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Abstract: The article presents an approach to the control of a UAV on the basis of 3D landmark

observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed

on the basis of the landmarks’ position prediction with the aid of a modified Kalman-type filter.

Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased

UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis

of the suggested algorithm shows good performance, even under significant external perturbations.
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1. Introduction

Modern UAV’s navigation systems use the standard elements of INS (inertial navigation

systems) along with GPS, which permits correcting the bias and improving the UAV localization,

which are necessary for resolving mapping issues, targeting and reconnaissance tasks [1]. The use of

computer vision as a secondary or a primary method for autonomous navigation of UAVs has been

discussed frequently in recent years, since the classical combination of GPS and INS systems cannot

sustain autonomous flight in many situations [2]. UAV autonomous missions usually need so-called

data fusion, which is a difficult task, especially for standard INS and vision equipment. It is clear

that cameras provide visual information in a different form, inapplicable to UAV direct control, and

therefore, one needs an additional on-board memory and special recognition algorithms.

1.1. Visual-Based Navigation Approaches

Several studies have demonstrated the effectiveness of approaches based on motion field

estimation and feature tracking for visual odometry [3]. Vision-based methods have been proposed

even in the context of autonomous landing management [2]. In [4], visual odometry based on

geometric homography was proposed. However, the homography analysis uses only 2D reference

points coordinates, though for the evaluation of the current UAV altitude, the 3D coordinates are

necessary. All such approaches presume the presence of some recognition system in order to detect

the objects nominated in advance. Examples of such objects can be special buildings, crossroads,

tops of mountains, and so on. The principal difficulties are the different scale and aspect angles of

observed and stored images, which leads to the necessity of huge template libraries in the memory of

the UAV control system. Here, one can avoid this difficulty, because of the usage of another approach

based on the observation of so-called feature points [5] that are scale and aspect angle invariant.

For this purpose, the technology of feature points [6] is used. In [7], the approach based on the
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coordinate correspondence of the reference points observed by the on-board camera and the reference

points on the map loaded into the UAV’s memory before the mission start had been suggested.

During the flight, these maps are compared to the frame of the land, directly observed with the

help of an on-board video camera. As a result, one can detect the current location and orientation

without time-error accumulation. These methods are invariant to some transformations, and they are

noise-stable, so that predetermined maps can be different in scale, aspect angle, season, luminosity,

weather conditions, etc. This technology appeared in [8]. The contribution of this work is the usage

of a modified unbiased pseudo-measurements filter for bearing-only observations of some reference

points with known terrain coordinates.

1.2. Kalman Filter

In order to obtain metric data from visual observations, one needs first to make observations

from different positions i.e., triangulation and then use nonlinear filtering. However, all nonlinear

filters either have unknown bias [9] or are very difficult for on-board implementation, like the

Bayesian-type estimation [10,11]. Approaches for position estimation based on bearing-only

observations had been analyzed long ago, especially for submarine applications [12] and nowadays

for UAV applications [1].

A comparison of different nonlinear filters for bearing-only observations in the issue of

ground-based object localization [13] shows that the EKF (extended Kalman filter), the unscented

Kalman filter, the particle filter and the pseudo-measurement filter give almost the same level

of accuracy, while the pseudo-measurement filter is usually more stable and simple for on-board

implementation. This observation is in accordance with older results [12], where all of these

filters were compared in the issue of moving object localization. It has been mentioned that all

of these filters have bias, which makes their use in data fusion issues rather problematic [14].

The principle requirement for such filters in data fusion is the non-biased estimate with the

known mean square characterization of the error. Among the variety of possible filters, the

pseudo-measurement filter can be easily modified to satisfy the data fusion demands. The idea of

such nonlinear filtering was developed by V.S. Pugachev and I. Sinitsyn in the form of so-called

conditionally-optimal filtering [15], which provides the non-biased estimation within the class of

linear filters with the minimum mean squared error. In this paper, we develop such a filter (the

so-called pseudo-measurement Kalman filter (PKF)) for the UAV position estimation and give the

algorithm for path planning along with the reference trajectory under external perturbations and

noisy measurements.

1.3. Optical Absolute Positioning

Some known aerospace maps of a terrain in a flight zone are loaded into the aircraft memory

before the start of a flight. During the flight, these maps are compared to the frame of the land, directly

observed with the help of an on-board video camera. For this purpose, the technology of feature

points [6] is used. As a result, one can detect the current location and orientation without time-error

accumulation. These methods are invariant to some transformations and are also noise-stable, so that

predetermined maps can vary in height, season, luminosity, weather conditions, etc. Furthermore,

from the moment of the previous plane surveying, the picture of this landscape can be changed due

to human and natural activity. All approaches based on the capturing of the objects assigned in

advance presume the presence of some on-board recognition system in order to detect and recognize

such objects. Here, we avoid this difficulty by using the observation of feature points [5] that are scale

and aspect angle invariant. In addition, the modified pseudo-measurements Kalman filtering (PKF)

is used for the estimation of UAV positions and the control algorithm.
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1.4. Outline of the Approach and the Article Structure

One of the principal parts of this research is an approach to the estimation of the UAV

position on the basis of the bearing-only observations. The original filter that uses the idea of

pseudo-measurements had been suggested in reference [16] for the case of the azimuth bearing of

the terrain objects nominated in advance. In reference [17], this approach had been extended to

the case of two angle measurements, namely azimuth and elevation. However, the usage of this

approach as a real navigation tool needs huge on-board memory and a sophisticated recognition

algorithm, since the template and in-flight observed images, even of the same object, are rather

different due to the changes of illuminance, the altitude of flight and the aspect angles. That is why the

method based on the observation of feature points looks more attractive for in-flight implementation.

