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Abstract: Timely monitoring of inland water quality using unmanned aerial vehicle (UAV) remote
sensing is critical for water environmental conservation and management. In this study, two UAV
flights were conducted (one in February and the other in December 2021) to acquire images of
the Zhanghe River (China), and a total of 45 water samples were collected concurrently with the
image acquisition. Machine learning (ML) methods comprising Multiple Linear Regression, the
Least Absolute Shrinkage and Selection Operator, a Backpropagation Neural Network (BP), Random
Forest (RF), and eXtreme Gradient Boosting (XGBoost) were applied to retrieve four water quality
parameters: chlorophyll-a (Chl-a), total nitrogen (TN), total phosphors (TP), and permanganate index
(CODMn). Then, ML models based on the stacking approach were developed. Results show that
stacked ML models could achieve higher accuracy than a single ML model; the optimal methods
for Chl-a, TN, TP, and CODMn were RF-XGB, BP-RF, RF, and BP-RF, respectively. For the testing
dataset, the R2 values of the best inversion models for Chl-a, TN, TP, and CODMn were 0.504, 0.839,
0.432, and 0.272, the root mean square errors were 1.770 µg L−1, 0.189 mg L−1, 0.053 mg L−1, and
0.767 mg L−1, and the mean absolute errors were 1.272 µg L−1, 0.632 mg L−1, 0.045 mg L−1, and
0.674 mg L−1, respectively. This study demonstrated the great potential of combined UAV remote
sensing and stacked ML algorithms for water quality monitoring.

Keywords: water quality monitoring; ensemble machine learning; unmanned aerial vehicle (UAV);
multispectral image

1. Introduction

Urbanization, human activities, global warming, and extreme weather events have
substantially altered the water quality and hydrological cycle of urban rivers in recent
years, causing eutrophication to occur more frequently and more intensively. Water quality
degradation and eutrophication pose serious threats to the safe use of water for drinking,
irrigation, industry, and other purposes [1–5]. For the comprehensive assessment of large-
scale and long-term river changes, accurate management of urban river quality relies
on high-frequency regional water quality data [6,7]. Although traditional water quality
monitoring based on field sampling measurement has great precision, it is an expensive
and time-consuming process, and it is difficult to determine the spatiotemporal dynamic
changes of regional water quality from the data acquired. In contrast, satellite-borne sensors
can provide long time series of high-frequency remote sensing images. In recent years,
remote sensing data have been used widely as a dependable approach for regional water
quality monitoring [8–11].
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Monitoring of inland water bodies with complex bio-optical characteristics typically
requires high-resolution remote sensing images [12,13]. Owing to the low spatial resolution,
long return visit period, and susceptibility to interference by clouds, application of satellite
images to real-time monitoring of water quality of small water bodies and complex environ-
ments such as nearshore waters (affected by mixed pixels) is limited [14,15]. However, the
growing variety of near-surface remote sensing technologies makes it easier to acquire data
with high spatiotemporal resolution. Near-surface remote sensing techniques, which might
successfully compensate for deficiencies in spatiotemporal resolution, represent a new
approach to multiscale-based water quality monitoring [16–18]. Unmanned aerial vehicles
(UAVs) have huge advantages in monitoring water pollution in small areas because of
the simplicity of their operation and their affordability, flexibility, and nonsusceptibility
to interference by clouds; moreover, they can acquire near-real-time high-resolution im-
agery [19–21]. UAVs have been used to monitor chlorophyll-a (Chl-a), total suspended
solids (TSS), total nitrogen (TN), total phosphorus (TP), permanganate index (CODMn),
and metal ions in water bodies [22–24]. Commonly, a UAV might be equipped with visible,
multispectral, and hyperspectral sensors when used for water quality monitoring [25,26].
Although hyperspectral imaging can provide comprehensive data and play an important
role in water quality inversion, the considerable costs limit its widespread application to
some extent. Visible imaging is comparatively inexpensive but provides limited informa-
tion. Multispectral imaging commonly offers not only RGB data but also information from
the red edge to the near-infrared band, which can be applied to regional water quality
inversion [27].

With the development of artificial intelligence, machine learning (ML) has become
an essential technique in remote sensing image processing [28–30]. In complex inland
water environments, traditional regression analysis techniques struggle to accurately and
quantitatively monitor water quality. In contrast, ML can precisely identify the linear
and nonlinear relationships between image spectral information and ground-measured
data [31,32]. The Backpropagation Neural Network (BP), Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and other ML algorithms have been applied to water quality
inversion [33–35]. Jiang et al. established inversion models for TN concentration in the
Miyun Reservoir (China) using 12 ML algorithms based on UAV hyperspectral images
and ground-measured data [36]. Their study revealed that the effects of the various ML
algorithms on TN inversion varied significantly, and that Extra Trees Regression was the
best algorithm, capable of producing prediction results with high accuracy. Although ML
algorithms have demonstrated notable advantages in terms of water quality inversion,
because of their potential to resolve the problem of underfitting found in traditional regres-
sion algorithms, recent attention has focused on the overfitting problem of ML algorithms.
This means that models constructed using ML might exhibit poor generalization capability,
making it difficult to obtain a universal inversion model [37,38]. The Ensemble Model,
considered a potential solution to the challenges listed above, includes bagging, boosting,
and stacking [39,40]. Stacking is a method for integrating heterogeneous ML models that
effectively reduces the effects of noise and outliers while improving model accuracy [41].
However, to the best of our knowledge, few studies have investigated the application of the
stacking ML method to the field of UAV-derived water quality inversion, which prompted
us to conduct this research.

