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Abstract: Speaker recognition deals with recognizing speakers by their speech. Most speaker
recognition systems are built upon two stages, the first stage extracts low dimensional correlation
embeddings from speech, and the second performs the classification task. The robustness of a
speaker recognition system mainly depends on the extraction process of speech embeddings, which
are primarily pre-trained on a large-scale dataset. As the embedding systems are pre-trained, the
performance of speaker recognition models greatly depends on domain adaptation policy, which may
reduce if trained using inadequate data. This paper introduces a speaker recognition strategy dealing
with unlabeled data, which generates clusterable embedding vectors from small fixed-size speech
frames. The unsupervised training strategy involves an assumption that a small speech segment
should include a single speaker. Depending on such a belief, a pairwise constraint is constructed
with noise augmentation policies, used to train AutoEmbedder architecture that generates speaker
embeddings. Without relying on domain adaption policy, the process unsupervisely produces clus-
terable speaker embeddings, termed unsupervised vectors (u-vectors). The evaluation is concluded
in two popular speaker recognition datasets for English language, TIMIT, and LibriSpeech. Also, a
Bengali dataset is included to illustrate the diversity of the domain shifts for speaker recognition
systems. Finally, we conclude that the proposed approach achieves satisfactory performance using
pairwise architectures.

Keywords: speaker recognition; clustering; twin networks; deep learning

1. Introduction

Speech is the most engaging and acceptable form of communication among one
another. Artificial intelligence (AI) systems are currently continuously targeting and
working on various challenges of speech-related topics, including speech recognition,
speech segmentation, speaker recognition, speech diarization, and so on. Among the
different sub-domains of AI, Deep learning (DL) strategies often perform superior to
other techniques.

The general implementation of DL was mainly conducted on speech recognition
systems. DL methods can be trained on speech recognition without the requirement of
speech-to-word alignment [1]. Often such training strategies are defined as an end-to-end
method. End-to-end methods can be easily trained from speech transcripts. Therefore, cur-
rently, numerous systems are being developed in the speech recognition domain. Speech
recognition systems have exciting usages in voice commands, virtual assistants, search
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engines, speech-to-text processing, etc. Further, numerous automation systems on speech
are currently being developed. A speech denoising mechanism removes environmental
sounds from speech audio, helping to provide a clean speech [2]. Speech synthesis sys-
tems artificially enable computers to produce speech sounds [3], helping computers to
communicate with humans. Speech emotion systems further extract human emotions
from speech [4]. Thus, computers can apprehend human feelings. Speech segmentation
systems can segment a speech into word/phone levels [5], helping to identify words and
phones from speech. Further, computers can help humans in developing pronunciation [6].
Among the various speech-based solutions, speaker recognition has fascinating usage of
identifying users by hearing speech.

Speaker recognition systems are directly involved with biometric identification sys-
tems and are suitable for authenticating users remotely by hearing voices . In perspective
to various biometric systems, such as facial recognition, fingerprint matching, and so on,
speaker recognition also has vast usability in numerous domains, including telecom, bank-
ing, search optimization, and diarization [7]. Nevertheless, speaker recognition systems
suffer difficulties, including speech states, emotional conditions, environmental noise,
health conditions, speaking styles, etc. Further, in comparison with supervised speaker
recognition approaches, unsupervised and semi-supervised strategies are hardly investi-
gated [8]. Unsupervised and semi-supervised systems resolve the requirement of labeling
a vast quantity of speech data.

DL architectures have been extensively investigated for supervised speaker recog-
nition systems. For speaker and speech recognition models, speech spectrograms and
mel-frequency cepstral coefficients (MFCC) [9] are used as a preprocessing strategy. For
such cases, convolutional neural networks (CNN) are generally implemented [10]. How-
ever, current architectures processes raw-audio and extract speaker recognizable features.
SincNet [11] improves the feature extraction process from raw audio waves. The architec-
ture fuses sinc functions with CNN that can extract speaker information from low and high
cutoff frequencies. AM-MobileNet1D [12] further demonstrates that 1D-CNN architectures
are sufficient for identifying features from raw audio waveforms. Also, the architecture
requires fewer parameters compared to SincNet. Although supervised speaker recognition
architectures perform excellently in recognition tasks on a large set of speakers. However,
DL strategies require a vast amount of labeled data to operate on speech-related queries.

Generating speech embeddings has been widely observed in the speaker recognition
domain [13–15]. Embedding refers to generating vectors of continuous values. Often, archi-
tectures using speaker embeddings are also termed stage-wise architectures [7]. Currently,
unsupervised speaker recognition systems implement domain adaptation policies, mostly
fused with embedding vectors [7,16]. Domain adaptation refers to finding appropriate
similarities, where a framework is trained on training data, and tested on a similar yet
unseen data. Hence, domain adaptation strategies may perform poorly when the variation
of training and the unseen dataset is massive. Further, domain adaptation strategies may
also produce less accuracy if trained on an inadequate dataset with minimal variation [15].
Yet, efforts have been made to reduce the interpretation of unseen data over training data,
by adding adversarial training [17], improving training policies [18], covariance adaptation
policies [19], etc. Although these policies improve the robustness, most strategies are
still prone to various speech diversions, such as language, speech pattern, age, emotion,
and so on.

Currently, in the aspect of DL, embeddings can be generated using triplet [20] and
pairwise loss [21] techniques. In triplet loss architecture, three parallel inputs flow through
the network: anchor, negative, and positive. The positive input contains a similar class
w.r.t. to the anchor, whereas the negative input contains a different class. Comparatively, in
pairwise architecture, a pair of information flows either belonging to a single or different
class. Triplet architectures have been perceived in speaker feature extraction in supervised
practice [22].
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This paper introduces an unsupervised strategy of generating speaker embedding
directly from the unseen data. Hence, the method does not depend on domain adaptation
policies and can adapt diverse features from most speech data. Moreover, we insist on
converting DL architecture’s training process to both semi-supervised and unsupervised
manners . Yet, to do so, the system requires segmented audio streams (length of 1 s) and
needs to guarantee that a segment contains only one person’s speech. The audio segment
is further windowed into smaller speech frames (0.2 s) for training the DL architecture.
The audio segments are assigned pseudo labels, which are further reconstructed by DL
architecture. Figure 1 illustrates the construction of the training procedure.

Embedder

Speech segment of speaker p Speech segment of speaker q Speech segment of speaker p

Speech frames

Figure 1. The figure illustrates a set of segmented speech with an unknown number of speakers (in
the example, two speakers, p and q). Speech segments are windowed into smaller speech frames,
assuming that all frames of a single speech segment belong to a single class. Further, a DL-based
embedding system finds speech similarities (inter-segment similarity) and relations from speech
segments. The process results in generating clusterable speaker embeddings.

