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UAV-assisted Emergency Communications in Social

IoT: A Dynamic Hypergraph Coloring Approach
Bowen Wang, Yanjing Sun, Member, IEEE, Zhi Sun, Senior Member, IEEE, Long D. Nguyen, Trung Q.

Duong, Senior Member, IEEE

Abstract—In this paper, we address social-awareness property
and unmanned aerial vehicle (UAV) assisted information diffusion
in emergency scenarios, where the UAVs can disseminate alert
messages to a set of terrestrial users within their coverage, and
then these users can continuously disseminate the received data
packets to their socially connected users in a device-to-device
(D2D) multicast manner. In this regard, we have to solve both
the dynamic cluster formation and spectrum sharing problems
in stochastic environments, since both the UAVs and terrestrial
users may arrive or depart suddenly. For the cluster formation
problem, considering that the data rate of a multicast cluster
is determined by the member with worst link condition, we
formulate it as a many-to-one matching game and adopt the
rotation-swap algorithm to maximize the expected number of
users receiving the alerting messages in each time slot. For the
dynamic spectrum sharing problem, aiming at eliminating the
interference while minimizing the channel switching cost, we
propose a dynamic hypergraph coloring approach to model the
cumulative interference and maintain the mutual interference
at a low level by exploring a small number of vertexes, when
the graph is dynamically updated, i.e., the insertion/deletion
of vertex/edge. Moreover, we prove some crucial properties
including global stability, convergence, and complexity. Finally,
simulation results shows that our proposed approach can achieve
a better trade-off among the information diffusion speed, channel
switch cost, and complexity.

Index Terms—Emergency communications, Social Internet of
Things, unmanned aerial vehicle, D2D multicast, matching the-
ory, graph theory.

I. INTRODUCTION

A
S a promising paradigm to change the way human

beings interact with and perceive the physical world,
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Internet of Things (IoT) is expected to achieve the goal of

”Everything Connected”, where smart objects with a high level

of awareness, such as home appliances, wearable devices,

phones, and vehicles are able to ”talk” with each other.

Recent years has witnessed the maturity of IoT, especially the

acquirement of its social flavor, which promotes the emergence

of Social IoT (SIoT) [1]. According to the SIoT paradigm, the

IoT devices can build their inter-device social networks, and

exchange information socially. There are some existing works

investigating the application of SIoT into practical scenarios

[2]. However, few works have studied the application of SIoT

into emergency scenarios, where affected users and rescue

teams need to be promptly informed about the environmental

conditions, alert messages, and refuge positions. In [3], the

authors investigated the joint cluster formation and route se-

lection problem in disaster relief networks. In [4], the authors

proposed a social-aware D2D-enhanced scheme to minimize

the information diffusion time in emergency scenarios. How-

ever, these works only considered the case where the base

stations (BSs) can manage the resource allocation and thus

the performance may be degraded if the BSs are damaged

during an unexpected disaster.

As a novel and attractive research area, unmanned aerial

vehicles (UAVs) have the potential to provide some degrees

of freedom in both time (available on demand) and space

(controllable mobility) domains, which means that the wide

deployment of UAVs can be useful for traffic offloading [5]

and coverage extension [6]. In particular, the strong line-of-

sight (LoS) links of UAV mounted BSs can be utilized to

quickly recover the communication services in post-disaster

scenarios [7]–[12]. In [9], the authors proposed a UAV place-

ment scheme to maximize the cellular connectivity while

minimizing the energy consumption in post-disaster networks.

Considering the limited transmission distance in large-scale

UAV communications, the authors in [10] proposed a UAV-

assisted multi-hop transmission scheme to extend the wireless

coverage in emergency communications. In [11], the authors

investigated how to accommodate the air-to-ground (A2G)

communications and ground-to-ground (G2G) communica-

tions concurrently by utilizing the non-orthogonal multiple

access (NOMA) scheme. In [12], the authors studied the

UAV-assisted machine-to-machine (M2M) communications in

disaster relief networks. However, the application of social

awareness into UAV-assisted emergency communications has

not been addressed in these works. In practice, the UAVs will

first disseminate the data packets in a multicast manner to

ensure that as many surviving devices as possible can receive
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alert messages [13]. After receiving these alert messages,

the survivors will directly share with their socially friendly

users, such as family members and colleagues. Considering

the limited battery capacity of UAVs, if each UAV gives

higher priority to those users with high social centrality, the

information diffusion speed will be intuitively improved [4].

Herein, we consider both the UAV-enabled multicast and

terrestrial device-to-device (D2D) multicast in information

diffusion process. The A2G links are dominated by LoS and

their channel gains are much higher than the channel gains of

G2G links for terrestrial communication. However, the strong

LoS links also cause severe interference to G2G links and

thus an efficient interference management method is needed. In

[13], the authors investigated the trajectory design to minimize

the task completion time for UAV-enabled multicast in a single

UAV scenario. For multi-UAV multicast scenarios, the cluster

formation and spectrum sharing problems should be addressed.

In [14], a matching theory based cluster formation scheme

was proposed to optimize the social-aware rate. However, this

paper just considered the static and deterministic scenario. In

emergency communications, the dynamics and stochasticity

have to be addressed since some information may appear or

change, and cannot be known a priori. For example,a surviving

device who received the alert message as a cluster member in

current time slot may become the cluster head in the potential

time slot, while some newcomers may arrive in the LoS

region of the UAVs, Thus, the cluster structure will change

dynamically, and as a result, the spectrum sharing strategy

should be updated dynamically, which brings new challenges

for resource allocation in such a dynamic topology.

A. Related Works

Recently, there are some existing works investigating the

channel allocation problem in various scenarios. In [15], the

authors utilized the centralized optimization technique to solve

the resource allocation problems in NOMA-enhanced D2D-

capable cellular networks. In [16], a Huffman tree based algo-

rithm was proposed to solve the cooperative channel allocation

problem in wireless mesh networks with multi-interface. In

[17], [18], the authors utilized deep learning approach to solve

the traffic load prediction based channel allocation problem

and partially overlapping channel assignment problem in soft-

ware defined network (SDN)-IoT, respectively. However, these

works did not couple users’ mobility with channel allocation

problems. In [19], the authors proposed an anti-coordination

game based scheme to solve the dynamic spectrum sharing

problem in the scenario where UAVs and D2D users can

share the same spectrum. In [20], the authors proposed a

potential game based online channel selection scheme for

multicluster Flying Ad-Hoc Network (FANET). However, the

computational complexity of the proposed schemes in both

papers is too high in dynamic and stochastic environment,

since each user has to be traversed more than once when

the state changes. If the response time cannot adapt to the

dynamic topology change, the resource alloction decision will

be invalidated and degrade the system performance, which

is the main challenge of resource allocation in stochastic

and dynamic environments. As a powerful tool for resource

allocation in dynamic network topology, graph theory can

solve the channel allocation problem with lower complexity,

using bipartite graph matching [21] or graph coloring [22]. In

a word, we abstract each device as a vertex, the interference

relationship between two devices as an edge, and different

channels as different colors. The graph coloring applied into

channel allocation problem is to assign appropriate colors

(channels) to vertexes (devices) and no two adjacent vertexes

share the same color [22].

In emergency scenarios, the abstracted graph is highly

dynamic, i.e., the vertexes or edges will be potentially inserted

or deleted, which poses a challenge to the algorithm design

for the graph coloring problem. In [23], the authors proposed

a DC-Local algorithm to solve the dynamic graph coloring

problem. However, the local update strategy not only has

bad coloring consistency but also results in high complexity

consumption since it is affected by the insertion/deletion order

of the edges/vertexes. Coloring consistency, which means that

the coloring strategy is independent of the updating orders,

is of great importance in wireless communications scenarios.

For instance, power consumption is a critical issue for the

availability of IoT devices, and most of it is caused by channel

switch [24]. Coloring consistency can save the channel switch

cost by avoiding unnecessary channel allocation triggered by

the dynamics [25]. In [26], the authors proposed a color-

propagation based algorithm by exploring a small part of

vertexes in each update, and thus the complexity is further

reduced. In [27], the authors introduced the dynamic graph

coloring into D2D communications. However, the convention-

al graph can only model the interference between two users,

which is not accurate in practice. As an effective tool to model

the interrelationships between multiple users, hypergraph can

be integrated in 5G standard to solve the resource allocation

problems with tractable complexity [28]–[30]. In [30], the

authors proposed a hypergraph-based 3D matching method

to solve the user-relay-channel matching problem in D2D-

Assisted machine-type communication networks. In [31], the

authors introduced the hypergraph into D2D communications,

and proposed a static hypergraph coloring approach to model

the cumulative interference. However, the dynamic hypergraph

coloring problem has not been well addressed yet.

