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Abstract

U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four
decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer
genome sequencing, we have generated greater than 306genomic sequence coverage using a novel 50-base mate paired
strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded
reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal
color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair
information identified 35 interchromosomal translocation events, 1,315 structural variations (.100 bp), 191,743 small
(,21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the
known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in
the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina
1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield
greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due
to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs,
178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell
line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP.
These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers.
The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date.

Citation: Clark MJ, Homer N, O’Connor BD, Chen Z, Eskin A, et al. (2010) U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer
Cell Line. PLoS Genet 6(1): e1000832. doi:10.1371/journal.pgen.1000832

Editor: Marshall S. Horwitz, University of Washington, United States of America

Received November 4, 2009; Accepted December 28, 2009; Published January 29, 2010

Copyright: � 2010 Clark et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by grants from the NINDS (U24NS), the Dani Saleh Brain Tumor Fund, and the Henry Singleton Brain Tumor Fund. Sequencing
was performed within the UCLA site of the NIH Neuroscience Microarray Consortium. BDO acknowledges support from the USHHS Ruth L. Kirschstein Institutional
National Research Service Award (T32 CA009056). MJC acknowledges support from the USHHS Ruth L. Kirschstein Institutional National Research Service Award
(T32 GM007104-33). NH acknowledges the University of California Systemwide Biotechnology Research and Education Program GREAT Training Grant 2007-10.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: snelson@ucla.edu

. These authors contributed equally to this work.

Introduction

Grade IV glioma, also called glioblastoma multiforme (GBM), is

the most common primary malignant brain tumor with about

16,000 new diagnoses each year in the United States. While the

number of cases is relatively small, comprising only 1.35% of

primary malignant cancers in the US [1], GBMs have a one-year

survival rate of only 29.6%, making it one of the most deadly types

of cancer [2]. Recent clinical studies demonstrate improved

survival with a combination of radiation and Temozolomide

chemotherapy, but median survival time for GBM patients who

receive therapy is only 15 months [3]. Due to its highly aggressive

nature and poor therapeutic options, understanding the genetic

etiology of GBM is of great interest and therefore, GBM has been

selected as one of the three initial cancer types to be thoroughly

studied in the TCGA program [4].

To that end, numerous cell line models of GBM have been

established and used in vast numbers of studies over the years. It is

well recognized that cell line models of human disorders, especially

cancers, are an important resource. While these cell lines are the

basis of substantial biological insight, experiments are currently

performed in the absence of genome-wide mutational status as no

cell line that models a human disease has yet had its genome fully

sequenced. Here, we have sequenced the genome of U87MG, a

long established cell line derived from a human grade IV glioma

used in over 1,700 publications [5]. A wide range of biological

information is known about this cell line. The U87MG cell line is

known to have a highly aberrant genomic structure based on

karyotyping, SKY [6], and FISH [7]. However, these methods

neither provide the resolution required to visualize the precise

breakpoint of a translocation event, nor are they generally capable

of identifying genomic microdeletions (deletions on the order of a

megabase or less in size) in a whole genome survey of structural

variation. SNP genotyping microarrays can be used to detect

regions of structural variation in the forms of loss of heterozygosity

(LOH) and copy number (CN) based on probe intensity, but do
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not reveal chromosomal joins. To assess the genomic stability of

U87MG, the genome was genotyped by Illumina Human 1M-

Duo BeadChip microarray. In spite of being cultured indepen-

dently for several years, the regions of LOH and the CN state of

our U87MG genome matched exactly with data retrieved from

the Sanger COSMIC database for U87MG [8], which had been

assayed on an Affymetrix Genome-Wide Human SNP Array 6.0.

This suggests that although U87MG bears a large number of

large-scale chromosomal aberrations, it has been relatively stable

for years and is not rapidly changing. This suggests that prior work

on U87MG may be reinterpreted based on the whole genome

sequence data presented here.

The first draft of the consensus sequence of the human genome

was reported in 2001 [9,10]. The first individual human diploid

sequence was sequenced using capillary-based Sanger sequencing

[11]. Since then, a few additional diploid human genomes have

been published utilizing a variety of massively parallel sequencing

techniques to sequence human genomes to varying degrees of

coverage, variant discovery, and quality typically costing well over

$200,000 and several machine months of operation [12–16]. For

the sequencing of U87MG, we utilized ABI SOLiD technology,

which uses a ligation-based assay with two-base color-encoded

oligonucleotides that has been demonstrated to allow highly

accurate single nucleotide variant (SNV) and insertion/deletion

(indel) detection [17]. Additionally, long mate-paired genomic

libraries with a mean insert size of 1–2kb allowed higher clone

coverage of the genome, which improved our ability to identify

genomic structural variations such as interchromosomal translo-

cations and large deletions. While longer insert sizes would

improve resolution of some structural variants, during genomic

shearing the highest density of large fragments occurs at 1.5kb,

allowing a sufficiently complex library to be generated from only

10 micrograms of genomic DNA while still being well powered to

identify structural variations. Here, we demonstrate that aligning

the two-base color-encoding data with BFAST software and

decoding during alignment allows for highly sensitive detection of

indels, which have in the past been difficult to detect by short read

massively parallel sequencing.

For cancer sequencing, it is important to assess not only SNVs,

but indels, structural variations and translocations, and it is

preferable to extract this information from a common assay

platform. A major characteristic of the U87MG cell line that

differentiates it from the samples used in other whole genome

sequencing projects published thus far is its highly aberrant

genomic structure. Due to its heavily rearranged state, we

thoroughly and accurately assessed each of these major classes of

mutations and demonstrated that small indels, large microdele-

tions and interchromosomal translocations are actually the major

categories of mutations that affect known genes in this cancer cell

line. These analyses provide a model for other genome sequencing

projects outside major genome centers of how to both thoroughly

sequence and assess the mutational state of whole genomes.

Results

Data Production
From ten micrograms of input genomic DNA, we performed

two and a half full sequencing runs on the ABI SOLiD Sequencing

System, for a total of five full slides of data [17]. Utilizing the ABI

long mate-pair protocol, we produced 1,014,984,286 raw 50bp

mate-paired reads (101.5Gb). In some cases the bead was

recognized by the imaging software for only one read, thereby

producing an additional 120,691,623 single end reads (6.0Gb). In

aggregate, we generated a total of 107.5Gb of raw data (Table 1).

We also performed an exon capture approach designed to

sequence the exons of 5,253 genes (10.7Mb) annotated in the

Wellcome Trust Sanger Institute Catalogue of Somatic Mutations

in Cancer (COSMIC) V38 [8], Cancer Gene Census, Cancer

Genome Project Planned Studies and The Cancer Genome Atlas

(TCGA) [4] GBM gene list using a custom-created Agilent array.

This approach used the Illumina GAII sequencing system [18] to

sequence captured DNA fragments using a paired end sequencing

protocol. This resulted in 9,948,782 raw 76bp paired end reads

(1.51Gb), and a mean base coverage of 29.56. These reads were

used to calculate concordance rates with the larger whole genome

sequence dataset.

The Blat-like Fast Accurate Search Tool (BFAST) [19] version

0.5.3 was used to align 107.5Gb of raw color space reads to the

color space conversion of the human genome assembly hg18 from

Author Summary

Glioblastoma has a particularly dismal prognosis with
median survival time of less than fifteen months. Here, we
describe the broad genome sequencing of U87MG, a
commonly used and thus well-studied glioblastoma cell
line. One of the major features of the U87MG genome is
the large number of chromosomal abnormalities, which
can be typical of cancer cell lines and primary cancers. The
systematic, thorough, and accurate mutational analysis of
the U87MG genome comprehensively identifies different
classes of genetic mutations including single-nucleotide
variations (SNVs), insertions/deletions (indels), and trans-
locations. We found 2,384,470 SNVs, 191,743 small indels,
and 1,314 large structural variations. Known gene models
were used to predict the effect of these mutations on
protein-coding sequence. Mutational analysis revealed 512
genes homozygously mutated, including 154 by SNVs, 178
by small indels, 145 by large microdeletions, and up to 35
by interchromosomal translocations. The major mutational
mechanisms in this brain cancer cell line are small indels
and large structural variations. The genomic landscape of
U87MG is revealed to be much more complex than
previously thought based on lower resolution techniques.
This mutational analysis serves as a resource for past and
future studies on U87MG, informing them with a thorough
description of its mutational state.

Table 1. Genome sequencing summary.

