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Abstract. The significant role of plants can be observed through the dependency of animals 

and humans on them. Oxygen, materials, food and the beauty of the world are contributed by 

plants. Climate change, the decrease in pollinators, and plant diseases are causing significant 

decline in both quality and quantity of the plants and crops on global scale. In developed 

countries, above 80 percent of rural production is produced by sharecropping. However, due 

to widespread diseases in plants, yields are reported to have declined by more than a half. These 

diseases are identified and diagnosed by the agricultural and forestry department. Manual 

inspection on a large area of fields requires a huge amount of time and effort, thereby reduces 

the effectiveness significantly. To counter this problem, we propose an automatic disease 

detection and classification method in radish fields by using camera attached on Unmanned 

Aerial Vehicle (UAV) to capture high quality images of the fields and analyze them by 

extracting both color and texture features, then we perform segmentation on them using K-

means clustering to select radish regions in the field and feeds them into convolutional neural 

network (CNN) to detect Fusarium wilt of radish efficiently at early stage and allow the 

authorities to take timely action which ensures the food safety for current and future 

generations. 

Keywords. Unmanned aerial vehicles, radish field database, radish field segmentation, 

Fusarium wilt of radish classification 

1. Introduction 

In Korea, radish is considered the national vegetable, occupying about 10% of the entire 

vegetable farming area. It is an indispensable ingredient in soups, stews, and other dishes. 

However, the yield of radish has decreased sharply because Fusarium wilt of radish has 

emerged at an unprecedented rate. The symptoms include wilting, chlorosis, necrosis, 

premature leaf death and a deterioration of the vascular elements in roots, stems, and petioles 

which lead to imminent death of the infected plant [1]. It is challenging to prevent and treat the 
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disease due to several reasons. When the disease appears, it spreads rapidly from infected plants 

to healthy plants, resulting in severe harvest losses. Early detection of the disease could prevent 

the widespread of the disease and mitigate the damage. Manual field inspection has been 

applied for a long time, but it is inefficient, and time-consuming. Therefore, an automated, fast, 

and precise surveillance system for detecting Fusarium wilt of radish will likely become reality 

more than ever as advanced technologies such as UAVs, IoT application, and remote sensing 

are emerging.   

Remote sensing is part of a GIS system which supports the measurements of agricultural 

area. Satellite and airplanes have been two major remote sensing technologies for a long time. 

The results acquired from satellite remote sensing are affected by poor resolution image or 

inaccurate information due to poor weather conditions and high costs [2] whereas in airplanes 

remote sensing, the plane is equipped with multiple sensors and cameras which provide high 

quality and detailed information, yet the equipment is expensive and hard to operate [3]. As an 

alternate method, unmanned aerial vehicle (UAV) is a remote-controlled aircraft which records 

the interested surface at relatively low-altitudes [4]. Owing to the advances in sensing 

technology, control, and positioning techniques, UAV is now capable of acquiring high spatial 

resolution surface images at low operational cost. Because it has multiple functions as well as 

its cost-effectiveness, the applications of UAV are rising rapidly. It can be applied in many 

areas from traffic monitoring [5] to forest fire monitoring [6] and search & rescue operations 

[7]. In addition, UAV has a promising potential in converting precision farming into 

autonomous farming [8]. It assists farmers in observing crop and field information in a timely 

manner which lead to the improvement in crop management and farm planning. 

Beside remote sensing, Internet of things (IoT) concepts is emerging and has drawn much 

attention to the research community recently [21,27,28,29]. IoT lets various devices around us 

communicate and collaborate with each other. In case of radish farming, multiple sensors have 

already been placed on the field to collect periodic scalar data such as light, temperature, 

humidity, etc. then the data are sent directly to the main controller for analyzing and 

automatically adjusting the optimal environmental parameters for radish. As the UAV 

applications have rocketed in recent years, it can be integrated to existing IoT system on the 

field. By letting the drone flies over pre-programmed locations at specific time on daily basis 

to record multimedia contents such as video and images, these contents are then sent to the 

main controller for detecting the wilt of radish in real-time and notifying the users detailed 

information by sending message if the disease is detected. 