B. Main Contributions

Based on the above discussion, the contributions of this

paper are summarized as follows:

• Modeling: We design a novel framework by exploring

the inter-device social ties to improve the information

diffusion speed in UAV-assisted emergency communica-

tion scenarios. In particular, the UAVs will disseminate

the emergency messages to terrestrial devices, who then

continuously disseminate the messages to their social

friendly users in a D2D multicast manner. Specifically,

the proposed scheme comprehensively solves the dy-

namic cluster formation and dynamic spectrum sharing

problems with security assured.

• Algorithm: For the cluster formation problem, considering

that the data rate of a multicast cluster is determined by



3

the user with worst link condition, we formulate it as a

many-to-one matching game with externality and adopt

the rotation-swap algorithm to maximize the information

diffusion speed in each time slot. For the dynamic spec-

trum sharing problem, we depict this problem with the

framework of hypergraph and simplify the hypergraph

structure to a directed graph. Based on the technique for

dynamic graph coloring in [26], we propose a dynamic

hypergraph coloring approach to maintain the mutual

interference level with the lower channel switching cost

guaranteed, when the graph is dynamically updated.

• Validations: We comprehensively prove the global sta-

bility, convergence, and complexity properties of our

proposed approach. Last but not least, under various

scenarios, simulation results demonstrate that our pro-

posed approach can achieve a better trade-off between

the information diffusion speed and complexity compared

with existing methods.

Note that the main idea of the technique for dynamic graph

coloring comes from [26], but there are some differences

between [26] and our work. Firstly, the authors in [26] solved

the dynamic coloring problem in conventional graph, in which

one edge can only connect two nodes. Considering that the

conventional graph cannot accurately model the cumulative

mutual interferences from more than one interference source,

we conceive the dynamic network topology with hypergraph,

in which one edge can connect more than two nodes. In

this way, we can model the cumulative mutual interferences

more accurately. Since the structure of hypergraph is more

complex than conventional graph, coloring the hypergraph

is more difficult than coloring the conventional graph. In

detail, the chromatic number constraint in conventional graph

is each node’s degree while the chromatic number constraint

in hypergraph is each node’s monodegree. Besides, one node

will change its color if one of its neighbor chooses the same

color in conventional graph whilst one node will change its

color only if all of its neighbors choose the same color in con-

ventional graph. Secondly, in order to adapt to the property of

hypergraph, we slightly modify the color propagation strategy

proposed by [26] in graph construction and assign color stages.

To further bound the complexity, we briefly introduce how to

migrate some tricks from [26] to our proposed scheme.

The rest of this paper is outlined as follows. The architecture

for UAV-assisted emergency communications is presented and

then the optimization problem is elaborated in Section II. The

optimization problem is decoupled into two sub-problems and

then transformed in Section III. The dynamic hypergraph col-

oring approach is described in Section IV. Simulation results

are provided in Section V, followed by conclusion in Section

VI. The main parameters and variables are summarized in

Table I for ease of reading.

II. SYSTEM MODEL AND PROBLEM FORMATION

As shown in Fig. 1, a sudden disaster struck the gray

region and the BSs are damaged due to power cut. To recover

communication services, a set of UAVs are employed as flying

BSs to deliver the emergency information file with size F to

TABLE I: Main Parameters and Variables

Symbol Description

U(t), S(t), L Set of UAVs, surviving devices, and channels

gi,j(t), Ri,j,l(t), E
hov
j Power gain, data rate, hovering energy

CH(t), CM(t) The set of cluster heads and members
Bi, RCj

(t) Social centrality and data rate of cluster Cj

ω,β Cluster formation and channel allocation variable
y, φ Interference state and indicator function
CI , IC Cumulative interference and capacity
Gs(t), GH(t), Go(t) Social graph, hypergraph, and OCG

nb(v), nb+(v), nb−(v) Set of neignbors, out-neighbors, and in-neignbors
id(v), f , C, v.color ID, coloring function, color set, and color
mdeg(v), deg(v) monodegree in hypergraph, and degree in OCG

deg+(v), deg−(v) Out-degree and in-degree in OCG
Σ(Go(t)), χ(Go(t)) Global oriented coloring and property
Cu

cnt(c), R
u
can Color Counts and recolor Candidates

Damaged BS

Newcomer
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Fig. 1: UAV-assisted emergency scenarios in SIoT.

the surviving cellular users in a multicast manner [32]. Then

these users can relay the received data packets to their socially

connected users in a D2D multicast way. Generally, in the

case that the whole cellular infrastructure is destroyed, only

the satellite can provide the available backhaul connection.

However, the UAV platform cannot be equipped with satellite

transceiver equipment [9]. Inspired by [9], we use a post-

disaster tethered backhaul UAV which can connect the core

network and charge using a cable. Meanwhile, the other end of

the cable is connected to a truck that is equipped with satellite

transceiver equipment. In this way, the UAVs can be connected

to the core network. Thus, we assume that the UAVs are

connected to each other using hybrid free-space optics/radio

frequency (FSO/RF) links and one of the UAVs acquires the

backhaul connection from a tethered backhaul UAV installed

hundreds of meters from the disaster area [9]. The tethered

backhaul UAV provides connectivity to the core network to

the whole flying network via hybrid FSO/RF links. It also



4

acts as a central controller to manage the resource allocation.

In this paper, we consider a time-slotted scenario containing

N(t) UAVs and M(t) surviving devices at time slot t. The

UAV set and surviving device set are given by U(t) =

{uj}
N(t)
j=1 and S(t) = {si}

M(t)
i=1 , respectively. The time period

T is discretized into T slots with duration ∆, i.e., T = T∆,

and the set of cumulative slots is denoted by {1, ..., t, ..., T}. In

each time slot, both UAVs and terrestrial devices are assumed

to have fixed positions. We divide the disaster region into

N(1) subregions based on the distribution of surviving devices

and each UAV provides cellular coverage to one subregion,

which can be formulated as a N-way graph partition problem

[33]. For simplicity, we invoke the multilevel graph partition

algorithm in [33] to partition the graph into N(1) sub-graphs,

where the vertex number of each sub-graph is roughly equal.

For a given region, each UAV will determine its real-time

location based on the K-means methods [7]. In practice, the

network topology changes in consecutive slots. The first reason

is that UAVs have limited battery capacity, which means that

UAVs will depart for recharge when their battery capacity is

below a threshold, and then be airborne again. Similar to [34],

we assume that batteries having to be recharged is quantified

by the air-time ratio ǫ=air time/(air time+charge time). The

second reason lies in the dynamics of terrestrial devices. For

example, the rescuers and survivors arrive stochastically in the

disaster region and their mobility should also be considered.

Herein, we assume that the user arrival process follows the

Poisson distribution with expectation λ.

In this paper, we consider the orthogonal frequency divi-

sion multiple access (OFDMA) system, where heterogeneous

devices can share the same spectrum for communication.

The available channel set is denoted as L = {l}Ll=1and

the unit bandwidth of one subchannel is B. The channel

state is regarded as quasi-static in each time slot. Without

loss of generality, we consider the 3D Cartesian coordinate

model. For surviving device si and UAV uj , their real-time

coordinates are denoted as Csi(t) = (xsi(t), ysi(t), 0), and

Cuj
= (xuj

(t), yuj
(t), huj

(t)), respectively. The distance di,j
between any two devices uj and si can be represented by the

Euclidean distance between their coordinates, i.e.,

di,j(t) =
√

(xsi(t)− xuj
(t))2 + (ysi(t)− yuj

(t))2 + h2
uj
(t).