Sequencing Libraries 1

SOLiD Runs (Slides) 2.5 (5)

Strategy 2650

Mate-paired reads passing quality

filter (total bases)

1,014,984,286 (101.5Gb)

Single-end reads passing quality

filter (total bases)

120,691,623 (6.0Gb)

Mate-paired reads uniquely aligned by

BFAST (bases)

390,064,184 (39.06Gb)

Unpaired reads uniquely aligned by

BFAST (bases)

266,635,829 (13.33Gb)

Single-end reads uniquely aligned by

BFAST (bases)

62,336,824 (3.12Gb)

Total bases uniquely aligned by BFAST 55.51Gb

doi:10.1371/journal.pgen.1000832.t001

The Genomic Sequence of the U87MG Cancer Cell Line
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University of California, Santa Cruz (http://hgdownload.cse.ucsc.

edu/goldenPath/hg18/bigZips/, based on the March 2006 NCBI

build 36.1). Duplicate reads, typically from the same initial PCR

fragment during genomic library construction, were inevitable and

accounted for 16.4% of the total aligned data. These were

removed using the alignment filtering utility in the DNAA package

(http://dnaa.sourceforge.net). A total of 390,604,184 paired end

reads (39.06Gb), 266,635,829 (13.33Gb) unpaired reads, and

62,336,824 (3.12Gb) single end reads were successfully mapped to

a unique location in the reference genome with high confidence

for a total of 55.51Gb of aligned sequence (Table 1). For the exon

capture dataset, we uniquely aligned 8,142,874 paired end reads

(1.2Gb) and 1,097,000 (83Mb) unpaired reads for a total of

1.32Gb of raw aligned sequence (Table 2). Using the ABI SOLiD

reads, we identified small insertions and deletions (indels), single

nucleotide variants (SNVs), and structural variants such as large-

scale microdeletions and translocation events. The exon capture

Solexa reads were used to validate SNVs identified in the SOLiD

sequencing.

The overall pattern of base sequence coverage from the shotgun

reads changes across the genome, and as expected is highly

concordant with the copy number state as determined by Illumina

1M Duo and Affymetrix 6.0 SNP analysis (Figure 1). Regions of

two normal copies, such as chromosome 3, showed even base

sequence coverage across their entire length (12.4 reads/base,

excluding centromeric and telomeric regions which are not

represented accurately in hg18). Meanwhile, regions with one-

copy state according to the SNP chip, such as the distal q-arm of

chr11 and the distal p-arm of chr6, show about half the base

sequence coverage (7.2 reads/base) as a predicted two-copy

region. Likewise, predicted three-copy state regions, such as the

distal q-arm of chr13, show about 1.5 times the base sequence

coverage of a predicted two-copy region. A complete deletion

spanning the region on chromosome 9 that includes the CDKN2A

gene is also seen in both the SNP chip and ABI SOLiD base

sequence coverage. These data show at a very large scale that

sequence placement is generally correct and supports the copy

number state calls from the array based data.

Variant Discovery
Single nucleotide variants (SNVs) and small insertions and

deletions ranging from 1 to 20 bases (indels) were identified from

the alignment data using the MAQ consensus model [20] as

implemented in the SAMtools software suite [21]. SAMtools

produced variant calls, zygosity predictions, and a Phred-scaled

probability that the consensus is identical to the reference. To

improve the reliability of our variant calls, variants were required

to have a Phred score of at least 10 and further needed to be

observed greater than or equal to 4 but less than 60 times and at

least once on each strand.

In total, we identified 2,384,470 SNVs meeting our filtering

criteria. Of these, 2,140,848 (89.8%) were identified as exact

matches to entries in dbSNP129 [22]. Exact matches had both the

variant and observed alleles in the dbSNP entry, allowing for the

discovery of novel alleles at known SNP locations. In total,

243,622 SNVs (10.2%) were identified as novel events not

previously recorded in dbSNP 129. This rate of novel variant

discovery is consistent with other whole human normal genome

sequences of European ancestry relative to dbSNP [12]. These

SNVs were further characterized based on zygosity predictions

from the MAQ consensus model, separating SNVs into homozy-

gous or heterozygous categories (Table 3). The observed diversity

value for SNVs (hSNV, number of heterozygous SNVs/number of

base pairs) across autosomal chromosomes was 4.461024, which is

generally consistent with the normal human genome variation

rate.

For small (,21bp) insertions and deletions, 191,743 events were

detected with 116,964 not previously documented in dbSNP 129.

The same criteria as used for SNVs was used for determining if an

indel was novel and they were further classified as homozygous or

heterozygous using the SAMtools variant caller (Table 4). The

observed diversity value (hindel, number of heterozygous indels/

number of base pairs) across autosomal chromosomes was

0.3861024.

A subset of 38 variants meeting genome-wide filtering criteria,

including a 20-base deletion, was tested by PCR and Sanger

sequencing with 34 being validated. In summary, 85.2% of SNVs

(23/27), and 100% of small insertions (3/3), deletions (4/4),

translocations (3/3) and microdeletions (1/1) were validated in this

manner (Table S1). While this is a small sample, it demonstrates

an overall low false positive rate.

Indel Size Distribution
The size distribution of indels identified in U87MG is generally

consistent with previous studies on coding and non-coding indel

sizes in non-cancer samples [23–25]. Small deletion sizes ranged

from 1 to 20 bases in size and their distribution approximates a

power law distribution in concordance with previous findings [23]

(Figure 2A). There is a small deviation from the power law

distribution with an excess of 4-base indels in U87MG’s non-

coding regions (Figure 2A, red bars) [11,26].

A similar trend is seen with insertions in non-coding sequence

with the maximum observed insertion size of 17 bases (Figure 2B,

red bars). The maximum insertion size observed is less than the

maximum deletion size because it is easier to align longer deletions

than it is to align insertions. Some small insertions and deletions

are likely to be larger than the upper limit of 17 and 20 bases

actually observed, but the 50-base read length limits the power to

align such reads directly.

In coding regions, there is a bias towards events that are

multiples of 3-bases in length that maintain the reading frame

despite variant alleles, suggesting that many of these are

polymorphisms (Figure 2A-deletions, Figure 2B-insertions, blue

bars). In non-coding regions, only 10.8% of indels are a multiple of

3 bases in size, while in coding regions, 27.0% are 3, 6, 9, 12 or 15

bases in size. This trend is expected based on past observations of

non-cancer samples [11,26].

Table 2. Exon capture sequencing summary.

Sequencing Libraries 1

Illumina Runs (Lanes) 1/8 (1)

Strategy 2676

Number of bases targeted 10752923

Mate-paired reads passing quality filter

(total bases)

9,948,782 (1.51Gb)

Mate-paired reads uniquely aligned by

BFAST (bases)

8,142,874 (1.2Gb)

Unpaired reads uniquely aligned by BFAST

(bases)

1,097,000 (83Mb)

Total bases uniquely aligned by BFAST 1.32Gb

Total targeted bases sequenced 317,017,503

Mean coverage within targeted bases 29.56

doi:10.1371/journal.pgen.1000832.t002

The Genomic Sequence of the U87MG Cancer Cell Line
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Nucleotide Substitution Frequencies
Observed SNV base substitution patterns were consistent with

common mutational phenomena in both coding sequences and

genome wide. As expected, the predominant nucleotide substitu-

tion seen in SNVs is a transition, changing purine for purine (A

,-.G) or pyrimidine for pyrimidine (C,-.T). Previous studies

have observed that two out of every three SNPs are transitions as

opposed to transversions [27], and we observed that 67.4% of our

SNVs were transitions, while 32.6% were transversions, a 2.07:1

ratio. (Figure 3) However, in coding regions, there appears to be

an increase in C-.T/G-.A transitions and a decrease in T-.C/

A-.G transitions, whereas genome-wide these transitions were

approximately equivalent.

Estimation of Genomic Coverage
To assess the coverage depth of the U87MG genome sequence,

we followed Ley at al. [13] and required detection of both alleles at

most positions in the genome. We utilized the Illumina 1M-Duo

BeadChip to find reliably sequenced positions in the genome with

an understanding that this may lead to bias towards more unique

regions of the genome. In order to best use the SNP genotyping

array data, we included only those regions that are diploid based

on normal frequency of heterozygous calls and copy number

assessment. This effectively permitted us to use the heterozygous

calls for assessing accuracy of the short read data for variant calling

(Figure 1). Only SNPs both observed to be heterozygous and that

the Illumina genotyping chip called ‘high quality’ were used,

which provided a total of 219,187 high quality heterozygous SNPs

for comparison. 99.71% of these were sequenced at least once.

After applying variant detection filtering criteria (see Materials and

Methods) and assessing concordance between the sequence calls

and genotyping array calls, 93.71% of the genome was sequenced

at sufficient depth to call both alleles of the diploid genome. This is

roughly equivalent to the likelihood of sufficient sampling of the

Figure 1. SNP chip and base sequence coverage compared. Circos [36] was used to plot base sequence coverage from ABI sequencing as a
histogram (the outermost plot, green and black) alongside dot plots of the LogR-ratio (middle plot, blue) and B-allele frequency (innermost plot, red)
from the Illumina Human 1M Duo BeadChip microarray. LogR-ratio represents copy number (CN) and B-allele frequency represents loss of
heterozygosity (LOH).
doi:10.1371/journal.pgen.1000832.g001

The Genomic Sequence of the U87MG Cancer Cell Line
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whole genome when repeats and segmental duplications are

excluded.