In this study, UAV-derived orthophotos of five areas of the downstream region of
the Zhanghe River (China) were obtained during two dry seasons, i.e., February and
December 2021, and corresponding ground-measured data were collected concurrently.
The effectiveness of traditional regression algorithms, ML algorithms, and stacked ML
algorithms in terms of the inversion of four water quality parameters (Chl-a, TN, TP, and
CODMn) was compared. The objectives of this study were as follows: (1) to explore the
feasibility of UAV multispectral images for multi-temporal water quality inversion of
inland water bodies; (2) to explore the potential of using ML for water quality inversion of
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inland water bodies; and (3) to verify whether stacked ML algorithms could achieve higher
prediction accuracy than that realized using a single ML algorithm.

2. Materials and Methods
2.1. Study Area

The Zhanghe River, located in the city of Wuhu in Anhui Province, China, flows into
the Yangtze River from Nanling County. The Yangtze River, which is the largest river
in China with important economic, ecological, and social benefits, is an essential source
of drinking water for the country as well as a habitat for many species [42]. The dry
season in this region persists from November through to March of the following year,
and the low flow during the dry season has substantial impact on the aquatic ecosystem,
including water quality, which causes serious environmental problems [43]. Monitoring the
water quality of the tributaries of the Yangtze River throughout the dry season is absolutely
critical. Therefore, this study conducted sampling in the downstream region of the Zhanghe
River during the dry season. Figure 1 displays the geographic location of the study area
and the distribution of the sampling points.
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Figure 1. Geographic location of the study area and the distribution of the selected sampling points:
(a) location of Anhui Province, (b) location of the city of Wuhu, (c) location of water sampling points
on the Zhanghe River, and (d) examples of UAV-derived RGB orthophotography of the research river
sections.

2.2. Data Collection and Processing
2.2.1. UAV Multispectral Image Collection and Preprocessing

In this study, the DJI P4 Multispectral UAV (DJI, Shenzhen, Guangdong, China)
was employed as the platform for acquiring high-resolution multispectral photographs
(Figure 2a). The platform was equipped with a multispectral camera with six 1/2.9-inch
CMOS (Complementary Metal Oxide Semiconductor) sensors, comprising a color sensor
for RGB imaging and five monochromatic sensors for multispectral imaging. Thus, it could
collect images in the blue, green, red, red-edge, and near-infrared bands, simultaneously.
Image resolution was 1600 × 1300 pixels with a 5.74 mm focal lens (https://www.dji.com/
cn/p4-multispectral/specs (accessed on 18 May 2022)). Table 1 lists the central wavelength
and half-maximum wave width of each band.

https://www.dji.com/cn/p4-multispectral/specs
https://www.dji.com/cn/p4-multispectral/specs
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Figure 2. Instruments and ground control points (GCPs): (a) DJI P4 Multispectral UAV, (b) RTK S86
system, and (c,d) examples of the GCPs.

Table 1. Spectral region and wavelength range of the UAV-derived multispectral images.

Band Wavelength Range (nm)

Blue 450 ± 16
Green 560 ± 16
Red 650 ± 16

Red Edge 730 ± 16
NIR 840 ± 26

In February and December 2021, high-resolution multispectral images of five down-
stream sections of the Zhanghe River were collected. The UAV operational altitude was
120–150 m, the course overlap degree was set at 80%, and the side overlap degree was
set at 70%. Mirror reflection, aquatic vegetation, and atmospheric effects can all have
strong impacts on the inversion of the spatiotemporal changes in water quality based on
remote sensing data. Water highlights and flares induced by mirror reflection are the most
influential factors in UAV water quality inversion [44,45]. To reduce specular reflection, all
UAV images were taken between 13:00 and 16:00 local time. Mosaic images were generated
using pix4D, and then resampled in ENVI to achieve 0.10 m spatial resolution. Before the
flight mission, 21 ground control points (GCPs) were established on both sides of the river
to improve the spatial precision of the mosaic images, and the precise coordinates were
measured using the Real-Time Kinematic (RTK) S86T system (Figure 2b). The gaussian
projection was utilized in GCPs coordinate measurement, and the projection coordinate
system was CGCS2000. The antenna was raised to a height of 2 m using a support pole,
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and data were recorded when the fixed solution was presented. Examples of the GCPs are
shown in Figure 2c,d. Table 2 lists the precise coordinates of each GCP.

Table 2. Coordinates of the ground control points (GCPs) measured using the RTK S86T system.

