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Abstract—Unmanned aerial vehicles (UAVs) play an invalu-
able role in information collection and data fusion. Because of
their mobility and the complexity of deployed environments,
constant position awareness and collision avoidance are essen-
tial. UAVs may encounter and/or cause danger if their Global
Positioning System (GPS) signal is weak or unavailable. This
paper tackles the problem of constant positioning and collision
avoidance on UAVs in outdoor (wildness) search scenarios
by using received signal strength (RSS) from the on-board
communication module. Colored noise is found in the RSS,
which invalidates the unbiased assumptions in Least Square
(LS) algorithms which are widely used in RSS based position
estimation. A colored noise model is thus proposed and
applied in the extended Kalman filter for distance estimation.
Furthermore, the constantly changing path loss factor during
UAV flight can also affect the accuracy of estimation. In order
to overcome this challenge, we present an adaptive algorithm
to estimate the path loss factor. Given the position and velocity
information, if a collision is detected we further employ
an orthogonal rule to adapt the UAV predefined trajectory.
Theoretical results prove that such an algorithm can provide
effective modification to satisfy the required performance.
Experiments have confirmed the advantages of the proposed
algorithms.

Index Terms—Colored noise, position estimation, extended
Kalman filter, collision avoidance

I. INTRODUCTION

The application of UAVs has attracted a lot of interest

in research since the advancement of integrated circuit, ar-

tificial intelligence, robotics etc. [1]–[4]. It is thus possible

that in the future a swarm of small but highly integrated

UAV platforms will be able to work cooperatively and

autonomously, especially in the time demanding scenarios.

For example, in our Sensing Unmanned Autonomous Aerial

VEhicles (SUAAVE) project funded by EPSRC, UK, the

focus is on search and rescue, supported by reliable creation

and control of swarms of UAVs in outdoor (wildness) sce-

narios [5]; however the work is more generally applicable

to all autonomous control of UAVs. Such a deployment

requires the capability of autonomous tasking and fast

response.
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When a swarm of UAVs are deployed in outdoor sce-

narios, similarly to human controlled aerial vehicles, it is

crucial to avoid potential collisions between each other

as they fly fairly freely within the space. UAV formation

and collision avoidance is a popular research topic, and

some researchers have made significant improvements in

this direction [1], [6]. However, it is still an emerging area

which needs more theoretical contribution and practical

experimentation. It is common to assume that the GPS

signal is constantly available for each UAV during the

lifetime of the task [6], however, such an assumption is not

practical because the wireless satellite link may encounter

physical blocks or interference. It has been found that even

the placement of a GPS module given the weather condition

can result in the reception of a weak signal or total failure

[7], [8]. Moreover, some of the contributions are based on

data from simulations rather than actual UAV experiments

[6]. Also the results obtained might have bias towards

practical UAV flights, e.g. the assumption of only white

noise in radio frequency (RF) signal is not the whole story

in RSS based position estimation.

The potential to use a wireless signal for the purpose of

positioning has attracted great interest. Depending on the

availability of measurements, three major wireless position-

ing methods were proposed in the literature ( [9]–[11]):

1) time of arrival (TOA) and/or time difference of arrival

(TDOA); 2) angle of arrival (AOA), 3) received signal

strength (RSS). The first two either require highly accurate

equipment or need the support of antenna arrays, as well as

a sophisticated signal processing module, which increases

the payload, complexity and cost of UAV platform, even if

they can be implemented on it. On the other hand, the RSS

based method is a more convenient and economical solution

if it is carefully handled, since the wireless communication

equipment is already available on the UAV.

RSS based measurement has been studied in cellular

networks and wireless local networks. The application of

RSS in a cellular network was introduced in [12], which

measures the forward control channels transmitted by the

base station. The accuracy of using the RSS method is

analyzed in [13], which shows that the RSS method is

not as accurate as TDOA, but the accuracy provided is

still useful to reduce the large errors that are sometimes

introduced in TDOA and AOA based measurement. The

lower bounds estimation when using RSS based maximum

likelihood and linear kernel methods are given in [14]. The

result reveals that in an urban area, the localisation error

is higher when buildings are included in the urban scene
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as compared to a scenario where buildings are not present,

which suggests the complexity and inconstancy of RSS.

It is thus intuitive to use the Least Square (LS) algorithm

to process the received RSS [13], [15], [16]. As evaluated

in [17], the LS-based method is reasonably accurate if

the radio propagation model is unbiased. However, due to

correlated noise and the complexity of UAV flying attitude,

such a requirement is rarely satisfied and the LS based

methods could produce large-scale errors, which are also

shown in the experiments (See Section VIII).

In order to improve the accuracy of the RSS based

positioning algorithm, we use an extended Kalman filter

(KF) [18] with colored noise model to estimate the position.

Even though white noise is commonly assumed in RSS

based algorithms [15], [19], from the results in [17] and

our experiments analyzed by Allan variance [20], RSS

not only has white noise but also correlated noise (See

Section III). Many types of devices introduce correlated

measurement errors, e.g. GPS receivers and the inertial

measurement units (IMU) [21]. Similarly, in RSS based

position estimation, if colored noise is not considered, the

estimation has limited accuracy [13], [16]. Therefore in

this paper, we proposed a colored noise model for the

KF algorithm. Another factor that affects the estimation

accuracy is the path loss factor in the propagation model.

Researchers have found that, in real wireless channels, the

path loss factor is not always constant (γ ∼ [1.6, 6]) [22].

We adapt this feature by estimating its value in real-time

while the UAV flies. The probability of collision detection is

then analyzed given the availability of position information.

Of particular importance is the lower bound of collision

probability and maximum number of repeated measure-

ments, which are presented in this paper. We also propose

to use the orthogonal rule for trajectory modification when

a potential collision is detected and present the avoidance

algorithm following this rule.