Traditional approaches in  image representation relied heavily on extracting hand-

engineered features like color, texture and shape features [9, 10], scale invariant features 

transform (SIFT) [11], and bag-of-visual words [12]. Those systems relied on shallow 

classification methods like support vector machines [22], decision tree [24], random forest, 

dependencies of inter-block coefficients [30], multi-scale non-negative sparse coding [31], 

multi-factor feature [32, 33], swarm intelligence [25] and neural networks for identifying plant 

diseases [26]. However, the low discriminative ability of these features and their failure to 

describe high level semantics resulted in poor classification performance. Recent successes in 

deep learning based methods in image classification tasks have received much attentions of 

computer vision researchers to utilize these powerful hierarchical architectures for various 

tasks [13]. While modern CNN architectures do require a huge computational power, efforts 

have been made to reduce their computational needs while keeping their performance as high 

as possible. Consequently, several efficient CNN architectures have been proposed like 

GoogleNet [14], Network-in-Network [15].  

Based on the above analysis and considerations, we proposed a novel approach to combine 

UAVs with computerized methods for detecting the criticalness of Fusarium wilt of radish. The 

main contributions include four aspects: 

 Detecting and categorizing the criticalness of Fusarium wilt of radish. 

 Segmenting the radish regions from other regions on the field such as bare ground and   

mulching film. 

 Classifying the severity of the Fusarium wilt of radish based on thresholding a range of 

color features. 

 Creating two different datasets. One dataset contains high resolution radish field images 

obtained from the drone. The other dataset contains images for radish, bare ground and 

mulching film regions which were manually verified and collected. They will be made 

public for the research community for further experimentation and simulations.   

2. Datasets 

2.1. Image Acquisition 

The images used in this study were captured in different areas in Korea between July and 

September 2016. Two commercial UAVs (Phantom 4, DJI co., Ltd.), equipped with RGB 

camera (12 mega pixels), were used to obtain the images at the altitudes of approximately 10m 



above the ground level. A total 40 images were acquired and each image has dimensions of 

4000 x 3000 pixels. 

2.2. Dataset Preparation 

From the original 40 images, two datasets were created. Dataset A contains manually 

cropped and labeled regions of interest (ROIs) representing three regions: radish, bare ground, 

and mulching film as shown in Fig. 1. In total, 1,500 ROIs were extracted; 500 ROIs for radish, 

500 ROIs for bare ground, and 500 ROIs for mulching film regions. Dataset A is used for radish 

region classification. Dataset B contains the original 40 images of size (4000x3000) pixel. 

 

Figure 1. Sample image of radish field. Colored regions indicate different regions of radish fields (Green: 

Healthy radish, Red: Fusarium wilt of radish, Blue: Bare ground, Black: Mulching film) 

3. Methodology 

As shown in Fig. 1, the whole radish field contains three main regions (Radish, bare ground, 

and mulching film). The final goal of this study is to detect Fusarium wilt on radish leaves so 

segmentation is needed to divide the radish field in Dataset B into distinct regions. Next, a 

classifier is trained to recognize which region is radish using Dataset A, the output after 

applying this classifier to the segmented regions is radish regions. After that, by sliding a fixed 



size rectangular window (64x64, 128x128, 256x256) pixel through the radish regions from the 

segmentation step, a list of small size radish images was extracted, each image was assigned a 

label indicates level of disease by applying various image processing methods. Finally, a 

convolutional neural network (CNN) model is implemented for classifying Fusarium wilt of 

radish based on the severity of the disease. The overall process of the proposed model is shown 

in Fig. 2. 

 

Figure 2. Overview of the proposed method for Fusarium wilt of radish classification 

3.1. Features Extraction & Features Selection 

An image contains various useful features such as: color, shape, texture. Each type of 

feature serves specific purpose in image processing. However, image information retrieval 

using only one kind of feature is not good enough for the accuracy and efficiency of the model. 

High dimensional feature lower the model efficiency whereas low dimensional feature decrease 

model accuracy, it is better to use multi features for feature retrieval. Since, color and texture 

are the most important visual features, they are extracted in this study. Local binary pattern 

(LBP) in [16] was applied to extract texture features from radish image whereas color features 

were extracted by using color-space conversion. After that, two featured sets were combined 

into one feature vector then AutoEncoder (AE) [17] was utilized to reduce the feature 

dimension. 



