical potential for urban utility-scale photovoltaics in	
the United States	10
Figure 3. Total estimated technical potential for rural utility-scale photovoltaics in the	
United States	11
Figure 4. Total estimated technical potential for rooftop photovoltaics in the United	
States	12
Figure 5. Total estimated technical potential for concentrating solar power in the	
United States	13
Figure 6. Total estimated technical potential for onshore wind power in the United	
States	14
Figure 7. Total estimated technical potential for offshore wind power in the United	
States	15
Figure 8. Total estimated technical potential for biopower in the United States	16
Figure 9. Total estimated technical potential for hydrothermal power in the United	
States	17
Figure 10. Total estimated technical potential for enhanced geothermal systems in the	
United States	18
Figure 11. Total estimated technical potential for hydropower in the United States	19
Figure B-1. Electric retail sales in the United States in 2010 (EIA).	32

List of Tables

Table ES-1. Total Estimated U.S. Technical Potential Generation and Capacity by	
Technology	iv
Table 2. Total Estimated Technical Potential for Urban Utility-Scale Photovoltaics by	
State	10
Table 3. Total Estimated Technical Potential for Rural Utility-Scale Photovoltaics by	
State	11
Table 4. Total Estimated Technical Potential for Rooftop Photovoltaics by State	12
Table 5. Total Estimated Technical Potential for Concentrating Solar Power by State	13
Table 6. Total Estimated Technical Potential for Onshore Wind Power by State	14
Table 7. Total Estimated Technical Potential for Offshore Wind Power by State	15
Table 8. Total Estimated Technical Potential for Biopower by State	16
Table 9. Total Estimated Technical Potential for Hydrothermal Power by State	17
Table 10. Total Estimated Technical Potential for Enhanced Geothermal Systems by	
State	18
Table 11. Total Estimated Technical Potential for Hydropower by State	19
Table 12. Total Estimated Technical Potential Generation and Capacity by	
Technology	20
Table A-1. Exclusions and Constraints for Urban Utility-Scale Photovoltaics	24
Table A-2. Capacity Factors for Utility-Scale Photovoltaics	25
Table A-3. Exclusions and Constraints for Rural Utility-Scale Photovoltaics and	
Concentrating Solar Power	26
Table A-4. Capacity Factors for Concentrating Solar Power	26
Table A-5. Exclusions and Constraints for Onshore Wind Power	27
Table A-6. Capacity Factor for Offshore Wind Power	28
Table A-7. Conversion of Offshore Wind Speeds at 90 Meters to Power Classes	28
Table A-8. Exclusions and Constraints for Offshore Wind Power	29
Table A-9. Exclusions and Constraints for Enhanced Geothermal Systems	30
Table A-10. Power Densities for Enhanced Geothermal Systems	31
Table A-11. Exclusions and Constraints for Enhanced Geothermal Systems	31
Table B-1. Electric Retail Sales by State, 2010.	32

Introduction

Renewable energy technical potential, as defined in this study, represents the achievable energy generation of a particular technology given system performance, topographic limitations, environmental, and land-use constraints. The primary benefit of assessing technical potential is that it establishes an upper-boundary estimate of development potential (DOE EERE 2006). It is important to understand that there are multiple types of potential—resource, technical, economic, and market—each seen in Figure 1 with its key assumptions.

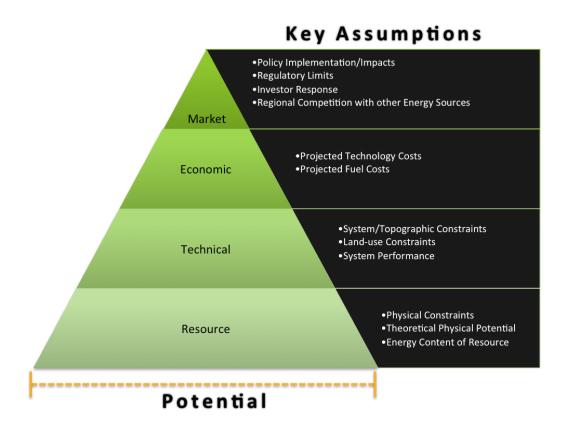


Figure 1. Levels of potential

Figure 1 is based on Table 4-1 in the 2011 update of DOE EERE (2006).

Although numerous studies have quantified renewable resource potential, comparing their results is difficult because of the different assumptions, methodologies, reporting units, and analysis time frames used (DOE EERE 2006). A national study of resource-based renewable energy technical potential across technologies has not been publicly available due to the challenges of unifying assumptions for all geographic areas and technologies (DOE EERE 2006).

This report presents the state-level results of a spatial analysis calculating renewable energy technical potential, reporting available land area (square kilometers), installed capacity (gigawatts), and electric generation (gigawatt-hours) for six different renewable electricity generation technologies: utility-scale photovoltaics (both urban and rural), concentrating solar power, onshore wind power, offshore wind power, biopower, and enhanced geothermal systems. Each technology's system-specific power density (or equivalent), capacity factor, and land-use constraints (Appendix A) were identified using published research, subject matter experts, and analysis by the National Renewable Energy Laboratory (NREL). System performance estimates rely heavily on NREL's Systems Advisor Model (SAM)¹ and Regional Energy Deployment System (ReEDS),² a multiregional, multi-time period, geographic information system (GIS) and linear programming model. This report also presents technical potential findings for rooftop photovoltaic, hydrothermal, and hydropower in a similar format based solely on previous published reports.

We provide methodological details of the analysis and references to the data sets used to ensure readers can directly assess the quality of data used, the data's underlying uncertainty, and impact of assumptions. While the majority of the exclusions applied for this analysis focus on evaluating technical potential, we include some economic exclusion criteria based on current commercial configuration standards to provide a more reasonable and conservative estimation of renewable resource potential.

Note that as a technical potential, rather than economic or market potential, these estimates do not consider availability of transmission infrastructure, costs, reliability or time-of-dispatch, current or future electricity loads, or relevant policies. Further, as this analysis does not allocate land for use by a particular technology, the same land area may be the basis for estimates of multiple technologies (i.e., non-excluded land is assumed to be available to support development of more than one technology).

Finally, since technical potential estimates are based in part on technology system performance, as these technologies evolve, their technical potential may also change.

¹ For more information, see http://sam.nrel.gov/.

² For more information, see http://www.nrel.gov/analysis/reeds/.

Analysis

Solar Power Technologies Utility-Scale Photovoltaics (Urban)

We define urban utility-scale photovoltaics (PV) as large-scale PV deployed within urban boundaries on urban open space. The process for generating technical estimates for urban utility-scale PV begins with excluding areas not suitable for this technology. We first limit areas to those within urbanized area boundaries as defined by the U.S. Census Bureau (ESRI 2004) and further limit these areas to those with slopes less than or equal to 3%. Parking lots, roads, and urbanized areas are excluded by identifying areas with imperviousness greater than or equal to 1% (MRLC n.d.). Additional exclusions (Table A-1) are applied to eliminate areas deemed unlikely for development. The remaining land is grouped into contiguous areas and areas less than 18,000 square meters (m²) are removed to ensure that total system size is large enough to be considered a utility-scale project.³ This process produces a data set representative of the final available urban open space suitable for PV development. We obtain state-level annual capacity factors using the National Solar Radiation Database Typical Meteorological Year 3 (TMY3) data set (Wilcox, 2007; Wilcox and Marion, 2008) (Table A-2) and the SAM model. The PV system assumed in this analysis was a 1-axis tracking collector with the axis of rotation aligned north-south at 0 degrees tilt from the horizontal, which has a power density of 48 MW per square kilometer (MW/km²) (Denholm and Margolis 2008a). State technical potential generation is expressed as:

State
$$MWh = State \sum [urban\ open space\ (km^2)\ \cdot power\ density\ \left(48\frac{MW}{km^2}\right)$$

 $\cdot state\ capacity\ factor\ (\%)\cdot 8760\ (hours\ per\ vear)]$

Utility-Scale Photovoltaics (Rural)

We define rural utility-scale PV as large-scale PV deployed outside urban boundaries (the complement of urban utility-scale PV). Technical potential estimates for rural utility-scale PV begin by first excluding urban areas as defined by the U.S. Census Bureau's urbanized area boundaries data set. We calculate percent slope for areas outside the urban boundaries and eliminate all areas with slopes greater than or equal to 3%. Federally protected lands, inventoried roadless areas, and areas of critical environmental concern are also excluded, as they are considered unlikely areas for development. Table A-3 contains the full list of exclusions. To limit the available lands to only larger PV systems, a 1-km² contiguous area filter was applied to produce a final available land layer. Finally, we calculate technical potential energy generation for this available land with the same annual average capacity factors, system design, and power density as for urban utility-scale PV, expressed as:

State
$$MWh = State \sum [available\ land\ (km^2) \cdot power\ density\ \left(48\frac{MW}{km^2}\right)$$

$$\cdot state\ capacity\ factor\ (\%) \cdot 8760\ (hours\ per\ year)]$$

3

³ Depending on the PV system, 18,000 m² produces roughly a 1-MW system.

