
UAV Payload and Mission Control

Hardware/Software Architecture

Enric Pastor, Juan Lopez & Pablo Royo
Technical University of Catalonia

ABSTRACT

This paper presents an embedded hardware/software
architecture specially designed to be applied on
mini/micro Unmanned Aerial Vehicles (UAV). A UAV is a
low-cost non-piloted airplane designed to operate in
D-cube (Dangerous-Dirty-Dull) situations [8]. Many types
of UAVs exist today; however with the advent of UAV's
civil applications, the class of mini/micro UAVs is
emerging as a valid option in a commercial scenario. This
type of UAV shares limitations with most computer
embedded systems: limited space, limited power
resources, increasing computation requirements,
complexity of the applications, time to market
requirements, etc. UAVs are automatically piloted by an
embedded system named "Flight Control System." Many
of those systems are commercially available today,
however no commercial system exists nowadays that
provides support to the actual mission that the UAV
should perform.

This introduces a hardware/software architecture
specially designed to operate as a flexible payload and
mission controller in a mini/micro UAV. Given that the
missions UAVs can carry on justify their existence; we
believe that specific payload and mission controllers for
UAVs should be developed. Our architectonic proposal
for them orbits around four key elements: a LAN-based
distributed and scalable hardware architecture, a
service/subscription based software architecture and an
abstraction communication layer.

INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is an expression that
identifies an aircraft that can fly without pilot; that is, an
airframe and a computer system which combines sensors,
GPS, servos, and CPUs. All these elements combined have to

Author's Current Address:
E. Pastor, J. Lopez and P. Royo. Department of Comnputer Architecture, Technical University
of Catalonia. 08860 Castelldefels (Barcelona), Spain.

Based on a presentation at DASC 2006.

0885/8985/07/ USA $25.00 @ 2007 IEEE

pilot the plane with no human intervention. Another usual
definition is that of an aircraft which is capable to fly in an
autonomous way and operates in a wide range of missions
and emergencies that can be controlled from a ground base
station. The UAV's size, type, and configuration could be
different and depend on the actual application.

There is no doubt today that a huge market is currently
emerging from the potential applications and services that
will be offered by unmanned aircrafts. More precisely, UAVs
can be applied in so-called "D-cube" missions [8], i.e.,
missions identified as Dangerous, Dirty, or Dull. If we pay
attention to civil applications, a wide range of scenarios
appear. For instance; remote environmental research,
pollution assessment and monitoring, fire-fighting
management, security; e.g., border monitoring, agricultural
and fishery applications, oceanography, communication
relays for wide-band applications. In general, all of these
applications can be divided into four large groups:
environmental applications, emergency-security applications,
communication applications, and monitoring applications.

Nowadays, and after many years of development, UAVs
are reaching the critical point in which they could be applied
in a civil/commercial scenario. However, we believe that
there is a lack of hardware and software support to
effectively develop such potentialities. Basically a UAV is
automatically piloted by an embedded computer called the
Elight Control System (FCS) [6]. This system reads
information from a wide variety of sensors (accelerometers,
gyros, GPS, pressure sensors) and drives the UAV mission
along a predetermined flight plan.

Even though reliable autopilots exist, the main purpose of
the UAV is the actual mission that should execute with its
required payload (sensors, etc.) The thesis of this research is
that mission and payload control are the main bottlenecks
that may prevent the actual development of UAVs in the civil
sector. Military UAVs use specific control designs specially
tailored to the particular surveillance mission that they will
implement. However, a civil UAV should be able to
implement a large variety of missions with little
reconfiguration time and overhead, if it must be
economically viable.

This paper presents a novel hardware/software
architecture [9] specially designed to operate as miission and

IEEE A&E SYSTEMS MAGAZINE, JUNE 2007

Communication
subsystem

Gyro stabilzed_10-observation Msnad

9 -ltfr payload control

CFlight

Digital cameras and other sensors UAV base station

Fig. 1. Main components of a UAV system

payload controller in a mini/micro UAV. We will call this

system the Mission Control Computer. Our architectonic

proposal orbits around four main innovative elements: 1) a

LAN-based distributed and therefore easily scalable

hardware architecture, 2) a service/subscription-based

software architecture, 3) an abstraction communication layer,

and 4) a workflow-based mission planning.