The contributions of this paper include:

1) Analysis and modelling of colored noise in the RSS

measurements;

2) Improved estimation of the path loss factor in RF

propagation model;

3) Adaptive safety zone modelling and design under

imperfect position information;

4) Theoretical detection performance of the RSS based

method and its practice;

5) The trajectory modification rule and its application.

The organization of this paper is as follows: Section II

introduces the system modelling; Section III analyzes the

noise in the radio measurements and models the colored

noise; Section IV studies the position estimation algorithm;

Section V proposes the estimation method of the path loss

factor; Section VI gives the performance analysis of colli-

sion detection; Section VII proposes the collision avoidance

rule and algorithm; Section VIII shows the experiment

results; Section IX discusses the relevant issues and Section

X concludes this paper.

Throughout this paper, T denotes transpose and log is the

logarithm function with base 10. min{·} and max{·} select
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Fig. 1. The model of UAV position estimation. Rj , j = 1, ..., J are J
reference nodes with known position information.

the minimum and maximum value of its input parameters

respectively. || · || denotes the Euclidean norm, δ(·) is the

Dirac delta function and E(·) calculates the expectation of

its entry.

II. SYSTEM MODELLING

A. Position Estimation Model

In order to know the position of an object, at least three

reference nodes with known position information should

be available. The model is shown in Fig. 1, where there

are J reference nodes, labelled as Rj , j = 1, ..., J and

I UAVs, Ui, i = 1, ..., I , which need to estimate their

own positions. The reference nodes can be other UAVs,

local stations or access points which have accurate positions

themselves and are synchronized to the global clock. This

information can be obtained from the GPS onboard or

off-line measurements and should be sufficiently accurate.

Every UAV broadcasts a predefined control message at

the given time stamp using wireless signals. These signals

may suffer from fading, interference and other noise. Thus

the received signal strength is normally affected by the

deployment environment.

UAVs are modelled as rigid bodies and their positions

are denoted as

ui(n) = {xi(n), yi(n), zi(n)}T, i = 1, ..., I

and the positions of reference nodes are given by

rj(n) = {xj(n), yj(n), zj(n)}T, j = 1, ..., J

where n is the time stamp.

Within the given model, we can use three reference nodes

to estimate the position of a UAV, given the availability of

distance information. E.g. for Ui, the position equation is

given below

||ui(n) − rj(n)|| = dij(n), j ∈ [1, ..., J ], J ≥ 3 (1)

The key to employing this model is to estimate the

distances between UAV and reference nodes using RSS

provided by the onboard wireless communication module.
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B. The Radio Communication Channel Model

The wireless radio channel provides the essential medium

for an electromagnetic wave to travel through, which suffers

from extensive noise and interference. Furthermore, the

movement of the transmitter and receiver bring a Doppler

Effect and unstable attitude. Even though it is convenient

to use the free-space model, this approach is not accurate

in a real environment [22].

A more practical model studied in [22] provides a

basic structure for the estimation of RSS in this paper.

However, because of the complicated features of wireless

propagation, the parameters of this model drift with changes

in the physical environment. As a result we propose to use

adaptive parameter estimation to formulize this practical

problem.

The propagation model is given by [22]

Pr = Pt + 10 logK − 10γ log
dij

d0
+ v, (2)

where Pr and Pt are the received and transmitted power in

dBm. K is a unitless constant that depends on the antenna

characteristics and average channel attenuation, which can

be determined by the measurement at d0 [22]. In this paper,

we set d0 = 1m. dij is the distance between UAV i and

reference node j. γ is the path loss factor. v is the power

of measurement noise in dBm.

Set d0 = 1m and denote the measurement at the time

stamp n as ϕ(n) = Pr(n)−Pt(n)−10 logK, the path loss

model can be simplified as follows

ϕ(n) = −10γ(n) log dij(n) + v(n). (3)

This model will be used to estimate the distance.

It is usually assumed in the literatures, e.g. [19], [22], that

the noise in (3) is Gaussian distributed. However, based on

the data collected from our extensive UAV experiments and

[17], colored noise plays a significant role in the practical

scenarios, which will be discussed in the next section.

III. NOISE ANALYSIS AND MODELLING

A. Noise Analysis

A segment of radio frequency signal received by the UAV

is shown in Fig.2, which is similar to the recordings in

[19]. It is interesting to notice that, besides white noise,

the radio signal also shows the impact of colored noise

(Fig.3), which is analyzed by the tool of Allan variance

[23]. Allan variance is based on cluster analysis [24] and

is a powerful tool to disguise the overall noise statistics.

Denote the correlation time as τ and the sampling

frequency as f and suppose we have a collection of N
data ϕ(n), n = 1, ..., N , the correlation can be revealed by

grouping these data into M = N
f

clusters and computing

the variance as follows

σ2
τ =

1

2
||µk+1(M) − µk(M)||2, k = 1, ..., f − 1 (4)
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Fig. 2. One segment of the received radio signal.
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Fig. 3. Allan variance.

where

µk(M) =
1

M

kM
∑

i=(k−1)M+1

ϕ(i), k = 1, ..., f − 1

Allan variance of the received radio signal is shown in

Fig. 3. In the figure, the Allan variance of simulated data

with only white noise is also shown. From the slope of

loglog spectrum, we can see the slope of the simulated

data is -1 and the real radio data is severely affected by

colored noise, especially at the short correlation time area

(e.g. log τ < 1) where the slope of correlation in real data

is positive. when log τ is above 2, the contribution from

correlated noise can also be observed.

