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UAV-Enabled Communication Using NOMA
A. A. Nasir, H. D. Tuan, T. Q. Duong and H. V. Poor

Abstract—Unmanned aerial vehicles (UAVs) can be de-
ployed as flying base stations (BSs) to leverage the strength
of line-of-sight connections and effectively support the cover-
age and throughput of wireless communication. This paper
considers a multiuser communication system, in which a
single-antenna UAV-BS serves a large number of ground
users by employing non-orthogonal multiple access (NOMA).
The max-min rate optimization problem is formulated under
total power, total bandwidth, UAV altitude, and antenna
beamwidth constraints. The objective of max-min rate op-
timization is non-convex in all optimization variables, i.e.
UAV altitude, transmit antenna beamwidth, power allocation
and bandwidth allocation for multiple users. A path-following
algorithm is proposed to solve the formulated problem.
Next, orthogonal multiple access (OMA) and dirty paper
coding (DPC)-based max-min rate optimization problems
are formulated and respective path-following algorithms are
developed to solve them. Numerical results show that NOMA
outperforms OMA and achieves rates similar to those attained
by DPC. In addition, a clear rate gain is observed by jointly
optimizing all the parameters rather than optimizing a subset
of parameters, which confirms the desirability of their joint
optimization.

Index Terms—Unmanned aerial vehicle (UAV), non-
orthogonal multiple access (NOMA), orthogonal multiple
access (OMA), dirty paper coding (DPC), non-convex opti-
mization, throughput.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) can assist normal

communication networks by acting as flying base stations

(UAV-BSs) and taking care of traffic demand in exceptional

situations, e.g., sports events, concerts, disaster position,

military situations, traffic congestion, etc. [1]–[6]. UAVs

can also function as temporary hotspots or relay nodes for

connections between the safe area and disaster areas [7]–

[9]. Ground users served by the UAV-BSs can expect line-

of-sight (LoS) air-to-ground communication. Thus, UAV-
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enabled communication can be efficient in supporting the

coverage and throughput of wireless communications [10],

[11].

UAV-enabled communication networks have recently

gained significant interests and are actively investigated

in open literature. Thanks to the flexibility of UAV de-

ployment, the coverage area, throughput, and energy effi-

ciency of UAV-enabled communication can be improved by

optimizing different parameters, such as, UAV placement

or UAV trajectory design [12]–[15], considering multiple-

UAV setup [16], [17], beamwidth control [18], power

allocation [19], joint power allocation and UAV place-

ment optimization [1], [20], joint bandwidth allocation

and trajectory design [21], or joint bandwidth and power

allocation [22].

Unlike conventional cellular communication, which op-

erates in a rich scattering environment that supports multi-

antenna array transmission for spatial diversity, UAV-

enabled downlink communication exhibits much poorer

scattering and as such a single-antenna UAV is most

desired. To be served by the same UAV over the same time,

multiple users must share the communication bandwidth.

Usually each user is assigned an individual bandwidth

channel so its achievable rate is very sensitive to the

number of users sharing the same bandwidth. Naturally

one may think to assign a bandwidth channel to a group

users but this would be not efficient because it is conven-

tionally known that over the same transmission bandwidth,

the downlink communication is only efficient when the

number of transmit antennas is not less than the number of

served users. Meanwhile, non-orthogonal multiple access

(NOMA) is known to simultaneously serve multiple users

in non-orthogonal resources, by separating the users in

the power domain [23], [24]. NOMA can improve the

achievable rate of far users (who receive lower received

signal power) by allowing the near-by users (who receive

higher received signal power) to access the information

intended for the far users [25], [26].

There are quite a few recent studies that have considered

the use of NOMA to improve the performance of UAV-

enabled communication system. In [27], the authors con-

sidered a UAV-BS to communicate with two ground users

using NOMA and investigated their outage probability.

In [28], the authors characterized the capacity region of

a UAV-enabled broadcast channel with two ground users

and jointly optimized the UAVs trajectory and transmit

power/rate allocations over time. In [29], the authors con-

sidered a multi-antenna UAV-BS to generate directional
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beams and served multiple users to maximize their outage

sum rates by using NOMA and beam scanning. In [30], the

authors employed a UAV system and NOMA to optimize

power allocation and UAV altitude to maximize sum-rate

for two users [30]. However, in order to achieve the max-

imum rate gains from UAV-enabled communication, it is

important to jointly optimize multiple relevant parameters,

e.g., UAV altitude, antenna beamwidth, power allocation

and bandwidth allocation. To the best authors’ knowledge,

this important problem, with a NOMA setting, is still

unsolved.

In this article, we consider a multiuser communication

system, in which a single-antenna UAV-BS serves a large

number of ground users by employing NOMA. Our work

is novel and contributive in the following aspects:

• Unlike previous works, we jointly optimize multiple

parameters, e.g., the UAV’s flying altitude, transmit

antenna beamwidth, and the amount of power and

bandwidth allocated to multiple users, and show the

performance benefit achieved due to this joint op-

timization. Our objective is to solve the max-min

rate optimization problem under total power, total

bandwidth, UAV altitude and antenna beamwidth con-

straints. The objective function is non-convex in all

optimization variables, i.e., power, bandwidth, alti-

tude, and beamwidth. In addition, it is also challenging

to handle the coverage constraint, which is dependent

nonlinearly on the beamwidth and UAV altitude. We

tackle these challenges by using inner convex approx-

imations and propose a path-following algorithm to

solve the problem.

• We also formulate orthogonal multiple access (OMA)

and dirty paper coding (DPC)-based max-min rate

optimization problems and develop path-following al-

gorithms to solve them.

• Numerical results show that NOMA outperforms

OMA and achieves rates similar to those attained

by DPC. In addition, we observe a clear rate gain

by jointly optimizing all the parameters rather than

optimizing subset of parameters, which emphasize the

need of their joint optimization.