The paper is organized as follows: the section entitled

Background and Motivation details the structure and

components inside a UAV system and explains the reason a

mission/payload is necessary. The System Architecture

section introduces the proposed hardware architecture, and

following, software application architecture is explained; the

Service-Based Software Architecture details the architecture

of the communication mechanisms inside the UAV and

between UAV and base station. For example, our Mission

Control Computer prototype is detailed in the Operational

Scenario. The final section concludes this paper and

identifies some of our future developments.

BACKGROUND AND MOTIVATION

A UAV is a complex system composed of six main

sub-modules that work coordinately to obtain a highly

valuable observation platform [5]. Figure 1 depicts a

schematic view of each sub-module.

The UAV Airframe
A simple, lightweight, aerodynamically efficient and

stable platform with limited space for avionics, and obviously

no space for a pilot.

The Flight Computer
The heart of the UAV. A computer system designed to

collect aerodynamic information through a set of sensors

(accelerometers, gyros, magnetometers, pressure sensors,

GPS, etc.), in order to automatically direct the flight of an

4

airplane along its flight-plan via several control surfaces

present in the airframe.

The Payload
A set of sensors composed of TV cameras, infrared

sensors, thermal sensors, etc., to gather information that can

be partially processed on-board or transmitted to a base

station for further analysis.

The Mission/Payload Controller
A computer system on-board the UAV has to control the

operation of the sensors included in the payload. This operation

should be performed according to the development of the flight

plan as well as actual mission assigned to the UAV.

The Base Station

A computer system on the ground designed to monitor the

mission development and eventually operate the UAV and its

payload.

The Communication Infrastructure
A mixture of communication mechanisms (radio modems,

satcomm, microwave links, etc.) that should guarantee the

continuous link between the UAV and the base station.

Current UAV technology offers feasible technical

solutions for airframes, flight control, communications, and

base stations. However, if civil/commercial applications

should be tackled, there are two elements which limit the

flexibility of the system: human intervention and mission

flexibility.
Too much human control from the ground station is still

required. Rlight control computers do not provide additional

support beyond basic flight plan definition and operation.

Additionally, payload is most times remotely operated with

very little automation support.

Economical efficiency requires the same UAV to be able

to operate in different application domains. This necessity

translates into stronger requirements onto the

IEEE A&E SYSTEMS MAGAZINE. JUNE 2007

W* 85

I"

Fig. 2. General view of the architecture
of a Mission Control Computer

mission/payload management subsystems, with increased

levels of flexibility and automation.

SYSTEM ARCHITECTURE

The hardware architecture of the proposed Mission
Control Computer is built as a set of embedded
microprocessors connected by a local area network (LAN),
i.e., it is a purely distributed and therefore scalable
architecture (see Figure 2). Even though this is a simple
scheme it offers a number of benefits that motivates its
selection in our application domain.

The high level of modularity of a LAN architecture offers
extreme flexibility to select the actual type of processor to be
used in each sub module. Different processors can be used
according to functional requirements, and they can be scaled
according to the computational needs of the application.
System modules can be awakened on-line when required at
specific points of the mission development. Modules can be
added (even hot plugged) if new requirements appear.

Module interconnection is an additional extra benefit
because the complex interconnection schemes needed by
parallel buses do not fit properly with the space and weight
limitations in a mini/micro UAV.

Finally, development simplicity is the main advantage of
this architecture. By using techniques inspired by Internet
communication protocols, computational requirements can be
organized as services that are offered to all possible clients
connected to the network. These communication schemes
will be further described below.

A number of specific computational modules have been
identified as "a must" in any real life application of UAVs.
These modules are depicted in Figure 2. On top of these
modules several applications will be executed providing
specific services to other applications.