In reference [7], an algorithm joining together the feature points approach and modified PKF had been

suggested, though for 2D feature point localization, while the more advanced 3D localization had

been suggested in references [18,19], which are the shortened versions of the methodology presented

in this article.

In this work, we use a computer simulation of a UAV flight and on-board video camera imaging.

The simulation program is written in MATLAB. The type of feature points is ASIFT, realized in

OpenCV (Python) [20]. Feature points in this model work as in a real flight, because the images for

the camera model and for the template images were transformed by projective mapping and created

by observations from different satellites.

The next section presents the original RANSAC algorithm for 3D feature point localization.

Sections 3 and 4 give the description of PKF, providing the unbiased estimation of the UAV position

with the estimate of quadratic errors. Section 5 describes the locally optimal control algorithm for

tracking the reference trajectory on the basis of PKF estimation of the UAV position. In Section 6, we

give a new approach to the RANSAC robustness with the use of the UAV motion model. Section 7

presents the modeling results, and Section 8 is the conclusions.

2. Random Sample Consensus for Isometry

At every step, the algorithm deals with two images of a 3D landscape. An example of the

landscape used for modeling is shown in Figure 1.

Figure 1. (a) Image Ic of the on-board camera of the UAV; (b) template image loaded in the UAV

memory in advance.

The first image Ic is obtained from the on-board UAV camera, the position of which is unknown

and should be estimated. The second image Im was taken previously from a known position and
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uploaded into the UAV memory. The ASIFT method is used for both images to detect feature points,

which are specified in pixels:

ci =
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and calculates their descriptors. The correspondence between images is constructed by using these

descriptors, and thereby, the feature points are combined in pairs. However, many of these pairs

are wrong, and therefore, these pairs are considered as outliers or they are not. The result of ASIFT

correspondence is shown in Figure 2.

The Earth coordinate system is the Cartesian coordinate system, which is rigidly connected with

the Earth. Therefore, the algorithm uses a 3D terrain map of the area from which the image Im was

taken and over which the UAV flies. Therefore, one can determine the coordinates of the points:

ri =
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which generated mi points in the Earth coordinate system. However, if i corresponds to the pair of

points that is not an outlier, then the point ri also generates a point ci in the UAV camera.

Figure 2. (a) Image Ic of the on-board camera of the UAV; (b) template image loaded in the UAV

memory in advance.

Another Cartesian coordinate system is rigidly connected with the UAV camera. The axis of the

camera is parallel to the axis z. The transformation from the Earth coordinate system to the UAV

coordinate system has the form:

r′ = A(r − b)

where b represents the coordinates of the camera in the Earth coordinate system and A is the

orthogonal (AAT = I) rotation matrix defining the orientation of the UAV camera. Then, the points

ri in the camera coordinate system are:

r′i = A(ri − b)
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To define the relation between ri and the feature points ci, one can use the model of the camera

obscura. This model gives a central projection on the plane:

ci =
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= ρi = Kr′i = KA(ri − b)

where K is a known calibration matrix of the camera.

Thus, the task is to estimate A and b on the basis of known ci, ri, K. The minimum number of

feature point pairs needed to solve this task is three.

One can give the solution of the problem under the assumption that there are just three pairs:

i = {1, 2, 3}

Points r′i form a triangle in the space with the following sides:

ρ1 = ||r′2 − r′3||2, ρ2 = ||r′3 − r′1||2, ρ3 = ||r′1 − r′2||2

Meanwhile, due to the rectilinear propagation of light, each point r′i lies on the beam r′ = ait,

where t is a scalar parameter, and:
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In order to find r′i , we have to determine parameters ti, i = {1, 2, 3} that satisfy the system of

quadratic equations:

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3

For the given t1, this system may be either solved analytically or has no solution.

A determination of t1 can be done numerically, for example by the bisection method.

Finally, one can obtain the coordinates of three points on the Earth’s surface in the camera

coordinate system r′i and, at the same time, in the Earth coordinate system ri. The connection between

them is: r′i = A(ri − b). Since A is the orthogonal matrix, then y = Ax implies ||y||2 = ||x||2; thereby:

r′Ti r′i = (ri − b)T(ri − b)

Therefore, we have eliminated A and obtained the problem of finding the intersection of three

spheres, which can be solved analytically. This problem may have two solutions; one of them will be

rejected later. When b has been found, solutions for A are as follows:
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If the first one is correct, then the second one corresponds exactly to the turnover.