Rooftop Photovoltaics

We obtained rooftop PV estimates from Denholm and Margolis (2008b), who obtained floor space estimates for commercial and residential buildings from McGraw-Hill and scaled these to estimate a building footprint based on the number of floors. Average floor estimates were obtained from the Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS) (DOE EIA 2005) and the 2003 Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2003). Denholm and Margolis (2008b) calculated roof footprint by dividing the building footprint by the number of floors. They estimated 8% of residential rooftops⁴ and 63% of commercial rooftops⁵ were flat. Orientations of pitched roofs were distributed uniformly. Usable roof area was extracted from total roof area using an availability factor that accounted for shading, rooftop obstructions, and constraints. Base estimates resulted in availability of 22% of roof areas for residential buildings in cool climates and 27% available in warm/arid climates. Denholm and Margolis (2008b) estimated commercial building availability at 60% for warm climates and 65% for cooler climates. Estimated average module efficiency was set at 13.5% with a power density for flat roofs of 110 W/m² and 135 W/m² for the rest. Denholm and Margolis (2008b) then aggregated state PV capacity to match Census Block Group populations; they then calculated capacity factors for the closest TMY station and applied these to the closest population group.

Concentrating Solar Power

We define concentrating solar power (CSP) as power from a utility-scale solar power facility in which the solar heat energy is collected in a central location. The technical potential estimates for CSP were calculated using satellite-modeled data from the National Solar Radiation Database (Wilcox, 2007), which represent annual average direct normal irradiance (DNI) as kilowatt-hours per square meter per day (kWh/m²/day) from 1998 to 2005 at a 10-km horizontal spatial resolution. We consider viable only those areas with DNI greater than or equal to 5 kWh/m²/day (Short et al. 2011). Capacity factor values used in this analysis were generated for a trough system, dry-cooled with six hours of storage and a solar multiple of 2, with a system power density of 32.8 MW/km². The capacity factors for each resource class (Table A-4) are generated using the SAM model and TMY3. Land, slope, and contiguous area exclusions are consistent with rural utility-scale PV (Table A-3). Technical state energy generation was expressed as:

State $MWh = State \sum [available\ land(km^2) \cdot power\ density\ \left(32.895 \frac{MW}{km^2}\right)$ $\cdot state\ capacity\ factor\ (\%) \cdot 8760\ (hours\ per\ year)]$

⁴ Based on estimates from Navigant Consulting

⁵ Based on Commercial Building Energy Consumption Survey (CBECS) database

⁶ Technology improvements may lead to improved performance in the future that could affect this threshold.

⁷ The field aperture area expressed as a multiple of the aperture area required to operate the power cycle at its design capacity.

⁸ Craig Turchi, NREL CSP Analyst, personal communication

Wind Power Technologies Onshore Wind Power

We define onshore wind power as wind resource at 80 meters (m) height above surface that results in an annual average gross capacity factor of 30% (net capacity factor of 25.5%), using typical utility-scale wind turbine power curves. AWS Truepower modeled the wind resource data using its Mesomap® process to produce estimates at a 200-m horizontal spatial resolution. These resource estimates are processed to eliminate areas unlikely to be developed, such as urban areas, federally protected lands, and onshore water features, Table A-5 includes a full list of exclusions. We estimate annual generation by assuming a power density of 5 MW/km² (DOE EERE 2008) and 15% energy losses to calculate net capacity factor.

Offshore Wind Power

We define suitable offshore wind resource as annual average wind speed greater than or equal to 6.4 meters per second (m/s) at 90 m height above surface. 12 The offshore wind resource data consists of a composite of data sets modeled to estimate offshore wind potential generated by AWS Truepower for the Atlantic Coast from Maine to Massachusetts, Texas, Louisiana, Georgia, and the Great Lakes. Other areas are included using near-shore estimates from onshore-modeled wind resources from published research (Schwartz et al. 2010). Because no offshore or near-shore estimates were available for Florida or Alaska (at the time of this publication), these states are omitted from the technical potential calculations. The offshore resource data extend 50 nautical miles from shore, and in some cases have to be extrapolated to fill the extent (Schwartz et al. 2010). We further filter the resource estimates to eliminate shipping lanes, marine sanctuaries, and a variety of other areas deemed unlikely to be developed. Table A-8 contains a full list of exclusions. Our annual generation estimates assume a power density of 5 MW/km² and capacity factors based on wind speed interval and depth-based wind farm configurations to account for anchoring and stabilization for the turbines as developed by NREL analysts for use in the ReEDS model (Musial and Ram 2010).

Biopower Technologies Biopower (Solid and Gaseous)

We obtained county-level estimates of solid biomass resource for crop, forest, primary/secondary mill residues, and urban wood waste from Milbrandt (2005, updated in 2008)¹³ who reported the estimates in bone-dry tonnes (BDT) per year. We calculate technical potential energy generation assuming 1.1 MWh/BDT, which represents an average solid biomass system output with an industry-average conversion efficiency of

⁹ Gross capacity factor does not include plant downtime, parasitic power, or other factors that would be included to reduce the output to the "Net" capacity factor.

¹⁰ Represents total footprint; disturbed footprint ranges from 2% to 5% of the total

¹¹ For more information, see http://www.windpoweringamerica.gov/wind maps.asp.

¹² This is a typical wind turbine hub-height for offshore wind developments.

¹³ For more information, see http://www.nrel.gov/gis/biomass.html.

20%, and a higher heating value (HHV) of 8,500 BTU/lb (Ince 1979). From Milbrandt (2005, partially updated in 2008), ¹⁴ we obtained county-level estimates of gaseous biomass (methane emissions), from animal manure, domestic wastewater treatment plants, and landfills; all estimates were reported in tonnes of methane (CH₄) per year. We calculate technical potential energy generation assuming 4.7 MWh/tonne of CH₄, which represents a typical gaseous biomass system output with an industry-average conversion efficiency of 30% (Goldstein et al), and a HHV of 24,250 BTU/lb. Other biomass resources (such as orchard/vineyard pruning's and black liquor) were not included in this study due to data limitations. Also, this analysis assumed that all biomass resources considered were available for biopower and did not evaluate competing uses such as biofuels production. The data from Milbrandt (2005, updated in 2008)¹⁵ illustrates the biomass resource currently available in the United States. Subsequent revisions of this analysis could evaluate projected U.S. resource potential, including dedicated energy crops such as those provided by the recent U.S. DOE update (DOE 2011) of the billionton study (Perlack et al. 2005).

Geothermal Energy Technologies Hydrothermal Power Systems

For identified hydrothermal and undiscovered hydrothermal, we used estimates from Williams et al. (2008), who estimated electric power generation potential of conventional geothermal resources (hydrothermal), both identified and unidentified in the western United States, Alaska, and Hawaii. Williams et al. derived total potential for identified hydrothermal resources by state from summations of volumetric models for the thermal energy and electric generation potential of each individual geothermal system (Muffler, 1979). For undiscovered hydrothermal estimates, we used resource estimates generated by Williams et al. (2009) that used logistic regression models of the western United States to estimate favorability of hydrothermal development and thus, to estimate undiscovered potential. In all cases, exclusions included public lands, such as national parks, that are not available for resource development.

Enhanced Geothermal Systems

We derive technical potential estimates for enhanced geothermal systems (EGS)¹⁶ from temperature at depth data obtained from the Southern Methodist University's (SMU) Geothermal Laboratory. The data ranged from 3 km to 10 km in depth. We consider viable those regions at each depth interval with temperatures $\geq 150^{\circ}$ C. We apply known potential electric capacity (MW_e/km³) to each temperature-depth interval to estimate total potential at each depth interval based on the total volume of each unique temperature-

¹⁴ For more information, see http://www.nrel.gov/gis/biomass.html.

¹⁵ For more information, see http://www.nrel.gov/gis/biomass.html.