Notably, a variant allele was observed at every position called

heterozygous by SNP chip, while a reference allele was observed at

201,414 (97.94%) positions. In other words, the SNV detection

algorithm uniformly miscalled the homozygous variant allele.

Filtering for quality causes a bias toward identifying SNVs at sites

that have higher coverage. That said, after SNV quality filtering,

diploid coverage of the cytogenetically normal portions of the

genome was 10.856 for each allele, which is clearly adequate for

calling over 90% of the base variant positions on each allele at

high accuracy.

Because the positions of the genome included on SNP arrays is

not a random sampling of the genome, we also assessed mapping

coverage genome-wide. Of all bases in the haploid genome, 78.9%

of the whole reference genome was covered by at least one reliably

placed read. Of that portion of the genome, 91.9% of all bases

were effectively sequenced based on passing variant calling filters

(Phred.10, .46 coverage, ,606 coverage). Thus, a total of

72.5% of the whole genome was sequenced, including repeats and

duplicated regions, which is typical of short sequence shotgun

approaches.

Exon Capture Cross-Validation of Sequence Variants
10.9Mb of genomic sequence was targeted consisting of the

amino acid encoding exons of 5,235 genes and were sequenced to

a mean coverage of 306 using the Illumina GAII sequencer.

Given the larger variability of coverage from the capture data,

only a subset of these bases (8.5Mb) was evaluable to determine the

false positive variant detection rate from the complete genomic

sequence data. This region contained 1,621 SNPs present in

dbSNP129. Within the 8.5Mb of common and well-covered

sequence in the genomic sequence data and the capture sequence,

there were 1,780 SNVs called from the genomic sequence. The

same non-reference allele was concordantly observed at 1,631

positions within the capture data. At 149 positions, the non-

Table 3. SNV filtering and quantification.

SNV Classification Total In dbSNP 129 Not in dbSNP 129

Variants meeting filter criteria 2,384,470 2,140,848 243,622

Synonymous or not coding region 2,375,812 2,133,226 242,586

Coding region & non-synonymous 8,658 7,622 1,036

Splice site mutations 151 132 19

Heterozygous splice site mutations 62 47 15

Homozygous splice site mutations 89 85 4

Premature stop 134 93 41

Heterozygous premature stop 82 48 34

Homozygous premature stop 52 45 7

Non-synonymous 8,538 7,518 1,020

Heterozygous non-synonymous 4,005 3,134 871

Homozygous non-synonymous 4,533 4,384 149

doi:10.1371/journal.pgen.1000832.t003

Table 4. Indel filtering and quantification.

Indel Classification Total In dbSNP 129 Not in dbSNP 129

Variants meeting filter criteria 191,743 74,779 116,964

Synonymous or not coding region 191,359 74,643 116,716

Coding region & non-synonymous 384 136 248

Splice site mutations 84 34 50

Heterozygous splice site mutations 20 7 13

Homozygous splice site mutations 64 27 37

Heterozygous premature stop 91 15 76

Homozygous premature stop 94 40 54

Heterozygous non-synonymous 168 45 123

Homozygous non-synonymous 193 86 107

Heterozygous frameshift 141 33 108

Homozygous frameshift 179 80 99

Heterozygous in-frame indels 26 11 15

Homozygous in-frame indels 14 5 9

doi:10.1371/journal.pgen.1000832.t004

The Genomic Sequence of the U87MG Cancer Cell Line
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reference allele was not observed in the capture data, but the

reference allele was detected. However, the mean coverage at

these 149 positions was significantly lower than that of the other

1,631 positions (p = 0.0003), suggesting that the non-reference

allele was not adequately covered and is under called in the

capture data. Moreover, of the 1,621 dbSNPs in the region, the

capture adequately covered only 1,515. In these data there was a

bias for the pull down data to under observe the non-reference

allele (Figure S1). The 106 dbSNP positions detected in the ABI

whole genome sequence dataset were observed to all call the

reported alternate allele from dbSNP. In theory, if these were

errors, then non-reference base calls should be randomly

distributed to the three alternate base calls. Thus, no discrepancies

are reliably identified within the dbSNP overlap when a variant

was called in the ABI genomic sequence data.

There were a total of 100 novel SNVs detected in the ABI

genomic sequence dataset that were also very well evaluated in the

Illumina pull down data with at least 20 high quality Illumina

reads, such that the ABI sequence could be well validated. Of

these, 2 of the 100 discovered variants in the genomic sequence

dataset were not observed in the Illumina pull down sequencing

dataset. Thus, of the entire 8.5mb interval there are 2

unconfirmed variants for an estimated false positive error rate of

about 361027 for the whole interval. Alternatively viewed, there

were 100 novel SNVs, with a 2% error rate in those novel

positions. Thus, the de novo false discovery rate may be as high as

2%. Extrapolating to the whole set of 243,622 novel SNVs, we

expect up to 4,872 false positives SNVs. These observations are

roughly concordant with a sampling of 37 novel SNVs (not in

dbSNP) in the whole genome set selected for testing by Sanger

sequencing. Of these, 34 out of 37 (92%) were validated.

Individual Genome Comparison
There are now several publicly available complete genomes

sequenced on next generation platforms. We compared the SNVs

discovered in U87MG to two of these published genomes: the

James D. Watson genome [12] and the first Asian genome

(YanHuang) [14]. Further, we simultaneously compared each of

these to dbSNP version 129 [22]. Compared with dbSNP, 10.2%

of U87MG SNVs, 9.5% of Watson SNVs, and 12.0% of

YanHuang SNVs were not present within dbSNP (Figure 4). As

U87MG was derived from a patient of Caucasian ancestry, which

is confirmed by genotyping, it is unsurprising to see a higher

overlap with dbSNP for U87MG than for YanHuang. Between

the three genomes themselves, 44.7% of U87MG SNVs

overlapped with Watson SNVs while 60.0% of SNVs were in

common with YanHuang SNVs. Only 8.5% of dbSNP SNVs were

shared between Watson and U87MG, while 11.3% of them were

shared between YanHuang and U87MG. Thus, there is not a

substantially higher amount of SNVs in the U87MG cancer

genome relative to normal genomes.

Structural Variation Identification
We utilized the predictable insert distance of mate-paired

sequence fragments to directly observe structural variations in

U87MG. Our target insert size of 1.5kb gave us a normal

distribution of paired end insert lengths ranging from 1kb to 2kb

with median around 1.25kb and mean around 1.45kb in the actual

sequence data (Figure S2). We identified 1,314 large structural

variations, including 35 interchromosomal events, 599 complete

homozygous deletions (including a large region on chromosome 9

containing CDKN2A/B, which commonly experience homozy-

gous deletions in brain cancer), 361 heterozygous deletion events,

and 319 other intrachromosomal events (Table 5). The 599

complete microdeletions summed up to approximately 5.76Mb of

total sequence, while the 361 heterozygous microdeletions

summed to 5.36Mb of total sequence. Most of the microdeletions

were under 2kb in total size. Because of the high sequence

Figure 2. Small insertion/deletion size distribution. (A) Distribu-
tion of small deletion sizes as a percent of total, comparing amino-acid
encoding deletions (blue) with non-coding deletions (red). (B)
Distribution of small insertion sizes as a percent of total, comparing
amino-acid encoding insertions (blue) with non-coding insertions (red).
doi:10.1371/journal.pgen.1000832.g002

Figure 3. Base substitution frequencies. Ratio of specific
nucleotide substitutions as a percent of total single nucleotide variants,
comparing SNVs in coding regions (blue) to SNVs genome-wide (red).
doi:10.1371/journal.pgen.1000832.g003

The Genomic Sequence of the U87MG Cancer Cell Line
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coverage and mate pair strategy each event was supported by an

average of 138 mate pair reads. Mispairing of the mate pairs did

occur occasionally due to molecular chimerism in the library

fabrication process, but such reads occur at a low frequency (,1/

40 of the reads). Thus, the true rearrangement/deletion events

were highly distinct from noise in well-mapped sequences.

Interchromosomal events included translocations and large

insertion/deletion events where one part of a chromosome was

inserted into a different chromosome, sometimes replacing a

segment of DNA. All together, these structural variations show a

highly complex rearrangement of genomic material in this cancer

cell line (Figure 5). All identified structural variants are

summarized in Table S2. We note as well that even when

breakpoints are within genome-wide common repeats there can be

sufficient mapping information to reliably identify the transloca-

tion breakpoint (Figure S3).

The thirty-five interchromosomal events often coincided with

positions of copy number change based on the average base

coverage (Figure 5). Figure 6 shows two interchromosomal events

between chromosomes 2 and 16. The events on chromosome 16

are less than 1kb apart while those on chromosome 2 are about

160kb apart. Based on the average base coverage, there appears to

be a loss of genomic material between the event boundaries on

their respective chromosomes, shifting from two to one copy.