The overall contributions of the paper are the following:

• We introduce a strategy of generating speaker-dependent embeddings, named u-
vector. The training process is domain-independent and directly learns from the
unlabeled data.

• We use pairwise constraints and non-generative augmentations to train AutoEmbed-
der architecture.

• We explore the possibilities of our strategy in both unsupervised and semi-supervised
training criteria.

• We evaluate the proposed policy with two inter-cluster based strategies: triplet and
pairwise architectures.

• We finally conclude that a DL architecture can discriminate speakers from pseudo
labels based on feature similarity.

We organize the paper as follows, Section 2 reviews the related works conducted in
speaker recognition domain. Section 3 clarifies the construction of the training procedure,
along with the challenges, and modifications. Section 4 illustrates the experimental setup,
datasets and the analysis of the architecture’s performance. In Section 5, we sketch the
proposed method’s future initiatives along with usabilities. Finally, Section 6 concludes
the paper.

2. Related Work

Speaker recognition has been a topic of interest over the past decades, and various
systems have been proposed to solve the challenge. In the domain of speaker recognition,
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numerous techniques have been observed since late 2000. Among these, embedding archi-
tectures have been widely explored to extract the diversity of speech frames. Embedding
models are often considered feature extractors, which can generate a speech-print (related
to finger-print) of an individual. Hence, every individual’s speech will remain closer in the
embedding space, causing to create a cluster of embeddings from speech frames.

Gaussian mixture model (GMM) supervector [23] (stacking mean vectors from GMM),
and Joint factor analysis (JFA) [24] have been popularly integrated into the speaker recog-
nition task. JFA merges the speaker-dependent and channel-dependent supervector and
generates a new supervector based on the dependency. GMM and JFA were significantly
accepted as feature extractors and implemented in various speaker recognition strategies.
Later on, inspired by JFA, identity vector (i-vector) [25] was introduced. I-vector contributes
to changing the channel-dependent supervectors and integrates speaker information within
the supervectors. Hence, i-vector became more sensitive to speech variations and greatly
accepted by the researchers. In most cases of JFA and i-vector, MFCC is widely imple-
mented. MFCC is a linear cosine transform of a log power spectrum used to extract a
sound’s information. However, a lower MFCC with a lower cepstral coefficient returns
only sound information, whereas the higher value of the coefficient represents speaker
information as well [26]. Further, probabilistic linear discriminant analysis (PLDA) [27]
is mostly used for implementing speaker verification and identification systems using
i-vectors [13].

The present improvement of DL architectures has led to revisiting the speech em-
bedding representation neural architecture perspective. Deep vector (d-vector) [14] is a
mutated implementation of the speech frame embeddings using deep neural networks
(DNN). The d-vector depends on the automated feature extraction process of DNN. The
model’s training process is supervised, and in the basic implementation of the d-vector,
it is explored as a text-dependent system. After the training procedure, the softmax layer
is left out, and the embeddings are extracted from the last hidden layer. Although the
d-vector is based on DNN, further studies have been made using CNN architectures [28].
In the modified architecture, speech is converted into MEL coefficients, which are nor-
malized and supplied to CNN. Moreover, extensive studies have been made to improve
the basic d-vector to a text-independent unsupervised vector generation using domain
adaptation [29]. The mechanism is split into two parts in the upgraded version: a DNN
that extracts embeddings and a separately trained classifier that classifies speakers. These
studies’ limitation is that most of them require massive labelled data in the training pro-
cedure. Also, the embedding performance in the case of unseen speakers dramatically
depends on the training data.

As DNN architectures are dependent on the amount of training data, an improved
strategy of the d-vector is proposed, named x-vector [15]. X-vectors are a modified version
of d-vector, which depends on basic sound augmentation techniques, noise and reverbera-
tion. Further, the implementation highly motivates data augmentation usage and presents
a decent accuracy improvement over i-vectors. The default x-vector is implemented based
on the improved text-independent version of the d-vector [29] by properly utilizing data
augmentation.

The present state of the art speech embedding systems tends to be unsupervised.
However, the concept of unsupervision still depends on a large set of training data. Both
d-vector and x-vectors directly rely on the domain adaptation [30] policy of neural network
architectures. Hence, the performance of these architectures on unseen data massively
depends on the volume and diversity of the training dataset. The domain adaptation capa-
bility of neural network architectures is further increased by using synthetic datasets [31].
However, the performance is still dependent on previously learned features, and perfor-
mance might lack due to data inefficiency and domain variation between training and
testing data.
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Therefore, we introduce an approach that is independent of domain adaptation of
neural network architectures. Instead, the proposed method tends to utilize the automated
feature extraction of neural network.

3. Methodology

This paper’s clusterable speaker embedding generation is based on a particular as-
sumption: a speaker speaks continuously for a specific time. Hence, if segmentation
methods are used or a small speech segment is extracted based on voice segmentation
techniques, most speech segments will contain an individual’s speech. However, some
segments might be impure, i.e., a single segment may have multiple individuals’ speech.
Nevertheless, we argue that the ratio of impurity would be small enough for most general
speech conversations. Hence, such a strategy is investigated with the most common neural
network pipelines; a siamese network [32]. AutoEmbedder framework [21] is used as a
DL architecture to extract speaker embeddings. Figure 2 illustrates the basic workflow of
producing u-vectors.

In this section, the methodology of generating u-vector is introduced. The section is
segmented as follows: the problem formulation and assumptions are defined in Section 3.1.
The proposed work includes speech segments discussed in Section 3.2. Further, speech
segments are broken into small speech frames for construction pairwise constraint, which
is addressed in Section 3.3. Uncertainties due to the pseudo-labels of pairwise constraints
are discussed in Section 3.4. Challenges of deciding segmentation length are addressed in
Section 3.5. Finally, the DL framework AutoEmbedder [21], which is used to explore the
actual cluster linkage, is theorized in Section 3.6.

3.1. Problem Formulation and Assumptions

The proposed method tends to solve the speaker recognition system in an unsuper-
vised manner based on some constraints. Table 1 summarizes the paper’s mathematical
notations to facilitate the readers. To comprehend the problem statement, let S be a
database of speech segment, where Xk be a short-length audio segment containing speech
of an individual. Also, let xi be a smaller window/frame of the audio segment, where
xi ∈ Xk. From a particular speech segment, Xk,M number of non-overlapping speech
frames are generated. As it is stated that a speech segment belongs to a single individual,
the smaller speech frames also belong to that individual. From this intuition, we construct
pairwise constraints between audio frames. We define two speech frames belong to the
same cluster if they belong to the same audio segment. On the contrary, we consider two
speech frames that belong to different clusters if they belong to different audio segments.
Based on the pairwise relations, a set of cluster C can be generated. Where a single cluster
(ci ∈ C) belongs to a specific speech segment. Considering most speech segments will
belong to a single speaker, we can assume that most cluster ci would contain a single
individual’s data. However, as multiple speech segments can belong to a single individual,
multiple clusters may contain a single individual’s data. Hence, the challenge is to find
such optimal cluster relationships such that no two clusters may contain speech of a single
individual. The training strategy has two possibilities, such as:

• In the case of an unlabeled dataset, let us consider that each audio file contains a single
individual’s speech. For a set of audio files with an unknown number of speakers,
our approach is suitable to produce clusterable embeddings based on speakers. This
constraint is similar to semi-supervised learning, as some of the pairwise constraints
are known [33].