(1)

Based on the practical measurement results in [35], the A2G

communications can be approximated by LoS channel model

very well. Hence, the A2G channel from the UAV to the

terrestrial device is assumed to be dominant by LoS links [36],

[37]. The power gain from the UAV uj to a terrestrial device

si is expressed as

gi,j(t) = η0d
−αA

i,j (t), (2)

where αA represents the path loss exponents for A2G link

and η0 represents the power gain of a LoS channel with unit

reference distance, i.e., d0 = 1 m.

Different from the assumption that all G2G links are as-

sumed to be NLoS [11], we use the practical Rayleigh fading

channel to model the regular D2D link [38]. The power gain

from the terrestrial device di to another device dk is expressed

as
gi,k(t) = d−αG

i,k (t)|hi,k|
2, (3)

where αG denotes the path loss exponents for G2G link and

hi,k is the complex Gaussian channel coefficient which follows

the distribution of CN (0, 1).
Based on the channel model above, the transmission rate

of the A2G link from the UAV uj to a terrestrial devices si
selecting channel l at time slot t is given by

Ri,j,l(t) = B log2

(

1 +
pjgi,j(t)

IAj′,i(t) + IGi′,i(t) +N0

)

, (4)

where pj is the transmission power of the UAV uj , IAj′,i(t) =
∑

uj′∈Ul(t)\uj
pj′gj′,i(t) represents the co-channel interfer-

ence of A2G links and Ul(t) is a set of UAVs sharing channel

l, IAi′,i(t) =
∑

si′∈Sl(t)\si
pi′gi′,i(t) represents the co-channel

interference of G2G links and Sl(t) is a set of terrestrial

devices sharing channel l. N0 denotes the variance of Gaussian

noise.

Similarly, the transmission rate of the G2G link from the

terrestrial devices si to sk selecting channel l at time slot t is

given by

Ri,k,l(t) = B log2

(

1 +
pigi,k(t)

IAj,k(t) + IGi′,k(t) +N0

)

. (5)

In this paper, we mainly consider the energy consumption

caused by hovering, and ignore the energy consumption caused

by communication, because this part is much lower than the

former [9]. By following the energy consumption model in [9],

the hovering energy denoted by Ehov
j for UAV uj is expressed

as

Ehov
j =

√

(mtotg)3

3πr2pn
2
pρ

Thov, (6)

where mtot denotes the UAV mass, g denotes the earth gravity,

and ρ denotes the air density, respectively. rp and np represent

the radius and number of propellers, respectively [9].

In social domain, we consider the impact of social re-

lationships on the performance of emergency information

diffusion. By analogy to the SIoT paradigm [1], we consider

the four types of inter-device social ties: the Ownership Object

Relationship (OOR) implies that two objects belong to the

same owner, the Co-Location Object Relationship (CLOR)

is established when two objects are close in distance; the

Co-target Object Relationship (CTOR) is built when two

objects collaborate on the same rescue task; the Social Object

Relationship (SOR) can measure the interaction level between

two objects. Intuitively, if one device receives the emergency

information, it will directly forward this information to the de-

vices having any kinds of social ties with it. For example, two

devices in the same rescue team will exchange the real-time

emergency information since they have CTOR. For simplicity,

we introduce the social graph Gs(t) = (S(t), Es) to model

the inter-device social network, where Es = {(i, i′)|sti,i′ =
1, ∀si, si′ ∈ S(t)}. The binary variable sti,j can determine

whether there exists a social tie between si and si′ . In this
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paper, we only consider the undirected edge and the social

ties are unchanged in consecutive time slots.

Based on the above discussion, the optimization problem in

this paper is to maximize the expected number of surviving

devices receiving the emergency messages in information

diffusion process, which can be formulated as

max
1

T

T
∑

t=1

|ot|, (7)

where O = {ot}
T
t=1 represents the information diffusion

process and |ot| is the number of surviving devices receiving

the emergency messages successfully in time slot t. It is

obvious that we should jointly tackle the cluster formation

sub-problem and spectrum sharing sub-problem in each time

slot. In the next section, we will describe how to decouple

the problem (7) into two sub-problems and how to transform

the two sub-problems from the perspective of matching theory

and graph theory, respectively.

III. PROBLEM TRANSFORMATION

In this section, we decouple the problem (7) into two

sub-problems: cluster formation and spectrum sharing. Given

a determined channel allocation decisions, UAVs and those

terrestrial users who have received the emergency information

act as cluster heads and then form clusters. Then, they will

forward the received information to those their cluster mem-

bers. Given determined clustering structures, cluster heads will

dynamically change their spectrum sharing strategy. We trans-

form the cluster formation sub-problem into a many-to-one

matching problem with externality and the spectrum sharing

problem into a hypergraph coloring problem, respectively.

A. Dynamic Cluster formation

For UAV-enabled multicast or D2D multicast system, the

transmission rate of one cluster is determined by the cluster

member with the worst link condition. For ease of analysis,

all UAVs and terrestrial devices are divided into cluster

head CH(t) = {hj}
Nh(t)
j=1 and cluster member CM(t) =

{mi}
Nm(t)
i=1 , which means that there are {1, ..., Cj , ..., CNh(t)}

clusters in time slot t. The transmission rate of cluster Cj

equals to the minimum achievable rate among cluster members

in Cj . We use a binary variable ωi,j,t = 1 or 0 to determine

whether mi belongs to cluster Cj in time slot t. Therefore,

the transmission rate of Cj is given by

RCj
(t) = min{Ri,j,l(t)|ωi,j,t = 1, ∀mi ∈ CM(t)}. (8)

Besides, we also consider the social centrality in cluster

formation process. Intuitively, if the cluster head gives higher

priority to those cluster members with higher social centrality,

these cluster members received the messages will act as

cluster head in the next time slot and forward the emergency

messages to their social connected cluster members so that

the information diffusion speed will be improved. Herein, we

use the betweenness centrality in [39] to measure the social

centrality of mi, which can be given by

Bi =

Nm(t)
∑

j=1

∑

j<k

gj,k(i)

Gj,k

, (9)

where Gj,k is the number of shortest links between node i and

node j based on social graph Gs(t), and gj,k(i) denotes the

number of those shortest links that pass node i.
Hence, in cluster formation phase, the transmission rate can

guarantee the information diffusion speed in the current time

slot while social centrality can guarantee the information diffu-

sion speed in the potential time slot. Note that the optimization

object is different for cluster heads with different roles. The

UAVs as cluster heads will focus both the link condition and

social centrality of cluster members, while terrestrial device as

cluster head will focus on the link condition and whether the

social tie exists (sti,j = 1). Because one terrestrial device only

informs those social-connected devices. Based on the above

discussion, the optimization object of the UAVs in cluster

formation phase at time slot t can be formulated as

P1:max
ω(t)

t′+1
∑

t=t′

Nm(t)
∑

i=1

Nh(t)
∑

j=1

ωi,j,tBiRCj
(t), ∀hj ∈ U(t), (10a)

s.t. △RCj
(t) ≥ F, ∀hj ∈ CH(t); (10b)

Ehov
j ≤ Eth

j , ∀hj ∈ U(t); (10c)

t′+1
∑

t=t′

Nm(t)
∑

i=1

ωi,j,t 6 qj ,

t′+1
∑

t=t′

Nh(t)
∑

j=1

ωi,j,t 6 1, (10d)

where (10b) makes sure that the received data size in each time

slot should be larger than the size of emergency information

file F . (10c) is to ensure that the energy consumption cannot

exceed a given threshold, otherwise this UAV will depart

for recharge. (10e) ensures that one cluster head can deliver

emergency information to at most qj survivors per time slot,

while one cluster member can receive emergency information

from at most one cluster head per time slot.

Similarly, the optimization object of the terrestrial devices

as cluster heads at time slot t can be formulated as

P2:max
ω(t)

t′+1
∑

t=t′

Nm(t)
∑

i=1

Nh(t)
∑

j=1

ωi,j,tsti,jRCj
(t), ∀hj ∈ S(t), (11a)

s.t. C1 :

t′+1
∑

t=t′

Nm(t)
∑

i=1

ωi,j,t 6 qj ,

t′+1
∑

t=t′

Nh(t)
∑

j=1

ωi,j,t 6 1, (11b)

where (11b) ensures that one cluster head can deliver emer-

gency information to at most qj survivors per time slot, while

one cluster member can receive emergency information from

at most one cluster head per time slot. As a powerful tool

to model the users’ selfishness in resource allocation, the

matching theory can be utilized to simultaneously optimize

multiple objectives for agents with different roles, which can

be naturally applied to solve the problem (10) and (11).

