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ABSTRACT: 

 

Along with the advancement of unmanned aerial vehicles (UAVs), improvement of high-resolution cameras and development of 

vision-based mapping techniques, unmanned aerial imagery has become a matter of remarkable interest among researchers and 

industries. These images have the potential to provide data with unprecedented spatial and temporal resolution for three-dimensional 

(3D) modelling. In this paper, we present our theoretical and technical experiments regarding the development, implementation and 

evaluation of a UAV-based photogrammetric system for precise 3D modelling. This system was preliminarily evaluated for the 

application of gravel-pit surveying. The hardware of the system includes an electric powered helicopter, a 16-megapixels visible 

camera and inertial navigation system. The software of the system consists of the in-house programs built for sensor calibration, 

platform calibration, system integration and flight planning. It also includes the algorithms developed for structure from motion 

(SfM) computation including sparse matching, motion estimation, bundle adjustment and dense matching. 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

1.1 UAV-based 3D Modelling 

Recently, low-altitude imagery has become a matter of 

remarkable interest among researchers in both photogrammetry 

and computer-vision communities. The 3D models generated 

from UAV imagery can serve various applications ranging from 

natural resource management to civil engineering (Shahbazi et 

al., 2014; Liu et al., 2014). In spite of the advantages introduced 

by UAVs and despite the commercial and open-source efforts, 

unmanned mapping systems are still requiring investigations 

and considerations in terms of efficient data processing. There 

are basic differences between the features of unmanned aerial 

systems and those of traditional aerial systems, which cause 

challenging issues in the procedure of SfM computation and 3D 

modelling. These features are briefly discussed in this section. 

 

Small-format cameras cover only a small area per image. 

Therefore, in most of the applications, mosaicking is required. 

In order to provide geospatially valid mosaics, accurate geo-

referencing is mandatory too. To this end, two different 

methods might be applied; first direct geo-referencing via 

navigation sensors, second indirect exterior orientation (EO) 

estimation via image observations and subsequent geo-

referencing via ground control points (GCPs). The accuracy of 

direct geo-referencing is mainly influenced by the accuracy of 

the navigation sensors and the platform calibration (Turner et 

al., 2014). On the other hand, the accuracy of indirect geo-

referencing is affected by the positioning accuracy of GCPs and 

the accuracy of tie-point detection among overlapping images, 

namely sparse matching (Turner et al., 2012). 

 

Despite the advantages of consumer-grade cameras in terms of 

price, weight and resolution, yet, their unstable lens and sensor 

mounts put noticeable concern in precise 3D modelling. 

Therefore, internal camera calibration must be performed. 

When requiring metric accuracies, offline calibration of the 

camera is suggested (Remondino and Fraser, 2006). However, 

on-the-mission vibrations can affect the calibration parameters 

of the camera to some extent (Rieke-Zapp et al., 2009). 

Therefore, the offline calibration performed in laboratory may 

no longer be valid on the flight campaign. A solution to this 

problem is to calibrate the camera by adding the systematic 

error terms to the block bundle adjustment (BBA), namely self-

calibration.  

 

The solutions and software packages, which are developed for 

different stages of SfM computation, must deal with specific 

features of unmanned aerial images. The most distinctive 

characteristics of UAV images are: i) large perspective 

distortion and scale changes due to oblique photography and 

low flight altitude in comparison with terrain relief, ii) high 

matching error due to uneven distribution of feature points, 

motion blur, occlusion or foreground motion of the features and 

noticeable radiometric changes (Zhang et al., 2011; Haala et al., 

2013). Several studies have been performed in recent years to 

assess the performance of UAVs in 3D modelling applications. 

Valuable reviews of such studies can be found in Colomina and 

Molina (2014) and Nex and Remondino (2014). 