• Let us consider a dataset containing multiple speakers’ conversations, where a sin-
gle audio stream may include various speakers. In such a case, no pairwise con-
straints are known, and an unsupervised strategy is required. Hence, we produce
hypothetical pairwise constraints based on audio segmentation processes such as
VAD, word segmentation [5], etc., and construct pairwise constraints. However, in
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such a case, the embedding system’s accuracy depends on the purity of the audio
segmentation process.

Embedder
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Figure 2. The figure illustrates the comprehensive procedure to generate u-vectors. Audio stream is
segmented and given pseudo labels. Then a cluster network is formed using small non-overlapping
speech frames from the speech segments. Finally, training data is generated from the cluster network
based on the needs of the siamese architecture. The pairwise network requires an equal number of
can-link and cannot link pairs. In contrast, triplet networks receive three data, one pair with can-link,
and one cannot-link pair. The network/embedder is trained on randomly augmented speech frames,
further converted into 2D feature maps using MFCC. While training, the embedder reforms the
cluster associations, where speaker similarity is considered.
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For both of the problem, DL architecture is used to aggregate multiple clusters such
that the resulting cluster contains all of the embeddings of a single individual. We imply
that if a DL function can properly extract speech features from audio frames, it can obtain
optimal reasoning of speech frames being similar and dissimilar. Further, an optimally
trained DL framework can successfully re-cluster the data based on the feature similarity
rather than the number of hypothetical clusters. We extend our investigation towards
finding such DL training strategy.

Since the approach deals with unsupervisely generating speaker embedding vectors
from speech data (without domain adaptation), the output embedding vectors are named
as unsupervised vectors (u-vectors). Formally u-vector is defined as follows,

Definition 1. Unsupervised vectors (u-vectors) refer to a set of DNN generated speech embeddings,
which are clusterable based on speakers, trained from unlabeled speech segments.

In the formal definition, by DNN, any specific implementation of substantially deep
neural networks are indicated, such as convolutional, feedforward, recurrent, etc.

Table 1. The mathematical notations used in the paper are summarized.

Notation Description

S A set of audio segments. Audio segments are fragments of a continuous
audio stream. We assume that most audio segments contain speech of a
single individual.

X A single audio segment, X ∈ S .

xi An audio frame, generated by taking shorter frames from an audio segment,
xi ∈ Xk. Audio frames are used to train DL architectures.

M Denotes the number of possible audio frames in an audio segment,
x1≤i≤M ∈ Xk. Theoretically,M× |xi| = |Xk|.

C A set of clusters. These clusters are formed using hypothetical pairwise
constraints. As cluster linkages are constructed based on the speech segment
relations, it can be considered that |S| = |C|.

ci Denotes a subset of the entire cluster, ci ⊆ C. Here, ci represents a cluster
constructed using the inter-relationship of speech frames, belonging to a
specific speech segment Xi.

N The actual number of individuals in S , considering the ground truth. For
this specific problem, the value of N is unknown.

α The distance hyperparameter used for AutoEmbedder [21] architecture. For
other architectures, α may indicate a connectivity state for any two cluster
nodes.

3.2. Speech Segments

To generate the pairwise constraints, it is considered that a speech segment belongs
to an individual. Moreover, if it is possible to extract accurate pairwise constraints, a DL
framework can be trained using those constraints. To generate such pairwise constraints,
speech segmentation procedures are required.
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Speech can be easily segmented using various techniques. Methods such as VAD [34]
and word segmentation [35] can be indeed adopted to define such speech segments,
containing the voice of a single individual. It is also feasible to assume that a single
individual mostly speaks more than one word in a conversation. Hence, it is also possible
to queue multiple speech segments and hypothesize that they come from a single individual.
However, increasing the queue or size of a speech segment also increases the probability of
impurity of a speech segment (discussed in Section 3.5). By impurity in a speech segment,
it is referred that a speech segment contains more than one speaker. Impure data can
often trick the DL frameworks from finding actual relationships among clusters. Hence,
to minimize the impurity risk, we study speech segments with a length of one second.
After the successful extraction of speech segments, the pairwise constraints are to be
constructed. Although the overall framework is dependent on proper speech segmentation
techniques, we avoid implementing such segmentation methods. Instead, we provide a
detailed evaluation of embedding accuracy based on various levels of cluster impurities.

3.3. Pairwise Constraints

The DL framework is trained based on pairwise constraints. Pairwise constraint
contains a pairwise relationship between a pair of inputs. By considering xi and xj as
two random speech frames, two circumstances may occur: (a) speech frames may belong
to the same audio segment Xk or (b) they may belong to different audio segments. In
the current state of the problem, as the speech labels’ ground truth is unknown for every
speech segment, we consider each segment belonging to different individuals. Hence, the
number of unique pseudo labels is equal to |S|. Mathematically, C being a set of clusters, ci
being a particular cluster of similar nodes, and Xk being a specific speech segment,

∀xi ∈ Xk and ∀xj ∈ Xk, xi, xj ∈ ck

∀xi ∈ Xk and ∀xj /∈ Xk, xi, xj /∈ ck
(1)

The DL framework is trained based on the defined cluster constraints. To properly
introduce the inter-cluster and intra-cluster relation to a DL framework, we define a gound
regression function based on pairwise criteria derived in Equatoin (1). The function is
defined as,

Pc(xi, xj) =

{
0 if xi, xj ∈ cp

α if xi ∈ cp and xj ∈ cq
(2)

In general, thePc(·, ·) outputs the distance constraints that each embedding (generated
from speech frames) holds. The function infers that an embedding pair must be at a close
distance if they belong to the same cluster or at a distance of α otherwise. However,
embedding pairs belonging to different clusters may be at a distance greater than α, which
is established in the AutoEmbedder architecture (Equatoin (4)). We use the pairwise
constraints to train a DL architecture. Further, we revisit the data-clusters’ uncertainty and
segmenting impurities and explore why a DL framework may be necessary in such a case.