Although we are unable to determine the origin of such an event,

it appears that there was an interchromosomal translocation

between chromosomes 2 and 16 with a loss of the DNA between

the identified regions on each chromosome.

A subset of 3 translocations were confirmed by amplifying DNA

from the breakpoint-spanning region by polymerase chain

reaction and sequencing by dideoxy Sanger sequencing (Table

S1). Each confirmed the predicted breakpoint to within 100

nucleotides of the correct position. In a subset of cases, unmapped

short read fragments could be identified from the shotgun short

read data that span the breakpoint and are concordant at base

resolution with Sanger sequencing of PCR amplified product

spanning the breakpoint

Genes Affected by Mutations in Coding Sequence
The SNVs and indels identified in U87MG were assessed for

their potential to affect protein-coding sequence. We considered

variants predicted to be homozygous and to affect the coding

sequence of a gene through a frameshift, early termination, intron

splice site, or start/stop codon loss mutation as causing a complete

loss of that protein. We chose to focus on homozygous null

mutations for two major reasons. First, this is an interesting set of

genes that we can predict from the whole genome data are non-

functional within this commonly used cell line. Although

heterozygous mutations can certainly affect gene products in

multiple ways, it is difficult to assess their effect from genomic data

alone. Second, by cross-referencing such null mutations with

known regions of common mutation in gliomas we can pick out

specific candidates that are of interest to the glioma community.

Of the 2,384,470 SNVs and 191,743 small indels in U87MG, a

total of 332 genes are predicted to have loss-of-function,

homozygous mutations as a consequence of small variants (Table

S3). Of these, 225 genes contained variants matching alleles

annotated in dbSNP (version 129), while 107 contained novel

variants not observed in dbSNP.

We further divided these homozygous mutant genes by variant

type. Of genes mutated by SNVs, 146 contained variants present

Figure 4. Individual genome comparison. (A) Venn diagram
showing overlap in SNVs among the U87 genome, the Watson genome,
and dbSNP 129. (B) Venn diagram showing overlap in SNVs among the
U87 genome, the YanHuang genome, and dbSNP 129.
doi:10.1371/journal.pgen.1000832.g004

Table 5. Structural variations detected.

Type # of events # that span genes (%) # of affected genes (%)

Complete deletion 599 95 (15.9%) 145

Heterozygous deletion 361 58 (16.0%) 91

Interchromosomal translocation 35 32 (91.4%) 35

Other intrachromosomal events 319 146 (45.8%) 166

doi:10.1371/journal.pgen.1000832.t005
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in dbSNP while only 8 were knocked out by variants not in

dbSNP. The ratio of known SNPs causing loss-of-function

mutations to total known SNPs (146/2,140,848= 6.8261025)

was not significantly different from the ratio of novel SNVs causing

loss-of-function mutations over total novel SNVs (8/

243,622= 3.2861025; p = 0.04). This indicates that many of the

possible de novo point mutations may indeed be rare inherited

variants made homozygous by chromosomal loss of the normal

allele.

In contrast to the trend in SNVs, small indels that homozy-

gously mutated genes were more often novel. There were 79 genes

predicted homozygously mutated by indel variants reported in

dbSNP while 99 were predicted mutated by novel indels. Despite

this trend, however, there was not a significant enrichment of

deleterious indels among the novel indels (99/

191,743= 5.1661024) compared to the known indels (79/

116,964= 6.7561024; p = 0.08) This suggests that the difference

in ratios of novel versus documented SNVs (8 vs. 146) and indels

(99 vs. 79) is the result of compositional bias in dbSNP129, which

contains a far greater number of SNPs compared to indels.

We also assessed the structural variants in U87MG for whether

or not they were likely to affect a gene. Two different criteria were

used to determine if translocations and microdeletions impacted a

coding region, both predicted to produce an aberrant or

Figure 5. Structural variations in U87MG. Structural variations detected by whole genome sequencing in the U87MG genome are plotted in the
Circos program. Orange lines linking two chromosomes represent the 35 interchromosomal translocations. Blue lines around the edge of the circle
represent microdeletions and intrachromosomal translocations. The outermost histogram represents sequence coverage and demonstrates how the
boundaries of changes in coverage typically coincide with a significant structural variation.
doi:10.1371/journal.pgen.1000832.g005
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nonfunctional protein. Using the UCSC known gene database, we

identified 35 genes affected by interchromosomal translocations,

145 affected by complete deletions, 91 affected by heterozygous

deletions and 166 affected by other intrachromosomal transloca-

tions (Table 4).

Interchromosomal translocation events were significantly en-

riched for occurring at positions where they would affect genes

with 32 out of 35 events (91.4%) occurring within 1kb of a gene

(p,0.0001), while only 44.1% of the reference genome is within

1kb of a known gene. In total, intrachromosomal events did not

display this enrichment with 145/319 (45.5%) falling within 1kb of

a gene (p= 0.67). However, we ran a set of simulations to assess

whether microdeletions were enriched to overlap exons because

we noted that 585 of our 599 complete microdeletions were less

than 10kb in length with a mean size of 1.8kb. We ran 100,000

simulations randomly placing 600 microdeletions of 2kb lengths

and determined how many times a microdeletion spanned an

exon. In this way, we demonstrated that complete (homozygous)

microdeletions under 10kb in size spanned exons slightly more

often than by chance with a simulated p-value of .046. Similar

assessment of microdeletions greater than 10kb in size did not find

evidence of enrichment. These findings suggest that small

microdeletions may preferentially occur within genes as opposed

to being randomly distributed across the genome, but the signal is

Figure 6. Reads spanning interchromosomal translocation breakpoints. Two genomic breakpoint events are highlighted between
chromosomes 2 and 16. The outer ring represents the chromosomes displaying tick marks every 100 bases. The green plot shows base-coverage for
each position. Each orange line represents a single mate-pair as a link between one end of a read and its mate-pair. Between the breakpoints on each
chromosome (chr2:56792000–56953300 and chr16:8826200–8826700), base coverage drops to about half of what it is on the other side of the event,
from two to one copy. This suggests an interchromosomal translocation between chromosomes 2 and 16 resulting in a loss of the genomic material
between the translocation breakpoints.
doi:10.1371/journal.pgen.1000832.g006
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not strong from the available data. Genes affected by structural

variations are summarized in Table S4.

Annotation of Relevant Mutated Genes
The annotation tool DAVID was used to further examine the

biological significance of the list of likely knockout mutations

(including genes affected by SNVs, indels, microdeletions and

translocation events) using the EASE analysis module. After gene

ontology (GO) analysis, 18 GO terms were nominally enriched

and associated with the mutated gene with a p-value ,=0.01

(Table S5). These GO enrichments include cell adhesion

(GO:0007155 and GO:0022610), membrane (GO:0044425), and

protein kinase regulator activity (GO:0019887).

The list of genes was also compared to the list of cancer-

associated genes maintained by the Cancer Gene Census project

(http://www.sanger.ac.uk/genetics/CGP/Census/). For SNVs

and small indels, eight were observed in the census list, but this

is not unexpected given the large number of mutations found in

this cell line (p = 0.21). Two CGC genes were affected by complete

microdeletions (CDKN2A and MLLT3), and one gene each was

affected by heterozygous microdeletions (IL21R) and interchro-

mosomal translocations (SET). These included genes previously

annotated as mutated in instances of T cell prolymphocytic

leukemia (TCRA and MLLT3), glioma (PTEN), endometrial

cancer (PTEN), anaplastic large-cell lymphoma (CLTCL1),

prostate cancer (ETV1 & PTEN), Ewing sarcoma (FLI1 and

ETV1), desmoplastic small round cell tumor (FLI1), acute

lymphocytic leukemia (FLI1 and MLLT3), clear cell sarcoma

(FLI1), sarcoma (FLI1), myoepithelioma (FLI1), follicular thyroid

cancer (PAX8), non-Hodgkin lymphoma (IL21R), acute myelog-

enous leukemia (SET), fibromyxoid sarcoma (CREB3L2), mela-

noma (XPC), and multiple other tumor types (PTEN and

CDKN2A).

We also explored the overlap of genes with mutations in GBMs

according to the Cancer Genome Atlas (TCGA) with those we

predicted are homozygously loss-of-function mutated in U87MG

(Table S5). Seven genes mutated in U87MG by SNVs or indels

were also found mutated within the TCGA sample (PTEN, LTF,

KCNJ16, ABCA13, FLI1, MLL4, DSP). This overlap is not

statistically significant (p = 0.16). Ten additional genes overlapped,

including two genes mutated by interchromosomal translocations

(CNTFR, ELAVL2), three genes mutated by intrachromosomal

translocations (ANXA8, LRRC4C, ALDH1A3), and five by

homozygous microdeletions (CDKN2A, CDKN2C, MTAP,

IFNA21, TMBIM4).

