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Abstract

In this paper, aiming at the flying scene of the small unmanned aerial vehicle (UAV) in the low-altitude suburban

environment, we choose the sensor configuration scheme of LiDAR and visible light camera, and design the static

and dynamic obstacle detection algorithms based on sensor fusion. For static obstacles such as power lines and

buildings in the low-altitude environment, the way that image-assisted verification of point clouds is used to fuse

the contour information of the images and the depth information of the point clouds to obtain the location and

size of static obstacles. For unknown dynamic obstacles such as rotary-wing UAVs, the IMM-UKF algorithm is

designed to fuse the distance measurement information of point clouds and the high precision angle

measurement information of image to achieve accurate estimation of the location and velocity of the dynamic

obstacles. We build an experimental platform to verify the effectiveness of the obstacle detection algorithm in

actual scenes and evaluate the relevant performance indexes.
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1 Introduction
In recent years, UAVs have been used in various military

and civilian fields, including reconnaissance, tracking

and positioning, power inspection, and agricultural plant

protection, etc. The wide application of UAVs puts for-

ward more demands on airspace resources. There are

many mission requirements for UAVs in low-altitude

flight scenarios. They need to sense and avoid (SAA)

various obstacles in the flying environment, including

fixed obstacles such as buildings, trees, power lines, and

moving obstacles such as birds and other aircraft. Flight

safety is the prerequisite for the completion of the mis-

sion, and the development of UAV’s SAA system is an

indispensable aspect for UAVs to move toward large-

scale applications [1].

When UAVs fly in the low-altitude suburban environ-

ment, the environment is relatively complex. As the

flight altitude decreases, the density of obstacles in the

environment gradually increases. Small obstacles such as

power lines increase the difficulty of target detection.

The UAV’s SAA system not only needs to determine the

presence or absence of obstacles, but also needs to ob-

tain the distance and scale information of the obstacles

in airspace, so as to generate a safe avoidance path to

avoid secondary collision avoidance. It’s difficult but im-

portant for small UAVs to determine the accurate distri-

bution of power lines and the moving obstacles in

airspace. Small UAVs can only carry low-cost, low-

quality, low-power sensors, such as visible light camera

[2, 3], infrared camera [4], depth camera [5], millimeter

wave radar [6], and LiDAR [7], due to their limited load

capacity. Visual sensors such as visible light camera and

infrared camera have strong image acquisition ability

and have the advantages of small size, light weight, and

low power consumption.

However, these sensors cannot directly obtain the

depth information of the target, and the depth estima-

tion based on vision often brings the additional cost of

complex maneuvering. The binocular vision [8] can ob-

tain the distance of obstacles through stereo vision

matching, but the image feature matching process re-

quires higher calculation ability and poor real-time
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performance. Depth cameras do not require complicated

calculations and can directly obtain image depth through

the hardware design of the sensor. But depth detection

distance range is short, and doesn't exceed 20m. Milli-

meter wave radars can obtain the target’s distance, azi-

muth and velocity information, and have strong ability

to penetrate fog, smoke and dust. They have the advan-

tages of high accuracy of ranging and velocity measure-

ment, good environmental applicability and so on, but

their angle measurement accuracy is low. LiDAR has its

unique advantages in detecting obstacles due to its pre-

cise distance and direction measurement capabilities.

Traditional three-dimensional LiDAR is less widely used

due to their heavy weight and sparse longitudinal point

cloud density. With the rapid development of LiDAR

technology, a new type of 3D LiDAR using non-

repetitive scanning technology makes up for the short-

comings of sparse longitudinal point cloud density, mak-

ing it possible to apply to small UAV. However, the

single sensor configuration schemes have limitations in

detection range, detection accuracy, and anti-interfer-

ence, etc. They are difficult to detect obstacles stably

and accurately in the complex flight environment of fu-

ture airspace integration. UAV platforms can effectively

use multiple sensors to obtain multi-sources information

by carrying multiple types of sensors [9, 10]. The LiDAR

can directly obtain the spatial position and partial con-

tour information of obstacles. The fusion of LiDAR with

visible light camera containing rich contour information

for obstacle detection has great application prospects.