3.4. Uncertainties in Pairwise Constraints

The cluster assignments are mostly uncertain based on two major concerns: (a) the
segmented audio Xk may be impure, (b) the ground-truth of cluster assignments are un-
known. Therefore, in most cases, the number of ground-label (defined asN ) is theoretically
not equal to the number of clusters, i.e., N 6= |C| and N 6= |S|, where |S| = |C|. Moreover,
due to such impurity and uncertainty of ground-labels, the subsequent flaws in the training
dataset (based on pairwise properties) are frequently observed,
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• Impurity in must-link constraint: The dataset’s core concept is to assume that an audio
segment Xk contains only one individual’s speech. Generally, a segmentation system
may inaccurately identify speech segments and hold multiple individuals’ speech in
a single audio segment. However, if we consider short length audio segments, the
probability of speaker fusion rapidly decreases.

• Error in cannot-link constraint: Let, xi ∈ cp and xj ∈ cq, where cp 6= cq. The cluster
assignments are considered based on the number of audio segments. Hence, for
most datasets, the number of speech segments is greater than the actual number of
speakers, |C| ≥ N . Therefore, considering the ground-truth, the assumption cp 6= cq
may be wrong, and data pair xi and xj may belong to the same cluster considering the
ground truth.

If we consider a cluster network C with no impurity, then the task of DL is to eliminate
the errors in cannot link constraints based on the feature relationship. Hence, if it is possible
to prioritize the speech features to a DL framework, it can allegedly aggregate appropri-
ate cluster from erroneous cannot-link clusters. Therefore, training the DL architecture
reduces errors in cannot-link constraints. However, reducing the impurity of the input
data’s must-link constraints considerably depends on the length of speech segments and
segmentation policies.

3.5. Segment Length Analysis

The time-domain length of the speech segments (defined by |X |) operates a vital role
in the overall performance of the training process. Each segment is further windowed
into smaller speech frames. Hence, the segment length must be divisible by the length of
fixed-size speech frames (defined by |x|). Various architectures consider overlapped frames
while windowing speech signals. However, we avoid such measures, as such overlaps
result in mixing similar speech patterns in multiple speech frames.

To illustrate the trade-off of selecting an optimal length of speech segment |X |, let us
consider Lmean being the mean and Lstd the standard deviation (std) of the length of speech
segmentations for a given dataset (or a buffer of audio stream). Therefore, statistically,
Lmean −Lstd is the optimal minimal length for which we can assume that most segments
strictly contains speech of a single individual. However, if the minimum segment length is
considered, the number of frames per segmentM would also reduce.

Reducing the number of frames per segment due to a shorter segment would deliver
less inter-cluster relations for each segment. The reduction of inter-cluster association
would also cause the DL framework struggle finding feature relation between speech
frames. Further, increasing the size of speech segments may also result in impure compo-
nents, if |X | ≥ Lmean −Lstd.

To explore the reason of impurity, let us consider an audio stream contains a mean
time Jmean with standard deviation of Jstd, after which, the speaker exchanges. In such
condition, selecting the length of segment too high may result in being |X | ≥ Jmean −
Jstd. However, statistically, in most general conversations, the length of minimal speech
segmentation is mostly less than the speaker exchange time, Lmean + Lstd ≤ Jmean −Jstd.
Therefore, if we can select such |X|, for which, |X | < Lmean − Lstd < Jmean − Jstd, the
rate of impurity would be zero. Hence, selecting |X | ≈ Lmean would reduce the rate of
impurity. For the experimental datasets, the Lmean is equal to one (illustrated in Table 2).
Hence, we experiment with one-second speech segment. Further, we investigate a pairwise
framework in which we try to trick DL architecture into converging towards the ground
cluster relationship.
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Table 2. The table illustrates the mean, median and deviation of segment duration and words per
sentence for each dataset. The segment duration is calculated using the setup described in Section 4.1.

Dataset
Segment Duration Words per Sentence

Mean Median STD Mean Median STD

TIMIT [36] 1 0.8 0.6 8.63 8.0 2.6

LibriSpeech [37] 1.2 0.8 1 18.9 15.0 12.9

Bengali ASR [38] 1.3 1.2 0.8 3.20 3.0 3.0

3.6. AutoEmbedder Architecture

As a DL architecture, we use a pairwise constraint-based AutoEmbedder framework
to re-cluster speech data. However, we introduce further modifications to the network’s
general training process to strengthen the learning progress. In general, the AutoEmbedder
architecture is trained based on the pairwise constraints defined by function Pc(·, ·). The
architecture follows siamese network constraints that can be presented as,

S(x, x
′
) = ReLU(‖Eφ(x)− Eφ(x

′
)‖, α) = R+

≤α (3)

The ReLU(·, ·) function used in Equatoin (3) is a thresholded ReLU function, such that,

ReLU(x, α) =

{
x if 0 ≤ x < α

α if x ≥ α
(4)

In Equatoin (3), the S(·, ·) represents a siamese network function, that receives two
inputs. The framework contains a single shared DNN network Eφ(·) that map higher
dimensional input to a lower dimension clusterable embeddings. The Euclidean distance
of the embedding pairs is calculated and passed through the thresholded ReLU activation
function derived in Equatoin (4). The threshold value is a cluster margin of α. Due to the
threshold, the siamese architecture always generates outputs in the range [0, α]. The L2
loss function is used to train the general AutoEmbedder architecture. The AutoEmbedder
architecture is trained using an equal number of must-link and cannot link constraints for
each data batch. However, in a triplet architecture, the problem is automatically solved, as
each triplet contains a fusion of cannot link (negative) and can-link (positive) data.

3.7. Augmenting Training Data

Both types of cluster relationships (can-link and cannot-link) may contain faulty
assumptions and pseudo labels considering the ground truth. Hence, a basic augmentation
scheme is used to trick the DL network from overfitting erroneous cluster relationships.
Although various augmentation techniques are available, we adhere to mixing noise with
speech data for augmentation. For noise augmentation, we implement a basic formula
that is,

Aug(xi, noise, thres) = {x′i |x
′
i = xi × (1− thres) + noise× thres} [0 ≤ thres ≤ 1] (5)

Here, Aug(·, ·, ·) is a function that produces augmented speech data, which is inputted
as xi. The thres is a threshold used to define the ratio of mixing noise with speech data
xi. Augmenting noise with speech frames results in less-confusing the AutoEmbedder
network in case of erroneous data pairs. Fusing noise may facilitate the architecture by
ignoring faulty data pairs due to different noise situations. Moreover, augmenting data
also results in data variation, and the network extracts more beneficial features from speech
data. Algorithm 1 presents pseudocode of the pairwise training process.