 

1.2 Open-Pit Mine Modelling  

Since the main application of the system studied in this paper is 

gravel-pit surveying, the main problematic which justifies the 

necessity of developing new mapping technologies for gravel 

pits is discussed in this section. In general, gravel mining 

impacts the surrounding environment in many ways, and those 

impacts must be monitored frequently. Ground subsidence, 

landslide and slope instability are the most dangerous issues at 

gravel pits, especially considering the lubricious nature of 

gravel (Herrera et al., 2010). Previous studies on geotechnical 
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risk assessment have shown that the topographic data must 

provide a ground resolution of one to three centimetres in order 

to predict such events (Ivory, 2012; Francioni et al., 2014). 

 

Furthermore, mine managers have to report the amount of 

extracted mass, left over tailing dumps and waste materials on a 

regular basis according to governmental regulations. Therefore, 

volumetric change measurement within a gravel pit is 

mandatory. The map-scale required for volumetric 

measurement in earthworks is usually between 1:4,000 and 

1:10,000 (Patikova, 2004). Given an imaging sensor with 10 μm 

pixels, the ground resolution must be between 4 to 10 

centimetres per pixel to provide such a scale range.  

 

Regarding the above-mentioned arguments, mapping and 

monitoring of a gravel pit requires high-quality topographic and 

visual data. Considering the required spatial and temporal 

resolution, coverage area, speed of measurement, and safety 

criteria, UAVs can be better solutions for gravel-pit mapping in 

comparison with manned aerial systems or land surveying 

techniques. Therefore, open-pit mine mapping is slowly 

becoming a practical application of UAVs (McLeod et al., 

2013; Hugenholtz et al., 2014). 

 

1.3 Article Structure and Contributions 

Considering the arguments given above, the structure of this 

paper is divided into two principal parts: data acquisition and 

data processing. In the first part of the paper, we are aiming to 

discuss and address the main issues regarding the equipment, 

sensor calibration, platform calibration and system integration. 

Several aspects of these tasks are discussed in Section 2, and 

the intermediate experimental results for each particular task are 

presented as well. Then, our experiments for fieldwork planning 

and data acquisition as well as their results are presented in 

Section 3. 

 

In the second part of the paper, we present our algorithms for 

SfM computation (Section 4) and their corresponding results 

(Section 5). These algorithms bring up the following 

contributions. Firstly, a new method, mainly based on genetic 

algorithm, is proposed for robust sparse matching and motion 

estimation. It provides several advantages in comparison with 

the existing algorithms in the state-of-the-art including the 

improved computational efficiency and robustness against 

degeneracy, poor camera motion models and noise. Secondly, 

several BBA strategies are assessed, and a new strategy is 

proposed in order to control the effects of on-the-job, self-

calibration on the accuracy of other outputs. Finally, a dense 

matching algorithm based on the intrinsic-curves theory is 

proposed, which is a matching strategy independent of the 

spatial space. The advantage of this algorithm is that the 

computational efficiency of matching would not change, 

regardless of the irregularity of the disparity map. Besides, the 

application of intrinsic curves causes the matching to be robust 

against occlusions. 

 

2. UNMANNED AERIAL SYSTEM DEVELOPMENT 

2.1 Platform, Sensors and Processor 

The platform used in this project is a helicopter, called 

Responder, which is built by ING Robotic Aviation1. This 

platform is powered by electricity with operational endurance 

                                                                 
1 www.ingrobotic.com 

of approximately 40 minutes. It provides up to 12 kilograms 

payload capacity, which is more than adequate for our sensors 

and processor weighing less than 3.5 kilograms. Figure 1 

presents the platform and its on-board elements.  

 

Two digital cameras were tested in this study, Prosilica 

GE4900C visible camera and Prosilica GT1920C high-frame-

rate camera. While both cameras provide high-resolution data, 

the GT1920C has the advantage of providing 40 frames per 

second at full resolution. However, the main disadvantage of 

this camera is the small-size sensor, which makes the 3D 

modelling process more difficult. Since better results in terms 

of accuracy and efficiency have been obtained via GE4900C, 

only this camera will be further discussed. This camera has an 

approximate sensor size of 36x24 mm, and a 35 mm, F-

adjustable lens was set with it. 