 

Figure 3. Features extraction and features selection process 

3.1.1. Features extraction 

Local binary pattern provides a robust texture descriptor which is invariant to rotation and 

illumination changes at low computational cost. Input a (center) pixel c in an image, LBP takes 

its neighboring pixels (a set of regularly distributed pixels on a circle) p (p = 0, …, P−1) in a 

radius R and generates a binary pattern vector as shown in below formula 𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝𝑃−1𝑝=0 − 𝑔𝑐)2𝑝   (1) 

where s(x) is 1 if x≥0 or 0 if x<0, 𝑔𝑐 and 𝑔𝑝 indicate the grayscale of the center pixel and 

its neighborhood pixels, respectively. However, the binary pattern vector generated above is 

still sensitive to rotational invariance, so Equation (2) is a solution to overcome this problem. 𝐿𝐵𝑃𝑃,𝑅𝑟𝑖 = min{ 𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖) |  𝑖 = 0,1, … , 𝑃 − 1  } (2) 

where 𝑅𝑂𝑅(𝑥, 𝑖) is computed by a circular bitwise right shift operation which means that 

the same binary pattern code generated by the bitwise operation is regarded as one identical 

pattern. In our case, LBP features are computed on a gray-scale image using three neighboring 

topologies (P, R) = {(8, 1), (16, 2), (24, 3)} which generated 703,404 features. 

Radish field images were captured in RGB (red, green and blue) color space then converted 

into HSV (hue, saturation, value) and L*a*b (lightness, green–red, blue–yellow) color space 

for a better processing result. Then the histograms were built on hue, *a, and *b channels (256 

bins or features per histogram). After that, three color histograms were concatenated into one 

color histogram, generating approximately 768 color features 



3.1.2. Feature selection 

After extracting texture features and color features, they were combined into one single 

features vector. However, two features cannot be combined directly because there is a huge 

difference between their dimension, therefore the classification and segmentation step will be 

influenced by the texture features which had much more dimensions than the color features. 

This imbalance will probably affect the accuracy of the model. The solution for this problem 

is to scale the dimensions of these two features to the same dimensions. Initially, texture 

features 𝑡𝑖 is shrunk whereas color features 𝑐𝑖 is extended so each features set will occupy half 

of the dimensions 𝑑𝑥 of the input vector 𝑥𝑖. 
The input vector 𝑥𝑖  is made by concatenating texture features 𝑇𝑖  and color features 𝐶𝑖 , 

which are the shrunken texture features of 𝑡𝑖 and extended color features of 𝑐𝑖, respectively. 𝑇𝑖, 𝐶𝑖 and 𝑥𝑖 are computed as follows: 𝑇𝑖 = 𝑊𝑡𝑡𝑖 + 𝑏𝑡   (3) 𝐶𝑖 = 𝑊𝑐𝑐𝑖 + 𝑏𝑐   (4) 𝑥𝑖 =  [𝑇𝑖 𝐶𝑖]  (5) 

where the matrices 𝑊𝑡 ∈ 𝑅𝑑𝑥×𝑑𝑡  and 𝑊𝑐 ∈ 𝑅𝑑𝑥×𝑑𝑐  represent the weights, 𝑏𝑡  and 𝑏𝑐 

represent their biases. 

 After applying scaling, the texture features 𝑡𝑖 was reduced from 703,404 to 𝑇𝑖 =10,000, 

and color features 𝑐𝑖 was extended from 768 to 𝐶𝑖 =10,000. As the result, the input vector 𝑥𝑖 
contains a total of 20,000 features. The number of features were in very high dimensional space 

so a features selection method is implemented to improve the system performance. 

AutoEncoder (AE) [17] is an unsupervised learning technique, typically used for 

dimensionality reduction. It includes the input and output layer (of the same dimensionality) 

and hidden layer(s). It tries to learn an approximation/representation of the input. The 

dimensionality of the hidden layers is smaller than the input and output layers. The hidden 

layers learn the compressed representation of the input (encoding), i.e., extracting meaningful 

features from the input. Finally, the input features were reduced and compressed by applying 

two-stacked AE [18] on 20,000 features to only 1,770 features. 