Appl. Sci. 2021, 11, 10079 11 of 19

Algorithm 1: AutoEmbedder training for speaker recognition.
Input: Dataset D containing speech frames, DL model with initial weights Eφ,

Distance hyperparameter α, Training epochs Ep

Initialize siamese network, Sφ(·, ·)← ReLU(||Eφ(·)− Eφ(·)||, α)

for epoch← 1 to Ep do
foreach Dbatch ∈ D do
X , X ′ , Y ← {}, {}, {}
counter ← 0
foreach x ∈ Dbatch do
X ← append x in X
if counter < |batch|/2 then
X ′ ← randomly pick and append a can-link speech frame from D
Y ← append 0 in Y

else
X ′ ← randomly pick and append a cannot-link speech frame from
D
Y ← append α in Y

counter ← counter + 1

X ← randomly select half of the speech frames and augment them
X ′ ← randomly select half of the speech frames and augment them
Sφ ← Train Sφ with X ,X ′ ,Y

4. Experiments and Evaluations

In this section, the proposed scheme is experimented based on the impurity of speech
segmentation. As the architecture’s target is to produce clusterable embedding, we use
k-means to measure the purity of the clusters generated by the embedding system. Fur-
ther, three popular metrics, Accuracy (ACC), normalized mutual information (NMI), and
adjusted rand index (ARI), are used to measure clustering effectiveness. The metrics are
calculated as demonstrated in [21], and are widely implemented to refer to the purity of
clustering [33,39].

4.1. Experimental Setup

The datasets were segmented using a threshold of 16 decibels, implemented as a VAD.
The audio streams have been processed with a sample rate of 16,000 Hz. For audio to
spectrogram conversion, the parameters are set as described, size of fast-fourier transform:
191, window-size: 128, stride: 34, mel-scales: 100. Speech spectrograms are used as inputs
to train the DL architectures.

4.2. Datasets

For experimentation, three speech datasets have been used. TIMIT [36] and Lib-
riSpeech [37] are popular speech datasets for English language. Moreover, we use Bengali
Automated Speech Recognition Dataset [38] to show the diversity of our approach for
additional languages. Among the three datasets, TIMIT and LirbriSpeech datasets con-
tain studio-grade audio speech. Bengali ASR dataset is crowdsourced hence, contains a
diverse sound and noise variation. Table 2 illustrates some basic statistics of each dataset.
Throughout the experiment, we abbreviate LibriSpeech and Bengali ASR dataset as LIBRI
and ASR, respectively. As the training procedure augments noise with the speech frames,
we use scalable noisy speech dataset [40]. The dataset contains diverse environmental
noises, which helps the architectures to explore and relate speech features.
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4.3. Result Analysis

Two methods are implemented, AutoEmbedder (pairwise architecture) and a triplet
architecture, to analyze the speech embeddings based on the proposed strategy. However,
apart from these two strategies, the currently famous speech vector methods do not hold to
the training properties considered in the paper. They mostly follow a supervised learning
or domain adaption strategy. Hence, they are disregarded in this experiment.

DenseNet121 [41], is used as a baseline architecture for both of the DL frameworks. Fur-
ther, both models are connected with a dense layer consisting of 12 nodes. Therefore, both
pairwise and triplet networks produce 12 dimension embedding vectors. L2-normalization
is added on the output layer of the triplet network, as it is suggested that it increases the
accuracy of the framework [42]. For AutoEmbedder architecture, the default l2-loss is
implemented, whereas the triplet architecture is trained using semi-hard triplet loss. The
training pipeline is illustrated in Figure 3.

Em
be
dd
er

Augmentation MFCC

Speech Frame1

Speech Frame2

Speech Frame3

Augmentation probability = 0.5

Figure 3. The training of both pairwise and triplet networks is done through the same data processing
pipeline. Half of the inputs are randomly augmented and processed using MFCC. The MFCC of each
frame is further passed to the DL frameworks.

The evaluation process guarantees that both architectures are trained using the same
dataset/data-subset. As the training process is unsupervised, the architectures receive
the same data for the training and testing process. However, for the training process, the
labels are unknown and generated based on the paper’s assumptions. We refer to such a
dataset as a training dataset. By ground dataset, we refer to the same dataset that further
considers the ground truth values. For training both frameworks, we used a batch size of
128. The training is conducted using Adam [43] optimizer with a learning rate of 0.0005.
The learning rate and batch size were determined using a grid search. Although batch
size 64 and 128 result in better evaluation, batch size 128 was considered due to faster
computation.

The training phase’s data processing includes heavy computational complexity, in-
cluding online noise augmentation and spectrogram conversion. Each dataset is randomly
augmented with a threshold range of [0, 0.07] for the augmentation process. Further, com-
puting ACC, NMI, and ARI metrics require quadratic time complexity. Hence, we limit
the number of speakers to 150. Instead of training on the overall dataset, we train on
a sub-set of data, where each speaker contains a speech of 10 s. For testing the ground
truth data, a random selection of 2-s speech is selected for each speaker. To inquire the
architectures properly, we scramble the training dataset’s pseudo labels, that produces
a can-link impurity in the dataset labels. Hence, we use the impurity ratio as a training
data situation to illustrate the rate of impure cluster assignments on the training data
pseudo-labels. The models were kept training until the performance on ground truth labels
did not improve within the previous 1500 epochs.

Figure 4 illustrates a benchmark of the triplet and pairwise architectures while training
on three different datasets, with speakers = 25 and impurity = 0. The triplet architectures
smoothly learn from the training data and greatly overfits on the augmented training
data. The ground dataset benchmark is also as expected since the triplet architectures’
correctness first increases and gradually decreases due to overfitting. Hence, from the
visualization, it can be acknowledged that the triplet network only memorizes the speech
features concerning the pseudo labels assigned to them.

On the contrary, the pairwise architecture generates a satisfactory performance, with
some irregularities. In general, deep learning architectures produce higher accuracy on
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the training dataset than validation dataset. However, in such a case, the ground dataset’s
performance is mostly more elevated than the training dataset. Yet, the performance on
the ground datasets generally decreases after 400 epochs. As the number of speakers is
small, the architecture easily gets overfitted on the training dataset. Further increasing
the number of speakers to 50 reduces the overfitting on training data, as illustrated in
Figure 5. The triplet architecture still overfits on the training data’s pseudo label, whereas,
the pairwise architecture gives a balanced performance on the ground dataset.
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Figure 4. The graphs illustrated in the first row visualizes the metrics on training and ground dataset
containing 25 speakers with impurity = 0 for triplet architecture. The lower row envisions the same
for the pairwise architecture. Each column represents benchmarks carried on a single dataset.
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Figure 5. The graph illustrates metrics on training and ground dataset containing 50 speakers with
impurity = 0.

Increasing the impurity of the inter-connection of the training data reduces the per-
formance of the architectures. Figures 6 and 7 illustrates benchmarks conducted with
impurity = 0.05 and impurity = 0.1 while considering speakers = 50. The triplet architec-
ture still overfits on the training architecture. In contrast, pairwise architecture slowly
memorizes the training dataset. Yet, it holds a marginal exactness on the ground data
before overfitting on the training data.
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Figure 6. The graph illustrates metrics on training and ground dataset containing 50 speakers with
impurity = 0.05.