 

The navigation sensor used in this project is an industrial-grade, 

GPS-aided inertial navigation system (INS), MIDGII from 

Microbotics Inc2. Theoretically, the unit measures pitch and roll 

with 0.4 degree and heading (yaw) with 1-2 degrees of 

accuracy. The position accuracy is approximately 2-5 meters. 

 

The computer used in this project is an ultra-small, single-board 

system, which is based on 1.7GHz Intel Core™ i7 processor. 

SATA III ports for on-the-flight, external storage purposes, 

Gigabit Ethernet ports for connecting the camera, USB port for 

connecting the INS and wireless adaptor for remote control are 

among the required features of the board. We stacked the board 

together with a 108 Watt power supply, which receives 

electricity from the battery pack and distributes regulated DC 

voltage to the processing unit and other sensors. With this 

configuration, the embedded system is capable of acquiring, 

logging, and storing data during almost 70 minutes. 

a 

b c 

Figure 1. The aerial system, a) platform, b) sensors, c) computer 

 

2.2 System Integration 

The control subsystem in the UAV photogrammetric system is 

responsible for several tasks, including power control, 

controlling the data acquisition parameters, data logging, data 

storage, and time synchronization. The brief integration scheme 

developed in this project is illustrated in Figure 2. To create 

these controllers, an object-oriented, cross-platform C++ 

program is developed. The software solution contains three 

main classes: INS, Camera, and Clock. The Clock controller is 

responsible to record the accurate time of all the events (camera 

exposure-end and INS message reception) via the system-wide, 

real-time clock. The functions of INS class are responsible for 

                                                                 
2 www.microboticsinc.com 
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communicating with the INS, receiving the high-frequency 

data, parse them and log them. The GPS-time of INS messages 

is also assigned to a static variable communicating with the 

Camera class. The Camera class is responsible for 

communicating with the camera, setting acquisition parameters, 

logging images and geo-tagging each image with the INS 

message received at the exposure-end-event epoch of that 

images. This synchronization is performed via multithreading 

and mutual communication between classes. Our experiments 

showed that the GPS time tagged to any image via the INS is 

only 117 milliseconds delayed from the exact time of the 

exposure-end event. 

 
Figure 2. Integration scheme of the system and its components 

 

2.3 Camera Calibration 

In applications where metric accuracies are required, offline 

camera calibration is suggested (Remondino and Fraser, 2006). 

The network geometry and precise target detection are very 

important factors that affect the camera parameters. Therefore, 

off-line calibration can achieve higher accuracy and precision in 

comparison with on-the-job calibration. The practical steps of 

off-line camera calibration developed in this study include: 

i) deciding the parameters of the calibration model: In addition 

to the internal orientation (IO) parameters (the offsets of the 

camera principal point and the focal length), the Brown's 

additional parameters for digital cameras are applied to model 

the systematic errors (Brown, 1971). The error sources 

considered in this model include radial and tangential lens 

distortions and sensor, in-plane distortions. 

ii) designing and establishing a test-field with signalized 

targets: Two factors, size and depth, must be considered when 

designing the test-field. Size and shape of the targets are also 

other important elements which must be carefully considered in 

order to facilitate very accurate target positioning. The 3D 

coordinates of the targets are accurately measured using a 

spatial station for assessment purposes. The test-field is shown 

in Figure 4(a). 

iii) setting up the camera at different orientations, and 

photographing the test-field: Having various orientations and 

depths are necessary to provide a stable network geometry. This 

way, it can be ensured that the calibration parameters are not 

affected by/dependant to the network geometry (Fraser, 1997).  

iv) detecting and positioning the targets on the images: The 

targets are designed as black and white rings. Thus, once the 

image of the circular target is deformed under any linear 

transformation, it appears as an ellipse. Therefore, a technique 

of ellipse detection based on edge-detection and ellipse fitting is 

developed to position and label the targets very accurately. 

v) performing free-network calibration to calculate the 

parameters and correcting images to restore undistorted images. 