Organization: The paper is organized as follows. Section

II presents the formulation of max-min rate optimization

problems. Section III describes algorithms to solve the

formulated problems. Section IV evaluates the performance

of our proposed algorithms using numerical examples.

Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider that a certain out-door location (stadium,

traffic jam, concert, etc.) is served by a single-antenna

UAV as depicted in Fig. 1. We assume that there are

K ground users in the location, such that K/2 users,

k ∈ {1, . . . ,K/2}, are located in closer vicinity (in terms

of Euclidean distance) of the UAV, and are called “near

Fig. 1. A system model showing UAV-BS and the ground users.

users” or “cell-centered users”. The remaining K/2 users,

k ∈ {K/2 + 1, . . . ,K} are located relatively at farther

distances, and are called “far users” or “cell-edge users”.

The UAV can employ NOMA to pair each near user with

each of the far users.

Let θ be the squared antenna beamwidth, h be the

squared UAV altitude (or UAV height above ground), which

must satisfy the coverage condition

R ≤
√
h tan

√
θ, (1)

where R is the radius of the coverage, so all users are

located inside the coverage area. Note that we have to

use
√
h and

√
θ for the UAV altitude and its antenna

beamwidth, respectively, as it will later on simplify the

handling of the non-convex coverage constraint (1). Let go
denote the channel power gain at a reference distance of

1 m, zk = (xk, yk) denote the coordinates of user k and

zu = (xu, yu) denote the location of the UAV projected

on the horizontal ground plane. The channel power gain

between the UAV and user k is given by

~k(h, θ) =
go|h̃k|2

θ(‖zk − zu‖2 + h)α/2

=
gog̃k

θ(‖zk − zu‖2 + h)α/2
(2)

where α is the path-loss exponent and h̃k ∼ CN (µ, 2σ2),
represents the Rician distributed small scale fading channel

co-efficient with Rician factor KR = |µ|2/2σ2 and normal-
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ized power E(|h̃k|2) = 1 [9], or in other words, g̃k ≡ |h̃k|2
follows non-central chi-square distribution [31].

Let B be the total available bandwidth, which can be op-

timally divided among the near-by users k ∈ {1, . . . ,K/2},

such that the bandwidth allocated for user k can be written

as

wk = τkB, k ∈ {1, . . . ,K/2}, (3)

where 0 ≤ τk ≤ 1 is the fraction of the bandwidth

allocated to the user k. Accordingly, each near-by user k is

“assigned” a far-user j(k) = k+ K
2 to share the bandwidth

wk. In this work, we have simply paired the near-by user

with the far-user on the basis of the minimum Euclidean

distance.1

There are a couple of transmission techniques to improve

the multi-user rates. In the following, we will formulate the

multi-user rate max-min optimization problem for NOMA,

DPC, and OMA.

A. NOMA Problem Formulation

To make the rate functions more appealing, we use (2)

and introduce

dk = ‖zk − zu‖2, k = 1, . . . ,K.

NOMA allows user k to decode the information intended

for the paired user j(k) to cancel the user j(k)’s interfer-

ence in decoding the information intended for it. Assum-

ing additive white Gaussian noise (AGWN) channel, the

achievable rate in nats/sec/Hz of user k ∈ {1, 2, . . . ,K/2},

is given by

rk(τττ ,p, h, θ) = τk ln

(

1 +
pk~k(h, θ)

σBτk

)

= τk ln

(

1 +
gog̃kpk

σBτkθ(dk + h)α/2

)

,(4)

where σB = σ2B with the noise power density σ2, so

σBτk is the noise power over the bandwidth τkB, pk is the

power of signal carrying the information intended for it,

τττ , (τ1, . . . , τK/2), and p , (p1, . . . , pK).
The achievable rate of user j(k) in nats/sec/Hz is given

by

rj(k)(τττ ,p, h, θ) = min
{

r1j(k)(τττ ,p, h, θ), r
2
j(k)(τττ ,p, h, θ)

}

,

(5)

where,

r2j(k)(τττ ,p, h, θ) = τk ln

(

1 +
pj(k)~j(k)(h, θ)

σBτk + pk~j(k)(h, θ)

)

= τk ln

(

1 +
gog̃j(k)pj(k)

σBτkθ(dj(k) + h)α/2 + gog̃j(k)pk

)

,

(6)

1The more sophisticated user-pairing strategies may improve the perfor-
mance of NOMA networks (see e.g., [32]). Finding an optimum pairing
strategy is out of scope of this work. However, our simulation results
in Section IV clearly shows the performance gains of our proposed
Algorithms, even with our simple pairing strategy.

is the rate by user j(k), k ∈ {1, 2, . . . ,K/2}, in decoding

its own message, and

r1j(k)(τττ ,p, h, θ) = τk ln

(

1 +
pj(k)~k(h, θ)

σBτk + pk~k(h, θ)

)

= τk ln

(

1 +
gog̃kpj(k)

σBτkθ(dk + h)α/2 + gog̃kpk

)

, (7)

is the rate by user k, k ∈ {1, 2, . . . ,K/2}, in decoding the

user j(k)’s message.