As a result, A and b have been found by using three pairs of feature points and the height map.

However, this approach alone is not suitable as the final solution, due to the following problems:

1. The method gives either knowingly false solution or no solution at all if among the three

points there are outliers.

2. There is a strong dependence on the noise in the feature points’ location.

Both problems may be solved with random sample consensus (RANSAC) [21,22]. From the

general selection of points, one needs to select N times a subsample of size three. For each subsample

j = {1, 2, · · · , N}, one can calculate Aj and bj, which allows one to simulate the generation of all

feature points on the UAV camera:

cji =
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∣

∣
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∣
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∣

, ρj = Kr′ji = KAj(rji − bj)

Then, one can evaluate which points are the outliers by the threshold sji = 1(||ci − cji||2 < d),

where d is the threshold. Here, sji = 0 means that projection of the i-th point on the j-th point is

counted as an outlier, otherwise sji = 1. The answer will be the following:

A = AJ , b = bJ , J = arg max
j

∑
i

sji

Therefore, we really solve the problem of outliers. Next, we find the required number of N

subsamples of a size of three, such that among them, there will be at least one subsample without

outliers with probability p. Let the proportion of outliers be 1 − w. It is easy to see that [21]:

N(p) =
log(1 − p)

log(1 − w3)

In the case when w = 1
2 : N(0.9999) ≈ 69, which shows the high efficiency of algorithm.

After that, the points marked as outliers are removed from consideration. The clarification of the

response is made by the numerical solution of the following optimization problem on the set of

remaining points:

{A∗, b∗} = arg min
A,b

∑
i

||ci − ci(A, b)||22

Thereby, the second problem of noise reduction may be solved. However, one can use a more

advanced procedure, which takes into account the motion model. A more stable solution may be

obtained with the aid of so-called robust RANSAC [23]; the idea is to use predicted values of (A, b)

for the preliminary rejection of outliers from the pairs of observed feature points. Therefore, if on the

k-th step of the filtering procedure, the values (Ak, bk) have been obtained, one can use the following

values on the (k + 1)-th step:

(Ak+1, bk+1) = (Ak, b̂k+1) (1)

where b̂k+1 is the predicted estimate of the UAV attitude obtained on the basis of the PKF estimate.

The filtering approach is described in Section 5.

3. Filtering Problem Statement

The problem of bearing-only filtering is considered to determine the coordinates of the UAV,

which can observe some objects with known coordinates. These objects can be either the well

recognizable objects or a network of radio-beacon stations with a well-specified frequency and known

coordinates. In this work, the function of beacons is performed by the feature points determined with

the aid of the RANSAC algorithm. The UAV has the standard set of INS devices, which enables
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it to perform the flight with some degree of accuracy, which, however, is not sufficient for mission

completion.

3.1. Model of the UAV’s Motion

We assume that a UAV motion is described by three coordinates (X(tk), Y(tk), Z(tk)) and

velocities (Vx(tk), Vy(tk), Vz(tk)). At times tk = k∆t, k = 1, 2, ..., these coordinates satisfy the

following equations:

X(tk+1) = FX(tk) + Ba(tk) + W(tk) (2)

where:

X(tk) = (X(tk), Y(tk), Z(tk), Vx(tk), Vy(tk), Vz(tk))
T

is the vector of state-velocities,

a(tk) = (ax(tk), ay(tk), az(tk))
T

is the vector of accelerations, which we consider as controls,

W(tk) = (0, 0, 0, Wx(tk), Wy(tk), Wz(tk))
T

is the vector of current perturbations, modeling the turbulence components of the wind and the
autopilot errors, as well. The matrices A and B are equal:

F =



















1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















B =





















∆t2

2 0 0

0 ∆t2

2 0

0 0 ∆t2

2

∆t 0 0

0 ∆t 0

0 0 ∆t





















and stochastic Equation (2) describes a controlled and perturbed UAV motion.

3.2. Measurements

Assume that (Xi, Yi, Zi) are the coordinates of the i-th reference point and φi(tk), λi(tk) are the

bearing angles on that point. The measuring scheme is shown in Figure 3.

Figure 3. Scheme of the measurements of bearing angles. Xi, Yi, Zi are the coordinates of the i-th

feature point; λ(tk), φ(tk) are the elevation and azimuth bearing angles, measured at the moment tk.
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At moment tk, these angles satisfy the relations:

Yi + ε
y
k − Y(tk)

Xi + εx
k − X(tk)

Ii(tk) = tan φi(tk) + ε
φ
k

Zi + εz
k − Z(tk)

√

(Xi + εx
k − X(tk))2 + (Yi + ε

y
k − Y(tk))2

Ii(tk) = tan λi(tk) + ελ
k

(3)

where εx
k ∼ WN (0, σ2

x), ε
y
k ∼ WN (0, σ2

y ), εz
k ∼ WN (0, σ2

z ), ε
φ
k ∼ WN (0, σ2

φ), ελ
k ∼ WN (0, σ2

λ) are

uncorrelated random variables with zero means and variances σ2
x , σ2

y , σ2
z , σ2

φ, σ2
λ, defined as errors

in the measurement of the coordinates of the i-th reference point and of the tangents of angles

φi(tk), λi(tk) and forming the white noise sequences.