 

The off-line calibration was repeated several times before and 

after various missions. The accuracy of average parameters was 

assessed using check data. To this end, several images were 

captured from the test-fields. Controlled resection using camera 

calibration parameters was performed, and EO parameters of 

the images were determined. For some checkpoints (targets not 

assisted in resection), the 3D ground-coordinates of the targets 

were back-projected to the images, and the residuals from their 

actual positions were measured (Figure 3). The mean and 

standard deviation (StD) of the residuals on the checkpoints at 

x- and y-directions were 0.320.18 and 0.200.16 pixels, 

respectively. The residuals showed how efficiently the 

calibration parameters affected the accuracy of EO. 

 
Figure 3. Residuals on checkpoints after camera calibration 

 

2.4 Platform Calibration 

The navigation and imaging data are measured at different 

coordinate systems. With this regard, the main goal of platform 

calibration is to, first, measure the offset vector between the 

perspective center of the camera and the center of the INS 

body-fixed system (lever-arm); second, to determine the 

rotations of the imaging system axes with respect to the INS 

system (bore-sight angles). Since the INS used in this study is 

utilizing consumer-grade GPS, the positioning accuracy of few 

meters eliminates the need for level-arm calibration.  

 

Normally, platform calibration is essential when direct geo-

referencing of images is considered. However, in this project, 

we are not interested in direct geo-referencing of images, as we 

are looking for higher accuracy levels. Nevertheless, we are still 

looking for the direct EO to be capable of approximately 

positioning the GCPs on images. Then, the rough position of 

GCPs can be refined using image processing techniques. For 

facilitating the platform calibration, we stacked the camera and 

the INS together, in a fixed status (Figure 1(b)). Consequently, 

we could calibrate the platform before installing the sensors on 

the UAV. A test-field with circular targets was established 

(Figure 4(b)), and the targets were accurately measured via the 

spatial station. The spatial station, itself, has been stationed 

using precisely positioned points on the ground. Then, images 

were acquired from the test-field while logging the INS data. 

The EO parameters of the images were calculated via controlled 

space resection, and their comparison with the navigation data 

of INS resulted in the platform calibration parameters.  

a b 
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Figure 4. The test-fields for a) camera calibration, b) platform 

calibration 

 

3. DATA ACQUISITION EXPERIMENTS 

3.1 Planning 

The data for this study was acquired from a gravel pit, located 

at Sherbrooke, QC, Canada. The extent of the mine is shown in 

Figure 5. Two main zones, which were considered for our tests 

are shown by red and green rectangles in Figure 5. The red zone 

represents a part of the gravel pit, which is covered by piles of 

gravel, and the green zone represents the cliffs, where the rock 

is dynamited for extraction. 

 
Figure 5. Study area, the open-pit mine located at Sherbrooke 

 

Planning the fieldwork is an important part of the project. The 

quality of the control and check data as well as the images 

depends highly on this stage. In order to plan the flight itself, 

there are several free software packages (e.g. Mission Planner). 

However, a simple program is developed in this study to satisfy 

our specific needs for both flight and surveying planning. The 

software is able to decide the flight characteristics based on the 

terrain relief, time of flight, drone characteristics, required 

resolution and overlap, as well as camera features. Besides, it 

determines the optimal number and distribution of required 

ground control points, and determines the optimal size for 

designing the targets to indicate GCPs. GCPs were signalized 

using circular targets with binary crosshairs at the centre 

(Figure 6(b)). We used sharp colors, red and yellow, for the 

background to make them be distinguishable from the natural 

objects in the scene. They were also labelled with easily 

recognizable labels, both in terms of size and shape. 

 

3.2 Fieldwork 

The first essential task to start the fieldwork was to initialize the 

GPS base receiver, whose coordinates were required to perform 

real time kinematic positioning. We recorded the base station 

observations for more than 10 hours, and processed them via 

CSRS-PPP service provided by Natural Resources Canada3. 

