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UAV Relaying Assisted Secure Transmission With Caching

Fen Cheng, Guan Gui, Senior Member, IEEE, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior

Member, IEEE, Jie Tang, Senior Member, IEEE, and Hikmet Sari, Fellow, IEEE

Abstract—Unmanned aerial vehicle (UAV) can be utilized as
a relay to connect nodes with long distance, which can achieve
significant throughput gain owing to its mobility and line-of-sight
(LoS) channel with ground nodes. However, such LoS channels
make UAV transmission easy to eavesdrop. In this paper, we
propose a novel scheme to guarantee the security of UAV-relayed
wireless networks with caching via jointly optimizing the UAV
trajectory and time scheduling. For every two users that have
cached the required file for the other, the UAV broadcasts the files
together to these two users and the eavesdropping can be disrupt-
ed. For the users without caching, we maximize their minimum
average secrecy rate by jointly optimizing the trajectory and
scheduling, with the secrecy rate of the caching users satisfied.
The corresponding optimization problem is difficult to solve
due to its non-convexity, and we propose an iterative algorithm
via successive convex optimization to solve it approximatively.
Furthermore, we also consider a benchmark scheme in which we
maximize the minimum average secrecy rate among all users by
jointly optimizing the UAV trajectory and time scheduling when
no user has the caching ability. Simulation results are provided
to show the effectiveness and efficiency of our proposed scheme.

Index Terms—Caching, physical layer security, time schedul-
ing, trajectory optimization, UAV relaying.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely utilized

in wireless networks to improve the system performance

recently [1], which have many advantages. First, UAVs often

provide line-of-sight (LoS) channel links with ground users,

which can enhance the transmission performance significantly

[2]. Then, UAVs can be deployed quickly and flexibly for

on-demand wireless systems due to their high mobility and

agility. In addition, UAVs are less expensive than traditional

communication infrastructures such as ground base stations
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(BSs). Due to its promising performance, UAV assisted com-

munication has attracted great interest from both industry and

academia.

First, UAVs can be employed as aerial BSs to improve the

capacity and coverage of traditional wireless networks [3]–[6].

For example, UAVs can be used to establish connections with

users in some areas without infrastructures or achieve rapid

service recovery after ground infrastructures being damaged

in natural disasters. In [4], some fundamental work has been

conducted to maximize the minimum throughput in multi-

UAV networks via jointly optimizing the trajectory, power and

scheduling. UAVs can also help ground BSs offload data traffic

in crowded areas or improve the performance of cell-edge

users [7]–[10]. Then, UAVs can be adopted as relays to help

transmit information from source nodes to long-distance des-

tination nodes [11]–[14]. Compared with ground static relays,

UAV relay can achieve significant throughput gain because

of its mobility and LoS channel. In [11], the throughput for

UAV relaying system was maximized by designing UAV’s

trajectory and optimizing the source/relay transmit power.

The outage probability of the UAV relaying network was

significantly minimized by optimizing the UAV trajectory and

power allocation in [12] and [13]. When there exist multi-layer

UAV relays in the cellular network, mean packet transmission

delay was minimized by optimizing resource allocation in [14].

In addition, UAVs should often connect to the core networks

via limited wireless backhaul, which will degrade the user

experience at peak-traffic hours. To overcome this problem,

caching can be exploited for UAVs transmission to avoid

network congestion [7], [15], [16]. In [15], the UAVs in a

cloud radio access network were proposed to cache appropriate

content during off-peak time via predicting users’ behavior.

An effective algorithm based on liquid state machine learning

was proposed to predict the content request distribution of the

users in LTE-U UAV networks [16]. In [7], the UAVs stored

the enhancement layer segments of videos in advance, and

then, they can fly close to the users who required the videos to

provide transmission. Proactive caching can be also utilized to

overcome the endurance issue for UAV communications, and

some excellent work has been done in [17].

On the other hand, the security of wireless networks gains

increasing attentions due to the broadcast characteristic of

wireless channels [18], especially in UAV-assisted networks.

This is because eavesdropper can intercept the information

from the UAV more easily due to the LoS channel between the

UAV and the eavesdropper. Recently, physical layer security

is becoming an important technique to improve the network

security via physical-layer methods [19]. Secrecy rate is a key

metric to measure the performance of physical layer security,

which denotes the rate of confidential information that can be
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reliably transmitted without eavesdropping [20]. There have