¹⁶ Deep enhanced geothermal systems (EGS) are an experimental method of extracting energy from deep within the Earth's crust. This is achieved by fracturing hot dry rock between 3 and 10 kilometers (km) below the Earth's surface and pumping fluid into the fracture. The fluid absorbs the Earth's internal heat and is pumped back to the surface and used to generate electricity.

¹⁷ Maria Richards, SMU Geothermal Laboratory, e-mail message to author, May 29, 2009. Data set featured in *The Future of Geothermal Energy* (MIT 2006)

depth interval, shown in Table A-10. Electric generation potential calculations summarize the technical potential (MW) at all depth intervals, electric generation potential (GWh) at all depth intervals with a 90% capacity factor, and annual electric generation potential (GWh) only at optimum depth. We determine optimum depth by a quantitative analysis ¹⁸ of levelized cost of electricity (LCOE). An optimum depth is found because drilling costs increase with depth while temperature, and therefore power plant efficiency, generally increase with depth so that power plant costs decrease with depth. Because drilling costs are increasing while power plant costs are decreasing on a per-MW basis, at some point there is a minimum. The optimum depth assumes that the EGS reservoir has a height or thickness of 1 km.

Hydropower Technologies Hydropower

Source point locations of hydropower estimates were provided by the Idaho National Laboratory and were taken from Hall et al. (2006). The point locations were based on a previous study (Hall et al. 2004) that produced an assessment of gross power potential of every stream in the United States. To generate their own estimates, Hall et al. developed and used a feasibility study and development model. The feasibility study included additional economic potential criteria such as site accessibility, load or transmission proximity, along with technical potential exclusions of land use or environmental sensitivity. Sites meeting Hall et al. (2006) feasibility criteria were processed to produce power potential using a development model that did not require a dam or reservoir be built. The development model assumed only a low power (<1 MWa) or small hydro (>= 1 MWa and <= 30 MWa) plant would be built. To produce state technical potentials, we aggregated the previously mentioned source point locations to the state level.

_

¹⁸ We used the quantitative analysis method from Augustine (2011).

Results

For each technology, we provide a brief summary of our findings along with a figure (map) showing the total estimated technical potential for all states and a table listing the total estimated technical potential by state.

Solar Power Technologies *Utility-Scale PV (Urban)*

The total estimated annual technical potential in the United States for urban utility-scale PV is 2,232 terawatt-hours (TWh). Texas and California have the highest estimated technical potential, a result of a combination of good solar resource and large population. Figure 2 and Table 2 present the total estimated technical potential for urban utility-scale PV.

Utility-Scale PV (Rural)

Rural utility-scale PV leads all other technologies in technical potential. This is a result of relatively high power density, the absence of minimum resource threshold, and the availability of large swaths for development. Texas accounts for roughly 14% (38,993 TWh) of the entire estimated U.S. technical potential for utility-scale PV (280,613 TWh). Figure 3 and Table 3 present the total estimated technical potential for rural utility-scale PV.

Rooftop PV

Total annual technical potential for rooftop PV is estimated at 818 TWh. States with the largest technical potential typically have the largest populations. California has the highest technical potential of 106 TWh due to its mix of high population and relatively good solar resource. Figure 4 and Table 4 present the total estimated technical potential for rural utility-scale PV.

Concentrating Solar Power

Technical potential for CSP exists predominately in the Southwest. The steep cutoff of potential, as seen in Figure 5, can be attributed to the resource minimum threshold of 5 kWh/m2/day that was used in the analysis. Texas has the highest estimated potential of 22,786 TWh, which accounts for roughly 20% of the entire estimated U.S. annual technical potential for CSP (116,146 TWh). Figure 5 and Table 5 present the total estimated technical potential for concentrating solar power.

Wind Power Technologies Onshore Wind Power

Technical potential for onshore wind power, which is present in nearly every state, is largest in the western and central Great Plains and lowest in the southeastern United States. While the wind resource intensity in the Great Plains is not as high as it is in some areas of the western United States, very little of the land area is excluded due to insufficient resource or due to other exclusions. In the eastern and western United States, the wind resource is more limited in coverage and is more likely to be impacted by environmental exclusions. Texas has the highest estimated annual potential of 5,552 TWh, which accounts for roughly 17% of the entire estimated U.S. annual technical

potential for onshore wind (32,784 TWh). Figure 6 and Table 6 present the total estimated technical potential for onshore wind power.

Offshore Wind Power

Technical potential for offshore wind power is present in significant quantities in all offshore regions of the United States. Wind speeds off the Atlantic Coast and in the Gulf of Mexico are lower than they are off the Pacific Coast, but the presence of shallower waters there makes these regions more attractive for development. Hawaii has the highest estimated annual potential of 2,837 TWh, which accounts for roughly 17% of the entire estimated U.S. annual technical potential for offshore wind (16,975 TWh). Figure 7 and Table 7 present the total estimated technical potential for offshore wind power.

Biopower Technologies Biopower (Solid and Gaseous)

Solid biomass accounts for 82% of the 400 TWh total estimated annual technical potential of biopower; of that, crop residues are the largest contributor. Gaseous biomass has an estimated annual technical potential of 88 TWh, of which landfills were the largest contributor. Figure 8 and Table 8 present the total estimated technical potential for biopower.

Geothermal Energy Technologies Hydrothermal Power Systems

In the assessment, 71 TWh of electric power generation potential is the estimated total from existing (identified) hydrothermal sites spread among 13 states. An additional 237 TWh of undiscovered hydrothermal resources are estimated to exist among these same states. Figure 9 and Table 9 present the total estimated technical potential for hydrothermal power systems.

Enhanced Geothermal Systems

The vast majority of the geothermal potential for EGS (31,344 TWh) within the contiguous United States is located in the westernmost portion of the country. The Rocky Mountain States, and the Great Basin particularly, contain the most favorable resource for EGS (17,414 TWh). However, even the central and eastern portions of the country have 13,930 TWh of potential for EGS development. Note that, especially in western states, a considerable portion of the EGS resource occurs on protected land and was filtered out after exclusions were applied. Figure 10 and Table 10 present the total estimated technical potential for enhanced geothermal systems.

Hydropower Technologies Hydropower

According to Hall et al. (2006), technical potential for hydropower exists predominately in the Northwest and Alaska with a combined total estimated at 69 TWh annually, which accounts for roughly 27% of the entire estimated U.S. annual technical potential for hydropower (259 TWh). Figure 11 and Table 11 present the total estimated technical potential for hydropower.

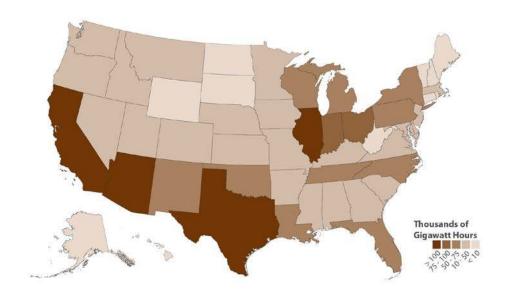


Figure 2. Total estimated technical potential for urban utility-scale photovoltaics in the United States

Table 2. Total Estimated Technical Potential for Urban Utility-Scale Photovoltaics by State^a

State	KM ²	GW	GWh	State	KM ²	GW	GWh
Alabama	426	20	35,851	Montana	127	6	11,371
Alaska	2	<1	166	Nebraska	142	7	12,954
Arizona	1,096	53	121,306	Nevada	225	11	24,894
Arkansas	332	16	28,961	New Hampshire	49	2	3,790
California	2,321	111	246,008	New Jersey	527	25	44,307
Colorado	399	19	43,471	New Mexico	646	31	71,356
Connecticut	101	5	7,717	New York	683	33	52,803
Delaware	190	9	14,856	North Carolina	789	38	68,346
District of Columbia	<1	<1	8	North Dakota	57	3	4,871
Florida	830	40	72,787	Ohio	1,190	57	86,496
Georgia	506	24	43,167	Oklahoma	534	26	50,041
Hawaii	35	2	3,725	Oregon	271	13	25,783
Idaho	251	12	23,195	Pennsylvania	754	36	56,162
Illinois	1,325	64	103,552	Rhode Island	24	1	1,788
Indiana	1,274	61	98,815	South Carolina	398	19	33,835
Iowa	324	16	27,092	South Dakota	51	2	4,574
Kansas	317	15	31,706	Tennessee	596	29	50,243
Kentucky	339	16	26,515	Texas	3,214	154	294,684
Louisiana	675	32	55,669	Utah	293	14	30,492
Maine	40	2	3,216	Vermont	22	1	1,632
Maryland	379	18	28,551	Virginia	326	16	27,451
Massachusetts	228	11	17,470	Washington	402	19	33,690
Michigan	699	34	50,845	West Virginia	42	2	3,024
Minnesota	419	20	33,370	Wisconsin	728	35	54,939
Mississippi	318	15	26,366	Wyoming	75	4	7,232
Missouri	377	18	30,549	U.S. Total	25,369	1,218	2,231,694

^a Non-excluded land was assumed to be available to support development of more than one technology.