The optimization problem is to find the optimal values of

bandwidth allocation τττ , power allocation p, UAV altitude√
h, and antenna beamwidth

√
θ, with the objective of

maximizing the worst user’s rate. It can be formulated

mathematically as follows:

max
τττ,p,h,θ

fNOMA(τττ ,p, h, θ) , min
k=1,...,K

rNOMA
k (τττ ,p, h, θ)

(8a)

s.t. (1),

h2
min ≤ h ≤ h2

max, θ
2
min ≤ θ ≤ θ2max, (8b)

K/2
∑

k=1

τk = 1, & τk ≥ 0, ∀k ∈ {1, . . . ,K/2} (8c)

K
∑

k=1

pk = P, & pk ≥ 0, ∀k ∈ {1, . . . ,K}, (8d)

where

rNOMA
k (τττ ,p, h, θ)

=

{

rk(τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
rj(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

rk(τττ ,p, h, θ) is given by (4), rj(k)(τττ ,p, h, θ) is given by

(5), P is the total power budget, and θmin and θmax specify

the allowed range of the antenna beamwidth, i.e., (0, π/2).
It is quite challenging to solve the non-convex problem

(8) because the objective function (8a) is non-convex and

non-linear function of four different types of variables, i.e.,

power, bandwidth, altitude, and beamwidth. In addition,

it is also challenging to handle the coverage constraint,

which is dependent nonlinearly on the beamwidth and UAV

altitude. In Section III, we will provide an inner convex

approximation-based path-following algorithm to solve this

problem.

B. DPC Problem Formulation

For two users sharing the same bandwidth, the capacity-

achieving DPC is practical [33]–[35]. In DPC, the users’

data is successively decoded in a specific order. Thus, under

DPC, cell-centered user k perfectly eliminates the interfer-

ing signal intended for user j(k) from its received signal.

Therefore, the rate of user k ∈ {1, . . . ,K/2} is defined

by (4) while the rate of user j(k) ∈ {K/2 + 1, . . . ,K} is
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defined by (6) [26]. Thus, the max-min rate optimization

problem under DPC can be formulated as follows:

max
τττ,p,h,θ

fDPC(τττ ,p, h, θ) , min
k=1,...,K

rDPC
k (τττ ,p, h, θ)

s.t. (1), (8b)− (8d), (9)

where

rDPC
k (τττ ,p, h, θ)

=

{

rk(τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r2j(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

rk(τττ ,p, h, θ) is given by (4) and far-user rate

r2j(k)(τττ ,p, h, θ) is defined in (6).

C. OMA Problem Formulation

For OMA, the optimization problem can be formulated

in two ways. The first way, which we term “OMA-1” is to

allocate distinct bandwidth to all users, i.e., in (3), wk =
τkB, will be defined for k ∈ {1, . . . ,K}. Thus, under this

OMA-1, the optimization problem can be formulated as

follows:

max
τττ,p,h,θ

fOMA-1(τττ ,p, h, θ) , min
k=1,...,K

rOMA-1
k (τττ ,p, h, θ)

(10a)

s.t. (1), (8b), (8d),
K
∑

k=1

τk = 1, & τk ≥ 0, ∀ k ∈ {1, . . . ,K}, (10b)

where τττ , (τ1, . . . , τK) for OMA-1, rOMA-1
k (τττ ,p, h, θ) =

rk(τττ ,p, h, θ), ∀ k = {1, . . . ,K} and rk(τττ ,p, h, θ) is

defined in (4).

The second option, which we term “OMA-2”, is to

find optimal K/2 bandwidth partitions along with optimal

altitude, power, and antenna beamwidth, and solve the

following optimization problem:

max
τττ,p,h,θ

fOMA-2(τττ ,p, h, θ) , min
k=1,...,K/2

rOMA-2
k (τττ ,p, h, θ)

s.t. (1), (8b)− (8d), (11)

where

rOMA-2
k (τττ ,p, h, θ)

=

{

rO
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
rO
j(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

such that

rO
k (τττ ,p, h, θ) = τk ln

(

1 +
pk~k(h, θ)

σBτk + pj(k)~k(h, θ)

)

= τk ln

(

1 +
gog̃kpk

σBτkθ(dk + h)α/2 + gog̃kpj(k)

)

,

∀ k ∈ {1, . . . ,K/2}, (12a)

rO
j(k)(τττ ,p, h, θ) = τk ln

(

1 +
pj(k)~j(k)(h, θ)

σBτk + pk~j(k)(h, θ)

)

= τk ln

(

1 +
gog̃j(k)pj(k)

σBτkθ(dj(k) + h)α/2 + gog̃j(k)pk

)

∀ j(k) ∈ {K/2, . . . ,K}. (12b)

Since user k and user j(k) are sharing the bandwidth,

user k experiences interference from user j(k) in (12a) to

decode its own data and user j(k) experiences interference

from user k in (12b) to decode its own data.

III. ALGORITHMS

In this section, we will solve the formulated problems

in Section II, which are non-convex optimization problems

and thus pose computational challenges. In this section, we

will be using the following Lemma.

Lemma 1: For every x > 0, y > 0, τ > 0, x̄ > 0, ȳ > 0
and τ̄ > 0:

τ ln

(

1 +
1

xy

)

≥ 2τ̄ ln

(

1 +
1

x̄ȳ

)

+
τ̄ (2− x/x̄− y/ȳ)

1 + x̄ȳ

− τ̄2 ln(1 + 1/x̄ȳ)

τ
(13)

Proof : See Appendix A.

A. NOMA Algorithm

From the definitions (4) and (6), one can see that the

objective function (8a) of the optimization problem (8) is

a complex non-concave function. Also, the constraint (1)

is non-convex. To obtain a path-following computational

procedure [36], [37], which improves a feasible point

of (8) after each iteration and converges to an optimal

solution, we need to develop a lower-bounding concave

approximation for the objective function and also an inner

convex approximation for constraint (1).