Finally, in order to place the homozygous mutations of U87MG

in context relative to GBM mutational patterns as a whole, the

Genomic Identification of Significant Targets in Cancer (GISTIC)

method [28] was applied to 293 glioblastoma samples with

genome wide copy number information available from the TCGA.

This yielded a list of significant, commonly deleted regions present

across glioblastomas as a group and highlights genes commonly

mutated in GBMs. These data indicate that all or parts of

chromosomes 1, 6, 9, 10, 13, 14, 15, and 22 are commonly deleted

within GBMs as a group. In total, these regions comprise

915,306,764 bases, covering roughly 30 percent of the genome.

In order to highlight genes homozygously mutated in U87MG that

are within the regions of common loss, we cross-referenced these

lists and found that 62/332 (19%) are within the GISTIC defined

regions. This does not suggest a significant overlap of homozy-

gously mutated genes in U87MG with commonly deleted regions,

but those mutated genes that do overlap may be of increased

relevance to cancer. Two of the 62 genes are also in the Cancer

Gene Census: PTEN and TCRA. We propose that a subset of the

genes mutated in U87 within these commonly deleted regions may

be the specific targets of mutation and should be assessed on larger

sample sets. (Table S5 and Figure S4).

Discussion

Reported individual human genome sequencing projects using

massively parallel shotgun sequencing with alignment to the

human reference genome clearly indicate the practicality of

individual whole genome sequencing. However, the monetary cost

of data generation, data analysis issues, and the time it takes to

perform the experiments have remained substantial limitations to

general application in many laboratories. Here we demonstrate

enormous improvements in the throughput of data generation.

Using a mate-pair strategy and only ten micrograms of input

genomic DNA, we generated sufficient numbers of short sequence

reads in approximately 5 weeks of machine operation with a total

reagent cost of under $30,000. We believe this makes U87MG the

least expensive published genome sequenced to date signaling that

routine generation of whole genomes is feasible in individual

laboratories. Further, the two-base encoding strategy employed

within the ABI SOLiD system is a powerful approach for

comprehensive analysis of genome sequences and, in concert with

BFAST alignment software, is able to identify SNVs, indels,

structural variants, and translocations.

Of particular interest in whole-genome resequencing studies

such as this one is how much raw data must be produced to

sequence both alleles using a shotgun strategy. Here, 107.5Gb of

raw data was generated. Of this, 55.51Gb was mapped to unique

positions in the reference genome. In effect, this results in a mean

base coverage of 10.856per allele within non-repetitive regions of

the genome. Repetitive regions are of course undermapped, as

their unique locations are more difficult to determine. This level of

oversampling is adequate for high stringency variant calling (error

rate less than 561026) at 93.71% of heterozygous SNP positions.

There may be some biases in library generation resulting in bases

that are not successfully covered even if they are relatively unique,

but solutions to this may be found in performing multiple

sequencing runs with varied library designs, as suggested in other

studies [17].

With rapid advances in the generation of massively parallel

shotgun short reads, one of the major computational problems

faced is the rapid and sensitive alignment of greater than 1 billion

paired end reads needed to resequence an individual genome. We

demonstrate a practical solution using BFAST, which was able to

perform fully gapped local alignment on the two-base encoded

data to maximize variant calling in less than 4 days on a 20-node

8-core computer cluster.

Comparing U87MG SNVs with the James Watson [12] and

YanHuang [14] genome projects’ SNVs displays differences in

SNV detection between the three projects. Being derived from a

Caucasian individual, U87MG and James Watson are expected to

share more SNVs than U87MG and YanHuang. However, when

we compared SNVs between U87MG and these two genomes,

more SNVs were actually shared between U87MG and Yan-

Huang. Meanwhile, the YanHuang project called significantly

more SNVs in total than both our U87MG sequencing project and

the James Watson project. These results stress that utilizing

different sequencing platforms (U87MG-ABI SOLiD, James

Watson-Roche 454, YanHuang-Illumina Solexa), alignment tools

(U87MG-BFAST, James Watson-BLAT, YanHuang-SOAP) and

analytical approaches results in finding different quantities of

SNVs. The higher genomic coverage in our U87MG sequence

relative to James Watson and the increased sensitivity of BFAST
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relative to BLAT and SOAP were counted on to find highly robust

variants. This is particularly important when sequencing a cancer

genome because of the interest in finding novel cancer mutations

as opposed to common polymorphisms.

The genomic sequence demonstrates global differences in

variant type across the coding and non-coding portions of the

human genome. By increasing the sensitivity of indel detection, we

revealed that small indels have mutated genes at a higher rate than

SNVs. A larger proportion of the indels identified are predicted to

cause a protein coding change compared to SNVs (178/191,743

indels vs. 154/2,384,470 SNVs).

In U87MG, there is a relative increase in 4-base indels genome-

wide, which has been observed in other normal genomes [23–25]

(Figure 2, red bars). However, indels found in coding regions

exhibit a bias toward events that are multiples of 3-bases in length

(Figure 2, blue bars) presumably selected to maintain reading

frame. Thus, many of these events are likely to be polymorphisms

and not disease related genomic mutations [25]. Similarly, the

nucleotide substitution frequencies demonstrate a bias in coding

regions compared to non-coding. Two-thirds of the substitutions

were transitions genome-wide, as expected [27], but there was an

enrichment of CG-.TA transitions in coding regions (Figure 3). It

is well established that the most common source of point mutations

and SNPs in primates is deamination of methyl-cytosine (meC),

causing transition to a thymine (T) [16,29], and there is

circumstantial evidence of that in U87MG’s genome as well.

The resolution of genome-wide chromosomal rearrangements is

substantially improved by the mate-pair strategy, coupled with

sensitive and independent alignment of the short 50-base reads

(Figure 5). Based on published SKY data, we anticipated 7

interchromosomal breakpoints [6]. However, whole-genome

mate-paired sequence data revealed the precise chromosomal

joins of 35 interchromosomal events, which account for previously

observed chromosomal abnormalities in U87MG but at additional

finer scale resolution (Figure 5, Figure 6, Figure 7). The

translocation events were enriched in genic regions with 32/35

(91.4%) occurring within 1kb of genes. A weaker, but still

noticeable enrichment over genes occurs with microdeletions as

well, which are generally missed by other experimental techniques

like DNA microarrays. Thus, within the overall mutational

landscape of this cancer cell line, translocations and structural

variants preferentially occurred over genes, supporting a model

where cancer mutations occur via structural instability rather than

novel point mutations.

Delving into the functional effects of the mutations in U87MG

through gene ontology and cross-referencing the literature, we

found a large number of known and predicted cancer mutations

present in the cell line. There is always a concern when dealing

with a cancer cell line that mutations will be more related to its

status as a cell line than to the cancer it was derived from. While

this remains a concern, the large number of predicted and known

cancer genes present in U87MG suggests other genes mutated in it

have relevance to cancer as well. Using GISTIC to find regions

with common deletions in glioma samples, we highlight 60 genes

that are mutated in U87MG and are located in regions that are

commonly deleted in GBMs that are not included within the

Cancer Gene Census list as potential candidate mutational targets

in GBMs (Table S5).

Cancer cell lines are commonly used as laboratory resources to

study basic molecular and cellular biology. It is clearly preferable

to have complete genomic sequence for these valuable resources.

U87MG is the most commonly studied brain cancer cell line and is

highly cytogenetically aberrant. While this made the sequencing

and mutational analysis more challenging, it serves as a model for

future cultured cell line genomic sequencing. Through custom

analyses, we found that the mutational landscape of the U87MG

genome is vastly more complicated than we would have expected

based on the variants discovered in previously published genomes.

It is our hope that the increased genomic resolution presented here

will direct researchers and clinicians in their work with this brain

cancer cell line to create more effective experiments and lead to a

greater ability to draw meaningful conclusions in the future.

Materials and Methods

Data Sources
The NCBI reference genome (build 36.1, hg18, March 2006),

genome annotations, and dbSNP version 129 were downloaded from

the UCSC genome database located at http://genome.ucsc.edu. A

local mirror of the UCSC genome database (hg18) was used for the

subsequent analysis of variants using included gene models and

annotations. The Watson genome variants were downloaded from

Cold Spring Harbor Laboratory (http://jimwatsonsequence.cshl.

edu) with bulk data files available from ftp://jimwatsonsequence.cshl.

edu/jimwatsonsequence/. The YanHuang variants were download-

ed from the Beijing Genomics Institute at Shenzhen (http://yh.

genomics.org.cn/) with bulk data files available from http://yh.

genomics.org.cn/download.jsp.

Sample Preparation
U87MG cells were ordered from ATCC (HTB-14) and cultured

in a standard way. Genomic DNA was isolated from cultured

U87MG cells using Qiagen Gentra Puregene reagents. DNA was

stored at 220C until library generation.