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Dataset: TIMIT
Network: Triplet

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
Dataset: LIBRI

Network: Triplet

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
Dataset: ASR

Network: Triplet

0 200 400 600 800 1000 1200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Dataset: TIMIT
Network: Pairwise

0 200 400 600 800 1000 1200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Dataset: LIBRI

Network: Pairwise

0 200 400 600 800 1000 1200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Dataset: ASR

Network: Pairwise

Train ACC Train NMI Train ARI Ground ACC Ground NMI Ground ARI

Figure 7. The graph illustrates metrics on training and ground dataset containing 50 speakers with
impurity = 0.1.

Triplet architecture, trained over semi-hard triplet loss strictly targets the positive
points (based on the anchor) and minimizes the distance between the anchor and positive
data. For negative points, the loss function also strictly distance the embeddings. As the loss
function heavily maintains the criteria mentioned above, the architecture gets overfitted on
the hypothetical constrains disregarding the actual feature-dependent relations.

In contrast, AutoEmbedder architecture learns to extract features rather than being
overfitted in the training data. The reasoning lies in the training strategy of the network.
The l2-loss does not strictly consider learning the hypothetical constraints and learns for
each batch of data aggregately. As the architecture is not strictly supervised using the
loss function, it obtains the feature similarity of audio data. Therefore the architecture
re-clusters the data on hyperspace based on feature similarity.

We further investigate with AutoEmbedder based pairwise architecture with various
speaker and impurity condition. Tables 3–5 illustrates the metrics on training and ground
dataset for TIMIT, LIBRI and, ASR datasets, respectively. The table illustrates a detailed
overview of the performance variation based on the number of speakers and impurity in
the training dataset. The pairwise architecture maintains a marginal performance with
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impurity = 0 on every dataset. However, increasing the number of speakers results in
reducing the performance of the architecture. On the contrary, increasing the impurity of
the speech segment further reduces the performance of the architecture. A small fluctuation
is observed for LIBRI and ASR dataset while the number of speakers is kept on 25 and
50. Increasing the number of speakers from 25 to 50 causes an increase in accuracy,
which is inconsistent.

Table 3. The table benchmarks the pairwise architecture in TIMIT dataset with four groups of
speakers, 25, 50, 100, and 150. For each group of speakers, the table also considers three segmen-
tation impurities, 0, 0.05, and 0.1 to illustrate the shortcomings of incorrect segmentation, for fully
unsupervised speaker recognition strategy.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Speakers = 25
Train 0.772 0.950 0.627 0.868 0.974 0.795 0.893 0.980 0.842

Ground 0.934 0.979 0.919 0.886 0.958 0.822 0.777 0.924 0.630

Speakers = 50
Train 0.663 0.930 0.436 0.659 0.930 0.435 0.678 0.935 0.464

Ground 0.924 0.979 0.898 0.849 0.948 0.755 0.764 0.915 0.623

Speakers = 100
Train 0.509 0.899 0.175 0.523 0.904 0.208 0.590 0.920 0.305

Ground 0.889 0.973 0.847 0.809 0.948 0.723 0.719 0.914 0.544

Speakers = 150
Train 0.471 0.861 0.117 0.500 0.902 0.155 0.519 0.907 0.194

Ground 0.815 0.955 0.734 0.718 0.924 0.645 0.620 0.896 0.480

Table 4. The table benchmarks the pairwise architecture in LIBRI dataset with four groups of speakers,
25, 50, 100, and 150. For each group of speakers, the table also considers three segmentation impurities,
0, 0.05, and 0.1 to illustrate the shortcomings of incorrect segmentation, for fully unsupervised speaker
recognition strategy.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Speakers = 25
Train 0.936 0.989 0.911 0.954 0.992 0.940 0.956 0.993 0.943

Ground 0.946 0.983 0.935 0.866 0.948 0.808 0.806 0.918 0.673

Speakers = 50
Train 0.730 0.947 0.555 0.741 0.950 0.576 0.755 0.953 0.594

Ground 0.951 0.989 0.933 0.906 0.971 0.857 0.863 0.957 0.778

Speakers = 100
Train 0.482 0.891 0.133 0.511 0.900 0.186 0.588 0.920 0.309

Ground 0.924 0.984 0.921 0.885 0.970 0.831 0.840 0.949 0.700

Speakers = 146
Train 0.490 0.780 0.109 0.493 0.900 0.150 0.515 0.906 0.190

Ground 0.932 0.987 0.916 0.797 0.949 0.678 0.713 0.923 0.607

The architecture requires a sufficient number of speech variations from users to explore
the proper feature relationship between speech frames. Limiting the number of speakers to
25 caused the interpretation of speech to be reduced. Hence, the architecture struggles to
find better speech relations, and lessened performance is observed. Increasing the number
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of speakers to 50 balances the speech variations in the training data and causes an increase
in accuracy.

Table 5. The table benchmarks the pairwise architecture in ASR dataset with four groups of speakers,
25, 50, 100, and 150. For each group of speakers, the table also considers three segmentation impurities,
0, 0.05, and 0.1 to illustrate the shortcomings of incorrect segmentation, for fully unsupervised speaker
recognition strategy.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Speakers = 25
Train 0.920 0.985 0.882 0.945 0.990 0.923 0.954 0.992 0.941

Ground 0.909 0.969 0.869 0.854 0.941 0.768 0.789 0.907 0.643

Speakers = 50
Train 0.771 0.955 0.617 0.614 0.918 0.355 0.666 0.933 0.448

Ground 0.930 0.983 0.912 0.903 0.966 0.835 0.841 0.948 0.751

Speakers=100
Train 0.506 0.899 0.179 0.536 0.906 0.224 0.561 0.914 0.270

Ground 0.906 0.977 0.871 0.836 0.956 0.753 0.727 0.918 0.647

Speakers = 150
Train 0.487 0.880 0.149 0.486 0.900 0.150 0.536 0.912 0.226

Ground 0.885 0.973 0.836 0.714 0.926 0.687 0.671 0.908 0.568

5. Discussion

The pairwise architecture with training strategy results in a good performance in the
speaker recognition process. However, throughout the investigation, the architecture tends
to have some issues that have to be considered. Firstly, training the architecture with lesser
speech variation causes overfitting, observed while keeping speaker = 25. Secondly, as the
augmentation procedure fuses noises, speech data with excessive noises may not generate
a good result. The degradation of performance due to excessive noise is a common concern,
and by using a denoising mechanism, the situation can be handled [2]. Further, as the
system is fully segmentation dependent, the target lies in developing an optimal audio
segmentation procedure. Resolving these challenges would benefit the architecture for a
wide range of speaker recognition and evaluation usage.