been plenty of works on physical layer security to disrupt the

eavesdropping. The information beamforming and jamming

beamforming were jointly optimized in [21] to guarantee the

transmit and receive security for a full duplex BS. In [22],

an overview of research on enhancing wireless transmission

secrecy via cooperation was presented. The secure multiple

amplify-and-forward relaying was studied in [23] over cor-

related fading channels. In [24], interference alignment was

exploited to guarantee the secure transmission in wireless

multi-user networks, and the methods of interference align-

ment and transceiver optimization for physical layer security

were compared in [25]. In [26], artificial noise was gener-

ated and leveraged to improve the security of the cognitive

non-orthogonal multiple access networks with simultaneous

wireless information and power transfer. Two secure schemes

of secure precoding were proposed for directional modulation

systems via artificial noise in [27]. In [28], some fundamental

research has been done to introduce artificial neural network

to guarantee the security of cellular-connected UAVs. In [29],

the joint trajectory design and user scheduling were applied

in a novel dual-UAV-enabled wireless network to guarantee

the secure transmission. Caching can be leveraged to improve

the security of wireless networks, and in [30], the pre-cached

file was transmitted along with the target file to cache-enabled

user, which would disturb eavesdropping effectively.

Due to the LoS channel of UAV, the adversarial eavesdrop-

ping is a key threat for the UAV transmission, and some initial

works have been focused on this aspect [31], [32]. In [31],

the secrecy rate of UAV relaying systems was maximized by

optimizing the transmit power of the source node and the UAV

relay. In [32], the UAV trajectory was optimized to guarantee

the secrecy rate from the UAV to the ground destination.

Different from these works, in this paper, the secrecy rate

of the UAV-relayed multi-user wireless network is guaranteed

when there exists an eavesdropper, via using local caching and

jointly optimizing the UAV trajectory and time scheduling.

The main motivations and contributions of this paper are

summarized as follows.

• In this paper, the UAV trajectory and time scheduling

are jointly optimized to guarantee the secure transmission

in UAV-relaying systems with local caching. For every

two users who have cached the file that is not required

by themselves but required by the other, the UAV can

broadcast the files cooperatively to them and disrupt

the eavesdropping. For the users without caching, their

secrecy rate should be improved through the trajectory

optimization of UAV.

• In the optimization problem, the minimum secrecy rate

of the uncached users is maximized through jointly

maximizing the trajectory and time scheduling, with the

secrecy rate requirement of caching users satisfied. The

problem is a mixed-integer non-convex problem. We

divide it into two subproblems, and propose an iterative

algorithm to solve them alternately. The convergence of

the algorithm is proved.

• We also consider the scenario in which no user is

equipped with cache as a benchmark, and the mini-

Fig. 1. UAV relaying assisted secure transmission with caching: (a) UAV
obtains files from the BS; (b) UAV broadcasts files to User i1 (i1 ∈ I1) and
User i2 (i2 ∈ I2); (c) UAV transmits file to User i3 (i3 ∈ I3).

mum secrecy rate among all users is maximized through

jointly optimizing UAV trajectory and time scheduling.

The corresponding problem is also non-convex, which

can be solved similarly as that with caching. Through

comparison, we can conclude that local caching can help

the UAV relaying assisted networks improve the security

significantly.

The rest of the paper is organized as follows. We describe

the system model and formulate the optimization problem in

Section II. In Section III, an iterative algorithm is proposed to

solve it through two subproblems alternately. In Section IV,

the problem and its corresponding algorithm for the scenario

without caching are presented. Simulation results are shown

in Section V, followed by conclusions in Section VI.

II. SYSTEM MODEL

A. System Model

We consider a UAV-enabled relaying communication system

with one BS, multiple users and one eavesdropper on the
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ground. The eavesdropper is close to the users. There are no

direct links from the BS to the users and the eavesdropper

due to long distance or blockages between them. The UAV

is exploited as a mobile relay to ferry the information from

the BS to the users owing to its mobility, as shown in Fig.

1(a). Assume that the users all require a specific file from a

library denoted by F , and the size of each file in the library

is limited and proper due to the limited caching capacity of

each user. In addition, assume that the UAV is equipped with a

large-size cache, and the users have limited caching capacity.

The users with caching capability can pre-cache some popular

files during off-peak time. During the peak-traffic time, we

assume that there are four different categories of users. Define

Il as the set of the users in the lth category, l = 1, 2, 3, 4.

Assume that User i requires file i with data size Wi. The 1st

category of users and the 2nd category of users have cached

the files that are required by the users in the other category. For

example, User i1 in the 1st category (i1 ∈ I1) has cached the

file fi2 required by User i2 in the 2nd category (i2 ∈ I2), and

User i2 in the 2nd category has cached the file fi1 required

by User i1 in the 1st category. The UAV can broadcast fi1
and fi2 to them as shown in Fig. 1(b), which will disrupt the

eavesdropping towards User i1 or User i2 via caching. The

3rd category of users have no caching abilities. When they

obtain their required files from the UAV at different slots,

they are much easier to be eavesdropped, as shown in Fig.