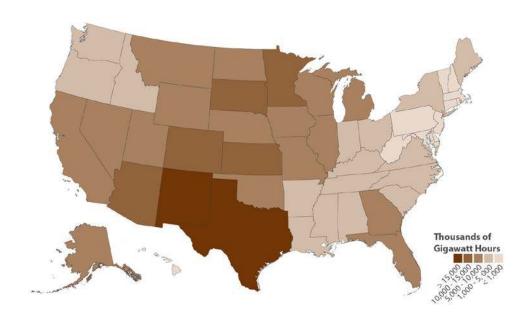


Figure 3. Total estimated technical potential for rural utility-scale photovoltaics in the United States

Table 3. Total Estimated Technical Potential for Rural Utility-Scale Photovoltaics by State^a

State	KM ²	GW	GWh	State	KM ²	GW	GWh
Alabama	44,058	2,115	3,706,839	Montana	91,724	4,403	8,187,341
Alaska	187,608	9,005	8,282,976	Nebraska	101,457	4,870	9,266,757
Arizona	107,231	5,147	11,867,694	Nevada	77,751	3,732	8,614,454
Arkansas	57,239	2,747	4,986,389	New Hampshire	741	36	57,364
California	83,549	4,010	8,855,917	New Jersey	5,232	251	439,774
Colorado	94,046	4,514	10,238,084	New Mexico	147,652	7,087	16,318,543
Connecticut	256	12	19,628	New York	19,294	926	1,492,566
Delaware	3,483	167	272,333	North Carolina	48,892	2,347	4,232,790
District of Columbia	0	0	0	North Dakota	114,228	5,483	9,734,448
Florida	58,597	2,813	5,137,347	Ohio	49,908	2,396	3,626,182
Georgia	64,343	3,088	5,492,183	Oklahoma	99,641	4,783	9,341,920
Hawaii	431	21	38,033	Oregon	39,267	1,885	3,740,479
Idaho	42,613	2,045	3,936,848	Pennsylvania	7,430	357	553,356
Illinois	103,524	4,969	8,090,985	Rhode Island	184	9	13,636
Indiana	62,891	3,019	4,876,186	South Carolina	32,399	1,555	2,754,973
Iowa	83,763	4,021	6,994,159	South Dakota	111,350	5,345	10,008,873
Kansas	144,996	6,960	14,500,149	Tennessee	26,396	1,267	2,225,990
Kentucky	23,319	1,119	1,823,977	Texas	425,230	20,411	38,993,582
Louisiana	49,876	2,394	4,114,605	Utah	49,797	2,390	5,184,878
Maine	13,723	659	1,100,327	Vermont	739	35	54,728
Maryland	7,773	373	585,949	Virginia	22,378	1,074	1,882,467
Massachusetts	1,074	52	82,205	Washington	20,759	996	1,738,151
Michigan	71,741	3,444	5,215,640	West Virginia	729	35	52,694
Minnesota	135,627	6,510	10,792,814	Wisconsin	66,788	3,206	5,042,259
Mississippi	59,997	2,880	4,981,252	Wyoming	59,464	2,854	5,727,224
Missouri	65,767	3,157	5,335,269	U.S. Total	3,186,955	152,974	280,613,217

^a Non-excluded land was assumed to be available to support development of more than one technology.

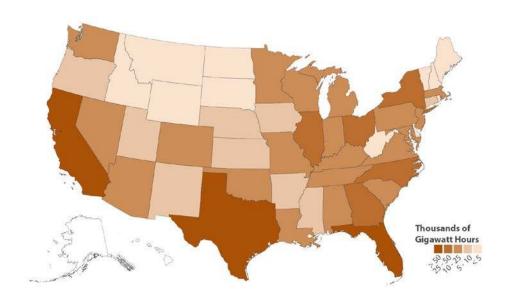


Figure 4. Total estimated technical potential for rooftop photovoltaics in the United States

Table 4. Total Estimated Technical Potential for Rooftop Photovoltaics by State^a

State	GW	GWh	State	GW	GWh
Alabama	13	15,476	Montana	2	2,194
Alaska	1	NA	Nebraska	4	5,337
Arizona	15	22,736	Nevada	7	10,767
Arkansas	7	8,485	New Hampshire	2	2,299
California	76	106,411	New Jersey	14	15,768
Colorado	12	16,162	New Mexico	4	6,513
Connecticut	6	6,616	New York	25	28,780
Delaware	2	2,185	North Carolina	23	28,420
District of Columbia	2	2,490	North Dakota	2	1,917
Florida	49	63,987	Ohio	27	30,064
Georgia	25	31,116	Oklahoma	9	12,443
Hawaii	3	NA	Oregon	8	8,323
Idaho	3	4,051	Pennsylvania	20	22,215
Illinois	26	30,086	Rhode Island	2	1,711
Indiana	15	17,151	South Carolina	12	14,413
Iowa	7	8,646	South Dakota	2	2,083
Kansas	7	8,962	Tennessee	16	19,685
Kentucky	11	12,312	Texas	60	78,717
Louisiana	12	14,368	Utah	6	7,514
Maine	2	2,443	Vermont	1	1,115
Maryland	13	14,850	Virginia	19	22,267
Massachusetts	10	11,723	Washington	13	13,599
Michigan	22	23,528	West Virginia	4	4,220
Minnesota	12	14,322	Wisconsin	12	13,939
Mississippi	7	8,614	Wyoming	1	1,551
Missouri	13	16,160	U.S. Total	664	818,733

^a Non-excluded land was assumed to be available to support development of more than one technology.

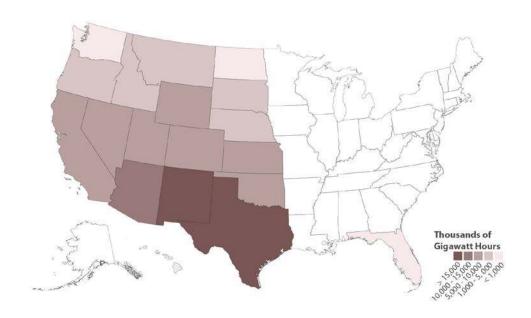


Figure 5. Total estimated technical potential for concentrating solar power in the United States

Table 5. Total Estimated Technical Potential for Concentrating Solar Power by State^a

State	KM ²	GW	GWh	5	KM ²	GW	GWh
Alabama	0	0	0	Montana	16,939	557	1,540,288
Alaska	0	0	0	Nebraska	53,305	1,753	4,846,929
Arizona	107,239	3,528	12,544,334	Nevada	77,760	2,558	8,295,753
Arkansas	0	0	0	New Hampshire	0	0	0
California	82,860	2,726	8,490,916	New Jersey	0	0	0
Colorado	94,173	3,098	9,154,524	New Mexico	147,748	4,860	16,812,349
Connecticut	0	0	0	New York	0	0	0
Delaware	0	0	0	North Carolina	0	0	0
District of Columbia	0	0	0	North Dakota	396	13	36,050
Florida	4	0	359	Ohio	0	0	0
Georgia	0	0	0	Oklahoma	55,113	1,813	5,068,036
Hawaii	168	6	15,370	Oregon	30,927	1,017	2,812,126
Idaho	38,523	1,267	3,502,877	Pennsylvania	0	0	0
Illinois	0	0	0	Rhode Island	0	0	0
Indiana	0	0	0	South Carolina	0	0	0
lowa	0	0	0	South Dakota	17,922	590	1,629,660
Kansas	87,698	2,885	7,974,256	Tennessee	0	0	0
Kentucky	0	0	0	Texas	235,398	7,743	22,786,750
Louisiana	0	0	0	Utah	49,799	1,638	5,067,547
Maine	0	0	0	Vermont	0	0	0
Maryland	0	0	0	Virginia	0	0	0
Massachusetts	0	0	0	Washington	1,778	59	161,713
Michigan	0	0	0	West Virginia	0	0	0
Minnesota	0	0	0	Wisconsin	0	0	0
Mississippi	0	0	0	Wyoming	59,457	1,956	5,406,407
Missouri	0	0	0	U.S. Total	1,157,209	38,066	116,146,245

^a Non-excluded land was assumed to be available to support development of more than one technology.