Apart from the limitations, the u-vector strategy requires no pre-training on large
speaker datasets, which is often observed in i-vector, d-vector, and x-vector [7]. Further, the
u-vector strategy requires comparatively less per-speaker data than the other embedding
strategies mentioned above. In the case of augmentations, u-vector architecture does not
require any labeled data, which is primarily observed in generative speaker recognition
architectures [44]. In an overall perspective, the u-vector mitigates the requirement of
labeled data to a minimum.

Aside from implementing u-vectors in an unsupervised and semi-supervised manner,
the strategy can be implemented in self-supervised learning. Although self-supervised
learning has its various forms based on the domain, u-vector aligns with contrastive
self-supervised learning strategies [45]. In general, self-supervised learning learns better
model representation (weights of a model) from unlabeled data. Further, the trained model
is used to train on a small quantity of labeled data. U-vectors can be used to initialize
model representations in the first stage of self-supervised learning. Further, a classification
method/layer can be equipped with the model for training the model on labeled data.

Finally, industrial systems often can not label every data. However, if a large labeled
dataset is required, then building a model can become costly. Therefore, unsupervised,
semi/self-supervised learning in speaker recognition systems is expected to produce low-
cost and attainable systems.
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6. Conclusions

The paper introduces a system of generating clusterable speech embedding based
on the speakers, namely u-vector. The policy of the architecture deals with pseudo labels
and trained from unlabeled datasets. The procedure is suitable for both semi-supervised
and unsupervised training strategies. We evaluate such strategies with two appropriate
deep learning architectures: pairwise and triplet. In the perspective of unlabeled data, the
architecture performs at an acceptable rate concerning the number of speakers and speech
segmentation errors. However, the method requires clean speech, and robust segmentation
techniques to properly construct clusterable u-vectors, depending on speaker variations.
We strongly believe that such an in-depth and hypothetical strategy of generating pseudo
labels to train speaker recognition models would help researches develop new schemes.

Author Contributions: Conceptualization, M.F.M., A.Q.O., M.M.M., M.A.H., M.R.I. and Y.W.; Data
curation, M.F.M. and A.Q.O.; Formal analysis, M.F.M., A.Q.O., M.M.M., M.A.H.; Investigation,
M.F.M., M.R.I. and Y.W.; Methodology, M.F.M., A.Q.O., M.M.M., M.A.H., M.R.I. and Y.W.; Software,
M.F.M. and A.Q.O.; Supervision, M.M.M., M.A.H., M.R.I. and Y.W.; Validation, M.M.M., M.A.H.,
M.R.I. and Y.W.; Visualization, M.F.M., M.M.M., M.A.H., M.R.I. and Y.W.; Writing–original draft,
M.F.M., A.Q.O.; Writing–review & editing, M.M.M., M.A.H., M.R.I. and Y.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Bangladesh University of Business & Technology (BUBT),
University of Asia Pacific (UAP), and University of Aizu (UoA) for supporting this research. Also,
special thanks to the Advanced Machine Learning lab, BUBT; Computer Vision & Pattern Recognition
Lab, UAP; Database System Lab, UoA; for giving facilities to research and publish.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: Labelling unsegmented sequence

data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA,
USA, 25–29 June 2006; pp. 369–376.

2. Azarang, A.; Kehtarnavaz, N. A review of multi-objective deep learning speech denoising methods. Speech Commun. 2020,
122, 1–10. [CrossRef]

3. Ning, Y.; He, S.; Wu, Z.; Xing, C.; Zhang, L.J. A review of deep learning based speech synthesis. Appl. Sci. 2019, 9, 4050. [CrossRef]
4. Fayek, H.M.; Lech, M.; Cavedon, L. Evaluating deep learning architectures for Speech Emotion Recognition. Neural Netw. 2017,

92, 60–68. [CrossRef] [PubMed]
5. Kamper, H.; Livescu, K.; Goldwater, S. An embedded segmental k-means model for unsupervised segmentation and clustering

of speech. In Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Okinawa,
Japan, 16–20 December 2017; pp. 719–726.

6. O’Brien, M.G.; Derwing, T.M.; Cucchiarini, C.; Hardison, D.M.; Mixdorff, H.; Thomson, R.I.; Strik, H.; Levis, J.M.; Munro, M.J.;
Foote, J.A.; others. Directions for the future of technology in pronunciation research and teaching. J. Second. Lang. Pronunciation
2018, 4, 182–207. [CrossRef]

7. Ohi, A.Q.; Mridha, M.; Hamid, M.A.; Monowar, M.M. Deep Speaker Recognition: Process, Progress, and Challenges. IEEE Access
2021, 9, 89619–89643. [CrossRef]

8. Kabir, M.M.; Mridha, M.; Shin, J.; Jahan, I.; Ohi, A.Q. A Survey of Speaker Recognition: Fundamental Theories, Recognition
Methods and Opportunities. IEEE Access 2021, 9, 79236–79263. [CrossRef]

9. Tiwari, V. MFCC and its applications in speaker recognition. Int. J. Emerg. Technol. 2010, 1, 19–22.
10. Chowdhury, A.; Ross, A. Fusing MFCC and LPC features using 1D triplet CNN for speaker recognition in severely degraded

audio signals. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1616–1629. [CrossRef]
11. Ravanelli, M.; Bengio, Y. Speaker recognition from raw waveform with sincnet. In Proceedings of the 2018 IEEE Spoken Language

Technology Workshop (SLT), Athens, Greece, 18–21 December 2018; pp. 1021–1028.
12. Chagas Nunes, J.A.; Macêdo, D.; Zanchettin, C. AM-MobileNet1D: A Portable Model for Speaker Recognition. In Proceedings of

the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

http://doi.org/10.1016/j.specom.2020.04.002
http://dx.doi.org/10.3390/app9194050
http://dx.doi.org/10.1016/j.neunet.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28396068
http://dx.doi.org/10.1075/jslp.17001.obr
http://dx.doi.org/10.1109/ACCESS.2021.3090109
http://dx.doi.org/10.1109/ACCESS.2021.3084299
http://dx.doi.org/10.1109/TIFS.2019.2941773
http://dx.doi.org/10.1109/IJCNN48605.2020.9207519


Appl. Sci. 2021, 11, 10079 18 of 19

13. Garcia-Romero, D.; Espy-Wilson, C.Y. Analysis of i-vector length normalization in speaker recognition systems. In Proceedings
of the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy, 27–31 August 2011.

14. Variani, E.; Lei, X.; McDermott, E.; Moreno, I.L.; Gonzalez-Dominguez, J. Deep neural networks for small footprint text-dependent
speaker verification. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, 4–9 May 2014; pp. 4052–4056.

15. Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-vectors: Robust dnn embeddings for speaker recognition.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5329–5333.