Let (τττ (κ),p(κ), h(κ), θ(κ)) be a feasible point for (8) that

is found at the (κ − 1)th iteration. With regard to the

function rk in (8), applying the inequality (13) in Lemma

1 for

τ = τk, x = σBθ/gog̃kpk, y = τk(dk + h)α/2

and

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
k , ȳ = τ

(κ)
k (dk + h(κ))α/2
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yields

rk(τττ ,p, h, θ) ≥ a
(κ)
k + b

(κ)
k

(

2− p
(κ)
k

θ(κ)
θ

pk

− τk(dk + h)α/2

τ
(κ)
k (dk + h(κ))α/2

)

− c
(κ)
k

τk
(14)

where

0 < a
(κ)
k = 2τ̄ ln(1 + 1/x̄ȳ),

0 < b
(κ)
k =

τ̄

1 + x̄ȳ
,

0 < c
(κ)
k = τ̄2 ln(1 + 1/x̄ȳ). (15)

From (14) it remains to deal with

p
(κ)
k

θ(κ)
θ

pk
=

1

4





(

θ

θ(κ)
+

p
(κ)
k

pk

)2

−
(

θ

θ(κ)
− p

(κ)
k

pk

)2




≤ 1

4

(

θ

θ(κ)
+

p
(κ)
k

pk

)2

, π
(κ)
k (θ, pk) (16)

and

τk(dk + h)α/2

τ
(κ)
k (dk + h(κ))α/2

=
1

4





(

τk

τ
(κ)
k

+
(dk + h)α/2

(dk + h(κ))α/2

)2

−
(

τk

τ
(κ)
k

− (dk + h)α/2

(dk + h(κ))α/2

)2




≤ 1

4

(

τk

τ
(κ)
k

+
(dk + h)α/2

(dk + h(κ))α/2

)2

, ϕ
(κ)
k (τk, h), (17)

Therefore,

rk(τττ ,p, h, θ) ≥ r
(κ)
k (τττ ,p, h, θ) (18)

for

r
(κ)
k (τττ ,p, h, θ) , a

(κ)
k + b

(κ)
k

(

2− π
(κ)
k (θ, pk)

−ϕ
(κ)
k (τk, h)

)

− c
(κ)
k

τk
, (19)

which is a concave function under pk ≥ 0, as mentioned

explicitly in the constraint (8d).

With regard to the function r2j(k), applying the inequality

(13) in Lemma 1 for

τ = τk , x = σBθ/gog̃j(k)pj(k),

y = τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

and

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃j(k)p
(κ)
j(k),

ȳ = τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(θ(κ)σB)

yields

r2j(k)(τττ ,p, h, θ) ≥ a
(κ)
j(k) + b

(κ)
j(k)



2−
p
(κ)
j(k)

θ(κ)
θ

pj(k)

− τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ(κ))

)

−
c
(κ)
j(k)

τk
, (20)

where

0 < a
(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

0 < b
(κ)
j(k) =

τ̄

1 + x̄ȳ
,

0 < c
(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ). (21)

From (20), it remains to deal with

p
(κ)
j(k)

θ(κ)
θ

pj(k)
≤ 1

4





p
(κ)
j(k)

pj(k)
+

θ

θ(κ)





2

, π
(κ)
j(k)(pj(k), θ), (22)

and

τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ(κ))

=
(τk/τ

(κ)
k ).[(dj(k) + h)α/2/(dj(k) + h(κ))α/2]

1 + gog̃j(k)p
(κ)
k σB/θ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
(pk/p

(κ)
k ).(θ(κ)/θ)

σBθ(κ)τ
(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

≤ 1

4

(

(τk/τ
(κ)
k ) + (dj(k) + h)α/2/(dj(k) + h(κ))α/2

)2

1 + gog̃j(k)p
(κ)
k /σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
1

4

(

(pk/p
(κ)
k ) + (θ(κ)/θ)

)2

σBθ(κ)τ
(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

, ν
(κ)
k (τk, pk, θ). (23)

Therefore,

r2j(k)(τττ ,p, h, θ) ≥ r
2,(κ)
j(k) (τττ ,p, h, θ) (24)

for

r
2,(κ)
j(k) (τττ ,p, h, θ) , a

(κ)
j(k) + b

(κ)
j(k)

(

2− π
(κ)
j(k)(θ, pj(k))

−ν
(κ)
k (τk, pk, θ)

)

−
c
(κ)
j(k)

τk
. (25)
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Analogously,

r1j(k)(τττ ,p, h, θ) ≥ ã
(κ)
j(k) + b̃

(κ)
j(k)



2−
p
(κ)
j(k)

θ(κ)
θ

pj(k)

− τk(dk + h)α/2 + gog̃kpk/(σBθ)

τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
k /(σBθ(κ))

)

−
c̃
(κ)
j(k)

τk

≥ r
1,(κ)
j(k) (τττ ,p, h, θ) (26)

for

r
1,(κ)
j(k) (τττ ,p, h, θ) , ã

(κ)
j(k) + b̃

(κ)
j(k)

(

2− π
(κ)
j(k)(θ, pj(k))

−ν̃
(κ)
k (τk, pk, θ)

)

−
c̃
(κ)
j(k)

τk
, (27)

and

ν̃
(κ)
k (τk, pk, θ)

,
1

4

(

(τk/τ
(κ)
k ) + (dk + h)α/2/(dk + h(κ))α/2

)2

1 + gog̃kp
(κ)
k /σBθ(κ)τ

(κ)
k (dk + h(κ))α/2

+
1

4

(

(pk/p
(κ)
k ) + (θ(κ)/θ)

)2

σBθ(κ)τ
(κ)
k (dk + h(κ))α/2/gog̃kp

(κ)
k + 1

, (28)

and

ã
(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
(κ)
j(k) =

τ̄

1 + x̄ȳ
,

c̃
(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ), (29)

under

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
j(k),

ȳ = τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
k /(σBθ

(κ)).