1(c). The users in the 4th category have cached their required

files. Thus, they can obtain the required files directly from

their local caches without eavesdropping. Meanwhile, it can

help reduce the peak traffic and alleviate the backhaul load,

which can avoid the network congestion. Thus, the secrecy

rate of the users in the 3rd category should be guaranteed by

optimizing the trajectory and time scheduling of UAV.

Without loss of generality, Cartesian coordinate is adopted

to describe the proposed model. We assume that the horizontal

locations of the BS, the eavesdropper and the ith user are

denoted as wb = (xb, yb), we = (xe, ye) and wi = (xi, yi),
respectively, i ∈ I1 ∪I2 ∪I3 ∪I4. The location of the ground

eavesdropper can be detected and tracked by the UAV through

the equipped optical camera or synthetic aperture radar [33],

and thus the eavesdropping channel state information (CSI)

can be obtained due to the LoS channel from UAV to the

eavesdropper, which is a common assumption in the existing

literature of UAV [31], [32]. The flight altitude and period

of the UAV are assumed to be H and T , respectively. We

can observe that a larger flight period T will achieve higher

throughput since more time can be provided for the UAV to

fly closer to each ground user to make better wireless chan-

nel. Nevertheless, larger T will also result in higher energy

consumption and larger access delay since each user need to

wait for longer time to communicate with the UAV in the next

cycle. Therefore, we need to choose the period T properly to

keep balance between the throughput, the access delay as well

as the energy consumption. In addition, our proposed scheme

can also be utilized in delay-tolerant applications and can

exploit energy harvesting techniques such as solar energy to

provide sufficient energy supply. The period T is divided into

N equal time slots, i.e., T = Nς , where ς is small enough to

guarantee that the UAV’s location is approximately unchanged

within each slot. The horizontal position of the UAV at the nth

time slot is denoted as q[n] = (x[n], y[n]), n = 1, 2, . . . , N .

The UAV’s maximum speed is assumed to be Vmax. Besides,

we assume that the UAV’s initial location is fixed, which

is denoted as q0 = (x0, y0). Thus, we have the trajectory

constraints as

x[1] = x[N ] = x0,

y[1] = y[N ] = y0,
(1)

(x[n+ 1]− x[n])2 + (y[n+ 1]− y[n])2 ≤ d2ς ,

n = 1, 2, . . . , N − 1,
(2)

where dς = VmaxT/N .

The UAV obtains the required files of the users from the BS

first, and then transmits them to the users. Thus, the total N
time slots are divided into two parts. Assume that the 1st slot

to the N1th slot are allocated to the UAV for obtaining the

files required for the users from the BS1, while the remaining

slots are allocated to the UAV for transmitting the files to the

users. The UAV cannot broadcast the files to cache-enabled

users i1 (i1 ∈ I1) and i2 (i2 ∈ I2) and transmit file to user

i3 (i3 ∈ I3) simultaneously due to interference. Instead, it

serves the users without caching or cache-enabled user pairs

via the time division multiple access (TDMA) protocol. For

convenience, some binary variables, i.e., αb[n] and αi[n], i ∈
I1 ∪ I2 ∪ I3 ∪ I4, are defined, which reflect the UAV time

scheduling. The UAV obtains the files from the BS at the nth

time slot if αb[n] = 1, otherwise, αb[n] = 0. Thus, we know

that αb[n] = 1, n = 1, ..., N1 and αb[n] = 0, n = N1 +
1, ..., N . In addition, since User i4 in the 4th category can

obtain the desired file from its local cache, we have αi4 [n] = 0
over all slots. Furthermore, the UAV broadcasts fi1 and fi2 to

User i1 and User i2 at the nth time slot if αi1 [n] = αi2 [n] = 1,

otherwise, αi1 [n] = αi2 [n] = 0, i1 ∈ I1, i2 ∈ I2. Similarly,

if αi3 [n] = 1, the UAV transmits fi3 to User i3 at the nth

time slot, i3 ∈ I3. Then, the following conditions should be

satisfied as

αi1 [n] = αi2 [n] ∈ {0, 1}, αi3 [n] ∈ {0, 1}, ∀n, (3)

αb[n]+αi1 [n]+αi3 [n] ≤ 1, ∀n, i1 ∈ I1, i2 ∈ I2, i3 ∈ I3. (4)

For simplicity, the wireless links from the BS to the UAV

and from the UAV to the ground users and eavesdropper are

assumed to be dominated by LoS. The Doppler effect due to

the UAV mobility is assumed to be perfectly compensated

at the receivers. Thus, the free-space path-loss model can

be adopted, which is a common assumption in [4], [11],

[31], [32]. Thus, when αb[n] = 1, the instantaneous rate in

bit/second/Hz (bit/s/Hz) of the UAV at the nth time slot can

be expressed as

ru,b[n]=log2

(

1+
P1ρ0

σ2 (H2+(x[n]−xb)2+(y[n]−yb)2)

)

, (5)

where P1 is the transmit power of the BS, σ2 is the noise

1The UAV can first fly close to the users to collect the request information
through uplink channel, and then inform the BS before relaying the files from
BS to users via UAV in the upcoming cycle.
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power, and ρ0 is the reference channel power for the distance

d0 = 1 m.