Remark 1. In the majority of works based on the method of pseudo-measurements, another model is used.

It assumes the measurements of the angles with Gaussian errors (see [12,14] and most of the successive works).

However, in the real definition of the object position in the image or in the matrix of sensors, the system measures

the distance between the object image and the center of the sensor, that is the tangent of the bearing angle. This

simple observation allows one to find the unbiased estimate of the UAV coordinates.

One can rewrite Equation (3) for angle λi(tk) as follows:

Zi + εz
k − Z(tk)

Yi + ε
y
k − Y(tk)

sin φi(tk)Ii(tk) =
sin λi(tk)

cos λi(tk)
+ ελ

k (4)

Remark 2. The indicator function Ii(tk) = 1 if at tk the bearing of the i-th reference point occurs, and

Ii(tk) = 0 otherwise. For convenience, we assume that Ii(tk) = 1.

Therefore, at the moment tk, the UAV control system determines the angles φi(tk) and λi(tk),

related to the coordinates of the UAV (X(tk), Y(tk), Z(tk)) as follows:

(Yi + ε
y
k − Y(tk)) cos φi(tk)− (Xi + εx

k − X(tk)) sin φi(tk)

= ε
φ
k (Xi + εx

k − X(tk)) cos φi(tk)

(Zi + εz
k − Z(tk)) sin φi(tk) cos λi(tk)− (Yi + ε

y
k − Y(tk)) sin λi(tk)

= ελ
k (Yi + ε

y
k − Y(tk)) cos λi(tk)

(5)

4. Modified Kalman Filtering on the Basis of Pseudo-Measurements

4.1. Linear Measurements Model

The idea of the pseudo-measurement method is to separate in Equation (5) the observable and

non-observable values, which gives the following observation equations:

m
φ
k = Yi cos φi(tk)− Xi sin φi(tk) = Y(tk) cos φi(tk)− X(tk) sin φi(tk)

−ε
y
k cos φi(tk) + εx

k sin φi(tk) + ε
φ
k (Xi + εx

k − X(tk)) cos φi(tk)

mλ
k = Zi sin φi(tk) cos λi(tk)− Yi sin λi(tk) = Z(tk) sin φi(tk) cos λi(tk)− Y(tk) sin λi(tk)

−εz
k sin φi(tk) cos λi(tk) + ε

y
k sin λi(tk) + ελ

k (Yi + ε
y
k − Y(tk)) cos λi(tk)

(6)

where Xi, Yi, Zi represent the coordinates of the i-th feature point determined with the aid of the

RANSAC algorithm and φi, λi are the corresponding observable bearing angles measured by the

system. Thus, the left-hand side of Equation (6), that is (m
φ
k , mλ

k ), corresponds to the observable

values, whereas the right-hand side containing the coordinates of the UAV corresponds to the

non-observable ones. The aim is to estimate the coordinates and velocities of the UAV on the basis
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of linear observation Equation (6) and the motion model Equation (2). Therefore, the measurement

vector has the following form:

mk =

(

m
φ
k

mλ
k

)

=















Y(tk) cos φi(tk)− X(tk) sin φi(tk)− ε
y
k cos φi(tk) + εx

k sin φi(tk)

+ε
φ
k (Xi + εx

k − X(tk)) cos φi(tk)

Z(tk) sin φi(tk) cos λi(tk)− Y(tk) sin λi(tk)− εz
k sin φi(tk) cos λi(tk)

+ε
y
k sin λi(tk) + ελ

k (Yi + ε
y
k − Y(tk)) cos λi(tk)















(7)

Thereby, we obtain the system Equation (7) of linear measurement equations, though the noise

variance depends on non-observable coordinates. By using V.S. Pugachev’s method [15], one can

obtain the unbiased estimate and the variance with the aid of a prediction-correction filter [24].

Moreover, we do not need to assume the Gaussian distribution of errors that is not valid in bearing

observations with optical-electronic cameras with discrete image sensors.

4.2. Prediction-Correction Estimation

Assume that at the moment tk, we have unbiased estimates X̂(tk), such that:

E(X̂(tk)) = X(tk) (8)

with the following matrix of the mean-square errors:

P̂(tk) = E
{

(X̂(tk)− X(tk))(X̂(tk)− X(tk))
T
}

=



















P̂xx(tk) P̂xy(tk) ... ... ... P̂xVz(tk)

P̂xy(tk) P̂yy(tk) ... ... ... P̂yVz(tk)

P̂xz(tk) P̂yz(tk) ... ... ... P̂zVz(tk)

P̂xVx (tk) P̂yVx (tk) ... ... ... P̂VxVz(tk)

P̂xVy(tk) P̂yVy(tk) ... ... ... P̂VyVz(tk)

P̂xVz(tk) P̂yVz(tk) ... ... ... P̂VzVz(tk)



















(9)

Problem 1. Find the unbiased estimates X̂(tk+1) and matrix P̂(tk+1) on the basis of estimates at the

moment tk, mk, the known position of the i-th observable object (Xi, Yi, Zi) and the UAV’s motion parameter

Equation (2). These estimates must satisfy Equation (8) and give the matrix Equation (9) for the moment tk+1.