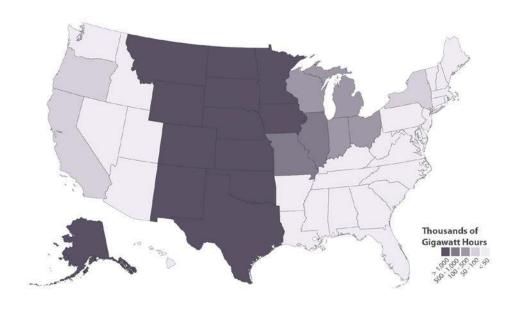


Figure 6. Total estimated technical potential for onshore wind power in the United States

Table 6. Total Estimated Technical Potential for Onshore Wind Power by State^a

State	KM ²	GW	GWh	State	KM ²	GW	GWh
Alabama	24	<1	283	Montana	188,801	944	2,746,272
Alaska	98,669	493	1,373,433	Nebraska	183,600	918	3,011,253
Arizona	2,181	11	26,036	Nevada	1,449	7	17,709
Arkansas	1,840	9	22,892	New Hampshire	427	2	5,706
California	6,822	34	89,862	New Jersey	26	<1	317
Colorado	77,444	387	1,096,036	New Mexico	98,417	492	1,399,157
Connecticut	5	<1	62	New York	5,156	26	63,566
Delaware	2	<1	22	North Carolina	162	<1	2,037
District of Columbia	0	0	0	North Dakota	154,039	770	2,537,825
Florida	<1	<1	<1	Ohio	10,984	55	129,143
Georgia	26	<1	323	Oklahoma	103,364	517	1,521,652
Hawaii	494	2	7,787	Oregon	5,420	27	68,767
Idaho	3,615	18	44,320	Pennsylvania	661	3	8,231
Illinois	49,976	250	649,468	Rhode Island	9	<1	130
Indiana	29,646	148	377,604	South Carolina	37	<1	428
Iowa	114,143	571	1,723,588	South Dakota	176,483	882	2,901,858
Kansas	190,474	952	3,101,576	Tennessee	62	<1	766
Kentucky	12	<1	147	Texas	380,306	1,902	5,552,400
Louisiana	82	<1	935	Utah	2,621	13	31,552
Maine	2,250	11	28,743	Vermont	590	3	7,796
Maryland	297	1	3,632	Virginia	359	2	4,589
Massachusetts	206	1	2,827	Washington	3,696	18	47,250
Michigan	11,808	59	143,908	West Virginia	377	2	4,952
Minnesota	97,854	489	1,428,525	Wisconsin	20,751	104	255,266
Mississippi	0	0	0	Wyoming	110,415	552	1,653,857
Missouri	54,871	274	689,519	U.S. Total	2,190,952	10,955	32,784,004

^a Non-excluded land was assumed to be available to support development of more than one technology.



Figure 7. Total estimated technical potential for offshore wind power in the United States

Table 7. Total Estimated Technical Potential for Offshore Wind Power by State^a

State	KM ²	GW	GWh	State	KM ²	GW	GWh
Alabama	0	0	0	Montana	NA	NA	NA
Alaska	NA	NA	NA	Nebraska	NA	NA	NA
Arizona	NA	NA	NA	Nevada	NA	NA	NA
Arkansas	NA	NA	NA	New Hampshire	691	3	14,478
California	130,967	655	2,662,580	New Jersey	20,387	102	429,808
Colorado	NA	NA	NA	New Mexico	NA	NA	NA
Connecticut	1,434	7	26,545	New York	29,215	146	614,280
Delaware	3,008	15	60,654	North Carolina	61,204	306	1,269,627
District of Columbia	NA	NA	NA	North Dakota	NA	NA	NA
Florida	1,930	10	34,684	Ohio	8,361	42	170,561
Georgia	11,726	59	220,807	Oklahoma	NA	NA	NA
Hawaii	147,389	737	2,836,735	Oregon	45,002	225	962,723
Idaho	NA	NA	NA	Pennsylvania	1,135	6	23,571
Illinois	3,174	16	66,070	Rhode Island	4,193	21	89,115
Indiana	9	<1	166	South Carolina	26,643	133	542,218
lowa	NA	NA	NA	South Dakota	NA	NA	NA
Kansas	NA	NA	NA	Tennessee	NA	NA	NA
Kentucky	NA	NA	NA	Texas	54,289	271	1,101,063
Louisiana	68,123	341	1,200,699	Utah	NA	NA	NA
Maine	29,484	147	631,960	Vermont	NA	NA	NA
Maryland	10,382	52	200,852	Virginia	17,815	89	361,054
Massachusetts	36,815	184	799,344	Washington	24,193	121	488,025
Michigan	84,515	423	1,739,801	West Virginia	NA	NA	NA
Minnesota	5,843	29	100,455	Wisconsin	16,134	81	317,755
Mississippi	643	3	10,172	Wyoming	NA	NA	NA
Missouri	NA	NA	NA	U.S. Total	844,703	4,223	16,975,802

^a Non-excluded land was assumed to be available to support development of more than one technology.

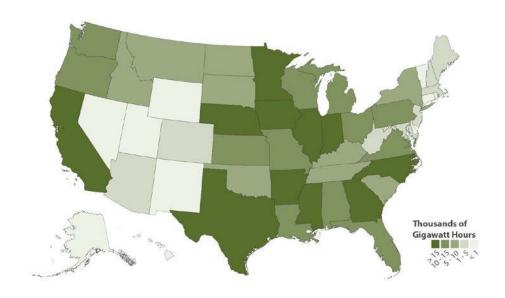


Figure 8. Total estimated technical potential for biopower in the United States

Table 8. Total Estimated Technical Potential for Biopower by State^a

State	GW	GWh	State	GW	GWh
Alabama	2	12,727	Montana	<1	5,072
Alaska	<1	575	Nebraska	2	17,023
Arizona	<1	1,925	Nevada	<1	614
Arkansas	2	15,444	New Hampshire	<1	1,343
California	4	27,919	New Jersey	<1	3,523
Colorado	<1	4,138	New Mexico	<1	949
Connecticut	<1	909	New York	1	8,509
Delaware	<1	898	North Carolina	2	16,650
District of Columbia	<1	66	North Dakota	1	8,216
Florida	2	13,358	Ohio	2	14,372
Georgia	2	16,903	Oklahoma	<1	5,094
Hawaii	<1	724	Oregon	2	14,684
Idaho	<1	5,958	Pennsylvania	2	13,446
Illinois	4	31,960	Rhode Island	<1	618
Indiana	2	17,920	South Carolina	1	8,415
lowa	4	28,928	South Dakota	1	8,615
Kansas	2	12,857	Tennessee	1	8,080
Kentucky	1	8,322	Texas	3	21,976
Louisiana	2	14,873	Utah	<1	862
Maine	<1	4,398	Vermont	<1	695
Maryland	<1	3,329	Virginia	1	10,365
Massachusetts	<1	2,149	Washington	2	13,826
Michigan	2	11,897	West Virginia	<1	2,688
Minnesota	3	21,391	Wisconsin	2	13,295
Mississippi	2	15,287	Wyoming	<1	553
Missouri	2	13,986	U.S. Total	62	488,326

^a Non-excluded land was assumed to be available to support development of more than one technology. All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

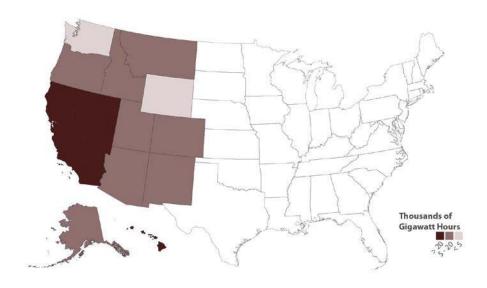


Figure 9. Total estimated technical potential for hydrothermal power in the United States

Table 9. Total Estimated Technical Potential for Hydrothermal Power by State^a

State	GW	GWh	State	GW	GWh
Alabama	<1	<1	Montana	<1	6,548
Alaska	2	15,437	Nebraska	<1	<1
Arizona	1	8,330	Nevada	6	45,321
Arkansas	<1	<1	New Hampshire	<1	<1
California	17	130,921	New Jersey	<1	<1
Colorado	1	8,954	New Mexico	2	12,933
Connecticut	<1	<1	New York	<1	<1
Delaware	<1	<1	North Carolina	<1	<1
District of Columbia	<1	<1	North Dakota	<1	<1
Florida	<1	<1	Ohio	<1	<1
Georgia	<1	<1	Oklahoma	<1	<1
Hawaii	3	20,632	Oregon	2	18,200
Idaho	2	17,205	Pennsylvania	<1	<1
Illinois	<1	<1	Rhode Island	<1	<1
Indiana	<1	<1	South Carolina	<1	<1
lowa	<1	<1	South Dakota	<1	<1
Kansas	<1	<1	Tennessee	<1	<1
Kentucky	<1	<1	Texas	<1	<1
Louisiana	<1	<1	Utah	2	12,982
Maine	<1	<1	Vermont	<1	<1
Maryland	<1	<1	Virginia	<1	<1
Massachusetts	<1	<1	Washington	<1	2,547
Michigan	<1	<1	West Virginia	<1	<1
Minnesota	<1	<1	Wisconsin	<1	<1
Mississippi	<1	<1	Wyoming	<1	1,373
Missouri	<1	<1	U.S. Total	38	308,156

^a Non-excluded land was assumed to be available to support development of more than one technology.