Let zi1 and zi2 denote the signals of fi1 and fi2 with unit

power, respectively. When αi1 [n] = αi2 [n] = 1, the UAV

broadcasts the signal
√

θi1P2zi1 +
√

θi2P2zi2 to User i1 and

User i2 [30]. θil (l = 1, 2) is the portion of the UAV’s transmit

power P2 allocated to the file fil , where 0 < θil < 1, θi1 +
θi2 = 1. Since User il knows the pre-cached fij perfectly,

j, l = 1, 2, j ̸= l, it can eliminate the interference fij using the

similar method of successive interference cancellation (SIC) in

non-orthogonal multiple access (NOMA) [34]. Therefore, the

instantaneous rate of User il (l = 1, 2) at the nth time slot can

be expressed as

ru,il [n] = log2

(

1 +
θijP2ρ0

σ2(H2+(x[n]−xil)
2+(y[n]−yil)

2)

)

,

∀l = 1, 2, il ∈ Il. (6)

When αi3 [n] = 1, the instantaneous rate of User i3 at the

nth time slot can be expressed as

ru,i3 [n]=log2

(

1+
P2ρ0

σ2 (H2+(x[n]−xi3)
2+(y[n]−yi3)

2)

)

,

i3 ∈ I3. (7)

In addition, when the eavesdropper wants to eavesdrop User

il, l = 1, 2, the instantaneous eavesdropping rate at the nth

time slot can be expressed as

ru,eil [n] = log2



1 +

θilP2ρ0

H2+(x[n]−xe)2+(y[n]−ye)2

θijP2ρ0

(H2+(x[n]−xe)2+(y[n]−ye)2)
+ σ2



 ,

∀il ∈ Il, l, j = 1, 2, j ̸= l, (8)

where
θijP2ρ0

(H2+(x[n]−xe)2+(y[n]−ye)2)
is the interference from the

file fij . Since fij is unknown by the eavesdropper, it will be

viewed as interference to disrupt the eavesdropping when the

eavesdropper aims to eavesdrop User il, l = 1, 2, j ̸= l.

When the eavesdropper wants to intercept the information

for User i3, the instantaneous eavesdropping rate at the nth

time slot can be presented as

ru,ei3 [n]=log2

(

1+
P2ρ0

σ2(H2+(x[n]−xe)2+(y[n]−ye)2)

)

,

∀i3 ∈ I3. (9)

Thus, the achievable average transmission rate for the UAV

to obtain the files from the BS can be expressed as

Ru =
1

N

∑N

n=1
αb[n]ru,b[n]. (10)

The average transmission rate from the UAV to the ith user

can be presented as

R[i] =
1

N

∑N

n=1
αi[n]ru,i[n], i ∈ I1 ∪ I2 ∪ I3. (11)

The average secrecy rate from the UAV to the ith user can be

denoted as

R[i]
s =

1

N

N
∑

n=1

[αi[n] (ru,i[n]−ru,ei[n])]
+
, i ∈ I1∪I2∪I3, (12)

where [x]+ , max(x, 0).

B. Problem Formulation

In this paper, we mainly aim at maximizing the mini-

mum secrecy rate of the users without caching by jointly

optimizing the UAV trajectory and time scheduling, with the

secrecy rate of other caching users guaranteed. Define A =
{αk[n], ∀n, ∀k = b, i1, ..., i4, ∀il ∈ Il}, x = {x[n], ∀n}, and

y = {y[n], ∀n}. The optimization problem can be formulated

as

(P1)max
A,x,y

ϕ3 (13a)

s.t. R[i3]
s ≥ ϕ3, ∀i3 ∈ I3 (13b)

R[il]
s ≥ η, ∀il ∈ Il, l = 1, 2, (13c)

R[il] ≥ β[il], ∀il ∈ Il, l = 1, 2, 3, (13d)

Ru ≥ γ, (13e)

αb[m] = 1, ∀m = 1, 2, ..., N1, (13f)

αb[n] = 0, ∀n = N1 + 1, ..., N, (13g)

αi1 [n] = αi2 [n] = {0, 1}, αi3 [n] = {0, 1}, ∀n, (13h)

αb[n] + αi1 [n] + αi3 [n] ≤ 1, ∀n, (13i)

x[1] = x[N ] = x0, y[1] = y[N ] = y0, (13j)

(x[n+ 1]− x[n])2 + (y[n+ 1]− y[n])2 ≤ d2ς ,

n = 1, 2, . . . , N − 1. (13k)

Although the eavesdropping towards User i1 and User i2
can be effectively disrupted via local caching, to maximize

the minimum secrecy rate of User i3, more resource will be

allocated to it, which will lead to a severe decline in the

transmission rate of User i1 and User i2. Thus, to guarantee

their performance, we add the secrecy rate constraints for these

cached users as (13c), where η means the threshold of average

secrecy rate for them. In addition, β[il] is the average transmis-

sion rate threshold of User il, which should satisfy β[il] ≥
Wil

BT
.