Latitude (◦) Longitude (◦) Height (m)

GCP1 31.259 **** 206 118.348 **** 842 14.486
GCP2 31.261 **** 197 118.346 **** 353 14.664
GCP3 31.263 **** 819 118.344 **** 467 14.742
GCP4 31.265 **** 372 118.342 **** 444 15.035
GCP5 31.266 **** 428 118.339 **** 442 14.724
GCP6 31.194 **** 003 118.335 **** 058 13.205
GCP7 31.193 **** 181 118.339 **** 867 15.005
GCP8 31.170 **** 525 118.373 **** 894 15.123
GCP9 31.166 **** 014 118.373 **** 214 14.861
GCP10 31.161 **** 006 118.372 **** 244 14.867
GCP11 31.160 **** 542 118.372 **** 544 14.660
GCP12 31.161 **** 264 118.369 **** 700 14.486
GCP13 31.164 **** 594 118.368 **** 031 14.672
GCP14 31.170 **** 653 118.368 **** 997 14.761
GCP15 31.189 **** 236 118.334 **** 994 14.022
GCP16 31.190 **** 422 118.330 **** 050 13.859
GCP17 31.258 **** 436 118.345 **** 289 14.597
GCP18 31.260 **** 203 118.343 **** 697 14.292
GCP19 31.262 **** 744 118.339 **** 114 14.376
GCP20 31.263 **** 244 118.336 **** 519 14.350
GCP21 31.265 **** 744 118.334 **** 228 14.695

“****” represents hidden intermediate numbers.

The operational altitude of the UAV was sufficiently low that atmospheric refraction
could be ignored [25]. The values of each band were standardized according to Equation (1)
to facilitate the following quantitative analysis [46]. A single pixel can easily be impacted
by specular reflection and water splash, making it difficult to reflect the spectral difference
induced by an actual change in water quality at the sampling point. The accuracy of the
inversion model can be improved by selecting an appropriate window size and noise
removal approach.

Spectral Response =
DN − DNmin

DNmax − DNmin
(1)

where DN represents the digital number of each band, and DNmin and DNmax represent
the minimum and maximum DN of a single band in the image, respectively. The calculated
spectral response value ranged from 0 to 1.

2.2.2. Ground Monitoring Data

In total, 45 valid water samples were collected from the Zhanghe River (13 samples
in February and 32 samples in December 2021). At each sampling point, 1 L of water was
taken at a depth of 50 cm below the water surface using a sampler and transported to a
storage container. All samples were held in an ice-filled thermostat until delivered to the
laboratory for testing and analysis (Figure 3). The water quality parameters included Chl-a,
TN, TP, and CODMn. The testing process was based on the Chinese national standard and
trade standard, and the standards adopted for Chl-a, TN, TP and CODMn were HJ 828-2017,
HJ 636-2012, GB 1189-1989, and GB 11892-1989, respectively. A workflow chart of the data
processing procedure is shown in Figure 4.
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2.3. Method
2.3.1. Calculation of Spectral Index

A typical spectral index used in water quality remote sensing inversion is the double-
band combination, which can remove noise interference, emphasize the spectral features
of water quality parameters, and substantially increase the accuracy of the water quality
inversion model [47,48]. In this study, any two of the five single bands were handled using
band sum, band difference, and band ratio, resulting in 45 double band combinations
(Table 3). Pearson correlation analysis was performed on the measured data of each water
quality parameter and each band combination to determine the best band combination for
constructing a water quality inversion model.

Table 3. Band combination construction and calculation. Note: labels V1–V45 represent the number
of each index.

Index Formula Index Formula Index Formula

V1 B1 V16 B1 + B2 V31 B2/B4
V2 B2 V17 B1 + B3 V32 B2/B5
V3 B3 V18 B1 + B4 V33 B3/B4
V4 B4 V19 B1 + B5 V34 B3/B5
V5 B5 V20 B2 + B3 V35 B4/B5
V6 B1 − B2 V21 B2 + B4 V36 (B1 − B2)/(B1 + B2)
V7 B1 − B3 V22 B2 + B5 V37 (B1 − B3)/(B1 + B3)
V8 B1 − B4 V23 B3 + B4 V38 (B1 − B4)/(B1 + B4)
V9 B1 − B5 V24 B3 + B5 V39 (B1 − B5)/(B1 + B5)
V10 B2 − B3 V25 B4 + B5 V40 (B2 − B3)/(B2 + B3)
V11 B2 − B4 V26 B1/B2 V41 (B2 − B4)/(B2 + B4)
V12 B2 − B5 V27 B1/B3 V42 (B2 − B5)/(B2 + B5)
V13 B3 − B4 V28 B1/B4 V43 (B3 − B4)/(B3 + B4)
V14 B3 − B5 V29 B1/B5 V44 (B3 − B5)/(B3 + B5)
V15 B4 − B5 V30 B2/B3 V45 (B4 − B5)/(B4 + B5)

2.3.2. Traditional Regression Methods

After selecting the spectral indices, various classical regression models and ML models
were built to determine the best modeling strategy for each parameter. The following tech-
niques were considered: linear regression, exponential regression, logarithmic regression,
second-order polynomial regression, power regression, Multiple Linear Regression (MLR),
Least Absolute Shrinkage and Selection Operator (LASSO), BP, RF, and XGBoost.

MLR is a commonly used linear regression model that can statistically explain the
linear relationship between the dependent variable and several independent variables and
provide better predictions than single-variable regression models [49,50]. MLR presents the
advantage of simplicity and computational efficiency, but it is incapable of fitting non-linear
data since it is based on the assumption that the independent and dependent variables
have a linear relationship.

Lasso is a biased estimating method proposed by Tibshirani in 1996 that is commonly
utilized in regression models for variable selection and parameter estimation. By adding
restrictions to the coefficients, LASSO eliminates the impact of multicollinearity in the
model [51]. It has produced promising results in variable selection and prediction.