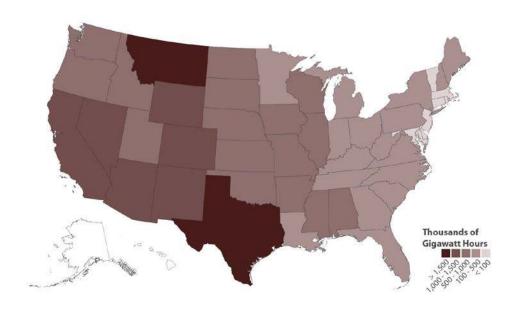


Figure 10. Total estimated technical potential for enhanced geothermal systems in the United States

Table 10. Total Estimated Technical Potential for Enhanced Geothermal Systems by State^a

State	GW	GWh	State	GW	GWh
Alabama	68	535,490	Montana	209	1,647,304
Alaska	NA	NA	Nebraska	118	927,996
Arizona	157	1,239,148	Nevada	160	1,262,175
Arkansas	80	628,622	New Hampshire	13	104,314
California	170	1,344,179	New Jersey	4	35,230
Colorado	159	1,251,658	New Mexico	180	1,417,978
Connecticut	7	56,078	New York	48	375,401
Delaware	3	22,813	North Carolina	53	420,741
District of Columbia	<1	698	North Dakota	104	820,226
Florida	47	374,161	Ohio	63	495,922
Georgia	45	353,206	Oklahoma	99	779,667
Hawaii	NA	NA	Oregon	116	914,105
Idaho	126	993,257	Pennsylvania	42	327,341
Illinois	86	676,056	Rhode Island	1	11,492
Indiana	55	434,258	South Carolina	46	364,105
Iowa	77	606,390	South Dakota	117	921,973
Kansas	126	989,676	Tennessee	54	428,380
Kentucky	61	484,659	Texas	384	3,030,251
Louisiana	61	484,271	Utah	119	939,381
Maine	48	377,075	Vermont	5	35,617
Maryland	11	86,649	Virginia	37	290,737
Massachusetts	12	92,227	Washington	71	563,024
Michigan	58	457,850	West Virginia	33	261,376
Minnesota	47	369,785	Wisconsin	82	647,173
Mississippi	71	559,056	Wyoming	136	1,070,079
Missouri	106	835,445	U.S. Total	3,976	31,344,696

^a Non-excluded land was assumed to be available to support development of more than one technology.

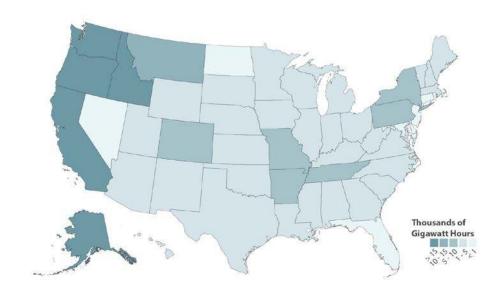


Figure 11. Total estimated technical potential for hydropower in the United States

Table 11. Total Estimated Technical Potential for Hydropower by State^a

State	Count	GW	GWh	State	Count	GW	GWh
Alabama	2,435	<1	4,103	Montana	6,859	3	14,547
Alaska	3,053	5	23,676	Nebraska	2,880	<1	3,142
Arizona	1,958	<1	1,303	Nevada	1,489	<1	846
Arkansas	3,268	1	6,093	New Hampshire	810	<1	1,741
California	9,692	7	30,024	New Jersey	402	<1	549
Colorado	5,060	2	7,789	New Mexico	1,810	<1	1,363
Connecticut	659	<1	922	New York	4,839	2	6,711
Delaware	25	<1	31	North Carolina	2,131	<1	3,037
District of Columbia	2	<1	<1	North Dakota	572	<1	347
Florida	493	<1	682	Ohio	1,791	<1	3,046
Georgia	2,100	<1	1,988	Oklahoma	2,824	<1	3,016
Hawaii	437	<1	2,602	Oregon	7,993	4	18,184
Idaho	6,706	4	18,758	Pennsylvania	4,466	2	8,368
Illinois	1,330	1	4,883	Rhode Island	86	<1	59
Indiana	1,142	<1	2,394	South Carolina	889	<1	1,889
lowa	2,398	<1	2,818	South Dakota	1,712	<1	1,047
Kansas	3,201	<1	2,508	Tennessee	2,610	1	5,745
Kentucky	1,394	<1	4,255	Texas	4,366	<1	3,006
Louisiana	934	<1	2,423	Utah	3,394	<1	3,528
Maine	1,373	<1	3,916	Vermont	1,207	<1	1,710
Maryland	491	<1	814	Virginia	2,601	<1	3,657
Massachusetts	560	<1	1,197	Washington	7,310	6	27,249
Michigan	1,942	<1	1,181	West Virginia	1,711	1	4,408
Minnesota	1,391	<1	1,255	Wisconsin	1,863	1	2,287
Mississippi	1,536	<1	2,211	Wyoming	2,842	1	4,445
Missouri	5,089	2	7,198	U.S. Total	128,126	60	258,953

^a Non-excluded land was assumed to be available to support development of more than one technology.

Discussion

Table 12 summarizes the estimated technical generation and capacity potential in the Unites States for each renewable electricity technology examined in this report. As estimates of technical, rather than economic or market, potential, these values do not consider:

- Allocation of available land among technologies (available land is generally assumed to be available to support development of more than one technology and each set of exclusions was applied independently)
- Availability of existing or planned transmission infrastructure that is necessary to tie generation into the electricity grid
- The relative reliability or time-of-productions of power
- The cost associated with developing power at any location
- Presence of local, state, regional or national policies, either existing or potential, that could encourage renewable development
- The location or magnitude of current and potential electricity loads.

While not a direct comparison, given the above considerations, one useful point of reference for the generation potential estimate is annual electricity retail sales in the United States. In 2010, aggregate sales for all 50 states were roughly 3,754 TWh (see Appendix B).

Table 12. Total Estimated Technical Potential Generation and Capacity by Technology

Technology	Generation Potential (TWh) ^a	Capacity Potential (GW) ^a
Urban utility-scale PV	2,200	1,200
Rural utility-scale PV	280,600	153,000
Rooftop PV	800	664
Concentrating solar power	116,100	38,000
Onshore wind power	32,700	11,000
Offshore wind power	17,000	4,200
Biopower ^b	500	62
Hydrothermal power systems	300	38
Enhanced geothermal systems	31,300	4,000
Hydropower	300	60

^a Non-excluded land was assumed to be available to support development of more than one technology.

Updates to these technical potentials are possible on an ongoing basis as resource, system, exclusions and domain knowledge change and data sets improve in quality and resolution. In this study, we identified areas of potential improvements that include the acquisition of localized PV capacity factors, updated exclusion layers, and the use of updated land-cover data sets.

^b All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

References

Augustine, C. (October 2011). "Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input." NREL/TP-6A20-47459. Golden, CO: National Renewable Energy Laboratory.

Black & Veatch. (2009). Internal NREL Subcontract.

U.S. Bureau of Land Management (BLM). (2009). "Area of Critical Environmental Concern (ACEC)."

Conservation Biology Institute (CBI). (2004). Protected Areas Database. "State/GAP Land Stewardship."

Denholm, P.; Margolis, R. M. (2008a). "Land-Use Requirements and the Per-Capita Solar Footprint for Photovoltaic Generation in the United States." *Energy Policy*, (36:9); pp. 3531-3543.