B is the channel bandwidth in Hertz. The constraint of the

average transmission rate for the UAV to obtain the files from

the BS is also added in (13e), where γ is its corresponding

threshold satisfying γ ≥

∑

il∈Il

Wil
+

∑

i2∈I2

Wi2
+

∑

i3∈I3

Wi3

BT
.

It is important to notice that (P1) is non-convex due to

the non-concave objective function and non-convex constrains.

In addition, R
[il]
s in (P1) is non-smooth at zero due to [·]+

in (12). Furthermore, (13f) to (13h) are integer constraints

since the time scheduling variables are binary. Therefore, the

optimization problem (P1) is quite difficult to solve directly,

which will be further discussed in Section III.

III. ITERATIVE ALGORITHM FOR PROBLEM (P1)

In this section, we will propose an effective algorithm to

solve the problem (P1) approximately. First, according to the

following proposition, the objective function of (P1) can be

changed to be smooth.

Proposition 1: The optimization problem (P1) can be

expressed as the following problem (P1
′

) with the same
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solutions.

(P1
′

)max
A,x,y

ϕ3 (14a)

s.t.
1

N

N
∑

n=1

αi3 [n] (ru,i3 [n]− ru,ei3 [n])≥ϕ3, ∀i3∈I3, (14b)

1

N

N
∑

n=1

αil [n] (ru,il [n]−ru,eil [n])≥η, ∀il∈Il, l=1, 2,(14c)

1

N

∑N

n=1
αil [n]ru,il [n]≥β

[il], ∀il∈Il, l=1, 2, 3, (14d)

(13e)− (13k). (14e)

Proof: It’s obvious to find that the optimized secrecy rate

of User i3 at each time slot must be higher than or equal to 0,

due to the fact that if the secrecy rate of User i3 is less than 0 at

the nth time slot, αi3 [n] will be equal to 0 for maximizing the

minimum average secrecy rate of the users without caching. In

addition, the value of ru,eil [n] is always lower than or equal

to that of ru,il [n] due to the interference from pre-cached file,

l = 1, 2. Thus, the optimization problems (P1) and (P1
′

) have

same solutions.

According to Proposition 1, the problem (P1
′

) has same

solutions as those of (P1). Then, the integer constraints in

(13h) are relaxed into continuous ones, and the optimization

problem (P1
′

) can be reformulated as

(P1
′′

)max
A,x,y

ϕ3 (15a)

s.t.
1

N

N
∑

n=1

αi3 [n] (ru,i3 [n]−ru,ei3 [n])≥ϕ3, ∀i3∈I3, (15b)

0 ≤ αi1 [n] = αi2 [n] ≤ 1, 0 ≤ αi3 [n] ≤ 1, ∀n (15c)

(14c), (14d), (13e), (13f), (15d)

(13g), (13i), (13j), (13k). (15e)

Although the above transformations have been performed,

the optimization problem (P1
′′

) is still difficult to solve due

to its non-convexity. Thus, (P1
′′

) is divided into two sub-

problems, which can be solved alternately through an iterative

algorithm in next subsections.

A. Subproblem 1: Time Scheduling Optimization With Fixed

Trajectory

The time scheduling optimization of (P1
′′

) can be expressed

as the following subproblem with given trajectory.

(SP11)max
A

ϕ3 (16a)

s.t.
1

N

∑N

n=1
αi3 [n] (ru,i3 [n]− ru,ei3 [n]) ≥ ϕ3, (16b)

1

N

N
∑

n=1

αil [n] (ru,il [n]− ru,eil [n]) ≥ η, l = 1, 2, (16c)

1

N

∑N

n=1
αil [n]ru,il [n] ≥ β[il], l = 1, 2, 3, (16d)

1

N

∑N

n=1
αb[n]ru,b[n] ≥ γ, (16e)

αb[m] = 1, ∀m = 1, 2, ..., N1, (16f)

αb[n] = 0, ∀n = N1 + 1, ..., N, (16g)

αb[n] + αi1 [n] + αi3 [n] ≤ 1, ∀n, (16h)

0 ≤ αi1 [n] = αi2 [n] ≤ 1, 0 ≤ αi3 [n] ≤ 1, ∀n. (16i)

It can be observed that (SP11) is a standard linear pro-

gramming. Thus, we can solve it through using standard

optimization tools such as CVX.