4.2.1. Prediction

The prediction is obtained by assuming that at the moment tk+1, the values of φ(tk+1), λ(tk+1)

will be known:

X̃(tk+1) = FX̂(tk) + Ba(tk)

m̃k+1 =

(

m̃
φ
k+1

m̃λ
k+1

)

=

(

I(tk+1)(Ỹ(tk+1) cos φ(tk+1)− X̃(tk+1) sin φ(tk+1))

I(tk+1)(Z̃(tk+1) sin φ(tk+1) cos λ(tk+1)− Ỹ(tk+1) sin λ(tk+1))

) (10)

Assuming that the motion perturbations and the UAV position are uncorrelated, we obtain:
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P̃(tk+1) =



















P̃xx(tk+1) P̃xy(tk+1) ... ... ... P̃xVz(tk+1)

P̃xy(tk+1) P̃yy(tk+1) ... ... ... P̃yVz(tk+1)

P̃xz(tk+1) P̃yz(tk+1) ... ... ... P̃zVz(tk+1)

P̃xVx (tk+1) P̃yVx (tk+1) ... ... ... P̃VxVz(tk+1)

P̃xVy(tk+1) P̃yVy(tk+1) ... ... ... P̃VyVz(tk+1)

P̃xVz(tk+1) P̃yVz(tk+1) ... ... ... P̃VzVz(tk+1)



















(11)

where the elements of this matrix are:

P̃xx(tk+1) = P̂xx(tk) + 2P̂xVx (tk)∆t + P̂VxVx (tk)∆t2

P̃yy(tk+1) = P̂yy(tk) + 2P̂yVy(tk)∆t + P̂VyVy(tk)∆t2

P̃zz(tk+1) = P̂zz(tk) + 2P̂zVz(tk)∆t + P̂VzVz(tk)∆t2

P̃xy(tk+1) = P̂xy(tk) + P̂xVy(tk)∆t + P̂yVx (tk)∆t + P̂VxVy(tk)∆t2

P̃xz(tk+1) = P̂xz(tk) + P̂xVz(tk)∆t + P̂zVx (tk)∆t + P̂VxVz(tk)∆t2

P̃yz(tk+1) = P̂yz(tk) + P̂yVz(tk)∆t + P̂zVy(tk)∆t + P̂VyVz(tk)∆t2

P̃xVx (tk+1) = P̂xVx (tk) + P̂VxVx (tk)∆t

P̃xVy(tk+1) = P̂xVy(tk) + P̂VxVy(tk)∆t

P̃xVz(tk+1) = P̂xVz(tk) + P̂VxVz(tk)∆t

P̃yVx (tk+1) = P̂yVx (tk) + P̂VxVy(tk)∆t

P̃yVy(tk+1) = P̂yVy(tk) + P̂VyVy(tk)∆t

P̃yVz(tk+1) = P̂yVz(tk) + P̂VyVz(tk)∆t

P̃zVx (tk+1) = P̂zVx (tk) + P̂VxVz(tk)∆t

P̃zVy(tk+1) = P̂zVy(tk) + P̂VyVz(tk)∆t

P̃zVz(tk+1) = P̂zVz(tk) + P̂VzVz(tk)∆t

P̃VxVx (tk+1) = P̂VxVx (tk) + σ2
X

P̃VyVy(tk+1) = P̂VyVy(tk) + σ2
Y

P̃VzVz(tk+1) = P̂VzVz(tk) + σ2
Z

P̃VxVy(tk+1) = P̂VxVy(tk)

P̃VxVz(tk+1) = P̂VxVz(tk)

P̃VyVz(tk+1) = P̂VyVz(tk)

(12)

Note that σ2
X is not the same as σ2

x and similarly for the other indices.