A lower bounding concave function for the objective

function (8a) is

fNOMA,(κ)(τττ ,p, h, θ) = min
k=1,...,K

r
NOMA,(κ)
k (τττ ,p, h, θ),

(30)

where

r
NOMA,(κ)
k (τττ ,p, h, θ)

=

{

r
(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r
2,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

(31)

and

r
(κ)
j(k)(τττ ,p, h, θ) = min

{

r
1,(κ)
j(k) (τττ ,p, h, θ), r

2,(κ)
j(k) (τττ ,p, h, θ)

}

,

where r
(κ)
k (τττ ,p, h, θ), r

1,(κ)
j(k) (τττ ,p, h, θ), and

r
2,(κ)
j(k) (τττ ,p, h, θ) defined in (19), (27), and (25),

respectively.

It remains to deal with the non-convex constraint (1).

Proposition 1: From the convexity of the tangential

function, it follows that

√
h tan

√
θ

≥
√
h

(

tan
√

θ(κ) +

√
θ −

√
θ(κ)

(cos
√
θ(κ))2

)

(32a)

=
sin

√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

√
h+

√
hθ

(cos
√
θ(κ))2

(32b)

≥ sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

(√
h(κ)

2
+

h

2
√
h(κ)

)

+

√
hθ

(cos
√
θ(κ))2

. (32c)

Proof : See Appendix B.

Therefore, an inner approximation of (1) is2

R ≤ sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

(√
h(κ)

2
+

h

2
√
h(κ)

)

+

√
hθ

(cos
√
θ(κ))2

, (33)

i.e. every feasible point for the latter is also feasible for

the former.

In summary, at the κ-th iteration, we solve the following

convex optimization problem to generate the next iterative

feasible point (τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fNOMA,(κ)(τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33). (34)

Algorithm 1 outlines the steps to solve the max-min rate

optimization problem (8).

Finding an initial feasible point: The initial feasible

point (τττ (0),p(0), θ(0), h(0)) can be obtained by following

the following three steps.

1) First, we can calculate τττ (0) and p
(0) by assuming

random power and random bandwidth allocation

which satisfies (8b) and (8c), i.e.,
∑K/2

k=1 τ
(0)
k = 1 and

∑K
k=1 p

(0)
k = P .

2) We can find θ(0) by fixing it to some value that

satisfies θ2min ≤ θ ≤ θ2max in (8b).

3) Finally, we can find h(0) by solving a feasibility

problem for h under convex constraints h2
min ≤ h ≤

h2
max and R ≤

√
h tan

√
θ(0).

Note that fNOMA,(κ)(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) >
fNOMA,(κ)(τττ (κ),p(κ), h(κ), θ(κ)) because (τττ (κ+1),
p
(κ+1), h(κ+1), θ(κ+1)) and (τττ (κ),p(κ), h(κ), θ(κ)) are re-

2
sin

√
θ(κ) cos

√
θ(κ) −

√
θ(κ) < 0
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Algorithm 1 NOMA-based algorithm for max-min rate

optimization problem (8)

Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),

and (8d).

1: repeat

2: Solve the convex optimization problem

(34) to obtain the optimal solution

(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).
3: Set κ := κ+ 1.
4: until Convergence

spectively the optimal solution and a feasible point of (34).

Therefore

fNOMA(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1))

≥ fNOMA,(κ)(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) (35)

> fNOMA,(κ)(τττ (κ),p(κ), h(κ), θ(κ))

= fNOMA(τττ (κ),p(κ), h(κ), θ(κ)), (36)

where (35) is true because fNOMA,(κ) is a lower

bound of fNOMA while (36) is true because fNOMA,(κ)

matches with fNOMA at (τττ (κ),p(κ), h(κ), θ(κ)), so

(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) is a better feasible

point than (τττ (κ),p(κ), h(κ), θ(κ)). As such, the sequence

{(τττ (κ),p(κ), h(κ), θ(κ))} at least converges to a locally

optimal solution of (8) [36], [37].

B. DPC Algorithm

The objective function of the DPC problem (9) is similar

to that for the NOMA problem (8). Thus, DPC problem

will have the same solution as that of the NOMA problem.

Therefore, at the κ-th iteration, we solve the following

convex optimization problem to generate the next iterative

feasible point (τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fDPC,(κ) , min
k=1,...,K/2

r
DPC,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33), (37)

where

r
DPC,(κ)
k (τττ ,p, h, θ)

=

{

r
(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r
2,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K}.

Note that r
(κ)
k (τττ ,p, h, θ) and r

2,(κ)
j(k) (τττ ,p, h, θ) are derived

in (19) and (25), respectively. Algorithm 2 outlines the

steps to solve the max-min rate optimization problem (9).

C. OMA Algorithm

The objective function of the OMA-1 problem (10)

also has similarity in its structure to that for the NOMA

problem (8). The non-convex constraint (1) can be ap-

proximated by (33). Thus, we can use the inequality (13)

Algorithm 2 DPC-based algorithm for max-min rate opti-

mization problem (9)

Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),

and (8d).

1: repeat

2: Solve the convex optimization problem

(37) to obtain the optimal solution

(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).
3: Set κ := κ+ 1.
4: until Convergence

Algorithm 3 OMA-1 algorithm for max-min rate optimiza-

tion problem (10)

Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (10b),

and (8d).

1: repeat

2: Solve the convex optimization problem

(38) to obtain the optimal solution

(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).
3: Set κ := κ+ 1.
4: until Convergence

and the approximations (16) and (17) to approximate the

non-concave objective function in (10). Thus, we solve

the following convex optimization problem, at the κ-

th iteration, to generate the next iterative feasible point

(τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fOMA-1,(κ) , min
k=1,...,K

r
OMA-1,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (10b), (8d), (33), (38)

where r
OMA-1,(κ)
k (τττ ,p, h, θ) = r

(κ)
k (τττ ,p, h, θ), ∀ k =

{1, . . . ,K} and r
(κ)
k (τττ ,p, h, θ) is defined in (19). Al-

gorithm 3 outlines the steps to solve the max-min rate

optimization problem (10). The initial feasible point

(τττ (0),p(0), θ(0), h(0)) can be obtained in the same way as

described for the NOMA in Section III-A.