B. Subproblem 2: Trajectory Optimization With Fixed Time

Scheduling

For any given time scheduling, the UAV trajectory optimiza-

tion problem of (P1
′′

) can be expressed as

(SP12)max
x,y

ϕ3 (17a)

s.t.
1

N

N
∑

n=1

αi3 [n] (ru,i3 [n]− ru,ei3 [n]) ≥ ϕ3 (17b)

1

N

N
∑

n=1

αil [n] (ru,il [n]− ru,eil [n]) ≥ η, l = 1, 2, (17c)

1

N

N
∑

n=1

αil [n]ru,il [n] ≥ β[ij ], l = 1, 2, 3, (17d)

1

N

N
∑

n=1

αb[n]ru,b[n] ≥ γ, (17e)

x[1] = x[N ] = x0, y[1] = y[N ] = y0, (17f)

(x[n+ 1]− x[n])2 + (y[n+ 1]− y[n])2 ≤ d2ς ,

n = 1, 2, . . . , N − 1. (17g)

The problem (SP12) is difficult to solve due to the fact

that the constraints in (17b), (17c), (17d) and (17e) are non-

convex with respect to x and y. Thus, we transform (SP12)

into a convex problem approximatively by utilizing successive

convex optimization. Before the transformation, we introduce

Lemma 1 as follows.

Lemma 1: Define a bivariate function as

f(x̄, ȳ) = log2

(

1 +
D

L+ x̄+ ȳ

)

, (18)

where D > 0, L > 0, x̄ ≥ 0, and ȳ ≥ 0. We have the
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following inequality for any given x̄0 and ȳ0.

log2

(

1 +
D

L+ x̄+ ȳ

)

≥ log2

(

1 +
D

L+ x̄0 + ȳ0

)

+
−D log2 e

(L+D + x̄0 + ȳ0)(L+ x̄0 + ȳ0)
((x̄−x̄0)+(ȳ−ȳ0)).

(19)

Proof: The Hessian matrix of the function f(x̄, ȳ) can be

expressed as

∇2f(x̄, ȳ) =

[

C C
C C

]

, (20)

where

C =
(2L+ 2x̄+ 2ȳ +D)D log2 e

((L+ x̄+ ȳ +D)(L+ x̄+ ȳ))
2 > 0. (21)

It can be concluded that the Hessian matrix is positive semidef-

inite when x̄ ≥ 0, and ȳ ≥ 0. Thus, the function is convex

with respect to x̄ and ȳ. Then, according to the fact that the

value of the convex function is larger than or equal to that of

its first-order Taylor expansion at any point [35], we obtain

the inequation (19).

ru,k[n], ∀k = b, i1, i2, i3, ∀il ∈ Il, in (17b), (17c), (17d),

and (17e) is neither convex or concave with respect to x[n]
and y[n]. When we let

x̄k[n] = (x[n]− xk)
2, (22)

ȳk[n] = (y[n]− yk)
2, (23)

ru,k[n] is in the form of log2

(

1 + Dk

L+x̄k[n]+ȳk[n]

)

, where

Db =
P1ρ0
σ2

, Dil =
θilP2ρ0

σ2
, l = 1, 2, Di3 =

P2ρ0
σ2

and

L = H2.

Then, according to Lemma 1, we can obtain

ru,k[n]≥ Ar
k[n] ((x̄k[n]− x̄r

k[n]) + (ȳk[n]− ȳrk[n])) +Br
k[n]

=Ar
k[n]
(

(x[n]−xk)
2−x̄r

k[n]+(y[n]−yk)
2−ȳrk[n]

)

+Br
k[n]

, řu,k[n], k = b, i1, i2, i3, ∀il ∈ Il, ∀n, (24)

where Ar
k[n], Br

k[n], x̄r
k[n] and ȳrk[n] are the constants ex-

pressed as

Ar
k[n]=

−Dk

(L+Dk+x̄r
k[n]+ȳrk[n])(L+x̄r

k[n]+ȳrk[n]) ln 2
<0, (25)

Br
k[n] = log2

(

1 +
Dk

L+ x̄r
k[n] + ȳrk[n]

)

, (26)

x̄r
k[n] = (xr[n]− xk)

2, (27)

ȳrk[n] = (yr[n]− yk)
2, (28)

where xr = {xr[n], ∀n} and yr = {yr[n], ∀n} describe the

UAV flying trajectory in the rth iteration. It is observed that

řu,k[n] is concave with respect to x[n] and y[n] since the value

of Ar
k[n] is less than 0. Then, for the secrecy rate of User i3,

we have

R[i3]
s ≥

1

N

∑N

n=1
ai3 [n] (řu,i3 [n]−ru,ei3 [n]) , ∀i3 ∈ I3. (29)

In order to further transform the optimization problem into a

convex one, the constraint in (17b) needs to be convex with

respect to x[n] and y[n]. Since řu,i3 [n] is concave with respect

to x[n] and y[n], we can transform ru,ei3 [n] into a convex

function to make the constraint in (17b) convex as follows.