The position of the base point was determined with 2-5 

millimeters horizontal and 12 millimeters vertical absolute 

accuracy. Afterwards, the next task was to install the targets and 

measure their positions using RTK GPS system. Once the 

image acquisition was terminated, the terrestrial surveying for 

gathering check data was performed. In order to collect the 

                                                                 
3 http://webapp.geod.nrcan.gc.ca/geod/tools-outils 

check data, a Trimble VX Spatial Station was used. The station 

was setup over ground marks whose coordinates were measured 

with the RTK system, and laser scanning was conducted. Figure 

6(a) presents an example of the way the GCPs and scanner 

stations were configured for the cliffs zone. 

a 

 
b 

Figure 6. Fieldwork elements, a) Configuration of GCPs and 

VX scanner stations for the cliffs zone, b) signalized target 

patterns for GCPs 

 

3.3 Preliminary Results 

In order to quickly check the quality of acquired data, the 

images and their geo-logs were processed by the commercial 

photogrammetric software, Pix4D4. The 3D point clouds and 

the aerial mosaics were generated via this software. Afterwards, 

the CloudCompare5
 open-source software was applied to 

compare the aerial point clouds with the terrestrial laser point 

clouds. In some cases, image enhancement by pre-processing 

was also applied to improve the results. For instance, to remove 

the effect of shadows at cliffs zone, a shadow-detection and 

removal algorithm based on luminance processing was used.  

 

Figure 7 visualizes the aerial mosaic (with average ground 

resolution of 1.3 cm) and 3D point cloud from the cliff zone. 

Figure 8 represents the comparison between the laser point 

cloud and the image-based one, in terms of the distance 

between two clouds. The average horizontal distance between 

the aerial and the laser point clouds was 3.29 cm, and the 

average vertical distance between them was 2.04 cm. 

a 

b 

Figure 7. Visualization of the preliminary 3D products from the 

developed unmanned aerial system, a) mosaic, b) point cloud 

                                                                 
4 www.pix4d.com  
5 www.cloudcompare.org 
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Figure 8. The accuracy analysis of the point cloud, histogram of 

3D distances between image and laser point clouds in cm. 

 

4. STRUCTURE FROM MOTION COMPUTATION 

4.1 Sparse Matching and Motion Estimation 

The sparse matching and robust motion estimation technique 

used in this study is mainly based on genetic algorithms (GA). 

It can be considered as an alternative to RANSAC-like 

techniques where the random search is replaced with 

evolutionary search. The algorithm benefits from other novel 

features such as: i) sampling based spatial distribution of points 

which is effective both against degeneracy and ill-

configuration, ii) fast linear calculation of epipolar geometry 

without encountering exceptions in cases of poor motion 

models, iii) adaptive thresholding to detect the inlier 

correspondences, which makes the algorithm robust against 

noise and outliers. 

 

Basically, GA intends to find a subset of inliers from which the 

near-optimal motion model (fundamental matrices) can be 

estimated. To this end, it encodes the putative correspondences 

from feature-based matching into a cellular environment. Then, 

several minimal sets of the correspondences are sampled. A 

guided-sampling strategy based on the spatial distribution of the 

points is used to this end. The whole set of minimal sample sets 

forms the population. In any iteration of the evolution, the 

parent individuals in the population are evaluated against an 

objective function. The objective function is based on the 

concept of least trimmed squares. Then, the genetic operators 

are performed on the selected parents; i.e. they keep being 

crossed-over, mutated and/or randomized to produce a new 

population. These iterations go on the same way until reaching 

an optimal solution, which cannot be improved anymore by 

younger populations. At the end, an adaptive thresholding 

scheme is applied to detect all the inlier correspondences based 

on the estimated motion models. The details of this algorithm 

can be found in our recent publication (Shahbazi et al., 2015). 