The error of root Allan variance, στ , decreases with the

increase of frequency f , as shown in Fig.3. The chi-squared

distribution is commonly used to establish its confidence

interval, expressed as

χ2 =
̥σ2

τ

σ2
, (5)

where σ2 is the true variance value and ̥ is the degree

of freedom for the estimator. χ2 denotes the cumulative

distribution function of the chi-squared distribution. Given

the confidence of ε, the confidence of Allan variance
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estimation is given by

̥σ2
τ

χ2(ε)
≤ σ2 ≤

̥σ2
τ

χ2(1 − ε)
. (6)

B. Colored Noise Modelling

In the case of correlated noise observation, such as

the radio signals in Section III, we can use a Gaussian

Markov process (GMP) to model the correlation [25], [26],

generated by a continuous time autoregressive model given

below

φ̇(t) = λφ(t) + w2(t), (7)

where λ is the coefficient of GMP and w is additive white

noise w2 ∼ N(0, σ2
w2

) and E[w2(t)w2(t − T )] = δ(T ),
δ(·) is the Dirac delta function.

Firstly (7) is converted to the discrete time domain

φ(n) = eλ∆φ(n− 1) + eλ∆w2(n), (8)

where ∆ denotes the time incremental.

Driven by the exciting noise w2(n), the correlation

between noises φ(m) and φ(n) is given by

Rφ(m,n) =E[φ(m)φ(n)]

=E
[

(

eλ∆mφ(0) +
m
∑

i=1

eλ∆iw2(m− i+ 1)

)



eλ∆nφ(0) +

n
∑

j=1

eλ∆jw2(n− j + 1)





]

=eλ∆(m+n)E
[

φ2(0)
]

+

m
∑

i=1

n
∑

j=1

eλ∆(i+j)

E [w2(m− i+ 1)w2(n− j + 1)] .
(9)

Without losing generality, we assume n ≥ m. The

correlation can be denoted as

Rφ(m,n) = eλ∆(m+n)E
[

φ2(0)
]

+ σ2
w2
eλ∆(n−m)

m
∑

i=1

eλ∆(2i).
(10)

From (10), it is easy to see that, in order to maintain the

convergence of the model, λ must be less than 0. When m
and n are large, the correlation can be approximated as

Rφ(m,n) ≈
σ2

w2
eλ∆(n−m+2)

1 − e2λ∆
. (11)

By using the measured data, its Allan variance and (11),

the three parameters λ, ∆ and σ2
w2

can be obtained. For

example, the data shown in Fig.2 were measured under

the time increment of 0.1s, thus ∆ = 0.1s. Two points

can be selected from Fig.3 to calculate the two unknown

parameters, where τ = ∆(n−m).

IV. POSITION ESTIMATION

In this section, we introduce an algorithm to estimate

distance using RSS. With the distance information between

UAVs and the reference sites, its position can be calculated

straightforwardly using (1).

Based on the analysis introduced in previous sections, the

distance between the ith UAV and jth reference node can

be modelled as (The subscript ij is neglected to simplify

the expression in the rest of this paper.)
{

d(n) = d(n− 1) + ψ(n− 1) + w(n− 1),
ϕ(n) = 10γ(n) log d(n) + φ(n) + v(n),

(12)

where ψ(n − 1) is the optional control input, e.g. IMU

measurements, and w(n−1) is the estimation noise, which

is often modelled as Gaussian distributed, e.g. N(0, σ2),
φ(n) is the colored measurement noise and v(n) is white

measurement noise with variance R. The initial conditions

at n = 0 are given as d(0) = d0, ψ(0) = 0.

We apply the extended Kalman Filter to estimate the

distance d(n). The first equation in (12) denotes the state

and the second one is the measurement equation. Using the

colored noise model of (7), we can write the colored noise

state as follows

φ(n) = eλ∆φ(n− 1) + eλ∆w2(n− 1), (13)

where w2(n − 1) is the white noise in (7) with variance

σ2
w, λ and ∆ are also given by (7).

The two state equations - (13) and the first equation in

(12) - are combined together using the following expression

c(n) = f (c(n− 1),ψ(n− 1),w(n− 1)) , (14)

where c(n − 1) = [d(n − 1), φ(n − 1)]T, ψ(n − 1) =
[ψ(n − 1), 0]T and w(n − 1) = [w(n − 1), w2(n − 1)]T.

The process noise matrix is given by Q = E{wwH}, and

the Jacobian matrices of f(·) are calculated as

[A(n)]ij = ∂fi

∂cj
, [W(n)]ij = ∂fi

∂wj
, i, j = 1, 2.

The measurement equation for the Kalman filter is given

as follows

ϕ(n) = h(c(n)) + v(n), (15)

where h(c(n)) = 10γ(n) log c1(n) + φ(n). The partial

derivatives of (15) generate its Jacobian matrix

[h(n)]j = ∂h
∂cj

, j = 1, 2.

Combing (14) and (15) gives us the essential components

of the Kalman filter algorithm. The prediction of state

vector is then given by

c̃(n) = f (ĉ(n− 1),ψ(n− 1), 0)) . (16)

The a priori estimate error covariance, P̃(n), is calculated

as

P̃(n) = A(c̃(n))P(n− 1)AT(c̃(n)) + W(n)QWT(n),
(17)

where P(n−1) is the a posteriori estimate error covariance.

Its initial condition is given empirically as P(0) = 1.

The measurement sensitivity would affect the error co-

variance, given by

P̂(n) = P̃(n)hT(n). (18)
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Now we can update the Kalman gain as follows

K(n) = P̂(n)
(

h(n)P̂(n) + R
)

−1

. (19)

The estimation of state ĉ(n) is thus calculated as

ĉ(n) = c̃(n) + K(n)(ϕ(n) − h(c̃(n))). (20)

The a posteriori estimate error covariance is finally updated

by

P(n) = (I − K(n)h(n))P̃(n). (21)

Performance of the algorithm will be verified in Section

VIII, which shows that 80% of estimations have estimation

error less than 4m. The distance obtained is directly used

in (1) for position estimation, which is neglected here.