BP is a multilayer feed-forward network based on the error back propagation method,
which is particularly good at handling non-linear and uncertain problems. The BP consists
of input layers, implicit layers and output layers, and contains two stages: forward propa-
gation and back propagation of the error [52]. The error is back-propagated through the
implicit layer to the output layer, and apportioned to all units in each layer, until the error
is eventually decreased to an acceptable level after continual training [53].

RF is an ML algorithm based on decision trees that was developed by Breiman in
2001 [54]. RF extracts several Bootstrap samples from the original sample for decision
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tree modeling, then merges multiple decision trees for prediction, and finally derives the
prediction result by voting. Because of its high classification and prediction accuracy, RF is
widely used in remote sensing image classification and big data analysis [55,56].

The XGBoost algorithm, which Chen developed in 2016, is based on regression trees. It
improves the operational efficiency of the optimization process while reducing overfitting
by employing second-order derivative data and integrating a regular component in the
cost function [57,58].

The band combination with the highest correlation was treated as an input variable in
a single-variable regression analysis, and the water quality parameters were modeled as
output variables. The three band combinations having the greatest correlation with each
water quality metric were utilized as input variables in multivariate regression analyses,
and each water quality parameter was used as an output variable for modeling. During
the model construction process, 70% of the data with a certain concentration gradient were
chosen for the training dataset and 30% were chosen for the testing dataset.

2.3.3. Stacking ML Method

The stacking ML method takes a typical ensemble model based on different learners
in which the training data are fed into the first-layer ML model, and the output of the first
layer is used as the input of the second layer. This process represents a further search for
better approximation based on the first-layer output, which is important for mitigating the
risk of overfitting and thus obtaining better prediction results than are realized when using
a single ML model [59,60].

2.3.4. Accuracy Evaluation

Pearson correlation analysis was performed on the spectral indices and the water
quality parameters, and Pearson’s r was used to assess the relationship between the spectral
index and the water quality parameters. The greater the value of Pearson’s r, the stronger
the relationship between the spectral index and the water quality measures. Additionally,
the coefficient of determination (R2), root mean square error (RMSE), and mean absolute
error (MAE) were used to quantify the accuracy and performance of the model using new
data (Equations (2)–(4), respectively). Statistical analysis of the parameters, calculation of
the correlation coefficients, and the error analysis were mainly realized using R 4.1.2.

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (3)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (4)

where R2 is the coefficient of determination, RMSE is the root mean square error, MAE is
the mean absolute error, ŷi represents the predicted values of the water quality parameters,
yi represents the measured values of the water quality parameters, and n is the number of
sampling points.

3. Results
3.1. Data Analysis

Table 4 summarizes the statistical analysis of the concentrations of the water quality
parameters sampled in the two periods (i.e., mean value (Mean), maximum value (Max),
minimum value (Min), and standard deviation (SD)).
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Table 4. Analysis of measured water quality data of the two sampling periods. SD represents the
standard deviation, and N represents the number of sampling points. Units are µg L−1 for Chl-a, and
mg L−1 for TN, TP, and CODMn.

Date Chl-a (µg/L) TN (mg/L) TP (mg/L) CODMn (mg/L)

Zhanghe River 20 February
2021 (N = 13)

Max 74.00 10.80 0.38 6.10
Min 6.00 1.90 0.09 3.10

Mean 33.62 6.45 0.23 4.36
SD 25.60 3.29 0.10 1.01

Zhanghe River 9–10
December 2021 (N = 32)

Max 13.50 4.58 0.17 4.90
Min 1.00 1.12 0.06 2.80

Mean 4.81 2.88 0.11 3.96
SD 2.76 1.45 0.03 0.52

All data (N = 45)

Max 74.00 10.80 0.38 6.10
Min 1.00 1.12 0.06 2.80

Mean 12.88 3.94 0.15 4.06
SD 18.94 2.64 0.08 0.71

The concentration of Chl-a at each sampling point ranged from 6.00–74.00 µg L−1 on
20 February 2021, and the mean (±SD) was 33.62 ± 25.60 µg L−1. The concentration of
Chl-a at each sampling point ranged from 1.00–13.50 µg L−1 from 9–10 December 2021, and
the mean (±SD) was 4.81 ± 2.76 µg L−1. The Chl-a concentration was low in December,
whereas the concentration in February 2021 was higher, indicating the possibility of the
occurrence of the bloom phenomenon. Inversion of Chl-a at different concentration levels
requires different spectral indices and algorithms [61], and the Chl-a concentration range
of 0–15 µg L−1 was selected for the modeling and analysis in this study.

The GB 3838-2002 standard divides the environmental quality of surface water into
Class I to Class V, for which the concentrations of TN, TP, and CODMn form the basis of the
classification. The TN concentration at each sampling point ranged from 1.90–10.80 mg L−1

on 20 February 2021, and the mean (±SD) was 6.45 ± 3.29 mg L−1, i.e., the water quality
at most sampling points exceeded the Class V standard. The TN concentration at each
sampling point ranged from 1.12–4.58 mg L−1 from 9–10 December 2021, and the mean
(±SD) was 2.88 ± 1.45 mg L−1. Therefore, some of the sampling points were classified as
Class IV or V, while others exceeded the Class V water standard.