Next, in order to solve the OMA-2 problem (11), at the

κ-th iteration, we solve the following convex optimiza-

tion problem to generate the next iterative feasible point

(τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fOMA-2,(κ) min
k=1,...,K/2

r
OMA-2,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33), (39)

where

r
OMA-2,(κ)
k (τττ ,p, h, θ)

=

{

r
O,(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r

O,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

where r
O,(κ)
k (τττ ,p, h, θ) and r

O,(κ)
j(k) (τττ ,p, h, θ) are inner

approximations (at the κ-th iteration) of the non-concave
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functions rO
k (τττ ,p, h, θ) and rO

j(k)(τττ ,p, h, θ), respectively

(defined in (12)). Since rO
j(k)(τττ ,p, h, θ) is similar to the rate

function r2j(k)(τττ ,p, h, θ) (defined in (6) for the NOMA-

problem) and rO
k (τττ ,p, h, θ) has similar structure too, we

can use the inequality (13) (given in Lemma 1) and the

approximations (22) and (23) to find the inner approxima-

tions r
O,(κ)
k (τττ ,p, h, θ) and r

O,(κ)
j(k) (τττ ,p, h, θ).

Thus, by applying the inequality (13) for

τ = τk , x = σBθ/gog̃kpk,

y = τk(dk + h)α/2 + gog̃kpj(k)/(σBθ),

we can obtain the inner approximation for the non-concave

rate function rO
k (τττ ,p, h, θ), as follows:

r
O,(κ)
k (τττ ,p, h, θ) , ã

O,(κ)
k + b̃

O,(κ)
k

(

2− π
(κ)
k (θ, pk)

−ν̃
O,(κ)
j(k) (τk, pj(k), θ)

)

− c̃
O,(κ)
k

τk
,

(40)

where

ν̃
O,(κ)
j(k) (τk, pj(k), θ)

,
1

4

(

(τk/τ
(κ)
k ) + (dk + h)α/2/(dk + h(κ))α/2

)2

1 + gog̃kp
(κ)
j(k)/σBθ(κ)τ

(κ)
k (dk + h(κ))α/2

+
1

4

(

(pj(k)/p
(κ)
j(k)) + (θ(κ)/θ)

)2

σBθ(κ)τ
(κ)
k (dk + h(κ))α/2/gog̃kp

(κ)
j(k) + 1

, (41)

and

ã
O,(κ)
k = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
O,(κ)
k =

τ̄

1 + x̄ȳ
,

c̃
O,(κ)
k = τ̄2 ln(1 + 1/x̄ȳ), (42)

under

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
k ,

ȳ = τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
j(k)/(σBθ

(κ)).

Similarly, by applying the inequality (13) for

τ = τk, x = σBθ/gog̃j(k)pj(k),

y = τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ),

we can obtain the inner approximation for the non-concave

rate function rO
j(k)(τττ ,p, h, θ) as follows:

r
O,(κ)
j(k) (τττ ,p, h, θ) , ã

O,(κ)
j(k) + b̃

O,(κ)
j(k)

(

2− π
(κ)
j(k)(θ, pj(k))

−ν̃
O,(κ)
k (τk, pk, θ)

)

−
c̃
O,(κ)
j(k)

τk
, (43)

Algorithm 4 OMA-2 algorithm for max-min rate optimiza-

tion problem (11)

Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),

and (8d).

1: repeat

2: Solve the convex optimization problem

(39) to obtain the optimal solution

(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).
3: Set κ := κ+ 1.
4: until Convergence

where

ν̃
O,(κ)
k (τk, pk, θ)

,
1

4

(

(τk/τ
(κ)
k ) + (dj(k) + h)α/2/(dj(k) + h(κ))α/2

)2

1 + gog̃j(k)p
(κ)
k /σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
1

4

(

(pk/p
(κ)
k ) + (θ(κ)/θ)

)2

σBθ(κ)τ
(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

,

(44)

and

ã
O,(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
O,(κ)
j(k) =

τ̄

1 + x̄ȳ
,

c̃
O,(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ), (45)

under

τ̄ = τ
(κ)
k //, ///x̄ = σBθ

(κ)/gog̃j(k)p
(κ)
j(k),

ȳ = τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ

(κ)).

Algorithm 4 outlines the steps to solve the max-min

rate optimization problem (11). The initial feasible point

(τττ (0),p(0), θ(0), h(0)) can be obtained in the same way as

described for the NOMA in Section III-A.

Before closing this section, let us mention that it is

possible to extend our computational approach to scenarios

of multiple UAVs serving their own users and thus creating

multiple cells as follows. For simplicity of explanation,

suppose that each UAV serves the same number K of

ground users so the total bandwidth is divided and re-used

in each cell for spectral efficiency. To cancel inter-cell in-

terference, which is difficult to be enhanced due to the poor

scattering of the air-to-ground (A2G) channels, one simply

allocates different bandwidths to users on cell boundary, i.e.

those on cell boundary from different cells are allocated

different bandwidths. As such (8) (for NOMA), (9) (for

DPC), (10) (for OMA-1) and (11) (for OMA-1) will involve

the same variable τττ of bandwidth allocation satisfying

the constraint (8c) or (10b) but each cell i has its own

variables p
(i), h(i), and θ(i) of power allocation for its
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Fig. 2. Network topology used in the simulations.
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Fig. 3. The convergence of the proposed Algorithms 1-4.