It is obvious that the problem (10) and (11) belong to the

category of many-to-one matching problem since one cluster

head can serve more than one cluster members while one
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cluster member can only select one cluster head. However,

different from the conventional many-to-one matching prob-

lem such as classic hospital problem, the preference will

dynamically change in the matching process, due to the fact

that transmission rate of one cluster may be affected by other

members’ addition. This interaction is known as peer effect

or externality in matching theory [2]. The utility function

Um
i for mi is measured by the transmission rate over each

CR. And the utility function Uh
j for hj is measured by both

the transmission rate and social centrality. This setting can

guarantee that the optimization problem in user pairing keeps

the same as problem (10). Based on the above discussion, the

many-to-one matching with peer effect is defined as

Definition 1: The many-to-one matching Ωt with peer effect

is defined as a function mapping from CH(t)
⋃

CM(t)
⋃

∅

into CH(t)
⋃

CM(t)
⋃

∅ such that for mi ∈ CM(t) and

hj ∈ CH(t):

1) |Ωt(mi)| ≤ 1, ∀mi ∈ CM(t) and Ωt(mi) = ∅, if

Ωt(mi) 6∈ CH(t);
2) |Ωt(hj)| ≤ qj , ∀hj ∈ CH(t), and Ωt(hj) = ∅, if

Ωt(hj) 6∈ CH(t);
3) Ωt(mi) = hj , only if hj ∈ Ωt(mi).

We write (hj ,Ωt) ≻mi
(hj′ ,Ω

′
t) to indicate that mi prefers

hj in Ωt to hj′ in Ω′
t, when U i

m(hj ,Ωt) > U i
m(hj′ ,Ω

′
t). It

is obvious that the utility function is not only influenced by

its matching partner, but also by other users reusing the same

spectrum.

Definition 2 ( [2]): As a subset of CM(t), the rotation-

swap blocking group BG = {m1, ...,mi, ...,ml}, 1 ≤ l ≤
Nm(t) satisfies the following condition: for each ri, 1 ≤ i ≤ l
(i− 1 = l when i = 1) , Ωt(ri−1) � riΩt(ri).

The rotation-swap blocking group reorganizes the swap

intention of users in a circular manner. In this way, not only

the direct blocking relation but also the undirected relation

can be satisfied. In short, the direct blocking relation is “You

prefer my partner while I prefer your partner”. The undirected

blocking relation is “I prefer your partner, you prefer his

partner, and finally he prefers my partner”. In addition, the

swap-operation should ensure that the utilities of users within

rotation-swap blocking group increase while the utilities of the

outside users are at least not worse off. Finally, the definition

of rotation-swap stability is given by

Definition 3: A matching Ωt is called rotation-exchange

stable matching, if there exists no rotation-swap blocking

group in Ωt.

In this paper, we invoke the rotation-swap matching algo-

rithm in [2] to obtain the stable cluster formation structure.

Since cluster formation is not our main contribution, we only

provide a sketch of this algorithm, and interested readers can

refer to [2] for more details.

B. Dynamic Spectrum Sharing

Now, we will solve the dynamic spectrum sharing problem

from the perspective of graph theory. We first depict the

cumulative interference with the framework of hypergraph.

In this stage, we mainly focus on the spectrum sharing

among different clusters. For ease of analysis, we abstract the

clusters as nodes, and their mutual interference relationships

as hyperedge. In each time slot t, the cluster set can be denoted

as {1, ..., Cj , ..., Cn(t)}.

Definition 4 ( [31], [40]): A hypergraph GH(t) =
(V (t), E(t)) on a finite vertex set V (t) = {v1, ..., vn(t)} is

a family E(t) = {e1, ..., em(t)} of subsets of V (t), satisfying:

1) ei 6= ∅, ∀ej ∈ E, and 2)
⋃

ej∈E(t)

ej = V (t), and each

element ej of E(t) is termed as hyperedge.

Hypergraph is a generalized graph where each hyperedge

contains any subset of vertex set. Due to the insertion/deletion

of vertexes/edges, the graph structure is dynamically changed,

which intrinsically caused by the dynamic network topology.

Given V (t) and E(t), the hypergraph can be expressed by a

n(t)×m(t) incidence matrix. According to [40], the incidence

matrix X = [xj,k]n(t)×m(t) specified from a hypergraph

GH(t) = {V (t), E(t)} is a Boolean matrix, where xij = 1
or 0 can determine whether or not vj belongs to ek. The

hypergraph has been widely used to model the cumulative

interference effect caused by multiple weak interferers, so that

users can avoid sharing spectrum with other users in the same

hyperedge.

For the construction of hypergraph, the authors in [31]

considered that the hyperedge is constructed only if the wanted

signal ratio to the interference is below a threshold. Different

from the scenario in [31] where the each spectrum sharing

cluster only has one cluster member for D2D communication,

we should focus on the cluster member with the worst ratio

for multicast system. For cluster Cj , if the minimum wanted

signal to the cumulative social untrusted interference ratio falls

below a threshold η, the Cj as well as all the interferers form

a hyperedge, i.e.,

min
Pjgi,j(t)βj,l,t

∑

j′∈Dl\Cj
Pi′hj′,i(t)

< η, ∀mi ∈ CM(t), (12)

where Dl is a set of devices sharing channel l, βj,l,t is

the channel allocation binary variable, and βj,l,t = 1 or 0
determines whether or not channel l is allocated to cluster Cj

in time slot t.

To facilitate understanding, we depict the hypergraph struc-

tures in two consecutive time slots in Fig. 2, based on the

dynamic network topology in Fig. 1. In the initial time slot,

three UAVs disseminate emergency information to surviving

devices in a multicast manner and each of them acts as a

cluster head. Each active cluster is abstracted as an active node.

Based on E.q. (12), their mutual interferences exceed a limit

and we construct a hyperedge E1 to depict the interference

relationships, which indicates that they cannot share the same

spectrum. In the next time slot, those surviving devices receiv-

ing the information will act as a cluster head, and thus some

new active nodes are inserted. Besides, the hyperedge will also

change due to the dynamic interference relationships caused

by dynamic cluster formation, e.g., hyperedge E1 connects

three nodes in time slot t and two nodes in time slot t + 1.

Similar to [31], we assume that one hypergraph can cover at

most three nodes to achieve a trade-off between interference

management level and computational complexity.
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Based on above descriptions and assumptions, we first intro-

duce a binary variable yij to represent cluster j’s interference

state in hyperedge ej , which is defined as follows:

yj,k =

{

1, if xj,k = 1;
0, otherwise.

(13)

Definition 5 (Cumulative interference): Let CIj,l(t) denote

cluster j’s received cumulate social interference when select-

ing channel l which is given by

CIj,l(t) =
∑

ek∈E(t)

φj(ek)yj,k, (14)

where the indicator function φj(ek) is defined as follows:

φj(ek) =

{

1, if βj,l,t = 1, βj,l,t = βj′,l,t; ∀v
′
j ∈ ek;

0, otherwise.

(15)

Let Cj,l(t) denote the normalized information diffusion

capacity of cluster j, which is given by

ICj,l(t) =

{

1, if CIj,l(t) = 0;
0, otherwise,

(16)

where ICj,l(t) = 0 implies that cluster j cannot disseminate

information successfully. Given the above assumption, the

optimization problem is formulated as

P3: max
β(t)

t′+1
∑

t=t′

Nh(t)
∑

j=1

βj,l,tICj,l(t), (17a)

s.t. C1 :

t′+1
∑

t=t′

L
∑

l=1

βj,l,t 6 1; (17b)

where (17b) ensures that one cluster can only be allocated

at most one channel in one time slot. The problem (17) is

a NP-hard combinatorial optimization problem [31]. Graph

coloring is a powerful and low complexity method for this kind

of optimization problem. Herein, we formulate the channel

resource as L different colors and allocate each node (cluster) a

color to guarantee that the nodes in the same hyperedge cannot

be allocated the same color. The authors in [31] introduced a

greedy hypergraph coloring algorithm. However, this algorith-

m needs to recolor all nodes when the hypergraph structure

is changed, which causes a higher complexity consumption

and thus cannot be applied to the emergency scenarios. In

the next section, we will introduce a dynamic hypergraph

coloring approach, which can achieve high efficiency and

low complexity consumption when the hypergraph structure

is updated dynamically.