 

An important step before sparse matching is to decide which 

image pairs should be matched. In other words, image 

connectivity model should be determined. To this end, the 

method proposed by Ai et al. (2015) is applied. The ground 

fields of view (FoV) of cameras are calculated based on their 

direct EO parameters. Then, stereo pairs with an overlap area 

greater than a threshold are considered to have connection. 

 

4.2 GCP Detection and Block Bundle Adjustment 

Once the motion parameters (relative orientation) are estimated, 

the direct EO parameters can be refined. It is always beneficial 

to make sure that one reference image in the dataset contains 

three or more GCPs. Therefore, the EO of that image can be 

determined accurately and the EO of other images can be 

updated using both the motion parameters relative to the 

reference one and their direct EO parameters. The EO data and 

the coordinates of GCPs are then used to locate GCPs on 

images. The error margin of the approximate EO parameters is 

also applied to find the uncertainty of the GCPs locations on the 

images, by defining their covariance error ellipses. Simple 

colour-based edge detection is used to find the red/yellow edges 

inside the error ellipse and locate the candidate GCPs more 

accurately. Afterwards, a similar ellipse detection method as 

explained in section 2.3 is used to find the exact position of the 

GCPs on the images. Although this process is automatic, the 

user supervision is still required to check the results manually. 

 

Afterwards, it is time to perform block bundle adjustment 

(BBA). The aim of bundle adjustment is to simultaneously 

determine the 3D coordinates of tie points, the EO parameters 

and camera calibration parameters according to the co-linearity 

observation equations. Since, the absolute accuracy of GCPs is 

determined in the surveying process, therefore, it is essential to 

apply them in the BBA. To this end, different BBA strategies 

are tested: i) the minim-constraint least squares optimization 

(LSO) using the GCPs coordinates as weighted observations, ii) 

the inner-constraint LSO giving higher weight to GCPs image 

observations and application of a 7-parameter Helmert 

transformation to the final results afterward.  

 

As the first conclusion obtained, the first strategy (minim-

constraint) is more accurate, since the GCP coordinates can be 

adjusted as well. The second conclusion is that the camera 

calibration parameters, calculated either ways, become so 

sensitive to the number of tie points and stereo pairs. For 

example, in a test where a hundred of stereo pairs are 

participating in the BBA, the focal length is calculated to 

36.028 mm. However, the same parameter is calculated to 

35.102 mm when only twelve high-overlapping images are 

used. We observed the same sort of results in self-calibration 

from Pix4D software. Considering error theories, it is obvious 

that the accuracy of image observations and network 

configuration can influence the values of calibration 

parameters. However, they are still physical quantities and are 

not supposed to change greatly within one specific dataset. 

Therefore, a modified BBA strategy is proposed in this study.  

 

Since we have performed the offline camera calibration several 

times, the parameters obtained by these calibration procedures 

are averaged and their StDs are calculated. A null hypothesis 

that the measured mean and StD values from these sample 

parameters can represent the population's real mean and 

variance at confidence level of 95% is performed with Student's 

t-test. The results show that this null hypothesis can be 

supported by the measured data. Therefore, we modify the BBA 

strategy by considering the camera IO parameters as unknowns 

with known weight. In other words, they are treated as pseudo-

measurements with known variance. As a result, the IO 

parameters from this pseudo-self-calibration do not change 

haphazardly as long as a stable network of images is provided. 

 

4.3 Dense Matching and Scene Reconstruction 

The goal of dense matching is to determine all/most of the 

corresponding points visible in a stereo pair, and to determine 

the disparity map, from which a depth map can be 

reconstructed. Dense matching is generally performed on 

rectified images in order to facilitate the matching by restricting 

it to one direction only (x-axis). There are various techniques in 

the state-of-the-art for dense matching. Valuable reviews of 

these techniques can be found in studies performed by 

Scharstein and Szeliski (2002) and Seitz et al. (2006). Recently, 
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global and semi-global matching techniques have been popular. 