Even providing the computational support to these
applications will be scaled according to the requirements, but
without requiring major modifications in the communication
schemes. Critical services to be offered include the following
elements: an interface with the Flight Computer System, the
Mission Control service, a communication service with a
selection of communication infrastructures, video and photo
management as a data gathering system or even with real
time processing, a data storage service, and a motor control
service in case mobile components should be controlled.

SERVICE-BASED SOFTWARE ARCHITECTURE

Over this LAN infrastructure, we implement a software
layer that allows each computation module to support
multiple applications by providing services to the network.
Each application could create and subscribe to the available
services. The services could be discovered and consumed in a
dynamic way like web services in the Internet domain.
Applications could interchange information transparently
from network topology, application implementation, and
actual data payload. This approach together with the
hot-pluggable LAN offers interoperability of different
modules and applications.

Service-oriented architectures (SOA) are getting common
in several domains, for example Web Services [11 in the
Internet world and UPnP [2] in the home automation area.
SOA is an architectural style whose goal is to achieve loose
coupling among interacting components or services. A
service is a unit of work done by a service provider to
achieve the desired end results for a service consumer. Both
provider and consumer are roles played by software agents
on behalf of their owners. The results of a service are usually
the change of state for the consumer but can also be a change
of state for the provider or for both.

The idea of these architectures is to increment the
interoperability, flexibility, and extensibility of the designed
system and their individual components. In the
implementation of any system, we want to reuse components
from the existing system, however in doing that we usually
introduce additional dependencies between the components.
Service-oriented architectures tries to minimize these
dependencies by using loose coupled components.

SOA achieves loose coupling among interacting
components by employing two architectural constraints.
First, a small set of simple and ubiquitous interfaces to all
participant components with only generic semantics encoded.
Second, each interface can send on request descriptive
messages explaining its functioning and its capabilities.
These messages define the structure and semantics of the
services provided. These constraints depart significantly from

IEEE A&E SYSTEMS MAGAZINE. JUNE 2007
5

(d)

Fig. 3. Operational Scenario: Mission Control starts a geo-referenced video recording

that of object-oriented programming, which strongly suggests

that you should bind data and its processing together.

When a component needs a functionality not provided by

itself, it asks the system for the required service. If another

component of the system has this capability, its location will

be provided, and finally, the client component can consume

the service by using the common interface in the provider

component. The interface of a SOA component must be

simple and clear enough to be easily implemented in different

platforms, both hardware and software.

Proposed Architecture
In our SOA-based system, services will be provided by

different modules, each composed by an embedded

microprocessor and the needed hardware to accomplish their

assigned task. The designed architecture should fulfill several

functional and non-functional requirements.

Dynamic Discover
New modules can be attached to the LAN while the

system is working and the modules already present on the

system will be informed of their presence [4]. In a similar

way, when a module needs a service, it can ask the system if

any other module is offering this functionality.

Remote Execution
Modules will be able to consume services exposed by

other modules in the net. A service will offer several

functions that can be invoked remotely. The consumer

module will send the function and its parameters and will

wait for the results returned by the provider module.

Module Self-Description
Each module will provide on request a description of the

services it offers. This will help on the development of

complex functionalities and will offer modules the possibility

of using services that did not exist when builtlprogrammed.

Get/Set Data From Modules
Modules will be able to expose their inner state using

variables. Other modules can ask for this information or send

6

changes to it in a synchronous way. These variables contain

information from sensors or inputs to the different UAV
actuators.

Data Streaming
Some variables will change at high rates. It will not be

efficient for a module to ask constantly for new values from

such a variable. For handling this sort of data, our

architecture provides data streams that efficiently send

information to multiple modules using the multicast

capabilities of the network.

Two Naming Policies
The users of our system will want to use clear and sound

names for the variables, streams, and services like "adf

compass," "fuel flow," or "lights on." However at the

network layer it will be more efficient to use numeric

identifiers occupying fewer bytes. One of the responsibilities

of the software layer we provide is to discover and cache the

numeric identifiers used internally by the network while the

modules can be developed thinking in terms of external

human-understandable identifiers.