ABI Sequencing
Long-Mate-Paired Library Construction: The U87MG geno-

mic DNA 26 50bp long mate-paired library construction was

carried out using the reagents and protocol provided by Applied

Biosystems (SOLiD 3 System Library Preparation Guide). A

similar protocol was reported previously [17]. Briefly, 45ug of

genomic DNA was fragmented by HydroShear (Digilab Genomic

Solutions Inc) to 1.0–2.5kb. The fragmented DNA was repaired by

the End-It DNA End-Repair Kit (Epicentre). Subsequently, the

LMP CAP adaptor was ligated to the ends. DNA Fragments

between 1.2–1.7kb were selected by 1.0% agarose gel to avoid

concatamers and circularized with a biotinylated internal adaptor.

Non-circularized DNA fragments were eliminated by Plasmid-

Safe ATP-Dependent DNase (Epicentre) and 3ug of circularized

DNA was recovered after purification. Original DNA nicks at the

Figure 7. Increased resolution of structural variations by
sequencing. Resolution of karyotyping and SKY approaches is not
high enough to see the complex nature of this translocation event
between chr1 and chr16. With high-resolution whole-genome sequenc-
ing, the true structure of the translocation is revealed as mutual
translocations between a small fragment of chr2 with chr1 and chr16 on
either end.
doi:10.1371/journal.pgen.1000832.g007
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LMP CAP oligo/genomic insert border were translated into the

target genomic DNA about 100bp by nick translation using E. coli

DNA polymerase I. Fragments containing the target genomic

DNA and adaptors were cleaved from the circularized DNA by

single-strand specific S1 nuclease. P1 and P2 adaptors were ligated

to the fragments and the ligated mixture was used to create two

separate libraries with 10 cycles of PCR amplification. Finally,

250–300bp fragments were selected to generate mate paired

sequencing libraries with average target genomic DNA on each

end around 90bp by excision from PAGE gel and use as emulsion

PCR template. Templated Beads Preparation: The templated

beads preparation was performed using the reagents and protocol

from the manufacturer (Applied Biosystems SOLiD 3 Templated

Beads Preparation Guide). SOLiD 3 Sequencing: The 2650b

mate-paired sequencing was performed exactly according to the

Applied Biosystems SOLiD 3 System Instrument Operation Guide

and using the reagents from Applied Biosystems.

Exon Pull-Down Capture Sequencing with Illumina GAII
We used an array pull-down capture strategy established in our

lab [30]. An Agilent custom array for capturing 5,253 ‘‘cancer-

related’’ genes was designed through Agilent e-array system (www.

agilent.com). Only the amino acid encoding regions were targeted

with 60mer oligos spaced center-to-center 20–30bp. The probes

were randomly distributed across two separate 244K arrays. The

library for cancer gene capture sequencing was generated

following the standard Illumina paired-end library preparation

protocol. 5ug of genomic DNA was used for the starting material

and 250–300bp fragments were size-selected during the gel-

extraction step. In the last step, 18 cycles of PCR were performed

in multiple tubes to yield 4ug of product and mixed with 50ug of

Human Cot-1 DNA (Invitrogen), 52ul of Agilent 106 Blocking

Agent, 260ul of Agilent 26Hybridization Buffer and 106molar

concentration of unpurified Illumina paired-end primer pairs

custom made according to the sequences provided by Illumina

(Oligonucleotide sequences, 2008, Illumina, Inc: available on

request from Illumina). The mix was then diluted with elution

buffer for the final volume of 520ul and then incubated at 95uC for

3 min and 37uC for 30min. 490ul of the hybridization mix was

added to the array and hybridized in the Agilent hybridization

oven (Robins Scientific) for 65 hrs at 65uC, 20rpm. After

hybridization, the array was washed according to the Agilent

wash procedure A protocol. The second wash was extended to

5 minutes to increase the wash stringency. After washing, the

array was stripped by incubating it in the Agilent hybridization

oven at 95uC for 10min, 20rpm with 1.096Titanium Taq PCR

Buffer (Clonetech). After the incubation and collection of the

solution, 4 tubes of PCR were performed with each tube

containing 96ul of the collected solution, 1ul of dNTPs (10mM

each), 1ul of Titanium Taq (Clonetech) and Solexa primers, 1ul

each. 15 cycles of PCR was performed at the following condition:

30sec at 95uC, (10 sec at 95uC, 30 sec at 65uC, 30 sec at

72uC)618 cycles, 5 min at 72uC and hold at 4uC. The amplified

product was purified using QIAquick PCR Purification Kit and

eluted in 30ul of EB. After confirming the size of the amplicon on

2% agarose gel and measuring the concentration, the amplicon

was diluted to 10nM, the working concentration for cluster

generation. The Illumina flowcell was prepared according to the

manufacturer’s protocol and the Genome Analyzer was run using

standard manufacturer’s recommended protocols. The image data

produced were converted to intensity files and were processed

through the Firecrest and Bustard algorithms (1.3.2) provided by

Illumina to call the individual sequence reads.

ABI SOLiD Sequence Alignment and Consensus Base
Calling
We used Blat-like Fast Accurate Search Tool version 0.5.3

(BFAST http://bfast.sourceforge.net) [19] to perform sequence

alignment of the two-base encoded reads off the ABI SOLiD to the

NCBI human reference genome (build 36.1). Utilizing the local

alignment algorithm included in BFAST [31], we were able to

simultaneously decode the short reads, while searching for color

errors (encoding errors), base changes, insertions, and deletions.

We found candidate alignment locations (CALs) for each end

independently. We utilized ten indexes to be robust to up to six

color errors, equating to a 12% per-read error rate:

1111111111111111111111

111110100111110011111111111

10111111011001100011111000111111

1111111100101111000001100011111011

111111110001111110011111111

11111011010011000011000110011111111

1111111111110011101111111

111011000011111111001111011111

1110110001011010011100101111101111

111111001000110001011100110001100011111

We also set parameters to use only informative keys when

looking up reads in each index (BFAST parameter -K 8), and to

ignore reads with too many CALs aggregated across all indexes

(BFAST parameter -M 384). If reads mapped to greater than 384

locations, then they were categorized as ‘unmapped’. We then

performed local alignment for each of the returned CALs,

simultaneously decoding the read from color space searching for

color errors (encoding errors), base changes, insertions, and

deletions [31]. We choose the ‘‘best scoring’’ alignment, accepting

an alignment only if it was at least the equivalent edit distance of

two color errors away from the next best alignment. This is

approximately similar to a ‘mapping quality’ of 20 or better from

the MAQ program output, for reference. We removed duplicate

reads using the alignment filtering utility found in DNAA (http://

dnaa.sourceforge.net). For single-end and mate-paired reads

where only one end mapped, we removed duplicates based on

reads having identical stat positions. For mate-paired reads, we

removed duplicates where both ends had the same start position.

Illumina Genome Analyzer Sequence Alignment
Illumina generated sequence was aligned to the NCBI human

reference genome (build 36.1) using BFAST with the following

parameters applied. Each end of the fragment library was mapped

independently to identify CALs, utilizing ten indexes to be robust

to errors and variants in the short (typically 36bp) reads:

1111111111111111111111

1111101110111010100101011011111

1011110101101001011000011010001111111

10111001101001100100111101010001011111

11111011011101111011111111

111111100101001000101111101110111

11110101110010100010101101010111111

111101101011011001100000101101001011101

1111011010001000110101100101100110100111

1111010010110110101110010110111011

We also set parameters to use only informative keys when

looking up reads in each index (BFAST parameter -K 8), and to

ignore reads with too many CALs aggregated across all indexes

(BFAST parameter -M 1280). We then performed a standard local

alignment for each CAL. Reads were declared mapped if a single

unique best scoring alignment was identified within the genome.
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Duplicate reads were filtered out in the same manner as for the

ABI SOLiD data.

Single Nucleotide Variant and Small Insertion and
Deletion Detection
To find SNVs including SNPs and small indels, we assumed the

MAQ consensus-calling model [20] utilizing the implementation

in SAMtools [21]. We used a value of 0.0000007 for the prior of a

difference between two haplotypes (-r parameter). This was chosen

based on ROC analysis of a test dataset (data not shown).