IV. DYNAMIC HYPERGRAPH COLORING APPROACH

In this section, we design a dynamic hypergraph coloring

approach, which can achieve good coloring consistency and

low complexity consumption. As mentioned in Section I,

the coloring consistency can save the channel switch cost

caused by the unnecessary channel reallocation. The main

idea of the approach is to simplify the original hypergraph

to an oriented graph and invoke a modified color-propagation
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Fig. 2: Dynamic hypergraph structure in two consecutive time

slots and its corresponding OCG.

algorithm based on [26] upon the simplified graph structure.

The color-propagation can iteratively recolor a vertex and

inform its in-neighbors. If this vertex changes its color, the

informed vertexes will be correspondingly recolored. Besides,

we design a priority rule to ensure that one vertex is recolored

once by only visiting the 2-hop neighbors of each vertex.

According to this characteristic, we only need to maintain the

color information of each vertex’s in-neighbors, which can be

used to determine whether any vertex’s color will change in

constant time before recomputing the color. In this way, we

only need to explore the updated vertexes and their neighbors

when the hypergraph is dynamically updated. We first provide

some preliminaries for hypergraph coloring.

A. Preliminaries

For a hypergraph GH(t) = (V (t), E(t)), the number of

vertexes and hyperedges are n(t) and m(t). Every vertex vi
is assigned a unique ID id(vi, GH(t)). The set of neighbors

of vi is nb(vi, GH(t)), where any vertex is connected with vi
by at least one hyperedge. The monodegree of vi represented

by mdeg(vi, GH(t)) is the number of hyperedges involving

vi. For ease of expose, we omit GH(t) in the notations if the

context is self-evident.

Definition 6 (Dynamic Hypergraph Coloring): For a dy-

namic hypergraph GH(t) = (V (t), E(t)) where the structure

changes over time, the hypergraph coloring of GH(t) can be

defined as f : V (t) −→ C from the vertex set V (t) to the

color set C, such that there always exists at least two vertexes

in a hyperedge, their color is different in each time slot.

Given a hypergraph GH(t) and its coloring function f ,

|f(GH(t))| denotes color numbers used in f . Given a vertex

vi, vi.color = f(vi) represents the assignment color of vi.
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Definition 7 (L-colorable): A Dynamic hypergraph GH(t)
is L-colorable if |f(GH(t))| = L, ∀t ∈ T , and the chromatic

number is defined as the smallest integer L.

The optimization object is to dynamic coloring the hyper-

graph with the given chromatic number L to maintain the

cumulative interference level. The general approach for most

existing static hypergraph/graph coloring algorithms is Global

[41]. The general idea of Global is summarized as follows:

All vertexes are first sorted in decreasing order according

to monodegrees (increasing order of their IDs when their

monodegrees are same). Next, each vertex is traversed in the

sorted order and assigned the minimum available color that

not assigned to its colored neighbors. In this paper, we first

use it to coloring the initial hypergraph GH(1) and focus

on the recoloring approach when the hypergraph is updated.

We transfer the property of Global in conventional graph to

dynamic hypergraph, which refers to finding a coloring f such

that the color of vertex satisfies the following property:

Definition 8 (Global Property): For a hypergraph GH(t) and

its coloring function f , vi.color satisfies vi.color = min{c|c ∈
C\C(vi)}, in which C(vi) records the color of one of vi neigh-

bors in each of the hyperedges ej involving vi. The recorded

neighbor vk having the maximum monodegree in ej satisfies:

1) mdeg(vi) ≤ mdeg(vk), or 2) mdeg(vi) = mdeg(vk),
id(vk) < id(vi).

Definition 8 indicates that one vertex only needs to focus on

the color of at most one neighbor vertex for each hyperedge

based on Definition 6, and the global property gives the

priority to the vertexes with higher monodegree and lower

ID ranking. The object of dynamic coloring is to maintain

the global property when the hypergraph is updated. A naive

approach is to iteratively invoke Global for every update,

which is impractical for emergency scenarios. Intuitively, we

can only recolor those vertexes that violates the global prop-

erty. However, the color change of one vertex will trigger the

violation of a series of vertexes. Inspired by [26], we transform

the original hypergraph to a oriented coloring graph and focus

on the chain reaction triggered by recoloring. We construct the

oriented coloring graph according to the following order:

Definition 9: For a dynamic hypergraph GH(t) and two

vertexes vi and vk, we define vi ⊳ vk if 1) 1) mdeg(vi) ≤
mdeg(vk), or 2) mdeg(vi) = mdeg(vk), id(vk) < id(vi).

For two vertexes vi and vk, we say vk dominates vi if vi ⊳
vk. Based on the definition of oriented coloring graph (OCG)

converted from the conventional graph [26], we further give

the definition of OCG for hypergraph:

Definition 10 (OCG): For a dynamic hypergraph GH(t) =
(V (t), E(t)), the OCG Go(t) = (V ∗(t), E∗(t)) of GH(t) is

a directed acyclic graph, in which for two vertexes vi and vk,

if vi ⊳ vk, we depict a directed edge from vk to vi in Go(t),
termed as 〈vk, vi〉.

Note that the aim of constructing OCG is to recognize

the cause of the color change much clearer. Based on Def-

inition 8, one vertex only focuses on one vertex at most

in each hyperedge passing it. Globally, for each hyperedge,

we can only focus on the vertex with highest monodegree

and the vertex with lowest monodegree dynamically. When

the vertex with lowest or highest monodegree has more than

one candidate, we randomly pick one for lowest monodegree

and the other for highest monodegree, with different colors.

Because the global property is satisfied once the colors of

these two vertexes are different, we can further reduce the

vertex number and edge number for constructing OCG, which

is illustrated in Fig. 2. For hyperedge E1 and E5, since

mdeg(C2) > mdeg(C1) > mdeg(C5), we depict a directed

edge from C2 to C1 and then C1 to C5. For hyperedge E2, E3,

and E4, we only focus on the vertex with highest monodegree

and the vertex with lowest monodegree, i.e., C2 and C9 in E2,

C3 and C8 in E3, C2 and C8 in E4.

Similar to the definition in [26], for a directed edge 〈vk, vi〉,
vk is defined as the in-neighbor of vi while vi is the out-

neighbor of vi. We further use nb−(vk) and nb+(vk) to

represent the in-neighbor set and out-neighbor set, respec-

tively. In this regard, the in-degree and out-degree of vk are

denoted as deg−(vk) = |nb
−(vk)| and deg+(vk) = |nb

+(vk)|,
respectively. Since the essence of vertexes insertion/deletion is

the related edges insertion/deletion, we first introduce the edge

insertion/deletion and then turn into the vertex insertion/dele-

tion. Without loss of generality, we use Go(t) + 〈vk, vi〉 or

Go(t) − 〈vk, vi〉 to represent the updated OCG when the

hypergraph is updated. Based on Definition 6 and 8, we can

define the corresponding property of OCG.

Definition 11 (OCG Coloring [26]): For an OCG Go(t) =
(V ∗(t), E∗(t)), the OCG coloring is a coloring function fo,

where the colors of any two incident vertexes are different,

i.e., ∀〈vk, vi〉 ∈ E∗(t), vi.color 6= vk.color.

Definition 12 (Oriented Global Property [26]): For an OCG

Go(t) = (V ∗(t), E∗(t)) and its coloring fo, the color of vi
satisfies oriented global property if vi.color = min{c|c ∈ C \
Co(vi)}, where Co(vi) =

⋃

vk∈nb−(vi)
vk.color.

This property means that each vertex should choose the

color with the smallest number from those colors not assigned

to its in-neighbors. For simplicity, we use Σ(Go(t)) to denote

the global oriented coloring of Go(t), and χ(Go(t)) to denote

the oriented global property. For Go(t), once 〈vk, vi〉 is insert-

ed or deleted, the Σ(Go(t) ± 〈vk, vi〉) has to be recomputed

by recoloring those vertexes violating χ(Go(t)). In line of

Definition 12, the color of those vertexes that still dominate vi
or vk in Σ(Go(t)) and Σ(Go(t)±〈vk, vi〉) remains unchanged.