LiDAR and visible light camera are heterogeneous sen-

sors, and generally use decision-based information fu-

sion algorithms to detect obstacles. They are mainly

divided into two forms: image-assisted verification of

LiDAR point clouds and cross-validation of image and

point clouds. The method of image-assisted verifica-

tion of point clouds first uses point clouds to detect

obstacles, and project the point clouds detection re-

sults into the image to determine the region of inter-

est (ROI). Then, obstacle detection is performed on

the region of interest, and the detection result of the

point clouds is verified or supplemented according to

the detection result. In [11], the authors use the point

clouds to determine the ROI in the image and uses

the cascade classifier to identify the target in the ROI

area, which uses the way that image to verify the

point clouds to improve the detection efficiency. In

[12], the authors use the way of vision and LiDAR

cross-validation that extract target features from point

clouds and image respectively to train the classifier.

The realization of information complementation

through sensor information fusion technology is an

effective way to improve the perception and robust-

ness of UAV SAA system.

According to the current researches and the obstacle

avoidance requirements of small UAV, our contributions

in this paper are described as follows.

1. In this paper, we propose a fusion scheme of

LiDAR and visible light camera to detect obstacles

for small UAVs. A calibration method is introduced

in this paper.

2. In this article, we use image-assisted verification of

point clouds to fuse the contour and angle informa-

tion of image and the depth information of point

clouds. In the cross-validation method of vision and

LiDAR, the obstacle detection in the point clouds

and image is performed at the same time. We de-

sign a fusion detection method for variety of static

obstacles and a state estimation method for dy-

namic obstacles by using the LiDAR and visible

light camera.

The result of point clouds detection is projected into

the image and connected with the detection result of

image. The fusion of LiDAR and image information can

obtain the contour information of obstacles, and accur-

ately obtain the spatial distribution information of obsta-

cles such as power lines and buildings in low-altitude

environments, which can provide accurate environmen-

tal sense results for subsequent obstacle avoidance.

Compared with ground scenes, the fusion of LiDAR and

visible light cameras to solve the obstacle detection

problem of small UAVs faces many challenges, including

the limited load and computing capabilities of UAV plat-

forms, small obstacles such as power lines in the envir-

onment, more flexible dynamic obstacles, etc.

2 The obstacle fusion detection framework

In this section, we first briefly introduce the obstacle fu-

sion detection framework. The low-altitude obstacle de-

tection framework for small UAVs based on the fusion

of LiDAR and visible light camera is shown in Fig. 1.

The framework first performs offline calibration on the

LiDAR and visible light camera, then selects the appro-

priate point clouds segmentation algorithm, at last de-

signs fusion detection methods for linear static

Fig. 1 Low-altitude obstacle detection framework based on the

fusion of LiDAR and visible light camera
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obstacles, surface static obstacles and dynamic obstacles

respectively.

In this paper, a three-dimensional non-repetitive scan-

ning LiDAR whose six lasers scan at the same time and

the scanning path will not be repeated is selected, which

avoids the shortcomings of traditional mechanical rotat-

ing structure LiDAR in the vertical direction. Data fu-

sion of the two sensors requires sensor calibration

firstly. The purpose of the camera calibration is to obtain

the internal parameter matrix and distortion coefficient

of the visible light camera, which are used to correct the

distortion of the original image. The joint calibration of

LiDAR and camera first obtains the three-dimensional

coordinates of the corner points of the calibration plate

in the point clouds and the pixel coordinates in the

image, and then fits the coordinate conversion matrix

between the lidar coordinate system and the image pixel

coordinate system. The relative position of LiDAR and

visible camera and the calibration plate used are shown

in Fig. 2.

The conversion relationship between the LiDAR and

the pixel coordinate system of the distortion corrected

image is defined as follows.
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where Rl and tl are the rotation matrix and translation

vector from LiDAR coordinate system to camera coord-

inate system respectively. The calibration results are

shown in Fig. 2. In the figure, the point cloud is colored

according to the distance. With the increase of distance,

the calibration error gradually increases, and the error of

joint calibration within 100 m is within 10 pixels.

Point clouds are a series of disorderly discrete points

in space, which are usually incomplete and sparsely dis-

tributed. The process of point clouds segmentation is to

assign discrete point clouds to obstacle identification,

and classify the point clouds of the same obstacle into

one classification, so as to obtain the spatial distribution

information of the obstacles contained in the point

clouds. The way of non-repetitive LiDAR scanning al-

lows the same obstacle to be scanned repeatedly and the

position of each scan is different, so the generated point

clouds are more disorderly than traditional LiDAR.