The TP concentration at each sampling point ranged from 0.09–0.38 mg L−1 on 20
February 2021, and the mean (±SD) was 0.23 ± 0.10 mg L−1, i.e., the water quality at most
sampling points was between Class III and Class V. The TP concentrations at each sampling
point ranged from 0.06–0.17 mg L−1 from 9–10 December 2021, and the mean (±SD) was
0.11 ± 0.03 mg L−1. Most of the sampling points were classified as Class II or Class III.
The CODMn concentration at each sampling point ranged from 3.10–6.10 mg L−1 on 20
February 2021, and the mean (±SD) was 4.36 ± 1.01 mg L−1, i.e., most of the sampling
points were classified as Class II or Class III. The CODMn concentration at each sampling
point ranged from 2.80–4.90 mg L−1 from 9–10 December 2021, and the mean (±SD) was
3.96 ± 0.52 mg L−1. Most of the sampling points were classified as Class II or Class III.
Overall, water quality in December 2021 was markedly better than that in February 2021.
In the study area, the main pollutants were found to be TN and TP, which have relatively
high concentrations in the water body.

3.2. Spectral Index Correlation Analysis

Figure 5 shows the magnitude of the correlation between the 45 constructed spectral
indices and each water quality parameter. The Chl-a concentration was correlated positively
with most of the spectral indices, the TN and TP concentrations were more significantly
negatively correlated with most of the spectral indices, while CODMn and most of the
spectral values showed weak negative correlation. The three spectral indices that had
the strongest correlation with the water quality parameters were defined as the sensitive
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indices of the water quality parameters, and were used for subsequent model building and
the following analysis. Ultimately, B1 + B2, (B1 − B5)/(B1 + B5), and (B3 − B5)/(B3 + B5)
were the sensitive indices for Chl-a, B1, B1 + B4, and B1 + B5 were the sensitive indices for
TN, (B1 − B4)/(B1 + B4), (B1 − B5)/(B1 + B5), and (B3 − B5)/(B3 + B5) were the sensitive
indices for TP, and (B1 − B5)/(B1 + B5), (B2 − B5)/(B2 + B5), and (B3 − B4)/(B3 + B4) were
the sensitive indices for CODMn.
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3.3. Results of Simple Regression Methods

As input variables for the single-variable regression models, the spectral values with
the strongest correlation with each water quality parameter were used. The precision
effects of the single-variable regression models are presented in Table 5. For the training
dataset, the R2 values were in the range of 0.247–0.263, 0.579–0.693, 0.455–0.630, and
0.120–0.209 for Chl-a, TN, TP, and CODMn, respectively, with corresponding RMSEs in the
range of 2.055–2.135 µg L−1, 1.556–3.001 mg L−1, 0.049–0.055 mg L−1, and 0.549–0.579 mg
L−1, respectively. For the testing dataset, the R2 values were in the range of 0.170–0.203,
0.597–0.662, 0.376–0.431, and 0.107–0.204 for Chl-a, TN, TP, and CODMn, respectively.

Table 6 presents the optimal single-variable regression model for each parameter and
its accuracy. Linear regression, exponential regression, power regression, and second-order
polynomial regression were found to be the best approaches for Chl-a, TN, TP, and CODMn,
respectively. Although the optimal single regression approach for each water quality
parameter varied, it was straightforward to conclude that the accuracy of the nonlinear
model with all other factors except Chl-a was much better than that of the linear model.
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Table 5. Single-variable regression results of water quality parameters. Note: “-” represents the
presence of negative values of the spectral index, and thus the logarithmic and power functions could
not be fitted.

Parameter Index Method
Training Dataset Testing Dataset

R2 RMSE MAE R2

Chl-a B1 − B3

Linear 0.247 2.077 1.548 0.203
Exponential 0.262 2.135 1.513 0.186
Logarithmic - - - -
Second order
polynomial 0.263 2.055 1.497 0.170

Power - - - -

TN B1 + B4

Linear 0.579 3.001 2.519 0.645
Exponential 0.693 1.741 1.357 0.662
Logarithmic 0.669 1.598 1.303 0.597
Second order
polynomial 0.688 1.556 1.316 0.616

Power 0.690 1.674 1.321 0.601

TP (B3 − B5)/(B3 + B5)

Linear 0.545 0.055 0.039 0.376
Exponential 0.609 0.052 0.038 0.406
Logarithmic 0.615 0.050 0.035 0.413
Second order
polynomial 0.630 0.049 0.034 0.416

Power 0.616 0.051 0.036 0.431

CODMn (B2 − B5)/(B2 + B5)

Linear 0.120 0.579 0.482 0.107
Exponential 0.125 0.579 0.483 0.111
Logarithmic 0.154 0.568 0.478 0.143

Second order
polynomial 0.209 0.549 0.453 0.204

Power 0.160 0.568 0.479 0.151

Table 6. Simple optimal single-variable regression model for each water quality parameter.