But the colors of other vertexes in Σ(Go(t)) may violate

χ(Go(t) ± 〈vk, vi〉) and those vertexes need to be recolored

to maintain χ(Go(t)± 〈vk, vi〉), which can be denoted by the

following equation [26]:

fnew
o ←− min{c|c /∈ ∪x∈nb−(w)f

old
o (x)}. (18)

where fnew
o and fold

o denote the coloring functions before

and after the recoloring of w respectively. E.q. (18) means

that the recoloring strategy should maintain the oriented global

property.

Lemma 1: Given an OCG Go(t) and its global oriented

coloring Σ(Go(t)), considering the insertion/deletion of edge

〈vk, vi〉, the coloring fo is Σ(Go(t)±〈vk, vi〉) when E.q. (18)

converges for all w ∈ Go(t).

Proof: Lemma 1 can be easily proved by contradiction. As-

sumed the coloring is not Σ(Go(t)±〈vk, vi〉), there must exist
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a vertex that violates χ(Go(t) ± 〈vk, vi〉), which contradicts

the condition that E.q. (18) converges.

B. Color Propagation based Dynamic Coloring

Based on Lemma 1, we can iteratively recolor those ver-

texes that violates χ(Go(t) ± 〈vk, vi〉) to satisfy E.q. (18).

Next, we introduce the color propagation (CP) algorithm

according to [26], which consists of three stages: 1) Color

Collection: For an OCG Go(t) and a vertex vi, the CP

collects the color information Cin(vi) of vi’ in-neighbors, i.e.,

Cin(vi) = ∪vk∈nb−(vi)vk.color; 2) Assign Color: it assigns

the smallest color in C \ Cin(vi) to vi, and then returns a

boolean indicator δ = 1 or 0 to determine whether or not

vi.color changes. 3) Inform Color: it informs the out-neighbor

set of vi to recolor of δ = 1. The general idea of CP is

to perform the above mentioned three stages sequentially.

Given the insertion/deletion of 〈vk, vi〉, we have to select

the seed vertexes in addition to vk and vi, since the degree

as well as the dominant relationship of their neighbors will

change correspondingly. Those neighbor vertexes may violate

χ(Go(t) ± 〈vk, vi〉), since their dominant relationship with

respect to vk and vi are correspondingly updated. Therefore,

the seed vertex selection rule is given as follows:

Lemma 2: For the edge insertion case Go(t) + 〈vk, vi〉,
the seed vertex set should be {vi ∪ vk ∪ Ivi

∪ Ivk
}, where

Ivi = nb−(vi, Go(t)) ∩ nb+(vi, Go(t) + 〈vk, vi〉). For the

edge deletion case Go(t)−〈vk, vi〉, the seed vertex set should

be vi ∪ vk ∪Dvi
∪Dvk

, where Dvi
= nb+(vi, Go(t)) ∩

nb−(vi, Go(t)− 〈vk, vi〉).
Proof: Please see Appendix A.

The color propagation based dynamic coloring (CPDC)

algorithm is summarized in Alg. 1. The general idea is to

recolor the vertexes in queue σ. Given an inserted/deleted edge

〈u, v〉, it invokes OCG-Update to check whether or not the

dominant relationships are changed by the insertion/deletion

of 〈u, v〉, and then reconstruct the OCG based on the newly

updated dominant relationships. The OCG-update returns the

seed vertex set S based on Lemma 2 and pushes these

seed vertexes into queue σ. The CP procedure (line 5-25)

is iteratively invoked to recolor the affected vertexes and

maintains the vertexes to be recolored in σ until σ is empty.

Note that we slightly modify the color propagation strategy

proposed by [26] in graph construction and assign color stages

to adapt to the property of hypergraph.

Theorem 1: For an OCG Go(t) and its global orient-

ed coloring Σ(Go(t)), the coloring obtained by Alg. 1 is

Σ(Go(t))± 〈u, v〉) for Go(t))± 〈u, v〉.
Proof: Please see Appendix B.

It is worth mentioning that the complexity of CPDC is not

bounded, since it depends on the number of vertexes in queue

σ. In simulation process, we find that one vertex may be

pushed in σ more than once, due to the fact that the recoloring

of its in-neighbors will push this vertex into σ repeatedly in

IC procedure. This domino effect leads the unbounded vertex

number of σ. In this subsection, we introduce the Dynamic

In-Neighbor Color Index (DINC-Index) in [26] to bound the

vertex number pushed into σ and further reduce the complexity

Algorithm 1 Color Propagation based Dynamic Coloring

(CPDC) Algorithm

1: When the network topology changes, cluster heads ex-

change information with each other and dynamically up-

date the OCG structure. For any two nodes u and v whose

interference relationship changes, invoking CPDC.

2: Procedure CPDC (Go(t), 〈u, v〉)
3: Queue σ ← ∅;
4: S ← OCG-Update (Go(t), 〈u, v〉)
5: for each w ∈ S do

6: Push w into σ;

7: while σ 6= ∅ do

8: u← σ.pop(); Cin(u)← ∅;
9: for each v ∈ nb−(u) do

10: Cin(u)← Cin(u) ∪ v.color;

11: end for

12: C ← {0, ...,mdeg(u)};cnew ← min{c|c ∈ C \
Cin(u)};

13: if cnew 6= u.color then

14: u.color← cnew; δ = 1;

15: else

16: δ = 0;

17: end if

18: if δ = 1 then

19: for each v ∈ nb+(u) do

20: if v /∈ σ then

21: Push v into σ;

22: end if

23: end for

24: end if

25: end while

26: end for

27: Procedure OCG-Update (Go(t), 〈u, v〉)
28: S ← ∅; S ← S ∪ v ∪ u;

29: if 〈u, v〉 is inserted then

30: Go(t)← Go(t) + 〈u, v〉;
31: for each u′ ∈ nb−(u), and v′ ∈ nb−(v) do

32: if u′ ⊳ u or v′ ⊳ v then

33: replace 〈u′, u〉 (〈v′, v〉) by 〈u, u′〉(〈v, v′〉), S ←
S ∪ u′(v′).

34: end if

35: end for

36: else

37: Go(t)← Go(t)− 〈u, v〉;
38: for each u′ ∈ nb+(u), and v′ ∈ nb+(v) do

39: if u ⊳ u′ or v ⊳ v′ then

40: replace 〈u, u′〉 (〈v, v′〉) by 〈u′, u〉(〈v′, v〉), S ←
S ∪ u′(v′).

41: end if

42: end for

43: end if

44: Return S;
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in three steps based on the structure of OCG graph. Next we

will introduce how to migrate the DINC-Index in [26] to Alg.1.

In the first step, we will handle the domino effect caused by

the case where a vertex is recolored before its in-neighbors.

The general idea is that vertex can be recolored until all its in-

neighbors have been recolored, which indicates that we have

to recolor the vertex pushed into σ in an appropriate order.

Since OCG belongs to the directed acyclic graph [26], we can

organize the recoloring order along the topological order of

vertexes. Herein, we give each vertex a unique priority in σ.

Considering that the direction of edges in Go(t) is constructed

based on the dominant relationships, we can design the priority

rule as: for u and v, if u ⊳ v, we can say v has a higher

priority than u. We can replace the queue σ in Alg.1 with

priority queue σ∗ based on the priority rule.

Theorem 2( [26]): For an OCG Go(t), considering the case

Go(t))±〈u, v〉, let Λ denote those vertexes containing u and v,

whose colors are changed in Σ(Go(t))±〈u, v〉) compared with

Σ(Go(t), and the number of vertexes pushed into σ with prior-

ity rule can be bounded by nΛ = |∪u∈Λnb
+(u)∪nb−(u)∪Λ|.

Proof: Please refer to [26] for more details.