When small UAVs fly in the low-altitude environment,

the point clouds data is sparser compared to the ground

environment. In view of the above characteristics, we

first use the KD tree [13] to store the original unordered

point clouds, and then obtain the neighboring points

through range search based on the KD tree. Point clouds

segmentation is performed by the method of neighbor-

ing point clouds growth based on adaptive Euclidean

distance.

3 Obstacles detection method

Obstacles in the low-altitude environment for small

UAVs can be divided into static obstacles and moving

obstacles. Static obstacles also can be divided into linear

obstacles and surface obstacles according to the different

scanning area. In this section, we introduce the detection

methods of various obstacles.

3.1 Linear static obstacle detection

Linear static obstacles are mainly represented by power

lines, which are difficult to detect due to their small

scanning area and size. The sparseness of point clouds

from LiDAR causes no point cloud distribution in some

parts of the same power line, which leads to over-

segmentation that divides the same power line into dif-

ferent obstacles. Moreover, the power lines in some

areas will be missed. It is difficult to truly describe the

distribution information of the power lines in the envir-

onment, which brings additional risks for the UAV to

evade maneuvers. The fusion of image that contains the

complete outline information of the power line and

point clouds can make up for the lack of single LiDAR

to detect power lines.

Point clouds segmentation divides the original point

clouds into different point cloud clusters, which can

Fig. 2 The LiDAR, visible camera, the calibration plate and the calibration results
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present the geometric information of obstacles. The

point clouds of linear obstacles are concentrated in the

direction of the main axis, and the variance of the point

clouds in the other two directions is much lower than

that of the main axis. This feature can be used to select

linear obstacles from the original segmentation results.

A power line is a curve in space, which can be approxi-

mated by segmented straight lines, whose slope intercept

are close. The same power line is over-segmented into

different point cloud clusters in the point cloud data.

After projecting each point cloud cluster to the image

plane and performing straight line fitting, if the differ-

ence between the slope and intercept of the two straight

lines is lower than the preset thresholds, the two clusters

of point clouds can be classified into one category. It is

difficult to obtain the distance data of the power line dir-

ectly from the visible light image, but image contains the

complete contour information of the power line. Ac-

cording to the power line contour information, the over-

segmented power line point cloud data can be further

corrected. The power line is not a strict straight line in

the image, so single line detection algorithm cannot ex-

tract the complete contour information of the power

line. The power line can be approximated by polyline

segments. The Line Segment Detector (LSD) [14] algo-

rithm calculates the gradient of all pixels in the image,

then treats adjacent points with small gradient changes

as a connected domain, at last filters the generated con-

nected domains to obtain the straight line segments and

their starting points in the image. The detection speed

of the LSD algorithm is fast and the accuracy is high. A

single power line curve is divided into multiple discon-

tinuous line segments. The parameters of the two-

dimensional straight line equations of adjacent straight

line segments of the same power line are close and the

Euclidean distance between the end points of the

straight line segments is relatively short.

The point cloud clusters of the power line are pro-

jected into the image pixel coordinate system using the

projection transformation matrix. Then two-dimensional

straight line equations would be fitted, which match the

line segments detection result of the LSD algorithm. The

line segment with the highest matching degree of point

cloud clusters is selected according to the starting point

coordinate, slope, intercept and the coincidence degree

of the line segment. The slopes of adjacent line segments

corresponding to the same power line change slightly

and the endpoints are relatively close. The line segments

corresponding to the point clouds are used as seeds to

filter out the neighboring line segments belonging to the

same power line and continue to expand until that all

the line segments corresponding to the power line in the

image are obtained. According to the set of power line

segments obtained by image detection, the azimuth and

pitch of the starting and ending points of the power line

can be determined in the camera coordinate system. The

point clouds of power line are converted from the

LiDAR coordinate system to the camera coordinate sys-

tem through the transformation matrix and fitted with a

three-dimensional straight line equation to estimate the

distribution information of the power line in the starting

and ending azimuth. Compared with the single point

clouds, the result of fusion detection can be more realis-

tically close to the actual position of the power line.