3.2. Radish Region Classification 

A softmax classifier is constructed for radish field classification, it computes the probability 

that a region belongs to a specific class. The class which has the highest probability is assigned 

to the region. It is a generalization of logistic function that can be used for multi-class 



classification. It is mainly deployed as a final classification layer for neural network based 

model. Given a feature vector 𝑥, the softmax classifier outputs the probability for each class 

label 𝑗 (𝑗 = 1, … , 𝐶) as follows: 𝑃(𝑦 = 𝑗|𝑥) =  𝑒𝑢(𝑥)𝑗∑ 𝑒𝑢(𝑥)𝑘𝐾𝑘=1     ,    𝑓𝑜𝑟 𝑗 = 1 … . 𝐶    (6) 𝑢(𝑥)𝑗 = ∑ 𝑤𝑖𝑗 ∙ 𝑥𝑖 +  𝑏𝑗𝐼𝑖=1     (7) 

In which 𝑦𝑎represents the class label, 𝑤𝑖𝑗 is the weight and 𝑏𝑗  is a bias (𝑖 = 1, … , 𝐼, 𝑗 =1, … , 𝐶). 𝐼 and 𝐶 denote the number of features and classes (radish, bare ground, and mulching 

film), respectively. The weight w and bias b are computed to minimize mean squared error 

(MSE) with 200 iterations. Equation (6) is called softmax function that return a C-dimensional 

vector of real values between 0 and 1, representing the categorical probability distribution. The 

class which has the highest probability is assigned to 𝑥. 

Support vector machine (SVM) was also implemented to compare with softmax classifier 

to find the optimal classifier for the dataset, SVM is proved to be one of the most efficient 

algorithms for classification problem [22]. It uses decision boundary to separate sample from 

different classes. The SVM kernel used in this study is linear kernel because the number of 

features were larger than the number of training samples so there is no need to map data to a 

higher dimensional space and we only needed to search for the suitable parameter C. LibSVM 

[23] is a library for implementing support vector machines (SVM). It helps the users implement 

and customize SVM easily to fit their case. After using cross-validation supported by the 

library, the best values for C was 0.5. 

3.3. Radish Field Segmentation 

In the entire radish field image, radish is the only region of interest for further steps, thus 

K-means clustering is implemented to segment the radish field image into distinctive regions 

and only the radish regions are collected. Fig. 4 shows the entire process of radish field 

segmentation. Features are extracted from original radish RGB field image. Then, K-means 

clustering is performed with K=3, 5, 10, 15 and 20. For each cluster, the radish field classifier 

from previous section is used to assign a class label (radish, bare ground and mulching film) 

to each cluster.  

After filtering out the radish regions through K-means clustering, a fixed window was 

created to slide through the region, and the window size was set to 64, 128, and 256 

sequentially so we can figure out which window size achieves the best Fusarium wilt of radish 

classification results. 



 

Figure 4. Overview of radish field segmentation process 

3.4. Disease Criticalness Categorization 

As the criticalness of Fusarium wilt appears in the radish at many stages, farmers have 

specific treatment plan for each stage. Early and accurate detection and diagnosis of plant 

diseases is the key factor in plant production and the reduction of both qualitative and 

quantitative losses in crop yield. Fig. 5 shows sample ROIs for healthy, light and heavy disease.  

Each image extracted from the segmentation step was converted from RGB to HSV color 

space, and after that, thresholding operations were performed by applying a range of pixel 

values representing the greenish region. When applying the thresholding technique, the portion 

of black pixel represents yellowish region (Fusarium wilt) while the portion of white pixel 

represents the greenish region (healthy radish). Radish that suffered from more severe disease 

have more black pixels in the threshold image than healthy radish or radish suffered from early 

stage of the disease. Therefore, the following properties are used to set a threshold to classify 

each input image into one of these three categories: healthy, light disease, and heavy disease 

as illustrated in Fig. 5. If the percentage of white pixels in the image is over or equal to 90%, 

it is categorized as healthy radish. For the disease light radish, it is less than 85% and over 

65%. The image is categorized as disease heavy radish if the percentage of white pixels is less 

than 65%. As the result, for each window size (64, 128, 256), 6,000 images were extracted 

including 2,000 for healthy radish, 2,000 for light disease and the other 2,000 images for heavy 

disease 



 

Figure 5. Sample criticalness categorization on (128x128) pixel window size 

3.5. Fusarium Wilt of Radish Classification 

In order to detect and classify the criticalness of the Fusarium wilt of radish , a well-known 

CNN model GoogleNet [14] is adopted. This CNN model was proposed in the ImageNet large 

scale visual recognition challenge [19], this CNN model achieved a remarkable performance 

of 5.5% top-5 classification error compared to AlexNet 15.3% top-5 classification error. 