In the second step, we further reduce the nΛ by color

pre-computation. According to the priority rule, the vertexes

pushed into σ can be classified into two types: 1) the vertexes

in Λ, whose colors are changed in Σ(Go(t))±〈u, v〉) compared

with Σ(Go(t); 2) the out-neighbors of the first type of vertexes;

and those vertexes not of the first type. Considering that each

vertex w in σ∗ is processed in CP procedure, the in-neighbors

of the second type of vertex w need to be explored by the CP

procedure since it is not obvious whether or not w belongs

to the second type. Since a vertex belonging to the second

type is a neighbor of a vertex belonging to the first type, we

only need to explore the 2-hop neighbors of some vertexes

belonging to the first type and avoid exploring the neighbors

of belonging to the second type vertexes. We introduce a

dynamic in-neighbor color index (DINC-Index) to record the

coloring information based on [26]. The DINC-Index DI
consists of two components: 1) Color Counts Cu

cnt(c) records

u’s in-neighbors whose color is c for each u ∈ V (t), and

c ≤ deg−(u); 2) Recolor Candidates Ru
can records the colors

not assigned to any in-neighbors of u, and these colors are

smaller than u.color.

The use of DINC-Index are two fold. Firstly, for any vertex

u, its color satisfying u.color ≤ deg−(u). If all the colors of

in-neighbors of u that is smaller than the deg−(u) is known,

u.color can be determined. Hence, it is reasonable to record

the color counts for c ≤ deg−(u) in Cu
cnt(c). Correspondingly,

we can get Ru
can = {c|c < u.color, Cu

cnt(c) = 0}. In

line of the expression of Ru
can, a global oriented coloring

Σ(Go(t) for Go(t) is satisfied only if Ru
can = ∅. Hence,

for Σ(Go(t)) ± 〈u, v〉), the color of u is changed in CP

procedure if Ru
can 6= ∅ or Cu

cnt(c) 6= 0. For the former con-

dition, u.color = min{c|c ∈ Ru
can}. For the latter condition,

u.color = min{c|c ∈ C, Cu
cnt(c) = 0}. In this way, we can

know whether or not u will change its color in O(1), and thus

avoid exploring the neighbors of those vertexes belonging to

the second type. Since the DINC-Index maintenance algorithm

is described in detail in [26], we briefly describe two important

parts. In the DINC-Index maintenance algorithm, the Color-

Update is to maintain the Ru
can and Cu

cnt(c) by inserting or

deleting a color c for u. For the case of color insertion, only the

case c ≤ deg−(u) and is considered and Cu
cnt(c) is increased

by 1. With the guarantee of Cu
cnt(c) 6= 0, c is deleted from

Ru
can according to the expression of Ru

can. The color deletion

procedure is similar to insertion, and its complexity isO(1). To

main the DINC-Index, u.color is inserted for u′ and u′.color

is deleted from DIM for each 〈u, v〉 to be reversed. Besides,

u.color is inserted for v along with the insertion of 〈u, v〉. For

a special case that only the condition that c ≤ deg−(v) for v is

considered, deg−(v) is increased by 1 along with the insertion

of 〈u, v〉, and its in-neighbors whose color is deg−(v) for v
should be added. The general idea for the deletion case is

similar. Only the special condition that deg−(v) is decreased

by 1 along with the edge deletion, and c ≤ deg−(v) in Cv
cnt(c)

should be considered, which can be adjusted by simply setting

Cv
cnt(deg

−c(v) + 1) = 0.

In the third step, we further investigate how to find those

out-neighbors for u, which are not affected by the recoloring

of u. We can further reduce the queue size by avoiding pushing

those vertexes into σ. Herein, u.old and u.now represent the

colors of u before and after the CP procedure. For simplicity,

we summarize three cases for u and its out-neighbor v. 1) If

u.now = v.now, v needs to be recolored; 2) if u.now 6= v.now

and u.old < v.old, v needs to be recolored. Because their

current color condition may be u.now > v.now, and v can use

u.old; 3) if u.now 6= v.now and u.old > v.old, v.now remains

unchanged. Because its color is not affected by u.now. Based

on the above discussed three steps, the improved CPDC can

be summarized in Alg. 2.

The main framework of Alg.2 is similar to Alg.1, the

difference is that we integrate the above discussed three

steps into CP. Note that Alg. 2 can also handle the vertex

insertion/deletion case. In case 1, given an inserted vertex u,

u is firstly assigned with color 0, and the edges involving u
are inserted into the DINC-Index. The difference is that we

return S until the edge insertion process is finished. Finally,

we push the vertexes into σ∗ and perform ICPDC iteratively.

Theorem 3: The complexity of Alg.3 is O(nΛ log(nΛ)).

Proof: Please see Appendix C.

Finally, we summarize the dynamic cluster formation and

spectrum sharing (DCFSS) algorithm in Alg. 3.

Remark 1: Considering that the rotation-swap matching

algorithm can achieve the stable cluster structure, and Alg.3

can achieve the global coloring property, the convergence of

DCFSS can be easily proved since the value of optimization

object in problem (10), (11) and (15) will improved or remain

unchanged after each iteration. Due to the limited spectrum

resource and device number, DCFSS will final converge to the

stable state. The sum complexity is O(K1(N(t) log(N(t)) +
N(t)3 +K2C

2
N(t)N(t)2)) in the worst case, where K1 is the

iteration number of DCFSS and K2 is the iteration number

of the rotation-swap matching algorithm in [2]. In fact, the

iteration number is relatively lower than the device number,

which can be verified by the following simulation results.
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Algorithm 2 Improved CPDC (ICPDC) Algorithm

1: When the network topology changes, cluster heads ex-

change information with each other and dynamically up-

date the OCG structure and the available color set. Priority

Queue σ∗ ← ∅.
2: Case 1: For a newly joined/left user (an inserted/deleted

vertex) u, u is firstly assigned with color 0. The edges

e connecting u and another v are inserted into the DI.

S ←Index-Maintenance (DI, Go(t), 〈u, v〉) in [26],

σ∗.push(u).
3: Case 2: When the interference relationship between u and

v changes, S ←Index-Maintenance (DI, Go(t), 〈u, v〉) in

[26].

4: Procedure ICPDC(Go(t), 〈u, v〉, DI)

5: for each w ∈ S do

6: Push w into σ∗;

7: while σ 6= ∅ do

8: u← σ∗.pop();
9: if Ru

can 6= ∅ then

10: cnew ← min{c ∈ Ru
can};

11: end if

12: if Cu
cnt(u.color) 6= 0 then

13: cnew ← min{c ∈ C, Cu
cnt(c) = 0};

14: end if

15: if cnew 6= ∅ then

16: cold ← u.color;

17: for each v ∈ nb+(u) do

18: Color-Update(DI, v, u.color);

19: Color-Update(DI, u, cnew);

20: end for

21: u.color← cnew; Ru
can ← ∅;

22: for each v ∈ nb+(u) do

23: if v /∈ σ∗ and cold < v.color or u.color =
v.color then

24: σ∗.push(v);
25: end if

26: end for

27: end if

28: end while

29: end for

Algorithm 3 Dynamic Cluster Formation and Spectrum Shar-

ing (DCFSS) Algorithm

1: Phase 0: Proceed to the next time slot t;
2: Each UAV determine whether to recharge based on the

remaining battery capacity. Reserved UAVs and newly

arrived devices update preference profile.

3: Loop in time slot t
4: Phase 1 Cluster Formation: Both the UAVs and surviv-

ing devices self-organize the cluster structure based on the

rotation-swap matching algorithm in [2].

5: Phase 2 Spectrum Sharing: Given the cluster structures,

each cluster head update the channel allocation strategy

based on the Alg.3.

6: Repeat Phase 1∼ Phase 2 until the cluster structure and

channel allocation strategy become stable in t.

V. SIMULATION RESULTS

In this section, we conduct simulations in different scenarios

to demonstrate the validity of our theoretical analysis. We

evaluate our proposed algorithm DCFSS in terms of con-

vergence and trade-off between the average diffusion speed

of emergency information and channel switching cost. Note

that we use the number of cluster heads switching to another

channel in two continuous slots, i.e., color consistency, to

roughly represent the channel switching cost. Herein, the

average diffusion speed represents the difference between the

number of UAVs receiving the task during two consecutive

time slots [42]. Similar to the setting of mobility in [42],

we assume that terrestrial users move with different speeds

(i.e., 0∼5 meter/second) based on a random walk model.

The main simulation parameters are listed in Table II. We

set the parameters based on the existing works [9], [34],

[43], which are applicable for UAV communication of most

heterogeneous cellular networks. Generally, the parameters

are set as follows unless being specified otherwise. Besides,

the parameters of Ehov can be found in [9] and the energy

threshold Eth is 200 KJ. The quota q for each multicast cluster

is 5, and the hyperedge construction threshold for η is 20dB.