3.2 Surface static obstacle detection

For surface static obstacles such as buildings and moun-

tains, the scanning cross-sectional area is larger, so the

detection difficulty is lower than that of small obstacles

such as power lines. However, UAVs need longer re-

sponse time and longer maneuver distance to avoid

buildings. Obtaining accurate building distance and size

information helps UAVs to reasonably plan collision

avoidance paths and reduce risk of collision avoid. When

the building is far away, the sparse point cloud will be

over-segmented to varying degrees along with the ir-

regular protrusions or depressions of the building, and

some areas may be missed. As the detection distance in-

creases, the accuracy of the building profile information

becomes lower.

The image contains rich outline information. Similar

to the detection of linear obstacles such as power lines,

the fusion of image contour information and point

clouds information can be used to make up for the

shortcomings of only point clouds for obstacle detection.

In the image, the edge contour map of the obstacle can

be obtained through edge detection. We use the fast

edge detection algorithm based on structured forest [15]

to obtain image contours. The algorithm mainly learns

and calculates effective edge detectors through the struc-

ture existing in the local image block, and uses the ran-

dom decision forest algorithm to solve the problem of

predicting the local edge mask in the structured learn-

ing. Using the BSD500 (https://www2.eecs.berkeley.edu/

Research/Projects/CS/vision/grouping/resources.html)

image segmentation data set, the structured forest classi-

fier is trained offline to obtain a general edge detection

classifier, and the trained structured forest classifier is

used to perform online edge detection on the image.

Structured forest is processed in parallel for different

pixel positions in the image and calculations between

decision trees, so the calculation efficiency is high and

the running speed is fast. For different types of point

clouds if the two types of point clouds partially overlap

in the obstacle area in the image, it means that the two

types of point clouds may belong to the same obstacle.

The point clouds are projected to the edge contour

map to determine the region of interest firstly, and
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reliable contour lines are detected outward based on the

boundary points of the point clouds projection, which

can determine the contour information of the obstacle

corresponding to the point clouds data. The detection

result of the fusion information is closer to the real con-

tour than the point clouds data. For different classifica-

tions of point clouds data, if the two classification of

point clouds partially overlap in the obstacle area in the

image, it means that the two classification of point

clouds may belong to the same obstacle. The adaptive

distance threshold of point clouds segmentation is ap-

propriately increased to eliminate the influence of obs-

tacle structure and point cloud sparsity. The two

classification of point clouds are re-segmented according

to the new threshold to determine whether they belong

to the same classification, and the point clouds belong-

ing to the same classification are merged to eliminate

the impact of over-segmentation.

3.3 Dynamic obstacle detection

Dynamic obstacles represented by aerial vehicles would

introduce motion distortion in the LiDAR point clouds

data, which would reduce the accuracy of point clouds

detection. The characteristics of the instantaneous im-

aging of the visible light image and the high-precision

angle measurement information it contains help to

increase the accuracy of the estimation of the motion

state of the aerial vehicle. This section is based on the

Interactive multi-model Unscented Kalman filter (IMM-

UKF) algorithm to fuse the ranging information of the

point clouds and the high-precision angle measurement

information of the image to realize the state estimation

of the aerial vehicle. As shown in Fig. 3, the target state

and covariance matrix are initialized with LiDAR data,

and then the next state is predicted and the image or

LiDAR measurement values are read in time series. If

the measurement data of the next frame is point

clouds data, it is calculated and updated in the

LiDAR filter according to the LiDAR measurement

equation. If the new measurement data is image data,

the distance information of the predicted value of the

LiDAR filter at the time point of the image data and

the angle information of the image are combined as

the measurement data and input into the fusion filter

for calculation and update. The image data only up-

dated the angle information.

In the interactive multi-model algorithm, three models

of CV, CA and CSCT are used to describe the move-

ment of the UAV in space. The raw data of LiDAR is

the distance, azimuth and elevation angle in the LiDAR

polar coordinate system. The measurement equation for

LiDAR is

Fig. 3 Architecture of IMM-UKF for Dynamic Obstacle State Estimation based on the fusion of LiDAR and visible light camera

Fig. 4 Schematic diagram of data acquisition platform and ROS message transmission
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where [R, t] is the rotation and translation matrix from

the camera coordinate system to the LiDAR coordinate

system. The visible light image contains high-precision

angle measurement information. According to the pixel

position of the target centroid in the image and the in-

ternal parameter matrix of the image, the azimuth θ and

elevation angle φ information of the target in the camera

coordinate system can be calculated according to Eq. 3.
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where (u, v) is the pixel coordinates of the centroid, (u0,

v0) is the optical center coordinates, and f is the focal

length. The measurement equation of the camera sensor

is
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The observation matrices hi(k) of the two sensors are

both nonlinear, so the filter module in the interactive

multi-model adopts the unscented Kalman filter algo-

rithm for state filtering.