Denholm, P.; Margolis, R. (2008b). "Supply Curves for Rooftop Solar PV-Generated Electricity for the United States." NREL/TP-6A0-44073. Golden, CO: National Renewable Energy Laboratory.

- U.S. Department of Agriculture Forest Service (USFS). (2003). "National Inventoried Roadless Areas (IRA)."
- U.S. Department of Energy. (2011). "U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry." R.D. Perlack and B.J. Stokes (Leads). ORNL/TM-2011/224. Oak Ridge, TN: Oak Ridge National Laboratory.
- U.S. Department of Energy (DOE) Energy Information Administration (EIA). (2003). Commercial Buildings Energy Consumption Survey (CBECS): 2003 Detailed Tables. <a href="http://www.eia.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/detailed_ta
- U.S. Energy Information Administration (EIA). State Electricity Profiles. http://205.254.135.7/electricity/state/. Accessed 2012.

DOE EIA. (2005). Residential Energy Consumption Survey (RECS). http://www.eia.gov/consumption/residential/data/2005/. Accessed 2008.

DOE Office of Energy Efficiency and Renewable Energy (EERE). (October 2006, updated January 2011). "Report to Congress on Renewable Energy Resource Assessment Information for the United States." January 2011 (EPACT) Prepared by the National Renewable Energy Laboratory.

DOE EERE. (July 2008). "20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply." NREL/TP-500-41869. Golden, CO: National Renewable Energy Laboratory.

ESRI. (2003). "Airports and Airfields."

ESRI. (2004). "U.S. Census Urbanized Areas."

ESRI. (2007a). "Landmarks."

ESRI. (2007b). "U.S. Parks."

U.S. Geological Survey (USGS). (1993). "North America Land Use Land Cover (LULC)," version 2.0.

USGS. (2005). Federal and Indian Lands.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S.I.; Woods, R.; Schweizer, T. (2003). "Gas-Fired Distributed Energy Resource Technology Characteristics." NREL/TP-620-34783. Golden, CO: National Renewable Energy Laboratory.

Hall, D.G.; Cherry, S.J.; Kelly, S.R.; Lee, R.D.; Carroll, G.R.; Sommers, G.L.; Verdin, K.L. (April 2004). "Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources." DOE/ID-11111. U.S. Department of Energy.

Hall D.G.; Reeves, K.S.; Brizzee, J.; Lee, R.D.; Carroll, G.R.; Sommers, G.L. (January 2006). "Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants." DOE-ID-11263. Idaho National Laboratory.

Ince, P.J. (1979). "How To Estimate Recoverable Heat Energy in Wood or Bark Fuels." General Technical Report FPL 29. Madison, WI: United States Department of Agriculture, Forest Products Laboratory. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr29.pdf.

Massachusetts Institute of Technology. (2006). "The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United in the 21st Century." INL/EXT0611746. Cambridge, MA: Massachusetts Institute of Technology. http://www1.eere.energy.gov/geothermal/future_geothermal.html

Multi-Resolution Land Characteristics (MRLC) Consortium. (n.d.). National Land Cover Database. http://www.mrlc.gov/. Accessed 2010.

Milbrandt, A. (December 2005). "A Geographic Perspective on the Current Biomass Resource Availability in the United States." NREL/TP-560-39181. Golden, CO: National Renewable Energy Laboratory.

Muffler, L.J.P., ed. (1979). "Assessment of geothermal resources of the United States — 1978." U. S. Geol. Survey Circ. 790. Arlington, VA: U.S. Geological Survey.

Musial, W.; Ram, B. (2010). "Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers." NREL/TP-500-40745. Golden, CO: National Renewable Energy Laboratory.

NREL. (2010). Electricity Generation and Consumption by State 2008. http://en.openei.org/datasets/node/60. Accessed 2010.

Perlack, R.; Wright, L.; Turhollow, A.; Graham, R.; Stokes, B.; Erbach, D. (2005). "Biomass as Feedstock for a Bioenergy and BioProducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply." ORNL/TM-2005/66. Oak Ridge, TN: Oak Ridge National Laboratory.

Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A. (2011). "Regional Energy Deployment System (ReEDS)." NREL/TP-6A2-46534. Golden, CO: National Renewable Energy Laboratory.

Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W. (June 2010). "Assessment of Offshore Wind Energy Resources for the United States." NREL/TP-500-45889. Golden, CO: National Renewable Energy Laboratory.

Williams, C.F.; Reed, M.J.; Mariner, R.H., DeAngelo, J.; Galanis, S.P., Jr. (2009). "Quantifying the Undiscovered Geothermal Resources of the United States." U.S. Geologic Survey, Geothermal Resources Council Transactions, v. 33. p. 995-1001.

Williams, C.F.; Reed, M.J.; Mariner, R.H., DeAngelo, J.; Galanis, S.P., Jr. (2008). "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States." U.S. Geological Survey Fact Sheet 2008-3082. Menlo Park, CA: U.S. Geological Survey.

Wilcox, S. (2007). "National Solar Radiation Database 1991-2005 Update: User's Manual." NREL/TP-581-41364. Golden, CO: National Renewable Energy Laboratory.

Wilcox, S.; Marion, W. (2008). "Users Manual for TMY3 Data Sets (Revised)." NREL /TP-581-43156. Golden, CO: National Renewable Energy Laboratory.

Appendix A. Exclusions and Constraints, Capacity Factors, and Power Densities

Table A-1. Exclusions and Constraints for Urban Utility-Scale Photovoltaics

Slope Exclusion	> 3%	
Contiguous Area Exclusion	< 0.018 km ²	
Land Type(s) Exclusion	Within Urban Boundaries	ESRI (2004)
	Landmarks	ESRI (2007a)
	Parks	ESRI (2007b)
	MRLC - Water	MRLC (n.d.)
	MRLC - Wetlands	MRLC (n.d.)
	MRLC - Forests	MRLC (n.d.)
	MRLC -Impervious Surface >= 1%	MRLC (n.d.)

Table A-2. Capacity Factors for Utility-Scale Photovoltaics^a

State	Capacity Factor	State	Capacity Factor	State	Capacity Factor
Alabama	0.200	Maine	0.191	Oklahoma	0.223
Alaska	0.105	Maryland	0.179	Oregon	0.227
Arizona	0.263	Massachusetts	0.182	Pennsylvania	0.177
Arkansas	0.207	Michigan	0.173	Rhode Island	0.176
California	0.252	Minnesota	0.189	South Carolina	0.202
Colorado	0.259	Mississippi	0.197	South Dakota	0.214
Connecticut	0.182	Missouri	0.193	Tennessee	0.201
Delaware	0.186	Montana	0.212	Texas	0.218
Florida	0.209	Nebraska	0.217	Utah	0.248
Georgia	0.203	Nevada	0.263	Vermont	0.176
Hawaii	0.210	New Hampshire	0.184	Virginia	0.200
Idaho	0.220	New Jersey	0.200	Washington	0.199
Illinois	0.186	New Mexico	0.263	West Virginia	0.172
Indiana	0.184	New York	0.184	Wisconsin	0.180
Iowa	0.199	North Carolina	0.206	Wyoming	0.229
Kansas	0.238	North Dakota	0.203		
Kentucky	0.186	Ohio	0.173		
Louisiana	0.196				

^a (SAM)

Table A-3. Exclusions and Constraints for Rural Utility-Scale Photovoltaics and Concentrating Solar Power

	00/	-
Slope Exclusion	> 3%	
Contiguous Area Exclusion	< 1 km ²	
Land Type(s) Exclusion	Urban Areas	ESRI (2004)
	MRLC - Water	MRLC (n.d.)
	MRLC - Wetlands	MRLC (n.d.)
	BLM ACEC Lands (Areas of Critical Environmental Concern) (BLM 2009)	BLM (2009)
	Forest Service IRA (Inventoried Roadless Area) (USFS 2003)	USFS (2003)
	National Park Service Lands	USGS (2005)
	Fish & Wildlife Lands	USGS (2005)
	Federal Parks	USGS (2005)
	Federal Wilderness	USGS (2005)
	Federal Wilderness Study Area	USGS (2005)
	Federal National Monument	USGS (2005)
	Federal National Battlefield	USGS (2005)
	Federal Recreation Area	USGS (2005)
	Federal National Conservation Area	USGS (2005)
	Federal Wildlife Refuge	USGS (2005)
	Federal Wildlife Area	USGS (2005)
	Federal Wild and Scenic Area	USGS (2005)
•		