V. ESTIMATION OF PATH LOSS FACTOR γ

UAVs are always moving and, as a result, the common

assumption of fixed path loss factor of the radio model is

not practical since the environment is constantly changing.

In this paper, we use a modified Least Square (LS) method

to estimate the path loss factor. The path loss model (3) is

described as follows

ϕ(n) = −10γ(n) log dij(n) + φ(n) + v(n).

Denote f(γ(n)) = −10γ(n) log dij(n) and we assume

there are M previous data available. The error functions

can be written as














e(n) = ϕ(n) − f(γ(n))
e(n− 1) = ϕ(n− 1) − f(γ(n− 1))
...
e(n−M + 1) = ϕ(n−M + 1) − f(γ(n−M + 1))

(22)

Stacking them into vectors: e(n) = [e(n), e(n −
1), ..., e(n−M + 1)]T, L(n) = [ϕ(n), ϕ(n− 1), ..., ϕ(n−
M + 1)]T and F(n) = [f(γ(n)), f(γ(n − 1)), ..., f(γ(n −
M + 1))]T,

ε(γ(n)) =e(n)Te(n)

=FT(n)F(n) − 2FT(n)L(n) + LT(n)L(n).
(23)

Since LT(n)L(n) is a constant, to have the minimum

value of ε(γ(n)) leads to

ε̂(γ(n)) = min{FT(n)F(n) − 2FT(n)L(n)}. (24)

We cannot have an explicit expression of γ from its first

order derivative because F(n) includes series of non-linear

functions with unknown parameters. Thus the linear method

to obtain the ideal γ by assigning 0 to its first order

derivative cannot work here.

Instead, an improved Gauss-Newton algorithm is pre-

sented in this paper to estimate γ at the nth time stamp

by iterations. Based on the LS theory, estimation of γ can

be given by

γ(s+1) = γ(s) + θΘ(s), (25)

where Θ(s) = JT(γ(s))J−1(γ(s))JT(γ(s))e(n) and θ
is the adjustment factor employed to improve perfor-

mance as analyzed below. The Jacobian matrix J(γ) =

[

∂e1(n)
∂γ

, ..., ∂eN−M+1(n)
∂γ

]T

is calculated and used for it-

erations. s is the iterative index. Because Gauss-Newton

method heavily depends on the initial value and may

diverge, we employ the small parameter θ to improve the

performance.

Firstly we prove the necessity of introducing θ. It is easy

to know that εT(γ(s))ε(γ(s)) is not minimum because γ(s)

is only an approximation to the true value of γ. Then we

have

Theorem 1: Since

∂εT(γ)ε(γ)

∂γ
|γ=γ(s) ̸= 0, (26)

a positive Λ for θ ∈ [0,Λ] must exist so that

εT(γ(s) + θΘ(s))ε(γ(s) + θΘ(s)) < εT(γ(s))ε(γ(s)), (27)

where Θ(s) = [JT(γ)J(γ)]−1JT(γ)e(n),
Proof: See appendix.

The choice of θ is based on the scenarios, however, it is

set to 0.5 for simplicity in our experiments. Even though

this value is probably not optimal, it is expected to work

properly also in other cases. To find its optimal value is an

interesting topic for further research. The stop condition is

given by

|ε(γ(s)) − ε(γ(s−1))| ≤ µ (28)

where µ is a predefined error tolerance.

The algorithm for the computation of γ(n) is summa-

rized below,

1) For a given initial value γ(0) and Θ(0) are computed.

2) γ(s) and ε(γ(s)) are calculated based on (25) and

(23).

3) If the stop condition (28) is satisfied, go to step 4).

Otherwise go to step 2).

4) γ(s) is output to γ(n).

VI. COLLISION DETECTION UNDER IMPERFECT

DISTANCE ESTIMATION

In this paper, we set a safety zone for each UAV, as

shown in Fig.4. A collision warning will be generated if

the safety zone is violated by another UAV uk(k ̸= i),
{

di,k ≤ Si,k, Warning,

di,k > Si,k, Safe.
(29)

The distance di,k can be directly calculated from RSS

measurements.

Manned aerial vehicles usually maintain a fixed safety

zone [27]. Perfect detection can be achieved if we have

accurate information of the distance between each pair of

UAVs. In this case, the radius of the safety zone can be set

as follows

Si,k = ||v̂i,k ∗ tr||, Perfect condition, (30)

where v̂i,k is the maximum relative velocity between the

two UAVs and tr is the reaction time. v̂i,k can be set by a

default value or can be calculated from the communications

between the two UAVs.
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Fig. 4. The UAV safety zone. Si,k is the radius of Ui’s safety zone.

However, because the RSS based distance estimation has

limited accuracy, we have to study the collision detection

under imperfect distance estimation. Intuitively, if one

experiment has a certain level of accuracy, we can carry

out multiple independent experiments to improve it.

Firstly we define P (δ̂d) as the probability of one estima-

tion error less than or equal to δ̂d

P (δ̂d) = P (one measurement error ≤ δ̂d) (31)

Then the probability of one estimation error greater than

δ̂d should be 1−P (δ̂d). Given nd independent estimations,

the probability that all of them have errors greater than δ̂d
is as follows

P (nd measurements errors > δ̂d) = (1−P (δ̂d))
nd . (32)

The values of δ̂d and P (δ̂d) can be determined as follows

P (δ̂d) =

∫ δ̂d

0

p(δd)dδd (33)

where p(δd) is PDF of the errors, δd. For example, in the

experiments we found that 80% of estimation errors are

within 4m, thus δ̂d = 4m, P (δ̂d) = 80%.