Structural Variation Detection
Structural variations were detected using custom algorithms

designed to comprehensively search for groups of mate-pair reads

with aberrant paired-end insert size distributions that are consis-

tently identifying a unique structural variant in the genome. We

utilized the ‘‘dtranslocations’’ utility in the DNAA package (http://

dnaa.sourceforge.net) for the primary structural variation candidate

search. The utility first selected all pairs for which each end is

uniquely mapped to a single location in the human genome and for

which the mate-pair reads are not positioned in the expected size

range relative to the consensus genome. Then we filter out false

positives that are not consistent with a chromosomal difference on

an allele. Briefly, the genome was divided into 500-base bins

sequentially stepped 100-bases apart from their start positions. Each

bin was then paired with other bins on the basis of containing

similar ‘mismapped’ mate-pair reads. The aberrant mate-paired

reads were defined as reads that were mapping less than 1000 or

greater than 2000 bases apart within the reference genome

sequence, which is selected based on the insert size distribution

calculated from the aggregate dataset (Figure S2). These were then

rank-ordered based on the number of mate-pairs meeting criteria,

and the destination bin with the most reads within it was paired with

a given source bin to create a ‘binset’. Binsets containing less than 4

reads were filtered out, removing 98.3% of the candidates based on

having too little evidence supporting them. The resulting list of

filtered binsets was then scanned for clusters of binsets. Binset

clusters are groups of binsets where the source bins occur within

2000 bases of each other and the destination bins occur within 2000

bases of each other. Redundant binsets were combined and those

binset clusters that contain too few (less than 9 binsets spanning at

least 1000 bases) or too many binsets (greater than 29 binsets

spanning at most 3000 bases—higher is impossible given our insert

size distribution) were removed as artifacts. The resulting binset

clusters represent the reads immediately flanking structural break-

point events. This detection process is currently being automated as

Breakway (http://breakway.sourceforge.net), but was done using

custom scripts at the time of analysis.

The structural variations were then separated into interchro-

mosomal and intrachromosomal events. Intrachromosomal events

of less than 1Mb are assessed for deletion status by averaging base

coverage within the bounds of the event and comparing it to base

coverage 200kb outside the event on both sides. Those that have

average interior base coverage less than 25% of the average

exterior base coverage are classified as ‘‘complete’’ deletions.

Those with average interior base coverage between 25% and 75%

that of average exterior base coverage are classified as ‘‘hetero-

zygous deletions’’ (deletions of at least one copy of the region, but

with at least one copy remaining).

Genes Affected by Mutations in Coding Sequence
Variant calls from the SAMtools pileup tool were first loaded

into a SeqWare QueryEngine database and subsequently filtered

to produce BED files. This filtering criteria required that a variant

be seen at least 4 times and at most 60 times with an observation

occurring on each strand at least once. For SNVs we further

enforced the criteria that SNVs should only be called in reads

lacking indels and the last 5 bases of the reads were also ignored.

This reduced the likelihood that spurious mismappings were used

to predict SNVs and eliminated the lowest quality bases from

consideration. For small indels (,21bp) we enforced a slightly

different filter by requiring that any reads supporting an indel were

only allowed to contain one contiguous indel and these reads were

not considered if the indel occurred on either the beginning or end

of the read. These criteria, like the SNV criteria, were used to

reduce the likelihood of using mismapped reads or locally

misaligned reads in the variant calling algorithm. The elimination

of reads with indels at the beginning or end of the read was

intended to remove potential alignment artifacts caused by

ambiguous gap introduction due to lack of information at the

ends to guide proper alignment. Together, these filtering criteria

reduced the likelihood that sequencing errors were identified as

SNV or indel variants. We used scripts available in the BFAST

toolset and SeqWare Pipeline to filter and annotate the variant

calls. Variants passing these filters were further annotated by their

overlap with dbSNP version 129. Variants were required to share

the same genomic position as a dbSNP entry along with matching

the allele present in the database to be considered overlapping.

Mapping to dbSNP allowed us to filter out known SNPs from de

novo variants.

Filtered SNV and indel variants were then analyzed for their

affect within the genome that is annotated with gene models. This

analysis used scripts from the SeqWare Pipeline project and gene

models downloaded from the UCSC hg18 human genome

annotation database. Six different gene model sets from hg18

were considered: UCSC genes (knownGene), RefSeq genes

(refGene, http://www.ncbi.nlm.nih.gov/RefSeq), Consensus

Coding Sequence genes (ccdsGene, http://www.ncbi.nlm.nih.

gov/CCDS), Mammalian Gene Collection genes (mgcGenes,

http://mgc.nci.nih.gov), Vertebrate Genome Annotation genes

(vegaGene, http://vega.sanger.ac.uk), and Ensembl genes (en-

sGene, http://www.ensembl.org). Each variant was evaluated for

overlap with genes from each of the 6 gene models. If overlap was

detected the variant was examined and tagged with one or more of

the following terms depending on the nature of the event: ‘‘utr-

mutation’’, ‘‘coding-nonsynonymous’’, ‘‘coding-synonymous’’,

‘‘abnormal-ref-gene-model-lacking-stop-codon’’, ‘‘abnormal-ref-

gene-model-lacking-start-codon’’, ‘‘frameshift’’, ‘‘early-termina-

tion’’, ‘‘inframe-indel’’, ‘‘intron-splice-site-mutation’’, ‘‘stop-co-

don-loss’’, and/or ‘‘start-codon-loss’’. The variant was also tagged

with the gene symbol and other accessions to facilitate lookups.

This information was loaded into a SeqWare QueryEngine

database to allow for querying and filtering of the variants as

needed.

Genes affected by structural variations were assessed in two

ways depending on the structural variation type. For interchro-

mosomal translocation events, a gene was considered ‘‘affected’’

when either end of an interchromosomal translocation event fell in

a genic region (including the entire coding region plus 1kb up- or

down-stream of the gene’s coding region). The same criteria were

used for all intrachromosomal translocation events. For events that

were classified as complete or heterozygous deletions, a gene was

considered affected if all or part of a coding exon was deleted.

Annotation of Relevant Mutated Genes
Homozygous SNVs, small indels, large deletions, and translo-

cation events for variants that included predicted coding sequence
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changes were tallied. This became a reference list of variants with

serious homozygous mutations that likely completely disrupted, or

‘‘knocked out’’, the normal function or synthesis of the target

protein.

For the SNVs and small indels, a ‘‘knockout’’ variant was

defined as a homozygous call by the SAMtools variant caller

where the variant was predicted by the SeqWare Pipeline scripts to

change coding sequence with one or more of the following

annotations: ‘‘early-termination’’, ‘‘frameshift’’, ‘‘intron-splice-site-

mutation’’, ‘‘start-codon-loss’’, and/or ‘‘stop-codon-loss’’. The

‘‘early-termination’’ event represented a stop codon introduced

upstream of the annotated stop codon. The ‘‘frameshift’’

represented an indel that resulted in a shifting of the reading

frame of the gene resulting in, typically, early termination and

non-sense coding sequence. The ‘‘intron-splice-site-mutation’’

referred to a mutation in the two consensus splice site intronic

bases flanking exons (GT at the 59 splice site and AG at the 39

splice site). Finally, ‘‘stop-codon-loss’’ and ‘‘start-codon-loss’’

simply refer to variants that interrupt the stop or start codons.

We chose to not include ‘‘coding-nonsynonymous’’ and ‘‘inframe-

indel’’ annotations in this list of knocked out variants because,

while potentially serious as these mutations are, they are not

guaranteed to result in an unexpressed or non-functional protein.

However, homozygous frameshift, early termination, splice site,

and stop/start codon loss mutations are very likely to interrupt a

gene’s expression and translation to functional protein.

As described above, large microdeletions that removed all or

part of an exon and interchromosomal translocation events that

fell within 1kb of a gene’s coding region were also classified as

mutated genes.

Once suspect knockout variants were identified, a mapping

process was used to translate one or more variants to the gene

symbol. This mapping allowed us to condense multiple variants

affecting multiple gene models to a more abbreviated list of gene

symbols likely to be affected by these knockout mutations. The

mapping from variants to gene symbols used variants identified

with gene models from the refGene and the knownGene tables in

the UCSC hg18 database and mapped these variants to gene

symbols using queries against the name field of the knownGene

table and the alias field of the kgAlias table. The UCSC table

browser was used to accomplish these queries and map the

knownGene identifiers to gene symbols via the kgXref table. A

similar approach was used for homozygous large-scale microdele-

tions and translocation events.

DAVID/EASE Analysis
The list of knockout genes was uploaded to the Database for

Annotation, Visualization, and Integrated Discovery (DAVID,

version 2008) to identify enriched Gene Ontology (GO) terms

[32–33]. Overlap with GO terms from the biological process,

cellular component, and molecular function ontologies were

considered. The default parameters were used and a p-value

cutoff of ,=0.01 was considered significant.

Cancer Gene Census
The overlap between the Cancer Gene Census genes and those

identified as knockouts in U87MG were compared. The Cancer

Gene Census project is an ongoing effort to catalog genes with

mutations that have been implicated in cancer [34]. It is a highly

curated list that includes annotations for each gene including

tumor types, class of mutations, and other genetic properties. We

used the gene symbol list from the September 30th, 2009 complete

working list, which includes 412 gene symbols.

TCGA
The overlap between mutations in the Cancer Genome Atlas

(TCGA) and those identified as knockouts in U87MG was

analyzed. TCGA is an ongoing effort to understand the molecular

basis of cancer through large-scale copy number analysis,

expression profiling, genome sequencing, and methylation studies

among other techniques [4]. It provides information on mutations

found by Sanger sequencing on many patient samples. For

glioblastoma this includes sequence data aberrations detected in

158 patient samples and 1,177 genes.