Subsystem Grouping
Information transmitted in our network can be related to

different subsystems and our protocol is able to keep this

relationship. This allows us to mix and group data from

different subsystems. For instance, this will be useful in a

ground base station to select data from different UAVs, or

inside the UAV itself for grouping information from several

engines, etc.

Distributed Architecture
Our system should avoid centralized nodes to guarantee its

correct global operation. In our vision, each module is

responsible for announcing its capabilities and for providing

its services without help from any other module.

Lightweight Protocol
There exist some protocols common in other areas that

could be extended and modified to be used for our intention,

IEEE A&E SYSTEMS MAGAZINE, JUNE 2007

i.e., RTP [31 for the transmission of streamlined informnation.
However we decided to implement a very lightweight
brand-new protocol, capable of obtaining real-time behavior
in microcontrollers with limited computational resources.

OPERATIONAL SCENARIO

Imagine the following scenario: the mission control
decides to take a geo-referenced video. For this task it will
need the services provided by storage, flight computer
system, and the camera & sensing modules. In Figure 3, we
show how these different modules interact and interchange
messages with the system to accomplish this complex task.

* 1-2. The Mission Control asks the system for the
module which generates the variable or stream
GPS data and the Flight Computer System
responds with its location.

* 3-4. The Mission Control asks the system for the
module which generates the stream video
camera and the Camera & Sensing module
responds with its location.

* 5-6. The Mission Control asks the system for the
module providing the service store stream and
the Storage module responds with its location.
Now, the Mission Control knows the location of
all the services and it will subscribe to those
streams.

* 7. The Mission Control subscribes to the stream
GPS data generated by the Flight Computer
System.

* 8. The Mission Control subscribes to the stream
video camera generated by the Camera &
Sensing module.

* 9-10. The Mission Control commands the
Storage module to store both the GPS data and
video camera data streams. From this point on,
the Storage Module stores the data without
Mission Control intervention.

The software layer we have designed allows the
development of complex and collaborative services that can
be easily reutilized among several UAV applications. The
available modules in our UAV provide an extensive set of
services, covering an important part of the generic
functionalities present in many missions; therefore, to adapt
our aircraft for a new mission, it will be enough to
reconfigure the mission control to use the adapted services
without adding new software or hardware. Furthermore this
abstraction layer provides some desirable capabilities to our

INS-Osn CONTROL
SCREENS

Fig. 4. Communication gateway between UAVs
and the ground station

system: redundancy, parallelism, fault tolerance, and
scalability. When a module distributes a data stream, multiple
modules can be receiving it. The processing of this
information could be done then in a parallel or redundant
way; for example, by processing alternate video frames in
two modules or by storing two copies of the sensor data in
two different storage modules.

In an analogous way, different modules can offer the same
service, variable, or stream. When a module asks the system
for a particular action, it does not exactly know (and it does
not need to know) which node is going to answer. This
permits that, in case of a module failure, another module with
equivalent functionalities can attend its responsibilities
transparently. This arquitecture also allows an important
degree of scalability and flexibility because it's not needed to
know in advance in which hardware nodes the services are
mapped. A hardware node can initially offer several services,
and if a low performance is detected we can distribute their
services among several nodes. The applications
implementing the mission will be unaware of these changes.

COMMUNICATION GATEWAY

In a UAV, several communication links may be available,
i.e., RF-links, SATCOM links, or wireless links. However,
not all links may be available at the same time, and moreover
the cost of using each link could be completely different.
Depending on the flight stage and application, some links
may be more appropriate than others. Therefore, in a flexible
architecture, it should be possible to dynamically choose the
most convenient or reliable network link.

IEEE A&E SYSTEMS MAGAZINE. JUNE 2007
7

Our system includes a communication gateway that

monitors all communication links and routes the traffic

between the UAV and the base station through one or more

communication links. Network capabilities, their link quality

(bandwidth and latency), the required throughput and the cost

(both economical and power requirements) should be taken

into account. The gateway should have enough intelligence

to select the appropriate routing decision in a real-time and

autonomous way.