Furthermore, it is easy to have the following inequality:

Probability(Real distance of (i,k) ≤ Si,k|di,k > Si,k)

≤ P (one measurement error > δ̂d)
(34)

since the two UAVs’ safety zones may not overlap even if

the estimation error is greater than the threshold.

Let P be the collision probability. We assume that if the

distance measurement causes a warning, a proper control

action will be available to avoid a possible collision (such

action is introduced in Section VII). Therefore

P ≤Probability(Real distance of (i,k) ≤ Si,k|

di,k > Si,k, {i, k} ⊂ {1, ..., I})
(35)

for the following reason: even if a collision always occurs

when Real distance of (i, k) ≤ Si,k, the collision

probability is obtained from the right side of the above

equation by multiplying it with the probability of having

two UAVs within each other’s safety zone.

In the case of distance errors lower than δ̂d, the warning

rules and control actions are assumed to be able to compen-

sate for the distance errors and avoid collision. According

to the analysis above, a collision can occur only when all

the nd independent measurement errors are larger than δ̂d,

e.g.

P ≤ (1 − P (δ̂d))
nd . (36)

From the above equation, we can obtain the minimum value

of nd to ensure that P ≤ (1 − P (δ̂d))
nd < P̄, where P̄ is

the desired maximum collision probability.

Given the distribution of errors, P (δ̂d), and the desired

maximum collision probability, P̄, the number of indepen-

dent experiments can be calculated as follows,

nd =
log P̄

log(1 − P (δ̂d))
, (37)

where nd is rounded to the nearest integer towards infinity.

Given the example of P (4) = 80%, P̄ = 10−5, we can

obtain nd = 8. In other words, the collision probability

from RSS measurements can be limited to 10−5 if 8
independent trials are taken for the same channel between

the two UAVs.

Finally, to ensure that the measurements are independent,

the measurement frequency has to be lower than the value

imposed by the channel coherence. This corresponds to a

constraint on the maximum value of nd and the minimum

collision probability that the system can reach.

Proposition 1: In the RSS based methods, the collision

probability corresponding to imperfect RSS measurement

is lower bounded by

P(δ̂d) =
(

1 − P (δ̂d)
)Nd

, (38)

given the distribution of error in estimation (See Fig.5)

and Nd = ⌊1/Td⌋, Td is the channel coherence time

and ⌊·⌋ selects the largest integer not greater than its

input parameter. The maximum number of independent

measurements is Nd.

Proof: From the CDF of errors in the distance esti-

mation shown in Fig.5, the following relationship can be

obtained, P (δ̂d) = α%, where δ̂d is the estimation error,

which means α% of the estimations have errors within the

range [0, δ̂d]. The probability of estimation error greater

than δ̂d is given by

P ′(δ̂d) = 1 − P (δ̂d) = 1 − α%.

If the frequency of estimation is nd and the error

probability distribution function (PDF) of nd estimations

is p′(δd1 , ..., δdnd
), the CDF of false detection can be

calculated as

P(δd1
, ..., δdnd

) =

∫

...

∫

p′(δd1
, ..., δdnd

)dδd1
...dδdnd

.

The right-hand-side of the above equation is bounded by

the following special case: each estimation is independent
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of the others:
∫

...

∫

p′(δd1 , ..., δdnd
)dδd1 ...dδdnd

≥

∫

p′(δd1)dδd1 ...

∫

p′(δdnd
)dδdnd

=p′ (δd1) · · · p
′

(

δdnd

)

.

Since the RSS based method is employed in this paper,

the independence of a group of continuous estimates is

imposed by the channel coherence time Td. As a result,

the maximum estimation frequency is

Nd = ⌊1/Td⌋.

If the same error threshold δ̂d is given to every single

estimation, e.g. δdi
, i = 1, ..., nd, (38) is proved.

For example, if an IEEE 802.11 wireless signal

is employed for position estimation, at a mobility of

1m/s(3.6km/h), the coherence time is approximately

25.39ms, and this value reduces to 12.69ms, and 8.46ms
for the speed of 2m/s(7.2km/h), and 3m/s(10.8km/h)
respectively [28]. Higher speed leads to even lower coher-

ence time. If we choose Td = 25.39ms, the maximum

number of independent measurements can be obtained as

Nd =
1

Td

≥
1

25.39 ∗ 10−3
≈ 40. (39)

Under the condition of imperfect distance information,

the safety zone has to be set carefully. If it is too large,

the deployment and cooperation of UAVs would be greatly

restricted as each UAV has to keep a fairly large distance

from the others; if it is too small, once a potential collision

is detected, the time left for collision avoidance may not

be enough. Thus the safety zone for UAV under imperfect

distance information can be given as

Si,k =

(

δ̂d

P (δ̂d)
+ ||v̂i,k ∗ tr||

)

∗nd, Imperfect conditions.

(40)

For example, if δ̂d = 4m, P (δ̂d) = 80%, v̂ =
{10, 0, 0}m/s, tr = 1s, nd = 8, the safety zone radius

S = 120m as shown in Fig. 6.

VII. COLLISION AVOIDANCE

In this section, we study the control rules if two UAVs

have potential collision. The avoidance action can be for-

mulated as the regulator problem [29], [30]. Given the

dynamical system of UAVs as

ui(n+ 1) = ui(n) + vi(n), (41)

where vi(n) is the velocity per frame. The following cost

function can be defined,

Ji(n) = q(n)||ui(n)−ud
i (n)||+κ(n)||vi(n)−vi(n−1)||,

(42)

where ud
i (n) is the predefined trajectory, which will be

mandatorily modified if a potential collision is detected.

The model predictive controller proposed in [29] is used

to adjust the movement of Ui, which is neglected here.

q(n) and κ(n) are the weight factors for tracking error and

velocity increment respectively.