In the global techniques, the disparity values are determined by 

globally minimizing an energy function of disparity. In order to 

make such an optimization possible, mostly hierarchical/ 

iterative algorithms are required to limit the search. This 

increases the computational expenses of matching. Some 

techniques apply shape priors to reduce the computational 

expenses of matching specifically in low-textured images. It 

means that the matching is performed on seed features and the 

results are extended to the patches/ segments. Mostly, a 

technique of occlusion detection or visibility handling should 

also be applied along-with or after the dense matching to avoid 

or remove the outliers caused by occlusion.  

 

In this study, we take the concept of intrinsic curves proposed 

by Manduchi (1998) to develop a new dense matching 

approach. The main improvement that is expected from this 

technique is the computational efficiency from two aspects: i) 

performing global matching by eliminating the need to restrict 

the search area or having initial approximations of disparity 

range, ii) avoiding occlusions by finding and eliminating 

invisible matches even before the matching starts. 

 

An intrinsic curve is a multi-dimensional representation of a 

signal, to which different operators are applied. For imges, this 

definition is clarified with an example. Suppose that the scan-

line (a row) in left rectified image of Figure 9 is denoted as l(xl
), 

where xl is the position of each pixel in the left scan-line and l 

represents the intensity. Therefore, an intrinsic curve can be 

constructed as ( )l
C l l , where l  is the intensity gradient. 

Likewise, the intrinsic curve can be constructed for the right 

scan-line as ( )r
C r r , where r(x

r
) and ( )rr x are the intensity 

and gradient vectors of the right scan-line. These curves 

translate the scan-lines from the spatial space to the intensity 

space. As proved by Manduchi (1998), intrinsic curves are 

invariant to affine mapping. Therefore, if the transformation 

between the left and right scan-lines was only an affine 

geometric one, then the two intrinsic curves would coincide at 

matching points. However, the images are usually corrupted by 

noise, non-affine geometric transformations and photometric 

transformations. Therefore, there is a non-constant variation 

between the two curves.  

  
a 

b 

Figure 9. Representation of intrinsic curves, a) left and right 

rectified images, b) intrinsic curves in the space of intensity 

Assumption: Assume a pixel at location l

ix on the left scan-line 

whose corresponding point on the right scan-line is located at 

r

ix . Therefore, the disparity value of this point is l r

i i id x x  . 

If the intensities are filtered with a low-pass zero-mean filter, 

then it can be assumed that the photometric transformation 

between two scan-lines at the local neighbourhood of these two 

matches consists of drift (ai) and gain (bi) parameters. 

Therefore, it can be proved, as follows, that the two points 
r l

i ix x  can be corresponding only if the tangents to the right 

and left curves at these points are equal. In practice, equality 

should be replaced with a small threshold to take the remaining 

noise and non-smoothness exceptions into account.  

Proof: The right intrinsic curve of point r

ix ( ( )r

i iC r r ) can be 

predicted from the left intrinsic curve ( ( )l

i iC l l ) as follows:    

( ) . ( )

( ) . ( )

i i

i i

r l

i i i

r l

i i

r x a l x d b

r x a l x d

  

  
    (1) 

The tangent at this point on left curve ( tan l

i ) is measured as: 

1

1

tan

where:
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    (2) 

Thus, the tangent at the predicted corresponding point on the 

right curve ( tan r

i ) can be calculated as: 

1 1 1

1 1 1 1

. ( ) . ( ) .
tan

. ( ) ( . ( ) ) .

i

i

l l

i i i i ir i i i
i l l

i i i i i i i i i i

a l x d a l x dr a l

r a l x d b a l x d b a l
   

   

     
  
      

 (3) 

Using this assumption, a search for potential matches 

(hypotheses) is performed along the intrinsic curves of each 

scan-line. The advantage of this search is that it is performed in 

the limited space of intensity, and it is independent of the 

spatial space. This eliminates the need for having an initial 

range of disparity values. It can be noted that in this search, 

occluded points have almost no chance to be hypothesized. An 

example of occlusion occurred in Figure 9 is shown by arrows. 