One of the key elements of this communication gateway is

the fact that it provides an homogenization mechanism to

hide the actual infrastructure. A data router at the entry point

of the base station and another at the Mission Computer will

redirect all traffic between the air and ground segments

through the best available link. Figure 4 depicts a possible

architecture of the ground station and the gateway that will

provide connectivity to the UAV in flight. The gateway will

concentrate all traffic from the available links and re-inject it

into the LAN at the ground station.

PROTOTYPE DEVELOPMENT

We are currently developing a prototype of our

architecture using ARM9 hardware modules involving the

following components: an autopilot module, a camera &
sensing module, a communication manager with two network

interfaces: an RF modem and a Wi-Fi device, and finally, a

storage module.
The AP04 is used as the autopilot [7]. AP04 is a fully

integrated autopilot with manual override, automatic take-off,

waypoint-based flight plan, and landing. It has integrated

GPS/INS navigation systems providing positioning data for

other subsystems. It also provides a 900Mhz HF modem for

long-range communications.
We could sense the environment using several sensors and

cameras. A camera and sensing module are in charge of

interfacing with these devices and providing their data to

other modules in the system. For this first prototype, our

sensor device will be a standard digital USB camera. In

addition, the core modules will provide temperature and

voltage sensors to monitor their state.

For the communication links we will use an HF modem

operating in the 2.4 Ghz band and a commercial off-the-shelf

(COTS) Wi-Fi network card. The first will be used for

long-range telemetry and the latter for close-range

configuration and data downloading without connecting

cables to the UAV. We are also studying the possibility of

using Line-of-sight directional Wi-Fi antennas for increasing

the coverage.

Some modules will have higher bandwidth requirements

and we will not be able to transmit the information to ground

base station nor process it directly in the UAV. Therefore, we

will provide a storage module to save permanent information

in a Compact Flash media for later processing on-ground.

This prototype has the essential modules to demonstrate

the viability and capabilities of our proposed architecture.

CONCLUSION

This paper introduced a hardware/software architecture

designed for use as avionics for mission and payload control

in the area of Unmanned Aerial Vehicles. The design tackles

a number of elements critical for the operation of these

systems. The architecture is a LAN-based pure distributed

system, being therefore highly modular and scalable

according to the requirements of the applications. A small

connectivity infrastructure is required among the modules,

but yet enough connectivity bandwidth could be obtained.

The applications architecture is service-based, following

WEB-based/Internet paradigms, offering low developing

complexity through a number of standardized protocols.

An initial prototype is currently being completed, the

Mission Control Computer. This system will cover basic

services that exist to provide support to any UAV civil

application like: a homogeneous communication mechanism

through a heterogeneous infrastructure, a massive storage

service, an image/video recording service, a Flight Computer

interface service, and the mission control service itself.

REFERENCES

[I] W3C Note: Web Services Architecture,

www.w3.orgnTR/ws-arch/.

[2] UPnP Forum,

www.upnp.org.

[3) H. Schulzrinne et al.

RFC 3550. RTP: A Transport Protocol for Real-Time Applications,

www.ietf.org/rfc/rfc3550.txt.

[4] J. Rosenberg et al.

RFC 3261. SIP: Session Initiation Protocol,

www.ietf.org/rfc/rfc3261 .txt.

[5] C. Spitzer,

Digital Avionics Systems: Principles and Practice e' Edition,

Blackburn Press, 2001.

[6] R. Pratt,

Flight Control Systems: Practical Issues in Design

and Implementation,

Institution of Electrical Engineers (lEE), 2000.

[71 AP04 autopilot,

www.uavnavigation.com.

[8] EU Civil UAV Roadpmap.

www.uavnet.com.

[9] F. Vahid and T. Givardis,

Embedded System Design: A Unified Hardware / Software

Introduction,

Morgan Kaufmann, 2005.

8 IEEE A&E SYSTEMS MAGAZINE, JUNE 20078