Table A-4. Capacity Factors for Concentrating Solar Power^a

Class	March Jos Oldon	Consolity Footow			
Class	Kwn/m2/day	Capacity Factor			
1	5–6.25	0.315			
2	6.25-7.25	0.393			
3	7.25–7.5	0.428			
4	7.5–7.75	0.434			
5	> 7.75	0.448			
a (CVVV)					

(SAM)

Table A-5. Exclusions and Constraints for Onshore Wind Power

	bio ii bi zhorubiono unu donoti umito ioi ononoro ivimu i o	
Slope Exclusion	> 20%	
Distance Exclusion	< 3 km Distance to Excluded Area (does not apply to water)	
Land Type(s) Exclusion	50% Forest Service Lands (includes National Grasslands, excludes ridge crests)	USGS (2005)
	50% Department of Defense Lands (excludes ridge crest)	USGS (2005)
	50% GAP Land Stewardship Class 2 - Forest	CBI (2004)
	50% Exclusion of non-ridge crest forest (non- cumulative over Forest Service Land)	USGS (2005)
	Airports	ESRI (2003)
	Urban Areas	ESRI (2004)
	LULC - Wetlands	USGS (1993)
	LULC - Water	USGS (1993)
	Forest Service IRA (Inventoried Roadless Areas)	USFS (2003)
	National Park Service Lands	USGS (2005)
	Fish & Wildlife Lands	USGS (2005)
	Federal Parks	USGS (2005)
	Federal Wilderness	USGS (2005)
	Federal Wilderness Study Area	USGS (2005)
	Federal National Monument	USGS (2005)
	Federal National Battlefield	USGS (2005)
	Federal Recreation Area	USGS (2005)
	Federal National Conservation Area	USGS (2005)
	Federal Wildlife Refuge	USGS (2005)
	Federal Wildlife Area	USGS (2005)
	Federal Wild and Scenic Area	USGS (2005)
	GAP Land Stewardship Class 2 - State & Private Lands Equivalent to Federal Exclusions	CBI (2004)

Table A-6. Capacity Factor for Offshore Wind Powera

		101 11 2	
Depth	Class	Watts/m ²	Capacity Factor
Shallow			
0-30 meters	3	300–400	0.36
0-30 meters	4	400–500	0.39
0-30 meters	5	500–600	0.45
0-30 meters	6	600–800	0.479
0-30 meters	7	> 800	0.5
Deep			
> 30 meters	3	300–400	0.367
> 30 meters	4	400–500	0.394
> 30 meters	5	500–600	0.45
> 30 meters	6	600–800	0.479
> 30 meters	7	> 800	0.5
	а	(D. ED.0)	

^a (ReEDS)

Table A-7. Conversion of Offshore Wind Speeds at 90 Meters to Power Classes^a

Wind Speed (meters / second)	Power Class
6.4–7.0	3
7 .0–7.5	4
7.5–8.0	5
8.0–8.8	6
> 8.8	7

^a Marc Schwartz, NREL Wind Analyst, personal communication

Table A-8. Exclusions and Constraints for Offshore Wind Powera

Distance Exclusion

< 50 nautical miles from shoreline

Land Type(s) Exclusion

Federal Exclusions National Marine Sanctuaries

Marine Protected Areas Inventory - 'NAL', 'NIL', 'NTL'

Office of Habitat Conservation Habitat Protection Div. EFH -

Shipping Routes, Sanctuary Protected Areas

NOAA Jurisdictional Boundaries and Limits - Coastal National

Wildlife Refuges - Pacific

Navigational & Marine Infrastructure - Shipping Lanes, Drilling

Platforms (Gulf), Pipelines (Gulf), Fairways (Gulf)

NWIOOS - Towlane Agreement WSG 2007

World Database on Protected Areas Annual Release 2009 Global

Data set – Offshore Oil & Gas Pipelines/Drilling Platforms

Texas Pipelines & Easements

Audubon Sanctuaries

Gulf Inter-coastal Waterway/Ship Channels

National Wildlife Refuges

Shipping Safety Fairways

State Coastal Preserves

Dredged Material Placement Sites

State Tracts with Resource Management Codes

North Carolina Significant Natural Heritage Areas

Sea Turtle Sanctuary

Crane Spawning Sanctuary

Great Lakes IM ACC EPA

IM Ship Routes

Virginia Near-shore Coastal Parks

Threatened & Endangered Species Waters

Crab Sanctuary

Security Areas

Striped Bass Sanctuary

State Park & State Dedicated Natural Area Preserve (w/in 1 mile of

shoreline)

Rhode Island Habitat Restoration Area

Hazardous Material Sites Designated by the U.S. EPA and RIDEM

(w/in 0.5 miles of shoreline)

CRMCWT08 (Type = 1 or 2)

South Carolina: Refuges

OCRM Critical Area

New Hampshire Conservation Focus Area

Florida Ocean Dredged Material Disposal Sites

Aquatic Preserve Boundaries

California Cordell Banks Closed Areas

Massachusetts Ferry Routes

Oregon Oregon Islands National Wildlife Refuges USFWS 2004

Oregon Marine Managed Areas

Oregon Cables OFCC 2005

Dredged Material Disposal Sites ACDE 2008

New Jersey New Jersey Coastal Wind Turbine Siting Map – Exclusion Areas

Table A-9. Exclusions and Constraints for Enhanced Geothermal Systems^a

Land Type(s) Exclusion	National Park Service Lands
	Fish and Wildlife Service Lands
	Federal Parks
	Federal Wilderness
	Federal National Monuments
	Federal National Battlefields
	Federal Restoration Areas
	Federal National Conservation Areas
	Federal Wildlife Refuge Areas
	Federal Wild and Scenic Areas
а	USGS (2005)

^a Exclusions were developed by Black & Veatch (2009).

Table A-10. Power Densities for Enhanced Geothermal Systems^a

Temperature C	MW / km ²
150–200	0.59
200–250	0.76
250–300	0.86
300–350	0.97
> 350	1.19
^a Augustine	(2011)

Table A-11. Exclusions and Constraints for Enhanced Geothermal Systems^a

Depth Constraints	Depth > 3 and < 10 km		
Land Type(s) Exclusion	National Park Service Lands		
	Fish and Wildlife Service Lands		
	Federal Parks		
	Federal Wilderness		
	Federal National Monuments		
	Federal National Battlefields		
	Federal Restoration Areas		
	Federal Conservation Areas		
	Federal Wildlife Refuge Areas		
	Federal Wild and Scenic Areas		

^a USGS (2005)

Appendix B. Energy Consumption by State

Electric retail sales in the United States were roughly 3,754 TWh in 2010 (EIA).

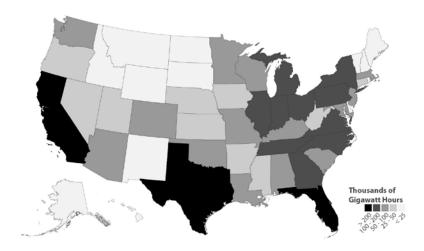


Figure B-1. Electric retail sales in the United States in 2010 (EIA).

Table B-1. Electric Retail Sales by State, 2010^a

State	GWh	State	GWh
Alabama	90,863	Montana	13,423
Alaska	6,247	Nebraska	29,849
Arizona	72,832	Nevada	33,773
Arkansas	48,194	New Hampshire	10,890
California	258,525	New Jersey	79,179
Colorado	52,918	New Mexico	22,428
Connecticut	30,392	New York	144,624
Delaware	11,606	North Carolina	136,415
District of Columbia	11,877	North Dakota	12,956
Florida	231,210	Ohio	154,145
Georgia	140,672	Oklahoma	57,846
Hawaii	10,017	Oregon	46,026
Idaho	22,798	Pennsylvania	148,964
Illinois	144,761	Rhode Island	7,799
Indiana	105,994	South Carolina	82,479
Iowa	45,445	South Dakota	11,356
Kansas	40,421	Tennessee	103,522
Kentucky	93,569	Texas	358,458
Louisiana	85,080	Utah	28,044
Maine	11,532	Vermont	5,595
Maryland	65,335	Virginia	113,806
Massachusetts	57,123	Washington	90,380
Michigan	103,649	West Virginia	32,032
Minnesota	67,800	Wisconsin	68,752
Mississippi	49,687	Wyoming	17,113
Missouri	86,085	U.S. Total	3,754,486

 $^{\mathsf{a}}\mathsf{EIA}$