It can be seen that the occluded area produces a curve segment 

in left curve which is not compatible with other segments of the 

right one. Figure 10 represents the dense point cloud 

reconstructed from two images, once with the proposed method, 

and once using the SURE software-solution for multi-view 

stereo (Rothermel et al., 2012). It can be seen that the proposed 

algorithm avoids visibility occlusions in the matching process.  

 

Afterward, the matching cost (photo-consistency measure) is 

measured for the hypothesized matches based on census 

transform (Zabih and Woodfill, 1994). Then, graph-based, 

Bellman-Ford path minimization is used to find correct matches 

among the hypotheses by optimizing the matching cost 

function. In the graph, the nodes are the hypothesized matching 

pairs (e.g. 
i

l r

jP C C  ). There is an edge from the matching 

pair mP to nP , if mP is a predecessor of nP , and this edge is 

weighted with the matching cost of pair mP . 
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a b 

 
c d 

Figure 10. Example of two images (a, b) processed for dense 

matching using c) the proposed algorithm, d) SURE software. 

 

5. RESULTS OF SFM ALGORITHMS  

To assess the algorithms proposed in the previous section, a set 

of six over-lapped images from the cliff zone were selected. 

The initial overlapping area of the images was calculated 

(Figure 11), the connectivity matrix between images was 

determined, and the SIFT features on connected images were 

calculated and matched. Then, the robust motion estimation and 

matching was performed to determine the fundamental matrices 

between the stereo pair. Finally, the GCP detection was done 

and BBA with the method proposed in section 4.2 was 

performed. Figure 12 visualizes the results of BBA.  

 

The images were once processed with Pix4D software for self-

calibration, and once with our method (sections 4.1 and 4.2). 

Then, both of the results were input to SURE software for dense 

matching. Also, dense matching was performed with our 

algorithm (section 4.3). Then, the three obtained point clouds 

were compared to the ground-control, laser point cloud. It 

should be noted that our algorithm for dense matching is still 

under development. Therefore, no filtering method is still 

developed for removing outliers. Some of these outliers are 

resulted due to multi-view redundancy and some others are 

caused by the fact that our algorithm still lacks the aggregation 

of smoothness priors to the matching cost. Therefore, the 

disparity maps were compared with those of SURE to remove 

the outliers; nevertheless, in all the stereo pairs, more than 85% 

accordance (where the difference of calculated disparity values 

is less than one pixel) has been noticed between our and 

SURE's disparity maps. Figure 13 visualizes the generated point 

clouds by these tests, and the histograms of distances between 

each point cloud and the laser point cloud are illustrated as well. 

It can be noticed, that slight improvement of accuracy (about 

1.5 cm) is achieved using our algorithm for motion estimation 

and bundle adjustment in comparison with Pix4D results. On 

the other hand, slight improvement of 1 cm is also observed by 

our dense reconstruction method in comparison with SURE. 

 
Figure 11. The approximate fields of view of cameras 

 

Figure 12. Visualization of BBA results 

 

 

a 

 

b c 

 

d e 

 

f g 

Figure 13. Visualization and accuracy analysis of the results. a) 

laser point cloud, b) dense point cloud from SURE using our 

EO and IO parameters, c) histogram of distances between point 

clouds (b) and (a), d) dense point cloud from SURE using 

Pix4D EO and IO parameters, e) histogram of distances 

between point clouds (d) and (a), f) dense point cloud from our 

algorithms, g) histogram of distances between point clouds (f) 

and (a). 

 

6. CONCLUSION 

In this paper, we presented our approaches as well as theoretical 

and experimental developments for implementation and 

evaluation of a UAV photogrammetric system. Both aspects of 

data acquisition and data processing were discussed. The results 

obtained in comparison with the ground-control data, showed 

the efficient performance of our system in terms of data 

acquisition. The comparative results obtained from different 

software packages, showed the potential of our SfM 
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computation algorithms for improving the 3D modelling 

accuracy and efficiency. However, more investigation is still 

required, specifically for the dense matching algorithm.  
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