Genomic Identification of Significant Targets in Cancer
The Genomic Identification of Significant Targets in Cancer

(GISTIC) method was used to find significant areas of deletion in

293 samples from the TCGA [24]. The GISTIC technique was

designed to identify and analyze chromosomal aberrations across a

set of cancer samples, based on the amplitude of the aberrations as

well as the frequency across samples. This approach produced a

series of commonly deleted regions across the set of TCGA GBMs.

To calculate the areas of deletion, we used 293 Affymetrix SNP

6.0 samples segmented using the GLAD SNP analysis module

[35]. Default parameters of GISTIC were used. GISTIC produces

peak limits, wide peak limits, and in addition broader region limits.

These commonly deleted broader regions were then scanned for

predicted knockout genes in U87MG.

Indel Size Distribution and Nucleotide Substitution
Frequencies
The distribution of small indel sizes was examined for both

deletions and insertions. Indels classified as affecting coding-

sequence by the SeqWare Pipeline (see above) were compared to

those outside coding regions. Raw counts were collected,

recalculated as percents of total, and compared directly.

Similarly, nucleotide substitution frequency was examined for

SNVs from U87MG both genome-wide and only in coding

regions. Once binned appropriately, the SNV nucleotide substi-

tutions were counted, tallied in a table, and graphed as percents of

total.

Individual Genome Comparison
Variants from the Watson and Yan Huang genome were

downloaded from each respective project from the following

URLs: ftp://jimwatsonsequence.cshl.edu/jimwatsonsequence/

watson-454-snp-v01.txt.gz and http://yh.genomics.org.cn/do.

downServlet?file=data/snps/yhsnp_add.gff. These files contained

variant calls for each genome along with annotations describing

the variant as novel or occurring in dbSNP. The Watson genome

only contained SNV calls so our comparison was limited to just

SNVs. The Yan Huang genome also contained calls indicating

heterozygous or homozygous. However, a variant was considered

to match between genomes regardless of zygosity state. We

compared the overlap of the U87MG genome, dbSNP and each of

these genomes in turn. SNVs from U87MG that were considered

for comparison had to meet our criteria; variants had to be

observed at least 4 times, at most 60 times, at least once per strand,

and with a minimum phred score of 10. SNVs in the three-way

comparison were said to match if the position and allele matched

between the genomes. If both variants matched between U87MG

and the other genome and one was annotated in dbSNP, then the

other was considered in dbSNP as well. If neither contained

annotations from dbSNP the variant was considered novel. A

similar process was carried out for variants distinct to each

genome. The results were recorded as Venn diagrams showing the
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overlap between dbSNP, U87MG, and the Watson or Yan Huang

genome.

Illumina SNP Chip
Genomic DNA from U87MG was submitted to the Southern

California Genotyping Consortium to be run on the Illumina

Human 1M-Duo BeadChip, which consists of 1,199,187 probes

scattered across the human genome. The Illumina Beadstudio

program was used to analyze the resulting intensity data. Loss of

heterozygosity was determined by analyzing B-allele frequency as

determined by the Beadstudio program. Normal two-copy regions

of the genome are represented by long stretches of probes with B-

allele frequencies of 0, 0.5 or 1. Regions of LOH, on the other

hand, deviate from this pattern significantly. Copy number was

determined by looking at probe intensity.

Sanger Sequencing Validation
Primers for validation were designed by targeting regions

immediately flanking the event predicted by our whole genome

sequence analysis using the Primer3 tool (http://frodo.wi.mit.ed/

primer3/). Polymerase chain reaction was performed following

standard protocols using Finnzymes Phusion Hot-Start High

Fidelity polymerase. Products were run on 2% agarose gel

electrophoresis and product purity and size was assessed by

staining with ethidium bromide. Sanger sequencing was per-

formed at the UCLA Genotyping and Sequencing core facility

using an ABI 3730 Capillary DNA Analyzer. Sequence trace files

were analyzed using Geospiza FinchTV. Validation status and

PCR primers are listed in Table S1.

Data Deposition and Availability
Intensities, quality scores, and color space sequence for the

genomic sequence of U87 SOLiD were uploaded to the Sequence

Read Archive under the accession SRA009912.1/Sequence of

U87 Glioblastoma Cell-line. Intensities, quality scores, and

nucleotide space sequence for the exon capture U87 Illumina

sequence were also uploaded to the Short Read Archive under the

same accession. For both datasets, alignment files have been

uploaded to the Short Read Archive as additional analysis results.

Variant calls for both datasets are available via a SeqWare

QueryEngine web service at http://genome.ucla.edu/U87. This

tool allows for querying the variants using a variety of search

criteria including coverage, mutational consequence, gene symbol,

and others. SeqWare QueryEngine produces results in both BED

and WIG format making it compatible with the majority of

genome browsers such as the UCSC genome and table browsers.

Variant data will be uploaded to SRA as metadata along with the

raw sequences. For the whole genome SOLiD alignment, small

indels (,21bp), SNVs, large deletions, and translocation events

can be queried. For the exon capture Illumina alignment, small

indels and SNVs can be queried.

Software Availability
Most software used for this project is open-source and freely

available. We created two software projects that were instrumental

in the analysis of the U87MG data: BFAST and SeqWare. The

color- and nucleotide-space alignment tool BFAST can be

downloaded from http://bfast.sourceforge.net and many of our

alignment filtering as well as the primary step in structural

variation detection can be found in the DNAA package at http://

dnaa.sourceforge.net. The SeqWare software project was used

throughout the analysis of variant calls. We used the SeqWare

LIMS tool for sample tracking, the SeqWare Pipeline analysis

programs for annotating variants with dbSNP status and

mutational consequence predictions, and SeqWare QueryEngine

was used to database and query variant calls and annotations. This

software and documentation can be downloaded from http://

seqware.sourceforge.net.

Supporting Information

Figure S1 Concordance between Solexa capture data and

SOLiD whole genome data. The left plot displays the SNP call

concordance between each experiment (Solexa capture data in

blue, SOLiD whole genome data in red) with the Illumina 1M

Beadchip microarray for the 8.5Mb of sequence pulled down in

the capture experiment. The right plot displays concordance of the

non-reference (mutant) allele calls with the array data for those

regions.

Found at: doi:10.1371/journal.pgen.1000832.s001 (0.43 MB TIF)

Figure S2 Paired end insert size distribution. Empirical paired

end insert size distribution for reads where both ends aligned with

duplicates removed.

Found at: doi:10.1371/journal.pgen.1000832.s002 (0.41 MB TIF)

Figure S3 Alignment is robust against genome-wide repeat

elements. Circos plot [35] of reads spanning a complete

microdeletion on chromosome 2, bases 201855000–201858000,

are shown in dark blue, with the normal reads in the surrounding

region in light blue. The green plot shows base-coverage at each

position. The outermost track shows the structure of a gene,

CASP8, overlapping this region (large boxes-exons, lines-introns).

The track containing black and red boxes shows genome-wide

repeat elements (black-LINE, red-SINE). Note the high density of

reads even over conserved LINE elements. Some SINE elements

do demonstrate a drop in alignments, but these do not prevent the

identification of structural variation-spanning reads.

Found at: doi:10.1371/journal.pgen.1000832.s003 (0.21 MB TIF)

Figure S4 Commonly deleted regions in GBM according to

GISTIC. This deletion plot shows significant regions of deletion in

293 GBM samples from the TCGA. The top of the plot shows the

G-score and the bottom shows the q-values. G-score reflects the

frequency and amplitude of the deletion. Q-values greater than

0.25 were considered significant. Overlap of genes mutated in U87

via SNVs or Indels and broad regions of deletion are considered to

be likely cancer targets. This includes all or part of chromosomes

1, 6, 9, 10, 13, 14, 15, and 22.

Found at: doi:10.1371/journal.pgen.1000832.s004 (0.43 MB TIF)

Table S1 PCR and dideoxy sequencing validation. A list of the

variants that were validated by PCR and dideoxy sequencing

including primers used, varient location, and validation status.

Found at: doi:10.1371/journal.pgen.1000832.s005 (0.03 MB

XLS)

Table S2 Structural variants in U87MG. All structural variants

listed as regions immediately flanking the genomic breakpoint.

Found at: doi:10.1371/journal.pgen.1000832.s006 (0.18 MB

XLS)

Table S3 Genes knocked out by SNVs/Indels. List of all genes

predicted to be knocked out by SNVs and Indels in U87MG.

Found at: doi:10.1371/journal.pgen.1000832.s007 (0.20 MB

XLS)

Table S4 Genes affected by structural variants. List of all genes

predicted to be affected by structural variants in U87MG.

Found at: doi:10.1371/journal.pgen.1000832.s008 (0.48 MB

XLS)
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Table S5 Annotation of mutated genes. Lists of genes predicted

to be mutated in U87MG annotated by various cancer-related

gene databases.

Found at: doi:10.1371/journal.pgen.1000832.s009 (0.17 MB

XLS)
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