Then, the following values P̃xm(tk+1), P̃ym(tk+1), P̃zm(tk+1), P̃Vxm(tk+1), P̃Vym(tk+1), P̃Vzm(tk+1),

P̃mm(tk+1) should be calculated using the following relations:

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)

=











(Y(tk+1)− Ỹ(tk+1)) cos φi(tk+1)− (X(tk+1)− X̃(tk+1)) sin φi(tk+1)

−ε
y
k+1 cos φi(tk+1) + εx

k+1 sin φi(tk+1) + ε
φ
k+1(Xi + εx

k+1 − X(tk+1)) cos φi(tk+1)

(Z(tk+1)− Z̃(tk+1)) sin φi(tk+1) cos λi(tk+1)− (Y(tk+1)− Ỹ(tk+1)) sin λi(tk+1)

−εz
k+1 sin φi(tk+1) cos λi(tk+1) + ε

y
k+1 sin λi(tk+1) + ελ

k+1(Yi + ε
y
k+1 − Y(tk+1)) cos λi(tk+1)











and the identities:

Xi − X(tk+1) = Xi − X̃(tk+1)− (X(tk+1)− X̃(tk+1))

Yi − Y(tk+1) = Yi − Ỹ(tk+1)− (Y(tk+1)− Ỹ(tk+1))

Zi − Z(tk+1) = Zi − Z̃(tk+1)− (Z(tk+1)− Z̃(tk+1))

where we consider that the position of the i-th object is known and use the non-correlatedness

of εx
k+1, ε

y
k+1, εz

k+1, ε
φ
k+1, ελ

k+1 and differences (X(tk+1) − X̃(tk+1)), (Y(tk+1) − Ỹ(tk+1))

and (Z(tk+1)− Z̃(tk+1)).
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Finally, we get:

[

P̃xm(tk+1)
]T

= E

[

(X(tk+1)− X̃(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃xy(tk+1) cos φi(tk+1)− P̃xx(tk+1) sin φi(tk+1)

P̃xz(tk+1) sin φi(tk+1) cos λi(tk+1)− P̃xy(tk+1) sin λi(tk+1)

)

,

(13)

[

P̃ym(tk+1)
]T

= E

[

(Y(tk+1)− Ỹ(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃yy(tk+1) cos φi(tk+1)− P̃xy(tk+1) sin φi(tk+1)

P̃yz(tk+1) sin φi(tk+1) cos λi(tk+1)− P̃yy(tk+1) sin λi(tk+1)

)

,

(14)

[

P̃zm(tk+1)
]T

= E

[

(Z(tk+1)− Z̃(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃yz(tk+1) cos φi(tk+1)− P̃xz(tk+1) sin φi(tk+1)

P̃zz(tk+1) sin φi(tk+1) cos λi(tk+1)− P̃yz(tk+1) sin λi(tk+1)

)

,

(15)

[

P̃Vxm(tk+1)
]T

= E

[

(Vx(tk+1)− Ṽx(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃yVx (tk+1) cos φi(tk+1)− P̃xVx (tk+1) sin φi(tk+1)

P̃zVx (tk+1) sin φi(tk+1) cos λi(tk+1)− P̃yVx (tk+1) sin λi(tk+1)

)

,

(16)

[

P̃Vym(tk+1)
]T

= E

[

(Vy(tk+1)− Ṽy(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃yVy(tk+1) cos φi(tk+1)− P̃xVy(tk+1) sin φi(tk+1)

P̃zVy(tk+1) sin φi(tk+1) cos λi(tk+1)− P̃yVy(tk+1) sin λi(tk+1)

)

,

(17)

[

P̃Vzm(tk+1)
]T

= E

[

(Vz(tk+1)− Ṽz(tk+1))

(

m
φ
k+1 − m̃

φ
k+1

mλ
k+1 − m̃λ

k+1

)]

=

(

P̃yVz(tk+1) cos φi(tk+1)− P̃xVz(tk+1) sin φi(tk+1)

P̃zVz(tk+1) sin φi(tk+1) cos λi(tk+1)− P̃yVz(tk+1) sin λi(tk+1)

)

.

(18)

In a similar way, we calculate:

(P̃mm(tk+1))
−1

=

[

E

(

(m
φ
k+1 − m̃

φ
k+1)

2 (m
φ
k+1 − m̃

φ
k+1)(m

λ
k+1 − m̃λ

k+1)

(m
φ
k+1 − m̃

φ
k+1)(m

λ
k+1 − m̃λ

k+1) (mλ
k+1 − m̃λ

k+1)
2

)]−1
(19)
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Therefore:

E
[

(m
φ
k+1 − m̃

φ
k+1)

2
]

= P̃yy(tk+1) cos2 φi(tk+1)− P̃xy(tk+1) sin 2φi(tk+1)

+P̃xx(tk+1) sin2 φi(tk+1) + σ2
y cos2 φi(tk+1) + σ2

x sin2 φi(tk+1) + σ2
φ((Xi − X̂(tk))

2

+P̃xx(tk+1) + σ2
x) cos2 φi(tk+1)

E
[

(m
φ
k+1 − m̃

φ
k+1)(m

λ
k+1 − m̃λ

k+1)
]

= P̃yz(tk+1) sin φi(tk+1) cos φi(tk+1) cos λi(tk+1)

−P̃yy(tk+1) cos φi(tk+1) sin λi(tk+1)− P̃xz(tk+1) sin2 φi(tk+1) cos λi(tk+1)

+P̃xy(tk+1) sin φi(tk+1) sin λi(tk+1)

E
[

(mλ
k+1 − m̃λ

k+1)
2
]