Parameter Modeling Formula Training Dataset Testing Dataset
R2 RMSE MAE R2

Chl-a y = 34.28 × (B1 − B3) + 3.09 0.247 2.077 1.548 0.203
TN y = 13.55e − 2.65 × (B1 + B4) 0.693 1.741 1.357 0.662
TP y = 0.058 × ( B3 − B5

B3+B5 ) − 0.87 0.616 0.051 0.036 0.431

CODMn
y = 11.44 ×

(
B3−B5
B3+B5

)2
−

11.37 ×
(

B3−B5
B3+B5

)
+ 6.62

0.209 0.549 0.453 0.204

3.4. Comparison of Results of ML Models and Stacked ML Models

Figure 6 presents the model testing accuracy of five single ML models for various
water quality parameters for MLR, Lasso, BP, RF, and XGBoost. The input variables for
each ML model were the three spectral indices that exhibited the strongest correlation
with the corresponding water quality parameters. Overall, the TN inversion model pro-
duced the best prediction (R2 values in the range of 0.642–0.822, RMSE in the range of
1.273–1.499 mg L−1, and MAE in the range of 0.843–1.279 mg L−1), and the CODMn in-
version model produced the poorest prediction (R2 values in the range of 0.060–0.224,
RMSE in the range of 0.796–0.860 mg L−1, and MAE in the range of 0.685–0.794 mg L−1).
With a comparatively high R2 value and low RMSE and MAE, BP was the best single ML
modeling approach for TN (R2 = 0.822, RMSE = 1.273 mg L−1, and MAE = 0.843 mg L−1),
TP (R2 = 0.822, RMSE = 1.273 mg L−1, and MAE = 0.843 mg L−1), and CODMn (R2 = 0.224,
RMSE = 0.796 mg L−1, and MAE = 0.685 mg L−1). XGBoost was the best single ML
modeling approach for Chl-a (R2 = 0.415, RMSE = 2.074 µg L−1, and MAE = 1.521 µg L−1).
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The modeling impacts of several single ML and stacked ML models for Chl-a are
shown in Table 7. The stacking ML method substantially enhances the fitting effects
of the training dataset, with R2 values increased from 0.247–0.958 to 0.690–0.999, RMSE
decreased from 0.801–2.021 to 0.019–1.338 µg L−1, and MAE decreased from 0.478–1.520
to 0.017–1.051 µg L−1. Stacked ML models based on different combinations of single ML
models produced varied prediction results for the testing dataset. Among these, the Chl-a
inversion model constructed using the RF-XGBoost method outperformed the best single
ML model (XGBoost), i.e., for the testing dataset, R2 increased from 0.415 to 0.504, RMSE
decreased from 2.074 to 1.770 µg L−1, and MAE decreased from 1.521 to 1.272 µg L−1.

Table 8 presents the modeling effects of different single ML and stacked ML models
for TN. The R2, RMSE, and MAE values for the single ML models with the training dataset
were in the range of 0.589–0.956, 0.579–1.764 mg L−1, and 0.434–1.417 mg L−1, respectively,
whereas the R2, RMSE, and MAE values for the stacked ML models were in the range of
0.910–0.977, 0.423–0.959 mg L−1, and 0.279–0.750 mg L−1, respectively. The R2, RMSE, and
MAE values of the single ML models for the testing dataset were in the range of 0.642–0.822,
1.273–1.499 mg L−1, and 0.843–1.279 mg L−1, respectively, and the R2, RMSE, and MAE
values of the stacked ML models were in the range of 0.700–0.839, 1.089–1.494 mg L−1, and
0.632–1.042 mg L−1, respectively. The results indicate that the improvement of the stacked
ML models was substantial. The TN inversion model constructed using the BP-RF methods
outperformed the best single ML model (XGBoost).
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Table 7. Comparison of the performance of single ML models and stacked ML models for Chl-a.

Parameter Method
Training Dataset Testing Dataset

R2 RMSE MAE R2 RMSE MAE

Chl-a MLR 0.298 2.005 1.461 0.101 2.237 1.601
Lasso 0.247 2.086 1.520 0.203 2.079 1.544

BP 0.288 2.021 1.468 0.122 2.210 1.569
RF 0.762 1.393 1.087 0.317 1.943 1.505

XGBoost 0.958 0.801 0.478 0.415 2.074 1.521
RF-BP 0.991 0.224 0.169 0.341 2.112 1.613
BP-RF 0.780 1.338 1.051 0.320 1.939 1.513

XGB-RF 0.854 1.061 0.801 0.368 1.945 1.527
XGB-BP 0.995 0.168 0.115 0.396 4.739 3.075
XGB-BP 0.998 0.107 0.063 0.347 2.424 1.739
BP-XGB 0.905 1.139 0.697 0.334 2.122 1.611
RF-XGB 0.999 0.019 0.017 0.504 1.770 1.272
ML-MLR 0.692 1.324 0.992 0.398 1.895 1.571

Table 8. Comparison of the performance of single ML models and stacked ML models for TN.

Parameter Method
Training Dataset Testing Dataset

R2 RMSE MAE R2 RMSE MAE

TN MLR 0.589 1.760 1.415 0.644 1.458 1.266
Lasso 0.589 1.764 1.417 0.642 1.450 1.279

BP 0.956 0.579 0.434 0.822 1.273 0.843
RF 0.909 0.850 0.702 0.698 1.499 1.131

XGBoost 0.946 1.057 0.842 0.708 1.326 1.034
RF-BP 0.976 0.423 0.279 0.750 1.414 1.002
BP-RF 0.977 0.430 0.293 0.839 1.189 0.632

XGB-RF 0.941 0.686 0.545 0.708 1.494 1.036
BP-XGB 0.951 0.678 0.516 0.831 1.089 0.707
RF-XGB 0.910 0.959 0.750 0.700 1.385 1.042

ML-MLR 0.958 0.564 0.423 0.819 1.280 0.866

Table 9 presents the modeling effects of different single and stacked ML models for TP.
For the training dataset, the R2, RMSE, and MAE values of the single ML models were in
the range of 0.545–0.958, 0.019–0.055 mg L−1, and 0.015–0.040 mg L−1, respectively, whereas
the R2, RMSE, and MAE values of the stacked ML models were in the range of 0.835–0.963,
0.016–0.035 mg L−1, and 0.012–0.035 mg L−1, respectively. For the testing dataset, the
R2, RMSE, and MAE values for the single ML models were in the range of 0.279–0.432,
0.053–0.073 mg L−1, and 0.044–0.047 mg L−1, respectively, while the R2, RMSE, and MAE
values for the stacked ML models were in the range of 0.241–0.347, 0.062–0.077 mg L−1,
and 0.042–0.050 mg L−1, respectively. Although the stacked ML models outperformed
individual ML models with the training dataset, they produced poorer accuracy with the
testing dataset.