4 Experimental results

In this section, in order to verify the effectiveness of obs-

tacle detection related algorithms based on the fusion of

LiDAR and visible light camera, we use LiDAR and vis-

ible light camera on the UAV platform to collect obs-

tacle data from power line avoidance scenes, building

avoidance scenes, and encounter scenes with low-

altitude small UAVs in low-altitude suburban environ-

ments. The experimental platform is shown in Fig. 4.

The purpose of the power line avoidance scene is to

verify the perception and positioning capabilities of the

sensing system for low-altitude linear static obstacles.

Compared with the detection result of single LiDAR

data, the power line detection of fused image and point

clouds data avoids over-segmentation of power lines and

missed detection of some areas. The comparison of the

Fig. 5 Visualized results of point cloud detection (left) and fusion detection (right)

Table 1 Quantitative index value for power line detection

Indexes OSR LR

Sensor

LiDAR 0.9620 0.4377

LiDAR+camera 0.8240 0.8509
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two detection results is shown in Fig. 5. In the first

scene, the inconsistency of the point clouds lead to

the over-segmentation of the power line when only

point clouds data is used, and the over-segmentation

is corrected by fusion data detection based on the lin-

ear detection of power lines. In the second scene,

since the point clouds scanned on the power line

during the sampling period are less when the distance

is far apart, relying on the point clouds data for

power line detection would cause most of the power

lines in the field of view to miss detection. According

to the set of power line segments obtained by image

detection, the distribution information of the power

line in the starting and ending azimuths can be esti-

mated. Compared with single point clouds data, it

can be closer to the actual location of the power line

more realistically. The effective detection ra-

tio named length ratio (LR) and over segmentation

rate (OSR) of the power line pixel length in the field

of view are used as evaluation indexes to evaluate the

effect of power line detection.

LR ¼

X

Nd

i¼1

Ld ið Þ

X

N t

i¼1

Lt ið Þ
; ð5Þ

Fig. 6 Building detection results ased on point cloud data (left) and fusion data (right)

Table 2 Quantitative index value for building detection

Indexes OSR IOU

Sensor

LiDAR 2.5720 0.2876

LiDAR+camera 0.8160 0.4235
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OSR ¼ N t−Nd

N t

; ð6Þ

where Ld(i), Lt(i) are the detected length and true length

of the i-th power line respectively, NdandNt are the de-

tected number and true number of power lines respect-

ively. According to 250 frames registered of power line

point clouds and image data at different distances and

angles collected in the actual scene, manual calibration

is used to label the number and length of power lines in

the image for statistical analysis with experimental re-

sults. The average value of each quantitative index of the

LiDAR and two sensors fusion for power lines detection

is shown in Table 1. The detection result based on fu-

sion can effectively reduce the over-segmentation of the

power line and the average effective detection length is

1.94 times that of single LiDAR data, which verifies the

effectiveness of the fusion algorithm. According to the

actual environment test, under the currently selected

sensor parameters of the LiDAR and visible light camera,

the farthest detection distance for the power line is 24 m

when the sensing subsystem can ensure that the distance

and direction of the power line is obtained.

The main purpose of the building avoidance scene is

to verify the perception and positioning capabilities of

the sensing system to surface static obstacles at low alti-

tude. In the three-dimensional camera coordinate sys-

tem, cube model is used to describe the obstacle, and

the projection in the corresponding two-dimensional

image is a rectangle. The building detection results

under different distances and situations are shown in

Fig. 6. The left side is the point clouds data detection re-

sults, and the right side is the corresponding fusion de-

tection results. The figure shows the detection results at

different distances and tilt angles during the movement

of the UAV. Obstacle detection based on fusion can ef-

fectively reduce over-segmentation and describe obstacle

size information more accurately.