3.5.1. Convolutional neural network 

This CNN model is more complicated and deeper in analyzation than all previous CNN 

models. Moreover, it uses “Inception” which concatenates filters of various sizes and 

dimensions into a single new filter. It contains two convolutions, two pooling and nine 

“Inception” layers. In this paper, three different RGB image sizes were used as an input (64x64, 

128x128, 256x256) corresponding to 3 different window sizes (section 3.3). By comparing 

them, we can decide which size gives the best results. Fig. 6 shows the illustration of CNN 

architecture used in this paper.  



 

Figure 6. Illustration of GoogleNet’s architecture 

3.5.2. CNN training process 

After the disease criticalness categorization in section 3.4, we have three small datasets for 

3 different window sizes: each size includes 2,000 healthy radish images, 2,000 light Fusarium 

wilt, and 2,000 heavy Fusarium wilt. The entire dataset was randomly divided into training and 

validation set. The training and validation set occupied 75% and 25% of the entire dataset 

respectively, and the validation set was used for tuning the learning rate. In the training phase, 

the batch size was set to 90 and momentum was 0.9.  The learning rate was initially set to 0.01 

and gradually reduced to 0.0001 according to the error rate of the validation set, as the 

parameter vector bounces around chaotically with a high learning rate, therefore it is ideal to 

step decay the learning rate. The training phase ran for 30 epochs, which took approximately 

1 hour.  

The system used for training CNN model was NVIDA DIGITS toolbox with Caffe 

framework. The experiments were implemented on a Linux machine, with Ubuntu 14.04, it 

used Intel® Core i7-5930K processor, four NVIDIA Titan X 12GB GPUs, four 3072 Cuda 

cores, and 64GB of DDR4 RAM. 

4. Experimental Results and Discussion 

4.1. Evaluation Methodology 

4.1.1. Classification evaluation protocol 

K-fold cross validation (k=3) is applied to evaluate the system performance. it divides the 

entire dataset into k roughly equal-sized disjoint subsets. Two subsets are used to train the 

proposed method, while the remaining subset is used to evaluate the performance of the 

method. This is repeated k times with differing choices of the remaining subset. For radish field 
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True 

classification, the confusion matrix is computed to assess the ability of our model to distinguish 

differing areas of radish fields (Radish, bare ground, and mulching film). The confusion matrix 

CM can be computed by: 𝐶𝑀𝑖𝑗 =  ∑ |{𝑟 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑟) = 𝑖 𝑎𝑛𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑟) = 𝑗}𝑅∈𝑑   (8) 

where 𝑅 is the ROIs and 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑟) and P𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑟) denote the ground truth 

class label and predicted class label of an ROI 𝑟, respectively. 

4.1.2. Segmentation evaluation protocol 

The radish field segmentation using K-means clustering was accessed with different value 

of K (K=3,5,10,15, and 20). Therefore, the results varied when different K were applied. In 

order to find the value of K which had the highest performance, the segmentation results were 

evaluated by calculating the pixel-level segmentation accuracy [20] (PSA). PSA is the most 

popular semantic segmentation measure which evaluates pixel-level classification accuracy. 

PSA is calculated in Equation (9) 𝑃𝑆𝐴 =  ∑ 𝐶𝑖𝑖𝑛𝑖∑ ∑ 𝐶𝑖𝑗𝑛𝑗𝑛𝑖   (9) 

PSA was measured for different values of K in K-means clustering (K=3,5,10,15, and 20), 

thus we can analyze the effect of the size of the clusters on segmentation performance. 

4.2. Radish Region Classification Results 

Table 1 and Table 2 show the confusion matrix of classification results on Dataset A (radish 

ROIs: 500, bare ground ROIs: 500, and mulching film ROIs: 500). After that, we calculated 

precision, recall and F-measure for SVM classifier and softmax classifier using the confusion 

matrix. The result is shown in Fig. 7; it is noticeable from the graph that softmax classifier 

achieves the overall performance over 90% whereas, for SVM the F-measure is 72% since 

correctly classified bare ground was only 342 per 500 samples. As the result, softmax classifier 

is chosen to be the default classifier in the model. 