The cooperative collision avoidance scheme works as

follows. We assume every UAV has the same size of safety

zone and a unique identity number (ID). However, different

a safety zone can be easily set where the safety zone with

smaller size should be considered. Without losing gener-

ality, the UAVs with lower ID are given higher priority.

Once a potential collision is detected (29), the two involved

UAVs (Ui, Uj , i < j) will exchange information including

ID, velocity v and current and the next way point u.

The collision avoidance algorithm will then work by the

following steps

• If

||ui(n+ 1) − uj(n+ 1)|| ≥ Si,j , (43)

at time n + 1 the safety zones of the two UAVs are

disjoint so no action is needed: ui(n + 1) = ud
i (n +

1),uj(n+ 1) = ud
j (n+ 1).

• If

||ui(n+ 1) − uj(n+ 1)|| < Si,j , (44)

Uj’s trajectory must be modified following the orthog-

onal rule introduced below.

The Orthogonal Rule: When two UAVs (Ui, Uj , i <
j) have potential collision, a new way point of the

UAV with greater ID, uj(n + 1), should be on the

edge of Ui’s safety zone, the direction of way point

change should be vertical to the velocity of Ui, and

the value of way point change should be the smallest.

The advantage of this rule is to ensure collision avoid-

ance with acceptable complexity and low implementation

difficulty. The chosen way points can be connected using
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Fig. 6. UAV trajectory adjustment. Blue circle is the edge of Ui’s safety
zone. Ui follows its old trajecotory while Uj , j > i modifies its trajectory
if a potential collision is detected.

more sophisticated algorithms. For example, genetic algo-

rithms and higher order polynomial approximation can be

used to find a smooth trajectory between two way points.

Particularly when vehicles are at high velocities, it is better

for them to follow a curved trajectories.

Following the orthogonal rule, the next way point of Uj ,

uj(n+ 1), can be calculated as follows,










||u′

j(n+ 1) − ui(n)|| = Sj,i,
[u′

j(n+ 1) − uj(n)] · vi(n) = 0,
uj(n+ 1) = min

u
′

j
(n+1)

||u′

j(n+ 1) − uj(n)||.
(45)

The change of trajectory is illustrated in Fig. 6 (In 2

Dimention). More experimental results are given in Section

VIII. Once the danger is eliminated, they will follow their

own predefined trajectories again.

VIII. EXPERIMENTS

A. Dataset preparation

The experiments were divided into two steps. Firstly,

the dataset was collected and prepared. Then the data was

post processed by LS and Kalman filters. The dataset was

acquired in practical experiments by quadrotor UAVs (Fig.

7) in University College London. On the UAV platform,

there is a GPS receiver (Ublox LEA4T) to record position

information, which was post processed using reference

information received by the GPS base station in Univer-

sity College London. With the usage of highly sensitive

antennas and accurate geographical information of the

base station, the error between GPS measurements and

UAV’s true position is at the level of 10cm, which is also

confirmed by manual measurements. Three gyros (Analog

Devices ADXRS610), a tri-axial accelerometer (Memsic

MXR9500), three magnetometers (NXP KMZ51) and a

pressure sensor (Freescale MPXH6115) are fused at the rate

Fig. 7. AscTec hummingbird quadrocopter.
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Fig. 8. This figure shows the flight trajectory of the UAV in experiments
(blue line) and the locations where radio measurements were recorded
(red asterisks).

of 1KHz by the on-board firmware of UAVs to provide the

IMU data.

The radio frequency signal used in our experiments was

from IEEE 802.11 transceivers. We used two mini PCI

express 802.11 b/g modules (Gigabyte GN-WI01GT) on

both the transmitter and receiver to provide the required

signal. These 802.11 modules were set at the fixed channel

of 2.462GHz, which was tested to be free from other

transmissions. The transmission power was 5dBm and we

set a fixed transmission rate of 1Mb/s.

Trajectories of UAVs and the locations where RSS were

recorded are shown in Fig.8. The positions are expressed

in a local coordinate frame centered at the ground antenna

location, hence the altitude can be negative, and aligned to

the main flight directions. Flights were carried out in an

open outdoor area at varied velocity between 0m/s and

about 5m/s. For each of the four main directions (North,

South, East, West) and for each one of three flight altitudes

(10m, 20m, 30m), we conducted a total of 12 distinct

flights.

The collected data will be analyzed by the proposed

algorithm and the widely used LS method [14], [15]. Unless

specifically mentioned, both the two will use the same RSS

measurements without assistance from other information,

e.g. IMU data. It is worth noting that, since the data were
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collected at fairly short distances (< 60m), therefore the

results obtained by using this dataset might not be able to

reflect the measurements ideally under longer distances.

B. Distance vs RSS

The errors in estimation at different distances are shown

in Fig.9. The RSS data measured from the experiments

was used for estimation by the KF and LS algorithm

respectively. The KF model is provided by (14) and (15)

with an update rate of 10 times per second. From the

figure, it is easy to see that the distance estimated by LS

fluctuates severely during the movement of the UAV, thus it

would produce large scale instant errors, which is confirmed

by Fig.10. On the other hand, KF is more stable and

produces estimates with higher accuracy as colored noise

was considered in KF algorithm. From Fig.10, given 80%
confidence, the estimation error of Kalman filters is about

4m, while that of LS method is about 10m. Generally, for

both the two methods, increasing distance produces larger

scale errors.

The difference in accuracy between these two approaches

is mainly the result of how to exploit the historical data: LS

uses current and historical data to model the system directly.

If there are large instantaneous discrepancies between the

model and observation, the LS algorithm would produce

large scale errors. However, for the KF algorithm, current

observations only contribute a limited but necessary part

(depending on the noise variance in measurement, see (19)),

and the approach is thus more robust towards instantaneous

changes. The accuracy of noise variance should be carefully

handled in the KF algorithm.