= P̃zz(tk+1) sin2 φi(tk+1) cos2 λi(tk+1)− P̃yz(tk+1) sin φi(tk+1) sin 2λi(tk+1)

+P̃yy(tk+1) sin2 λi(tk+1) + σ2
z sin2 φi(tk+1) cos2 λi(tk+1) + σ2

y sin2 λi(tk+1) + σ2
λ((Yi − Ŷ(tk))

2

+P̃yy(tk+1) + σ2
y ) cos2 λi(tk+1)

4.2.2. Correction

After getting the measurements at the moment tk+1, one can obtain the estimate of the UAV

position at this moment. Therefore, the solution of Problem 1 has the form:

X̂(tk+1) = X̃(tk+1) + P̃(tk+1)(P̃mm(tk+1))
−1(mk+1 − m̃k+1) (20)

and the matrix of the mean square errors is equal to:

P̂(tk+1) = P̃(tk+1)− P̃(tk+1)(P̃mm(tk+1))
−1P̃(tk+1)

T (21)

where:

P̃(tk+1) = (P̃xm(tk+1), P̃ym(tk+1), ..., P̃Vzm(tk+1))
T

5. Robust Filtering on the Basis of the UAV Motion Model

The RANSAC method calculates the rotation matrix and the coordinates of the camera {A∗, b∗}

in the Earth coordinate system with some minor error. However, the RANSAC method can give quite

the wrong answer, called an outlier. It could happen, for example, if the frames Ic and Im do not

depict common objects. We provide further a method that makes a decision about whether {A∗, b∗}

is an outlier or not. This problem has been considered in relation to the exclusion of outliers in the

RANSAC-type procedures [25,26]. Here, we use the modification of the robust RANSAC [23] based

on PKF for bearing-only observations [17].

After the prediction step of the Kalman filter, one can estimate the UAV (camera) position and

the matrix of the mean square errors:

X̃ = X̃(tk+1), P̃ = P̃(tk+1).

Like in [26], one can suppose that the corresponding probability density is Gaussian. The

reason is that the PKF gives the best linear estimates obtained until the current time t. This

estimate is the sum of uncorrelated random variables with almost the same variations, at least

on the short intervals preceding the current time. It gives the opportunity to approximate the

probability density distribution by the Gaussian one. Further extension of the robust RANSAC

technique is based on the prior distribution of the UAV attitude. The approach has been

developed in [23,27] on the basis of the extended Kalman filter (EKF). However, the estimate
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given by the EKF has an unknown bias and, of course, does not give the posterior Gaussian

distribution. Therefore, the PKF, which gives an unbiased estimate, looks more preferable under

the hypothesis of the posterior Gaussian distribution. Therefore, at the (k + 1)-th step, the

posterior distribution of r
′

i corresponding to an inlier is assumed to be Gaussian, that is according

to Equation (1):

N (Ak(ri − X̃(tk+1)), Ak(P̃(tk+1) + Prr)AT
k )

where Prr is the covariance matrix of the landmarks localization. Further, in the estimation algorithm,

the pair {Ak, X̃(tk+1)} is considered as an outlier at the confidence level 95% if:

‖r
′

i − Ak(ri − X̃(tk+1))‖ ≥ 2 ∗ Sp[Ak(P̃(tk+1) + Prr)AT
k ]

Otherwise, the correction step is based on {Ak, X̃(tk+1)}. Of course, all such nonlinear

conjectures need confirmation on the basis of statistical modeling, which is one of the results of this

article. One can observe the performance of robust filtering in the following figures. Figure 4 shows

the correspondence between feature points obtained without a UAV motion model. Next, Figure 5

shows the correspondence established on the basis of the UAV motion model. The number of outliers

reduces substantially.

Figure 4. Correspondence between (a) (image Ic of the on-board camera of the UAV) and (b) (template

image loaded in the UAV memory in advance) feature points found without the UAV motion model.

One can observe chaotic correspondence, which gives a huge number of outliers.

Figure 5. Correspondence between (a) (image Ic of the on-board camera of the UAV) and (b) (template

image loaded in the UAV memory in advance) feature points found with the aid of RANSAC based

on the UAV motion model. The number of outliers reduces substantially.
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6. Control of the UAV

Control of a UAV that ensures its motion along the reference trajectory may be determined on the

basis of the standard deterministic linear-quadratic approach [28]. However, the problem of control

on the basis of bearing-only observation is different from the standard one. It should be underlined

that this problem is a non-linear one and cannot be solved by the standard way. The problem of the

optimal control for the system Equation (2) is the stochastic one with incomplete information and

does not have an explicit solution. However, for practical reasons, one can simplify it by considering

the locally optimal control. Here, we discuss the following problem:

Problem 2. Find the locally optimal controls ax(tk), ay(tk) and az(tk) aimed to keep the motion of the UAV

along the reference trajectory.

Assume that we have some reference trajectory Xnom(tk).