We introduce slack variables as

S=
{

Sxe[n] | Sxe[n] = (x[n]− xe)
2,

Sye[n] | Sye[n] = (y[n]− ye)
2, ∀n

}

. (30)

Then, ru,ei3 [n] expressed as (10) can be rewritten as

ru,ei3 [n] = log2

(

1 +
P2ρ0

σ2(H2 + Sxe[n] + Sye[n]

)

= log2

(

1+
Di3

σ2(L+Sxe[n]+Sye[n]

)

, r̂u,e[n]. (31)

According to Lemma 1, r̂u,e[n] is convex with respect to

Sxe[n] and Sye[n], which also makes ru,ei3 [n] convex. Thus,

the constraint in (17b) can be approximatively transformed

into convex.

On the other hand, the constraint (17c) can be approximately

expressed as

1

N

∑N

n=1
αil [n] (řu,il [n]− ru,eil [n]) ≥ η, l = 1, 2. (32)

Similarly, since řu,il [n] (l = 1, 2) is concave, we can trans-

form ru,eil [n] into a convex function to make the constraint

(32) convex, l = 1, 2. For convenience, ru,eil [n] (l = 1, 2) in

(9) can be simplified as

ru,eil [n]= log2

(

1 +
P2ρ0

σ2 (H2 + (x[n]− xe)2 + (y[n]− ye)2)

)

− log2

(

1 +
θijP2ρ0

σ2 (H2 + (x[n]− xe)2 + (y[n]− ye)2)

)

= r̂u,e[n]− log2

(

1 +
θijP2ρ0

σ2 (H2 + x̄e[n] + ȳe[n])

)

,

∀il ∈ Il, ∀l, j = 1, 2, j ̸= l, (33)

where

x̄e[n] = (x[n]− xe)
2, (34)

ȳe[n] = (y[n]− ye)
2. (35)

Then, according to Lemma 1, we have

log2

(

1 +
θijP2ρ0

σ2 (H2 + x̄e[n] + ȳe[n])

)

≥Er
ij
[n] ((x̄e[n]− x̄r

e[n]) + (ȳe[n]− ȳre [n])) + F r
ij
[n]

=Er
ij
[n]
(

(x[n]− xe)
2 − x̄r

e[n]+(y[n]−ye)
2−ȳre [n]

)

+F r
ij
[n]

, řeil [n], ∀il ∈ Il, ∀l, j = 1, 2, j ̸= l, (36)

where Er
ij
[n], F r

ij
[n], x̄r

e[n] and ȳre [n] are the constants ex-

pressed as

Er
ij
[n]=

−Dij

(L+Dij+x̄r
e[n]+ȳre [n])(L+x̄r

e[n]+ȳre [n]) ln2
<0, (37)

F r
ij
[n] = log2

(

1 +
Dij

L+ x̄r
e[n] + ȳre [n]

)

, (38)

x̄r
e[n] = (xr[n]− xe)

2, (39)
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ȳre [n] = (yr[n]− ye)
2. (40)

Thus, ru,eil [n] in constraint (32) satisfies the following

inequation.

ru,eil [n] ≤ r̂u,e[n]− řeil [n], ∀il ∈ Il, ∀l = 1, 2. (41)

Since Er
ij
[n] < 0, řeil [n] is concave with respect to x[n]

and y[n]. In addition, r̂u,e[n] is convex with respect to Sxe[n]
and Sye[n]. Therefore, the constraint (32) can be transformed

into convex as

1

N

∑N

n=1
αil [n] (̌ru,il [n]−r̂u,e[n]+řeil [n]) ≥ η, l = 1, 2.(42)

Then, the optimization problem (SP12) can be rewritten as

max
x,y,S

ϕ3 (43a)

s.t.
1

N

∑N

n=1
αi3 [n]

(

řu,i3 [n]−log2

(

1+
P2ρ0

σ2(H2+Sxe[n]+Sye[n]

))

≥ϕ3 (43b)

1

N

N
∑

n=1

αil [n](̌ru,il [n]−r̂u,e[n]+řeil [n])≥η, l=1,2, (43c)

1

N

N
∑

n=1

αil [n]řu,il [n] ≥ β[ij ], l = 1, 2, 3, (43d)

1

N

N
∑

n=1

αb[n]řu,b[n] ≥ γ, (43e)

Sxe[n] ≤ (x[n]− xe)
2, ∀n, (43f)

Sye[n] ≤ (y[n]− ye)
2, ∀n, (43g)

(13j), (13k). (43h)

It can be concluded that in (43f) and (43g), all constraints

can be satisfied with equality to obtain the optimal solution,

due to the fact that we can always increase Sxe[n] and Sye[n]
to enhance the objective value. However, the constraints in

(43f) and (43g) are not convex with respect to x[n] and y[n].
Thus, Lemma 2 is introduced to make the constraints in (43f)

and (43g) convex.