In the following experiments, we study the effects of

different noise type, path loss factor and IMU measurement

(velocity) on the proposed algorithm in details. The dataset

is the same as before.

1) Colored Noise vs White Noise: In this experiment, the

performance of the white noise model and colored noise

model are compared. Two experiments were conducted,

where the first one assumed that the dataset has white

noise and the second one assumed colored noise. The other

parameters were the same for both the two cases.

Fig.11 (a) shows the performance comparison. From the

figure, if KF only considers white noises, the error in

distance estimation is much higher than that of the colored

noise model. From the CDF figure, we can see that, given

80% confidence, the error of the colored noise model is

about 4m while that of the white noise algorithm is about

8.5m. It is worth mentioning that the difference between

these two approach is not always the same, e.g. they are

affected by the environment(e.g. noise variance).

2) Path Loss Factor γ: In this experiment, we compared

the impact of different γ to the performance of distance

estimation. A set of experiments involving adaptive γ and

fixed γ were conducted by using the same dataset as before.

Without losing generality, fixed γ was chosen from the most

common scope [2, 6].
The results are shown in Fig.11 (b). From the figure,

it is interesting to notice that, within the defined range,

the higher the path loss factor, the better the performance.

The reason could be explained by multiple reflections

and attenuations on the radio path. Therefore the path

loss factor is likely to be highly unstable in a practical

environment. The adaptive estimation algorithm proposed

in this paper may not have the best performance all the time,

but generally its errors in distance estimation are less than

its counterparts with fixed values at the 70% of confidence

and above.

3) With/Without IMU measurements: This experiment

explicitly tested the effect of IMU information towards esti-

mation accuracy in the proposed scheme. The Kalman filter

(12) included velocity data integrated by the accelerometer,

gyroscopic sensors and timer on the UAV. It is worth

mentioning that in all of the previous experiments, IMU

measurements were not used.

Fig.11 (c) shows the impact of using IMU information.

The accuracy of estimation when IMU information is

available is within 1.7m given 80% of confidence, which is

higher than the case without IMU data. The results suggest

that if IMU data is available and accurate, it can be used in

the proposed algorithm to improve the estimation accuracy.

However, usually the accuracy of inertial sensors is time
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dependent - drifting with the increase of time, it is thus

important to model and mitigate this effect [31].

C. Safety Zone vs Collision

In Section VI, a safety zone with radius S is set for

each UAV, where S is given by (40) theoretically. In

this experiment, given the accuracy of a single estimation

(e.g. 80% of the errors in estimation are within 4m or

16m), we examined the relationship between radius of

safety zone and collision probability. 100, 000 independent

trails of two UAVs were generated given two groups of

estimation errors: 80% of errors were within 4m or 16m.

The maximum relative velocity was set to 10m/s and

the UAVs always flew towards each other following this

maximum speed. In this experiment, we only considered

the collision events caused by imperfect estimation. The

results are shown in Fig.12.

From the figure, it is easy to see that under the same

estimation error range, the radius of the safety zone has cru-

cial effect on the collision probability of UAVs. The greater

the radius, the lower the collision probability. The reason

is that if the radius is large enough, multiple estimations

can be carried out to provide higher overall accuracy. More

importantly, the theoretical safety zone calculated from (40)

matches the simulation results well. From the figure, given

80% of errors in estimation less than 4m, the probability

of collision is 10−5 if the radius of safety zone is 115m.

Similar probability values can also be found in the case of

16m if the radius of safety zone is 230m. If we use (40) to

calculate the radius of the safety zone, given the collision

probability of 10−5, we can obtain the radius of the safety

zone as 120m in the first case and 240m in the second case.

In both cases, the calculated radius is sufficiently tight but

also provides the required safety.

D. Collision Detection and Avoidance

In this experiment, the collision avoidance algorithm

proposed in Section VII was tested. The scenario was
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of errors in single estimation are within two ranges: ≤ 4m and ≤ 16m.
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the same level of collision probability, larger estimation errors (16m) need
bigger safety zone.

set as follows: two UAVs working simultaneously, whose

trajectories were generated randomly with estimation noise.

These trajectories were very irregular, but should be much

more smooth in practical situations where the trajectories

are optimized. Nevertheless, they were good objects for the

purpose of the test. The distance between the two UAVs was

calculated given the imperfect position information. We set

the radius of their safety zone as 120m, given the error

in estimation as 4m and the corresponding CDF as 80%
from previous experiments. If the estimated distance was

less than this radius, the trajectory modification algorithm

proposed in VII would be called. Such a procedure was

repeated until a safe trajectory was eventually obtained.

Fig.13 shows the trajectories of UAV1 and UAV2. We

can see that for most of the time, their distance is less than

the safety zone (See Fig.14). After applying the Orthogonal

Rule, UAV2’s trajectory is modified and the new distance is



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

−100
−50

0
50

100
150

−100

0

100

200
0

10

20

30

40

50

 

x direction (m)y direction (m)
 

T
im

e
 (

s
)

UAV1

UAV2 Predefined Trajectory

UAV2 Modified Trajectory

Fig. 13. The simulated trajectories of two UAVs. The trajectory of
UAV2 is modified by following the Orthogonal Rule to avoid potential
collisions. The new trajectory always respects the safety zone, but does
not significantly divert from the predefined one. Distances between the
two UAVs before and after modification are shown in Fig.14.

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Time Stamp

D
is

ta
n

c
e

 (
m

)

 

 

Previous Distance

New Distance

Safe zone radius

Fig. 14. Distances between the two UAVs before and after trajectory
modification. The new distance should be greater than or equal to the
radius of safety zone.

greater or equals to the safety zone radius, which confirms

the effectiveness of the proposed trajectory modification

rule.