users, UAV’s altitude and beamwidth, which are indepen-

dently constrained. Thus, all the proposed algorithms can

be adjusted for computational solution of these problems.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the pro-

posed Algorithms 1-4 via simulations. We use the network

topology as used in Fig. 2, where the cell radius is set to

R = 300 meters, and there are K = 20 users randomly

placed within the cell. The UAV BS is at the cell-center

and at altitude
√
h above the ground-level. Fig. 2 shows the

ground-level projection of the UAV BS. Half of the users

are placed closer to the UAV BS, while the rest of the users

are farther from the UAV BS. The channel power gain go
at a distance of 1 meter is set to 3.24 × 10−4, which in-

corporates −38.47 dB (1.42×10−4) path loss and antenna

gain 2.2846 [18]. The Rician factor for the Rician fading

channel h̃k is set to KR = 12 dB [31]. The maximum and

minimum UAV altitude are set to hmax = 500 meters and

hmin = 50 meters, respectively. The range of the antenna

beamwidth is set to θmin = 0 and θmax = π/2 rad. The

total power budget is P = 2 mW (3 dBm). Unless stated

otherwise, we set total available bandwidth B = 15 MHz,

the noise power density σ2 = −174 dBm/Hz, and the path-

loss exponent α = 2 [9], [20]. However, in this section, we

will also test our proposed algorithms for different values of

B, σ2, and α. The simulations are run by using MATLAB

and off-the-shelf solvers such as CVX [38].

A. Performance of the Proposed Algorithms 1-4

Fig. 3 plots the convergence results of the proposed

Algorithms 1-4 employing NOMA problem (8), DPC prob-

lem (9), OMA-1 problem (10), and OMA-2 problem (11),

respectively. Fig. 3 shows that NOMA (Alg. 1) and DPC

(Alg. 2) take around 16 iterations to converge. On the

other hand, the convergence of the OMA-1 and OMA-

2 (Algorithms 3 and 4) requires only eight and seven

iterations, respectively. However, the NOMA and DPC

achieve better rates than their OMA counterparts. Even,

at the sventh iteration, which is the point where the OMA-

1 (Alg. 3) converges, the optimized rates of the NOMA

and DPC are better than that of the OMA-1.

The computational complexity of NOMA (Alg.

1) is O
(

iA1(1.5K + 2)3(2K + 7)
)

, DPC (Alg. 2)

is O
(

iA2(1.5K + 2)3(2K + 7)
)

, OMA-1 (Alg. 3) is

O
(

iA3(2K + 2)3(2K + 7)
)

, and OMA-2 (Alg. 4) is

O
(

iA4(1.5K + 2)3(2K + 7)
)

[39, p. 4], where iA1 = 16,

iA2 = 17.2, iA3 = 7, iA4 = 6 are the average number of

iterations required for the convergence of Algorithms 1,

2, 3, and 4, respectively.

Fig. 4 plots the optimized max-min user rate versus the

total available bandwidth B. We solve NOMA problem

(8), DPC problem (9), OMA-1 problem (10), and OMA-2

problem (11) using Algorithms 1, 2, 3, and 4, respectively.

As expected, the optimized rate increases with an increase

in the total available bandwidth B. Fig. 4 shows that the

performance of NOMA is quite closer to that of the DPC

while clearly better than that of the OMA counterparts.

Moreover, we observe that the performance gap between

the NOMA and OMA-1 increases with an increase in the

available bandwidth B.

Fig. 5 plots the optimized max-min user rates of the

proposed Algorithms 1-4 versus the noise power density

σ2. As expected, the optimized rate decreases with an

increase in the noise power density σ2. Fig. 5 again shows

the same trend that the NOMA and DPC clearly outperform

the OMA counterparts. In addition, the performance gap

between the NOMA and OMA-1 decreases as the noise

power density σ2 increases.

Figs. 6 and 7 plot the optimized values of UAV altitude

and antenna beamwidth, respectively, after solving all the
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Fig. 4. Optimized max-min user rate versus total available bandwidth
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= −174 dBm/Hz.
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Fig. 5. Optimized max-min user rate versus noise power density σ2,
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Fig. 6. Optimized altitude
√
h versus total available bandwidth B, where

the noise power density is set to σ2
= −174 dBm/Hz.
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Fig. 7. Optimized antenna beamwidth
√
θ versus total available band-

width B, where the noise power density is set to σ2
= −174 dBm/Hz.

problems using Algorithms 1, 2, 3, and 4. Figs. 6 and 7

show that there is minor change in the optimized values

of the UAV altitude and antenna beamwidth for different

values of the total available bandwidth B. This is an inter-

esting and desirable result since the UAV is not required

to move much if the bandwidth quota changes.

Fig. 8 plots the optimized max-min rates of the proposed

Algorithms 1-4 versus the path-loss exponent, α. This

results has been simulated since some recent studies [30],

[31] adopt higher values of path-loss exponent for UAV

communication. Fig. 5 shows an interesting and promising

result that for higher values of path-loss exponent, the

performance gap between the NOMA and DPC vanishes,

while they clearly outperform the OMA counterparts. On

the other hand, as expected, the optimized rate for all the

algorithms decreases with an increase in α.

B. Comparison with the Sub-optimal Schemes

Fig. 9 plots the optimized max-min user rate for sub-

optimal strategy where only power and bandwidth are

optimized under fixed altitude
√
h and fixed antenna

beamwidth
√
θ, such that the constraint (1) is satisfied.

Again, the bandwidth is set to B = 15 MHz. Fig. 9(a)

assumes
√
h = 100 m while Fig. 9(b) assumes

√
h = 200

m. That is, in Fig. 9, we solve the NOMA problem (8),

the DPC problem (9), and the OMA-1 problem (10), for

given fixed altitude
√
h and fixed antenna beamwidth

√
θ,

i.e., in the absence of constraint (1). Thus, this sub-optimal

scheme requires solving only for the optimal power p

and optimal bandwidth allocation τττ . The optimized max-

min rates are clearly smaller than the optimized rates as

obtained by the proposed optimal Algorithms 1-3, which

are shown by the black bar at the left of each group in

Fig. 9. This is because Algorithms 1-4 jointly optimize all
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Fig. 8. Optimized max-min user rate versus the path-loss exponent, α.

the parameters. In addition, this justifies the desirability of

optimizing UAV-BS altitude and antenna beamwidth. Note

that the Fig. 9 does not plot results for OMA-2 (Alg.