Therefore, at the moment tk+1, we have to minimize the following expressions:

E1 = E{(X(tk+1)− Xnom(tk+1))
2 + (Vx(tk+1)− Vxnom(tk+1))∆t)2} → min

ax(tk)

E2 = E{(Y(tk+1)− Ynom(tk+1))
2 + (Vz(tk+1)− Vznom(tk+1))∆t)2} → min

ay(tk)

E3 = E{(Z(tk+1)− Znom(tk+1))
2 + (Vz(tk+1)− Vznom(tk+1))∆t)2} → min

az(tk)

Let us consider the components of the E1 expression:

X(tk+1)− Xnom(tk+1) = X(tk)− X̂(tk)− (Xnom(tk)− X̂(tk))

+ (Vx(tk)− V̂x(tk))∆t − (Vxnom(tk)− V̂x(tk))∆t + (ax(tk)− axnom(tk))
∆t2

2

Vx(tk+1)− Vxnom(tk+1) = Vx(tk)− V̂x(tk)− (Vxnom(tk)− V̂x(tk)) + (ax(tk)− axnom(tk))∆t

+ Wx(tk)

Then, we square these components and take the derivative of the sum with respect to ax(tk)

given that some components are uncorrelated:

E{(X(tk)− X̂(tk))(Xnom(tk)− X̂(tk))} = 0

E{(Vx(tk)− V̂x(tk))(Vxnom(tk)− V̂x(tk))} = 0

Finally, we get:

ax(tk) = axnom(tk) +
2(Xnom(tk)−X̂(tk))

5∆t2 + 6(Vxnom (tk)−V̂x(tk))
5∆t

(22)

We take into account that the acceleration of the UAV has limitations [axmin
, axmax ], so the control

acceleration has the form:

ac
x(tk) =











axmin
i f ax(tk) < axmin

,

ax(tk) i f axmin
≤ ax(tk) ≤ axmax ,

axmax i f ax(tk) > axmax .

Similarly, we obtain the expressions for ac
y(tk) and ac

z(tk). Thus, we get the following solution of

Problem 2 [19]:

â(tk) = ânom(tk) +
2

5∆t2 (X̂nom(tk)− X̂(tk)) +
6

5∆t (V̂nom(tk)− V̂(tk)) (23)
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where:
â(tk) = (ax(tk), ay(tk), az(tk))

T

X̂(tk) = (X(tk), Y(tk), Z(tk))
T

V̂(tk) = (Vx(tk), Vy(tk), Vz(tk))
T

and similarly for the nominal trajectory components.

7. Experimental Results

In this section, we give the results of the algorithm’s modeling. The UAV is virtually flying

over the landscape shown in Figure 1. This image has been obtained from Google Maps, and for

verification of the algorithm, the image of the same region obtained from another Bing satellite was

used. Therefore, these two images modeled the preliminary downloaded template and the image

obtained by the on-board camera. The result of virtual flight experiment is shown in Figure 6.

Figure 6. Blue dots corresponds to the reference trajectory and black dots to the real path. Blue squares

show the localization of the terrain areas corresponding to the template images, and red squares show

the moments where the estimates of the UAV positions have been obtained and assumed to be reliable

according to the robust RANSAC algorithm described in Section 5.

8. Results and Discussion

In the modeling of the control algorithm, we use the UAV moving approximately with a velocity

of 50 m/s, though the change of the altitude is assumed to be rather substantial. The control

algorithm takes into account the constraints imposed on linear acceleration and angular velocities.

The software developed for modeling may be used in a real on-board navigation system, as well.

Moreover, the filtering algorithm based on unbiased estimation may be easily incorporated with the

INS, since it gives also the unbiased square error estimates, which opens the way to correct data

fusion. The quality of tracking for x, y, z components is shown below in Figures 7–9, respectively.

In all of these figures, blue dots correspond to the reference trajectory, black dots to the real path

and red squares to the moments, where the estimates of the UAV positions have been obtained and
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assumed to be reliable according to the robust RANSAC algorithm. One can observe that in the

“measurement” areas, the algorithm estimates the coordinates with high accuracy, and the control

provides the tracking with high accuracy, as well.

Figure 7. Tracking of the x-coordinate.

Figure 8. Tracking of the y-coordinate.
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Figure 9. Tracking of the z-coordinate.

Figure 10. Averaged standard deviation of the position estimation error. The limit value in the

observation areas is close to 24.5 m. One can see that in the areas of no observations, the SD

monotonically increases.

The high accuracy is in accordance with the standard deviation (SD) theoretically calculated

from the PKF. The value of the averaged standard deviation, which is the square root of

Pxx(t) + Pyy(t) + Pzz(t), is shown in Figure 10 below.
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9. Conclusions

The main result of the work is the new algorithm of the UAV control based on the observation

of the landmarks in a 3D environment. The new RANSAC based on the UAV motion model permits

one to exclude the huge number of outliers and, by that, to provide the reliable set of data for the

estimation of the UAV position on the basis of the novel non-biased PKF algorithm. This work is just

the beginning of the implementation of this approach in the navigation of UAVs during long-term

autonomous missions.
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