IX. DISCUSSION

A. Number of Reference Nodes

The following two cases should be considered. The first

one is when there are more than three reference nodes,

J > 3. The three with the strongest RSS are chosen for the

calculation of position. The reason of this choice is that,

the ones with stronger signals are less affected by blocks

and shadowing, thus the data estimated from their RSS is

more accurate. The second case is when J < 3. In this

case the exact position of Ui cannot be obtained. Only the

distance (between Ui and its neighbors) can be estimated.

Even though such extreme case should be always avoided,

when encountering this problem, based on the algorithm

introduced in Section VI, the violation of the safety zone

can still be detected using only the distance information.

Collision avoidance under this circumstance works as

follows. The UAV with smaller ID should hover for one

segment of time, recording the velocities of both two UAVs

and distances. With the value of the two distances and

direction of the other one’s previous velocity, a triangle

can be defined (The three vertexes of this triangle are the

UAVs’ old positions and the new position of the moving

UAV.) and then a modified orthogonal rule can be used:

The Modified Orthogonal Rule: When two UAVs

(Ui, Uj , i < j) have potential collision, the velocity of the

UAV with greater ID should be changed to be orthogonal

to the current velocity of the other one, its value should be

the same as the other UAVs and the direction of change

should ensure the increase of distance.

Its implementation is as follows: The velocity vi(n) of

Ui estimated by the inertial measurement unit (IMU) is

transmitted to Uj . Uj will change its movement following

the modified orthogonal rule as above, where the details

are similar to Section VII.

B. Path Loss Factor γ

In the free space model, the path loss factor is a constant,

γ = 2 [22]. However, its typical value in different indoor

and outdoor environments and antenna heights is between

1.6 and 3.5. Office buildings with multiple floors may even

have γ as high as 6. Higher frequencies tend to produce

higher γ, which becomes lower at higher antenna heights

[22], [32]. As a result, it is not accurate to pin a fixed

number to a scenario. The experiments in Section VIII

suggest that the path loss factor is sometimes a little higher

than the typical values given in [22].

C. Trajectory Modification for Collision Avoidance

In this paper, we proposed to use the orthogonal rule

to modify the trajectories of two UAVs when a potential

collision is detected. This scheme is simple and effective,

however, there might be better ways to find way points.

For example, the movements of two UAVs can be explic-

itly compared and predicted to reduce potential conflicts.

Furthermore, if the vehicles have high velocities, the way

points found by the orthogonal rule should ideally be

connected by smoothing trajectories rather straight lines. As

stated in Section VII, genetic algorithms and higher order

polynomial approximations can be used in this scenario.

In the paper, we only study the control rule involving two

UAVs. In real applications, more UAVs may have conflicts

in the same space, thus a global collision avoidance algo-

rithm will be proposed and tested in our future work.

D. The Integration of Inertial Sensors

The inertial sensors - accelerometer, gyros and mag-

netometers - are usually fused with the timer on the

UAV to provide an estimate of the navigation states. For

example, the accelerometers’ orientation can be determined

by the gyroscopic sensors. We can combine accelerometers’

output and the time step of the system clock to obtain the
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UAV body velocity. Thus the position information can be

obtained by integrating the velocities. Commercial inertial

sensors should be calibrated using the data provided to

adjust the bias and other determined errors. However, the

accuracy of these sensors is time dependent - it degrades

with the increase of time. Various methods have been

studied to model the errors in an inertial sensor: [33], [34]

proposed an autoregressivemoving-average model; [35],

[36] used a stationary Gaussian-Markov process etc. It is

worth noting that, if IMU data are integrated in the model

(12), their time dependency should be compensated using

algorithms, e.g. EKF filters [31].

E. Limitations and Applications

The proposed RSS based collision detection and avoid-

ance scheme is targeted in open space where several UAVs

are deployed. It is thus important to avoid collision if

some of them do not have accurate position information.

Indoor environments have much higher requirement on

the accuracy and radius of safety zones. Furthermore, the

concrete walls and indoor objects have strong degradation

and reflection towards the RF signal, it is thus very difficult

to use the RF signal alone in collision avoidance. In this

case, we have combined several techniques, e.g. RSS with

wireless beacons, ultrasonic and optical sensors etc., to

provide the required accuracy. It is also an interesting topic

for further research.

X. CONCLUSION

This paper studies the application of radio frequency

signal to UAV position estimation and collision avoid-

ance. The radio signal model and its noise component are

analyzed. The influence of colored noise and path loss

factor are carefully handled. The Kalman filter algorithm

is then proposed to estimate the distance between receiver

and transmitter. The collision probability of using RSS is

studied and a collision avoidance strategy is also proposed

with verification of its effectiveness by experiments. The

proposed algorithms can be used for UAVs which are co-

operatively deployed for sensing tasks and other missions.

APPENDIX A

THE PROOF OF THEOREM 1

Proof: The left hand side of (27) can be expanded

using Taylor series, given by (The iteration index s is

ignored here for the benefit of concise expression.)

εT(γ + θΘ)ε(γ + θΘ) − εT(γ)ε(γ)

=
∂εT(γ)ε(γ)

∂γ
Θθ + oθ2.

(46)

Since

∂εT(γ)ε(γ)

∂γ
Θ = −2εT(γ)

∂F

∂γ
Θ

= −2(L − F(γ))TJ(γ)Θ

= −2||ZJ(L − F(γ)||2,

where ZJ = J(γ)J−1(γ). Replace the corresponding part

of (46) and arrange the equation gives

εT(γ + θΘ)ε(γ + θΘ) − εT(γ)ε(γ)

= (−2||ZJ(L − F(γ)||2 + oθ)θ.

From the features of Taylor series, we know that oθ has

equal or higher order than θ. When θ → 0, it is easy to

know o→ 0. As a result,

εT(γ + θΘ)ε(γ + θΘ) − εT(γ)ε(γ) < 0.

Thus the theorem is proved.
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