The over-segmentation rate and Intersection over

Union (IOU) that refers to the overlap rate between the

Fig. 7 Schematic diagram of two aircraft encounter scene

Fig. 8 Intruder trajectory detection result
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detection area and the target truth area are used to

evaluate the detection results. The real number of build-

ings is marked by manual marking and the real area of

the buildings in the map is marked with the target detec-

tion marking tool labelImg, which are used to evaluate

the obstacle detection effect. The average value of the

surface obstacle detection evaluation indexes based on

the fusion scheme and the single LiDAR scheme is

shown in Table 2. It can be seen that the detection

method based on the fusion can effectively correct the

over-segmentation problem of the point clouds and im-

prove the IoU value. Because of the large scanning

cross-section of the building, the point clouds data can

detect the building in a longer range. The detection dis-

tance of the building based on the fusion of LiDAR and

visible light image can reach 200 m.

The two-aircraft encounter scene is designed to verify

the state estimation capability of the configuration

scheme based on the fusion of LiDAR and visible light

camera for low-altitude unknown dynamic obstacles as

shown in Fig. 7. The Real-time kinematic (RTK) module

is installed on both the UAV and the invading UAV to

obtain the relative position information of UAVs. We

use the RTK module positioning data with higher ac-

curacy as the reference value of the relative position

to evaluate the accuracy of the state estimation. In

the image, the YOLOv4 target detection algorithm is

used to obtain the position of the intruder in the

image.

Figure 8 shows the movement situation of the intruder

when it moves in opposite directions after flying hori-

zontally. The own UAV is at the origin of coordinates

and the direction of the machine head points to the Z

axis. The relative speed of the opposite movement is

greater and the movement is more intense. The error

curve in this situation is shown in Fig 9. It can be seen

from the distance and speed average errors of the three

coordinate axes that the state estimation results based

on sensor fusion have higher accuracy. The high-

precision angle measurement information of the image

can reduce the influence of motion distortion on the

LiDAR data.

Fig. 9 LiDAR (a and b) and Sensor fusion (c and d) state estimation error

Table 3 Accuracy of state estimation for two configuration schemes in multiple motion modes

LiDAR LiDAR+camera

σ
r

σφ σ
v

σφ, v σ
r

σφ σφ σφ, v

Horizontal 0.5910 0.0149 1.0893 0.1872 0.5548 0.0135 0.8342 0.1164

Circular 2.2686 0.0556 2.8015 0.4173 0.7638 0.0137 2.1073 0.3221

Opposing 0.9971 0.0231 1.7704 0.2770 0.6855 0.0185 1.4110 0.1690

Chasing 0.6830 0.0203 1.3682 0.2475 0.5674 0.0162 1.0769 0.1256
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Based on the results of multiple flight experiments, the

state estimation accuracy of the two configuration

schemes under various motion forms is shown in Table 3.

The typical evaluation indexes selected are: relative dis-

tance average error σr (m), relative azimuth average error

σφ (rad), relative velocity magnitude error σv (m/s), relative

velocity horizontal direction average error σφ, v (rad). The

comparison shows that the performance of the dynamic

obstacle state estimation algorithm based on the fusion of

LiDAR and visible light camera is significantly improved

compared to single LiDAR in a variety of motion forms,

which verifies the effectiveness of the fusion algorithm.

After actual flight tests, the maximum detection distance

of this size of small rotary wing UAV is about 50m.

5 Conclusions
In this paper, we design a fusion detection method for a

variety of static obstacles in a low-altitude suburban envir-

onment and a state estimation method for un-known dy-

namic obstacles based on the UAV SAA system sensor

configuration scheme of LiDAR and visible light camera.

Based on the data verification in the actual scenes, the

above methods can effectively improve the accuracy of de-

tecting the distance and size information of static obsta-

cles and the accuracy of estimating the state of dynamic

obstacles. For the future work, research on related evasion

algorithms can be carried out, and a complete SAA system

based on the fusion of LiDAR and visible light camera can

be constructed and tested in actual scenes.

6 Nomenclature
UAV Unmanned aerial vehicle

LiDAR Light Detection and Ranging

SAA Sense and Avoid

IMM-UKF Interactive multi-model Unscented Kalman

filter

ROI Region of Interest

KD K-dimensional

LSD Line Segment Detector

BSD500 Berkeley Segmentation Data Set and Bench-

marks 500

CV Constant Velocity

CA Constant Acceleration

CSCT Constant Speed Coordinate Turn

LR Length Ratio

OSR Over Segmentation Rate

IOU Intersection over Union

RTK Real-time Kinematic
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