Table 10 presents the modeling effects of different single ML and stacked ML models
for CODMn. For the training dataset, the R2, RMSE, and MAE values for the single ML
models were in the range of 0.144–0.911, 0.257–0.573 mg L−1, and 0.221–0.487 mg L−1,
respectively, and the R2, RMSE, and MAE values for the stacked ML models were in the
range of 0.884–0.980, 0.115–0.273 mg L−1, and 0.091–0.206 mg L−1, respectively. For the
testing dataset, the R2, RMSE, and MAE values for the single ML models were in the
range of 0.060–0.224, 0.796–0.860 mg L−1, and 0.685–0.794 mg L−1, respectively, and the
R2, RMSE, and MAE values for the stacked ML models were in the range of 0.130–0.272,
0.767–0.851 mg L−1, and 0.674–0.771 mg L−1, respectively. For both the training dataset
and the testing dataset, the stacked ML models were successful in CODMn modeling, i.e.,
the BP-RF method outperformed the BP method., which is the optimal single ML model.
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Table 9. Comparison of the performance of single ML models and stacked ML models for TP.

Parameter Method
Training Dataset Testing Dataset

R2 RMSE MAE R2 RMSE MAE

TP MLR 0.552 0.054 0.040 0.381 0.059 0.046
Lasso 0.545 0.055 0.040 0.376 0.057 0.047

BP 0.626 0.051 0.037 0.432 0.053 0.045
RF 0.913 0.026 0.018 0.350 0.061 0.044

XGBoost 0.958 0.019 0.015 0.279 0.073 0.046
RF-BP 0.880 0.031 0.022 0.347 0.062 0.042

XGB-BP 0.835 0.035 0.026 0.311 0.063 0.046
BP-RF 0.909 0.026 0.018 0.313 0.064 0.045

XGB-RF 0.935 0.022 0.015 0.319 0.064 0.044
BP-XGB 0.963 0.018 0.013 0.241 0.077 0.050
RF-XGB 0.943 0.020 0.014 0.342 0.062 0.043

ML-MLR 0.961 0.016 0.012 0.273 0.072 0.044

Table 10. Comparison of the performance of single ML models and stacked ML models for CODMn.

Parameter Method
Training Dataset Testing Dataset

R2 RMSE MAE R2 RMSE MAE

CODMn MLR 0.152 0.569 0.479 0.060 0.832 0.710
Lasso 0.144 0.573 0.487 0.073 0.827 0.700

BP 0.508 0.433 0.343 0.224 0.796 0.685
RF 0.880 0.257 0.221 0.203 0.799 0.712

XGBoost 0.911 0.280 0.220 0.113 0.860 0.794
RF-BP 0.940 0.152 0.133 0.199 0.802 0.711

XGB-BP 0.805 0.273 0.206 0.130 0.851 0.771
BP-RF 0.903 0.219 0.178 0.272 0.767 0.674

XGB-RF 0.915 0.198 0.164 0.172 0.824 0.732
BP-XGB 0.961 0.181 0.115 0.192 0.825 0.744
RF-XGB 0.980 0.115 0.091 0.142 0.827 0.715

ML-MLR 0.884 0.210 0.174 0.190 0.816 0.723

The measured values and the values predicted using the optimal modeling approach
for each water quality parameter are shown in Figure 7 for comparison purposes.

Figure 8 shows a comparison of the observed values of water quality at each sample
point and the values predicted using the approach selected from Figure 7. It can be seen
that the inversion model better reflects the water quality of the water bodies.
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4. Discussion
4.1. Performance of Stacked ML Models in Monitoring Water Quality

The main purpose of this research was to develop a stacked ML model that could
be used to invert water quality parameters using UAV multispectral images and small
amounts of ground-based water quality data. Five single-variable regression models (linear
regression, exponential regression, power regression, logarithmic function regression, and
second-order polynomial regression) and five typical ML models (MLR, Lasso, RF, BP,
and XGBoost) were compared to evaluate the robustness and applicability of stacked ML
models. The results show that both the single-variable regression models and the multi-
variate regression models (i.e., the nonlinear methods) outperformed the linear methods
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(except the single-variable regression model for Chl-a), which is consistent with previous
findings [62,63]. Additionally, the stacked ML models outperformed traditional single-
variable regression models and single ML models, indicating that stacked ML models offer
unparalleled advantages in terms of water quality inversion and thus have great potential
for water quality monitoring research. Furthermore, the results revealed that the prediction
effect of stacked ML models generated using different ML combinations varied greatly,
with the fitting effect of the training dataset far outweighing that of the testing dataset.
In particular, for TP, the stacked ML models substantially enhance the fitting effect of the
training dataset when compared with individual ML models; however, the fitting effect for
the testing dataset was lowered, implying that the models remain at risk of overfitting.