Table 1. Confusion matrix for softmax classification 
 

Radish Bare Ground Mulching Film 

Radish 498  0 13 

Bare ground 1 491 104  

Mulching film 1 9 383 
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True 

Table 2. Confusion matrix for SVM classification 
 

Radish Bare Ground Mulching Film 

Radish 475  3 2 

Bare ground 18 342 6 

Mulching film 7 155 492 

 

Figure 7. Comparison between SVM and softmax classifier on Dataset A 

4.3. Radish Field Segmentation Results 

Radish field segmentation accuracy was computed by pixel-level segmentation accuracy 

(PSA), it is also validated by 3-fold cross validation with same dataset and classifier used for 

radish field classification evaluation.  
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Figure 8. PSA evaluation on K-means with different K   

Radish field segmentation results (PSA) with different cluster (K) values are presented in 

Fig. 8. As K increases, the overall PSA accuracy increases gradually to 93%. However, when 

the value of K is greater than 10, it gradually decreases. As the optimal value of K depends 

solely on the dataset, in case of this dataset, PSA was used to find the most suitable K value. 

With K=10, the PSA accuracy was over 91% for radish, bare ground, and mulching film. The 

experimental results suggest that K=10 is the optimal number of clusters for radish field 

segmentation. 

 

Figure 9. Radish field segmentation results 

83.38

88.66

93.02

92.01

90.01

0 20 40 60 80 100

20

15

10

5

3

PSA accuracy

K
 v

a
lu

e

Overall

Mulching film

Bare ground

Radish



Fig. 9 shows the segmentation results with K=10. The regions corresponding to radish, 

bare ground, and mulching film are correctly classified as labeled. Although, the segmentation 

result works great on separating radish, bare ground and mulching film, misclassified regions 

are also represented in Fig. 10. These include withered radishes that are mainly brown in color. 

Due to the similarity in color with bare ground, these regions were clustered together with bare 

ground by K-means clustering. The low performance is not caused by the radish field classifier 

but by the clustering method, as K-means clustering is based on three color channels as 

described in section 3.2 

 

Figure 10. Wilt of radish segmentation results (Brown leaves was misclassified as bare ground) 

4.4. Fusarium Wilt of Radish Classification Results 

Fig. 11 shows the performance of Fusarium wilt of radish classification on different image 

sizes. Overall, the 128x128 image size dataset achieves the highest classification performance 

at over 90% for three classes. Taking a closer look into 128x128 window size, the model 

misclassifies two pairs of classes, the first pair is (normal, disease light), the second pair is 

(disease light, disease heavy), one possible reason is because the color value range threshold 

to distinguish between three classes was similar, therefore it was unable to assign the right 

class for some images. Besides the 128x128 size dataset, the results for 64x64 and 256x256 

window sizes are not as good as 128x128 size dataset, thus in this study the 128x128 size 

dataset is deemed the optimal size. 



  

 

Figure 11. Fusarium wilt of radish classification results on different window sizes 

Fig. 12 shows the Fusarium wilt of radish detection results on radish region images. Fig. 

13 shows the detailed detection results of the Fusarium wilt of radish. Generally, the Fusarium 

wilt of radish grows from yellow to brown as the disease gets worse. As can be seen in Fig. 13, 

light-level Fusarium wilt of radishes (partly yellow) and heavy-level Fusarium wilt of radishes 

(mainly yellow) are successfully detected. However, some parts of the leaves are missing 

because browned radishes such as heavy-level Fusarium wilt of radish or dried radish are often 

segmented as bare ground in segmentation step they are discarded when only radish region 

images are extracted. This problem causes a reduction of Fusarium wilt of radish detection 

accuracy. 
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Figure 12. Extracted radish image (Left) and wilt of radish detection result in radish field (Right) 

 

Figure 13. Closed-range Fusarium wilt of radish detection 

5. Conclusions 

This study introduces an efficient framework to identify and detect different levels of 

Fusarium wilt on radish from healthy to disease heavy. Many techniques were implemented to 

improve the performance of the system such as extracted both color features and textures 

features from the image, segmented the field and select only radish region. Finally, GoogLeNet 

is able to detect Fusarium wilt of radish with the accuracy of over 90%.  

The model is capable of detecting Fusarium wilt of radish from UAV’s images which has 

a great potential for reducing the labor cost in managing and preventing the disease, as well as 

ensuring radish sustainable production. The proposed system is able to detect Fusarium wilt on 

other type of crops including tomato, tobacco, banana because it is a common vegetable disease 

therefore the model plays an important role on maintaining the sustainability of crop yields. 

In the future, several related issues will be study. Firstly, beside RGB image, infrared is 

often employed to monitor diseases and the infrared filter is easy to equip on existing UAV’s 

camera lens. A methodology that combines RGB images and infrared images will probably 

improve the performance of the model. Secondly, several pre-processing techniques and deep 

learning models to improve the performance of this problem will be studied.  
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