16. Bai, Z.; Zhang, X.L. Speaker recognition based on deep learning: An overview. Neural Netw. 2021, 140, 65–99. [CrossRef]
17. Wang, Q.; Rao, W.; Sun, S.; Xie, L.; Chng, E.S.; Li, H. Unsupervised domain adaptation via domain adversarial training for

speaker recognition. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 4889–4893.

18. Garcia-Romero, D.; McCree, A.; Shum, S.; Brummer, N.; Vaquero, C. Unsupervised domain adaptation for i-vector speaker
recognition. In Proceedings of the Odyssey: The Speaker and Language Recognition Workshop, Tokyo, Japan, 17–21 May 2014;
Volume 8.

19. Garcia-Romero, D.; Zhang, X.; McCree, A.; Povey, D. Improving speaker recognition performance in the domain adaptation
challenge using deep neural networks. In Proceedings of the 2014 IEEE Spoken Language Technology Workshop (SLT), South
Lake Tahoe, NV, USA, 7–10 December 2014; pp. 378–383.

20. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.

21. Ohi, A.Q.; Mridha, M.; Safir, F.B.; Hamid, M.A.; Monowar, M.M. AutoEmbedder: A semi-supervised DNN embedding system
for clustering. Knowl.-Based Syst. 2020, 204, 106190. [CrossRef]

22. Zhang, C.; Koishida, K.; Hansen, J.H. Text-independent speaker verification based on triplet convolutional neural network
embeddings. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1633–1644. [CrossRef]

23. Campbell, W.M.; Sturim, D.E.; Reynolds, D.A. Support vector machines using GMM supervectors for speaker verification. IEEE
Signal Process. Lett. 2006, 13, 308–311. [CrossRef]

24. Kenny, P.; Boulianne, G.; Ouellet, P.; Dumouchel, P. Joint factor analysis versus eigenchannels in speaker recognition. IEEE Trans.
Audio Speech Lang. Process. 2007, 15, 1435–1447. [CrossRef]

25. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-end factor analysis for speaker verification. IEEE Trans. Audio
Speech Lang. Process. 2010, 19, 788–798. [CrossRef]

26. Molla, K.; Hirose, K. On the effectiveness of MFCCs and their statistical distribution properties in speaker identification. In
Proceedings of the 2004 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems,
2004.(VCIMS), Boston, MA, USA, 12–14 July 2004; pp. 136–141.

27. Ioffe, S. Probabilistic linear discriminant analysis. In European Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 531–542.

28. Chen, Y.h.; Lopez-Moreno, I.; Sainath, T.N.; Visontai, M.; Alvarez, R.; Parada, C. Locally-connected and convolutional neural
networks for small footprint speaker recognition. In Proceedings of the Sixteenth Annual Conference of the International Speech
Communication Association, Dresden, Germany, 6–10 September 2015.

29. Snyder, D.; Garcia-Romero, D.; Povey, D.; Khudanpur, S. Deep Neural Network Embeddings for Text-Independent Speaker
Verification. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 999–1003.

30. Redko, I.; Morvant, E.; Habrard, A.; Sebban, M.; Bennani, Y. Advances in Domain Adaptation Theory; Elsevier: Amsterdam, The
Netherlands, 2019.

31. Spyrou, E.; Mathe, E.; Pikramenos, G.; Kechagias, K.; Mylonas, P. Data Augmentation vs. Domain Adaptation—A Case Study in
Human Activity Recognition. Technologies 2020, 8, 55. [CrossRef]

32. Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; Wang, S. Learning dynamic siamese network for visual object tracking. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1763–1771.

33. Ren, Y.; Hu, K.; Dai, X.; Pan, L.; Hoi, S.C.; Xu, Z. Semi-supervised deep embedded clustering. Neurocomputing 2019, 325, 121–130.
[CrossRef]

34. Tan, Z.H.; Dehak, N.; others. rVAD: An unsupervised segment-based robust voice activity detection method. Comput. Speech
Lang. 2020, 59, 1–21. [CrossRef]

35. Brent, M.R. Speech segmentation and word discovery: A computational perspective. Trends Cogn. Sci. 1999, 3, 294–301. [CrossRef]
36. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S. DARPA TIMIT acoustic-phonetic continous speech corpus

CD-ROM. NIST speech disc 1-1.1. STIN 1993, 93, 27403.
37. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An asr corpus based on public domain audio books. In

Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 5206–5210.

38. Kjartansson, O.; Sarin, S.; Pipatsrisawat, K.; Jansche, M.; Ha, L. Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala,
Nepali, and Bangladeshi Bengali. In Proceedings of the 6th International Workshop on Spoken Language Technologies for
Under-Resourced Languages (SLTU), St Petersburg, Russia, 14–16 May 2018; pp. 52–55.

http://dx.doi.org/10.1016/j.neunet.2021.03.004
http://dx.doi.org/10.1016/j.knosys.2020.106190
http://dx.doi.org/10.1109/TASLP.2018.2831456
http://dx.doi.org/10.1109/LSP.2006.870086
http://dx.doi.org/10.1109/TASL.2006.881693
http://dx.doi.org/10.1109/TASL.2010.2064307
http://dx.doi.org/10.3390/technologies8040055
http://dx.doi.org/10.1016/j.neucom.2018.10.016
http://dx.doi.org/10.1016/j.csl.2019.06.005
http://dx.doi.org/10.1016/S1364-6613(99)01350-9


Appl. Sci. 2021, 11, 10079 19 of 19

39. Yang, X.; Deng, C.; Zheng, F.; Yan, J.; Liu, W. Deep spectral clustering using dual autoencoder network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4066–4075.

40. Reddy, C.K.; Beyrami, E.; Pool, J.; Cutler, R.; Srinivasan, S.; Gehrke, J. A Scalable Noisy Speech Dataset and Online Subjective Test
Framework. Proc. Interspeech 2019 2019, 1816–1820.

41. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

42. Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737.
43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Pal, M.; Kumar, M.; Peri, R.; Park, T.J.; Kim, S.H.; Lord, C.; Bishop, S.; Narayanan, S. Meta-learning with latent space clustering

in generative adversarial network for speaker diarization. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 1204–1219.
[CrossRef] [PubMed]

45. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies
2021, 9, 2. [CrossRef]

http://dx.doi.org/10.1109/TASLP.2021.3061885
http://www.ncbi.nlm.nih.gov/pubmed/33997106
http://dx.doi.org/10.3390/technologies9010002

	Introduction
	Related Work
	Methodology
	Problem Formulation and Assumptions
	Speech Segments
	Pairwise Constraints
	Uncertainties in Pairwise Constraints
	Segment Length Analysis
	AutoEmbedder Architecture
	Augmenting Training Data

	Experiments and Evaluations
	Experimental Setup
	Datasets
	Result Analysis

	Discussion
	References