This overfitting phenomenon exists not only in stacked ML models but also in single
ML models. Previously, the first stage of stacked ML models usually incorporated several
groups of ML methods, and the input for the second stage was the output result of multiple
groups of single ML models. To avoid overfitting, the second-stage ML method was usually
a simple learner (e.g., MLR), but this method still has limitations in our opinion. In this
study, the inputs and outputs of the first stage of the stacked ML methods were fed into
the second stage simultaneously (i.e., the inputs of the second stage contained both the
spectral indices and the prediction results from the first-stage ML methods). Tables 6–9
present results that demonstrate that the proposed modification was effective, and that
the model built using the more general ML-MLR method was not the best stacked ML
model for each parameter. Moreover, the small sample size of the data used for training
might explain why overfitting occurs, i.e., the model learned too much about the individual
characteristics of the data without learning the substantive discipline of the data [64,65].
Therefore, obtaining more sample data in future research is critically important for building
a water quality inversion model with high applicability and accuracy.

4.2. Differences in Inversion Models for Different Water Quality Parameters

The water quality parameters investigated in this study were Chl-a, TN, TP, and
CODMn. Previous studies have shown that Chl-a is an optically sensitive parameter with
significant optical activity characteristics [66], whereas TN, TP, and CODMn are non-optical
sensitive parameters [67], and that it is usually difficult to obtain accurate quantitative
predictions of their concentrations and spatial distributions based on satellite remote
sensing images and simple statistical analysis models [68]. High-resolution images captured
by a UAV and the emergence of advanced artificial intelligence algorithms have brought
new opportunities for quantitative remote sensing inversion of water quality parameters
that are not optically sensitive [24]. Many studies have elucidated the great advantages of
artificial intelligence algorithms in the inversion of water quality parameters that are not
optically sensitive [69–71], and our research confirms the notable advantages of using ML
(including stacked ML) algorithms for inversion of water quality using UAV multispectral
images. As shown in Table 5, the optimal model for single-variable regression analysis was
the linear regression method for Chl-a only, while the optimal model for each of the other
parameters was a nonlinear model. This pattern also exists in the multivariate regression
analysis, as shown in Figure 5. For the single ML algorithm, the optimal algorithm for
Chl-a was XGBoost, while the optimal algorithm for each of the other parameters was BP.
Therefore, we argue that there are considerable differences in the algorithms most applicable
to the inversion of parameters that are optically sensitive and to that of parameters that are
not. The differences between the two types of parameters should be fully considered in
future modeling, and different algorithms should be used for inversion model construction.

4.3. Limitations and Perspectives

UAVs can provide high-frequency observational data with large spatial coverage,
which have an important role in the high-frequency observation of the regional spatiotem-
poral dynamics of water bodies. However, few relevant studies have been conducted and
the related theories and methods remain immature. Inland water bodies have complex
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optical properties that are affected by suspended matter, colored dissolved organic matter,
and bottom reflection of shallow water [72]. Remote sensing reflectance is a typical appar-
ent optical property that can be used to accurately define the optical characteristics of a
water body and is employed extensively in water quality inversion. However, accurate
radiometric calibration for UAV-derived multispectral images is a difficult task owing to the
different imaging times and surroundings of each photo [73]. Meanwhile, radiation trans-
mission in a water body depends on the inherent optical properties that are independent of
the distribution and intensity of the light field around the medium. Thus, the inversion
of water quality parameters has a direct or indirect relationship with the inherent optical
properties, and the absorption coefficient and other inherent optical properties directly
determine the remote sensing reflectance and other common apparent optical properties.
Consideration of the inherent optical characteristics of the different components of a water
body is an important element in achieving optical monitoring of water quality [74,75].
Furthermore, previous research has shown that a wide bandwidth makes it difficult to
separate the optical characteristics of various components of a water body with complex
optical properties [76]; however, the development and application of hyperspectral sensors
is an important approach to resolving this problem. Recent research has demonstrated
that the use of artificial intelligence (especially deep learning methods) in water quality
inversion (including parameters that are not optically sensitive) has considerable potential
for reducing error [77]. In the future, hyperspectral sensors with additional bands, narrower
bandwidths, and more advanced artificial intelligence methods will be used to analyze
both the inherent and the apparent optical quantities of water bodies to better explain the
optical properties of inland water bodies and achieve accurate monitoring of water quality.

5. Conclusions

In this study, various spectral indices with double-band combinations were con-
structed, and the optimal indices for modeling were selected on the basis of linear correla-
tion analysis between the band combination and water quality concentration. Univariate
regression methods, ML regression methods, and stacked ML methods were used to con-
struct separate water quality inversion models for Chl-a, TN, TP, and CODMn. The results
show that stacked ML models had higher R2 values and smaller RMSEs and MAEs. Stacked
ML algorithms demonstrated notable advantages in terms of water quality inversion, and
predicted water quality changes and spatial distributions more effectively and more accu-
rately than other methods. Additionally, the best modeling approach was found to differ
for different parameters, and the availability of optical activity might become one of the
standards with which to distinguish the most appropriate modeling approach. Conse-
quently, future research should strongly consider the adoption of stacked ML algorithms to
monitor spatiotemporal changes in water quality.
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