4) because it performs quite poorly than the other three

algorithms.

Fig. 10 plots the max-min user rate obtained by another

sub-optimal scheme, which assumes fixed power p and

fixed bandwidth τττ allocation and solves to find the optimal

UAV altitude
√
h and optimal antenna beamwidth

√
θ.

Particularly, we opt for equal power and equal bandwidth

allocation, such that, equal power allocation implies pk =
P/K, ∀ k, while equal bandwidth for the NOMA and

DPC mean τk = 1/(K/2), ∀ k ∈ {1, . . . ,K/2} and

equal bandwidth allocation for OMA-1 means τk = 1/K,

∀ k ∈ {1, . . . ,K}. Fig. 10 shows that optimal schemes

(Algorithms 1, 2, and 3 plotted with solid lines) clearly

outperform the respective sub-optimal schemes (plotted

with dashed lines). Fig. 10 shows that the sub-optimal

NOMA and the sub-optimal DPC perform quite poorly,

and even deliver a worse rate than the sub-optimal OMA-

1. This is because wise power allocation is necessary for

the NOMA and DPC, whereas, the sub-optimal NOMA

and the sub-optimal DPC in Fig. 10 assume equal power

allocation, which worsen their achievable rate.

V. CONCLUSIONS

In this paper, we have considered a UAV-enabled com-

munication network which serves a large number of users

by employing NOMA. We have formulated the max-min

rate optimization problem under total power, total band-

width, UAV altitude, and antenna beamwidth constraints.

The formulated max-min rate objective function is non-

convex in the optimization variables, i.e., the UAV’s flying

altitude, transmit antenna beamwidth, power allocation and

bandwidth allocation for multiple users. We have developed

a path-following algorithm to solve the formulated prob-

lem. In addition, we have also formulated OMA and DPC-

based max-min rate optimization problems and developed

respective path-following algorithms to solve them. Finally,

our numerical results show that NOMA outperforms OMA

and achieves rates similar to those achieved by DPC.

Moreover, we have observed a clear rate gain by jointly

optimizing all the parameters (power, bandwidth, UAV

altitude, and antennas beamwidth), when compared to the

case of optimizing subset of these parameters, which con-

firms the desirability of their joint optimization. Physical

layer security for UAV-enabled communication is an very

important issue and is under our study.

APPENDIX A

PROOF OF LEMMA 1

For the convex function f(x, y, t) , ln(1 + 1/xy)1/t

[40], one has the following inequality for every x > 0,

y > 0, t > 0, x̄ > 0, ȳ > 0 and t̄ > 0:

ln(1 + 1/xy)

t
= f(x, y, t)

≥ f(x̄, ȳ, t̄) + 〈∇f(x̄, ȳ, t̄), (x, y, t)− (x̄, ȳ, t̄)〉

=
2 ln(1 + 1/x̄ȳ)

t̄
+

1

t̄(1 + x̄ȳ)
(2− x/x̄− y/ȳ)

− ln(1 + 1/x̄ȳ)

t̄2
t (46)

Therefore, by setting τ = 1/t and τ̄ = 1/t̄, we can achieve

the following inequality.

τ ln

(

1 +
1

xy

)

≥ 2τ̄ ln

(

1 +
1

x̄ȳ

)

+
τ̄ (2− x/x̄− y/ȳ)

1 + x̄ȳ

− τ̄2 ln(1 + 1/x̄ȳ)

τ

APPENDIX B

PROOF OF PROPOSITION 1

The convex function f(x) can be approximated by the

following lower bound at x = x(κ),

f(x) ≥ f(x(κ)) +∇xf(x
(κ))(x− x(κ)) (47)

and concave function g(x) can be approximated by the

following upper bound at x = x(κ),

g(x) ≤ g(x(κ)) +∇xg(x
(κ))(x− x(κ)) (48)

where ∇xf(x
(κ)) is the gradient of function f(x) with

respect to its variable x and evaluated at x = x(κ).

Using (47), the convex tangent function can be approx-

imated by

tan
√
θ ≥ tan

√

θ(κ) +

√
θ −

√
θ(κ)

(cos
√
θ(κ))2

(49)

From (49), we can achieve (32a) or equivalently (32b) in

Proposition 1.
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Fig. 9. Comparison of max-min user rate obtained by optimizing only power and bandwidth under fixed altitude
√
h and fixed antenna beamwidth√

θ (satisfying (1)) with the max-min rate achieved by optimizing all the parameters jointly by proposed Algorithms (shown by black bar at the left

of each group). Subfig. (a) assumes
√
h = 100 m and subfig. (b) assumes

√
h = 200 m.

5 10 15 20
Total bandwidth, B (MHz)

0

1

2

3

4

5

6

7

8

O
p

ti
m

iz
e

d
 m

a
x
-m

in
 u

s
e

r 
ra

te
 (

M
b

p
s
)

DPC (Alg. 2)
NOMA (Alg. 1)
OMA-1 (Alg. 3)
DPC (fixed power and BW)
NOMA (fixed power and BW)
OMA-1 (fixed power and BW)

Fig. 10. Comparison of the optimized max-min user rate obtained under
fixed power p and fixed bandwidth τττ allocation (equal power and equal
bandwidth allocation) with the optimized max-min rate achieved by the
proposed algorithms.

Next, using (48), the concave function
√
h can be

approximated by

√
h ≤

√
h(κ)

2
+

h

2
√
h(κ)

(50)

Using (50) in (32b), we can achieve the final expression

(32c) in Proposition 1.
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