In social domain, we consider the Erdos–Renyi social graph

with adjustable social link probability as social graph model

[44].

TABLE II: Main Simulation Parameters

Parameters Value

Network area (1× 1× 1km3)
Initial number of UAVs and survivors 5, 50

Number of time slot and duration 100, 1s

Arrival rate 10 survivors/s

Air-time ratio 0.25 survivors/s

Number of available channels 5

Normalized bandwidth block 1MHz

Transmit powers of UAV and terrestrial device 5W, 0.1W

Path loss parameters for A2G and G2G links 2, 3

Power gain at d0 = 1 m -60dB

Noise power -120dBm

Size of each data packet 1Mbits

Furthermore, we adopt different benchmark algorithms to

objectively and comprehensively evaluate our proposed algo-

rithm. Firstly, we compare DCFSS with two dynamic graph

coloring algorithms: DC-Local [23], DC-Global [26], and one

static hypergraph coloring algorithm: SHC [31]. Note that

we do not compare DCFSS with SHC for the evaluation of

diffusion speed, since they achieve the same coloring strategy.

The difference is that SHC recomputes the coloring for all

vertexes in each time slot and DCFSS only explores a small

number of vertexes. To investigate the influence of social tie,

we also consider the performance of our proposed approach

without considering the social tie in cluster formation, termed

as ”Without Social Tie (WST)”. Moreover, we provide the per-

formance upper bound achieved by “Exhaustive Search(ES)”.

To evaluate the convergence performance of DCFSS, we

investigate the cumulative distribution function (CDF) versus

the iteration numbers. In Fig. 3, we plot the CDF of iteration

number asymptotically converging to the stable state. Mean-

while, we note that the needed iteration number of SCS grows
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Fig. 4: The diffusion speed with varying number of UAVs.

with the cluster head and member numbers. It is because the

number of nodes will affect the interplay between spectrum

allocation and cluster formation. The probability of deviating

to other better choice will increase in both spectrum allocation

and cluster formation phases. In addition, Fig. 3 further reveals

that the needed iteration number is relatively small with

respect to the D2D user number and thus demonstrating the

validity of the convergence analysis in Remark 1.

In Fig. 4, the emergency information diffusion speed is

shown with varying number of UAVs. In this simulation, the

social link probability is set to 0.6. It is obvious that the

diffusion speed increases with the number of UAVs, because

more UAVs can provide communication services for more

terrestrial devices in each time slot. Note that DCFSS can

achieve the faster diffusion speed than DC-Global and DC-

Local. The reason is that the hypergraph can model the

mutual interference relationships more accurately. Moreover,

the benchmark WCT cannot utilize the social information

in cluster formation, which decreases its performance. Fig.

5 compares the channel switching times attained by our

proposed DCFSS with other benchmarks. With the increasing

arrival rate of newcomers, the number of newly inserted vertex

is correspondingly increased in graph coloring. Therefore, the

channel switching times (recoloring times) will be increased.

Note that some vertexes can be deleted during the procedure

where hypergraph is transformed into OCG, and all vertexes

have to be reserved during the procedure where traditional

graph is transformed into OCG. And the SHC has to recom-

pute the coloring strategy for all vertexes when the hypergraph

is updated. This is the reason why DCFSS outperforms other

benchmarks.

In Fig. 6 and Fig. 7, we investigate the influence of social
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tie on the performance of both the diffusion speed and channel

switching times. Fig. 6 demonstrates that the information

diffusion speed increases with the social link probability. It is

because that the terrestrial device as cluster head can inform

more newcomers if the probability of a social tie between them

increases. Similarly, if more newcomers can be served, more

clusters will be formed. As a result, more vertexes will be

inserted into the OCG and thus the channel switching times

(recoloring times) will be increased.

In Fig. 8, we investigate the impact of threshold η in

hyperedge construction on the performance of diffusion speed

and channel switching times achieved by DCFSS. It is obvious

that both curves tend to increase first and then decrease. When

the threshold is below 20dB for diffusion speed curve (20dB

for channel switching times curve), more hyperedges will

enable cluster heads to switch to the appropriate channel, and

thus the channel switching times as well as the diffusion speed

performances increase. In this stage, less hyperedges will

reduce the diffusion speed performance and channel switching

times, since more cluster heads will share the same channel

without the constraint. When the threshold is above 20dB

for diffusion speed curve (20dB for channel switching times

curve), i.e., the number of hyperedges is sufficiently large,

fewer cluster heads will be allocated to channels, and thus

the diffusion speed performance and channel switching times

decrease.

Through comparison, our proposed approach is verified to

achieve a better trade-off among diffusion speed performance,

channel switching cost and computational complexity com-

pared with other benchmarks in dynamic emergency scenarios.

VI. CONCLUSION

In this paper, we have investigated the UAV-assisted emer-

gency communications in SIoT and solved both the dynamic

cluster formation and spectrum sharing problems in stochastic

environments. For the cluster formation problem, we formu-

lated it as a many-to-one matching game with externality and

adopt the rotation-swap algorithm to maximize the expected

number of users receiving alert messages in each time slot.

For the dynamic spectrum sharing problem, we proposed

a dynamic hypergraph coloring approach to model the cu-

mulative interference, and maintain the mutual interference

at a low level by exploring a small number of vertexes,

when the graph is dynamically updated. Moreover, we proved

some crucial properties including global stability, convergence,

and complexity. Finally, simulation results demonstrated that

our proposed approach can achieve a better trade-off among

the information diffusion speed, channel switch cost, and

complexity.

APPENDIX A

PROOF OF LEMMA 2

We first prove the edge insertion case by contradiction.

Assume that the seed vertex set is not inadequate, which

indicates that there must exist a vertex w /∈ {vi∪vk∪Ivi
∪Ivk}

and its color is changed. However, w is not informed in

the second stage of CP. In line of E.q. (17), the vertexes in

{vi∪vk∪Ivi
∪Ivk

} trigger the color propagation since their in-

neighbor are updated in Go(t)+〈u, v〉. The second stage of CP

will not inform a vertex only if the colors of its in-neighbors

remain unchanged. Since w is not informed, we can say that

the colors of all its in-neighbors are remain unchanged before

and after the edge insertion, which contradicts the oriented

global property if the color of w changes. The edge deletion

case can be proved in the similar way.

APPENDIX B

PROOF OF THEOREM 1

For the insertion/deletion of edge 〈u, v〉, CPDC can ad-

equately return the seed sets based on Lemma 2. Besides,

the CP procedure iteratively recolors the vertex that violates

χ(Go(t)±〈u, v〉) until the queue σ is empty. In line of Lemma

1, the global oriented coloring is Σ(Go(t))± 〈u, v〉) after the

convergence of recoloring procedure.

APPENDIX C

PROOF OF THEOREM 3

For the edge insertion case, ̟ is assumed to be the number

of vertexes pushed into σ∗. The complexity of push/pop pro-

cess in a priority queue is O(1)/O(log(̟)) using Fibonacci

heap, and the sum complexity is O(̟ log(̟)) to process ̟
vertexes. As discussed above, we can determine whether or not

a vertex will be recolored in O(1) by invoking Alg.2. Thus, the

complexity of the first two stages can be bounded by O(̟).
Since we have proved that ̟ is bounded by nΛ = | ∪u∈Λ

nb+(u)∪nb−(u)∪Λ| in Theorem 2, the complexity of Alg.2

is bounded by O(nΛ log(nΛ)). For vertex insertion/deletion,

the complexity is bounded by O(nv log(nv)), where nv is

the vertex pushed into σ∗ and bounded by the number of

all vertexes N(t). Note that the complexity of the static

hypergraph coloring algorithm in [31] is O((L + N(t))3),
which is much higher than our proposed ICPDC. For the

complexity of constructing the hypergraph, since we have

assumed that one hypergraph can cover at most three nodes

to achieve a trade-off between interference management level

and computational complexity, the complexity is bounded

by O(N(t)3), which is acceptable in dynamic environments.

Note that invoking the static hypergraph coloring algorithm in

dynamic topology also needs the same complexity cost.
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