Lemma 2: Define a quadratic function as

h(x) = (x− a)2, (44)

where a is a constant. For any given xr, it satisfies the

following inequality as

(x− a)2 ≥ 2(xr − a)(x− xr) + (xr − a)2. (45)

Proof: It is obvious that the quadratic function is convex

with respect to x. Recall that the value of the convex function

is larger than or equal to that of its first-order Taylor expansion

at any point, we can obtain (45).

Thus, according to Lemma 2, with given xr[n] and yr[n],
we have

(x[n]−xe)
2 ≥2(xr[n]−xe)(x[n]−xr[n])+(xr[n]−xe)

2, (46)

(y[n]−ye)
2 ≥2(yr[n]−ye)(y[n]−yr[n])+(yr[n]−ye)

2. (47)

Finally, according to the above transformations, the origi-

nal optimization subproblem (SP12) can be approximatively

transformed into a convex optimization problem as shown in

Proposition 2.

Proposition 2: The optimization subproblem (SP12) can

be expressed as (48) approximatively, which is convex and its

optimal objective value is a lower bound of that of subproblem

(SP12) in (17).

max
x,y,S

ϕ3 (48a)

s.t.
1

N

N
∑

n=1

αi3 [n] (řu,i3 [n]− r̂u,e[n]) ≥ ϕ3, ∀i3 ∈ I3, (48b)

1

N

N
∑

n=1

αil [n] (řu,il [n]−r̂u,e[n]+řeil [n])≥η, l=1,2, (48c)

1

N

N
∑

n=1

αil [n]řu,il [n] ≥ β[ij ], l = 1, 2, 3, (48d)

1

N

N
∑

n=1

αb[n]řu,b[n] ≥ γ, (48e)

x[1] = x[N ] = x0, y[1] = y[N ] = y0, (48f)

(x[n+ 1]− x[n])2 + (y[n+ 1]− y[n])2 ≤ d2ς ,

n = 1, 2, . . . , N − 1, (48g)

Sxe[n]≤(x
r[n]−xe)

2+2(xr[n]−xe)(x[n]−xr[n]), ∀n,(48h)

Sye[n]≤(y
r[n]−ye)

2+2(yr[n]−ye)(y[n]−yr[n]), ∀n.(48i)

Proof: Since řu,k[n] is concave with respect to x[n] and

y[n], k = b, i1, i2, i3, the constraints in (48c), (48d) and (48e)

are convex. The constraint in is convex because řu,i3 [n] is

concave and r̂u,e[n] is convex. In addition, according to the

inequalities (46) and (47), the constraints of slack variables can

be transformed into linear constrains as (48h) and (48i). Thus,

the optimization subproblem (48) is convex. On the other hand,

we can conclude that any feasible solution of the subproblem

(48) can also make the subproblem (SP12) feasible, but the

reverse is not always true. Thus, the optimal objective value

of the subproblem (48) is less than or equal to that of the

subproblem (SP12), which is a suboptimal solution.

Therefore, according to all the above transformations, the

optimization problem (48) can be solved efficiently by using

standard convex optimization tools such as CVX, since it has

been changed into convex.

C. Iterative Algorithm

According to the above two subproblems, we propose an

iterative algorithm to solve (SP11) and (48) alternately until

convergent, and the suboptimal solutions of (P1) can be

obtained. The algorithm is summarized as follows.
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Algorithm 1 Iterative algorithm for (P1)

1: Initialize xr and yr. Set r = 0.

2: repeat

3: Solve the subproblem (SP11) under given xr and yr,

and update the solution as Ar+1.

4: Solve the subproblem (48) under given Ar+1, and

update the solution as xr+1 and yr+1.

5: Update r = r + 1.

6: until The fractional increase of the objective value is

below a predefined threshold ϵ > 0.

Since Algorithm 1 only needs to solve a standard linear

programming of (16) and a convex optimization problem

of (48) in each iteration, it can be solved with polynomial

complexity in the worst case [35]. In addition, the convergence

of Algorithm 1 is proved in Proposition 3.

Proposition 3: Algorithm 1 can be guaranteed to converge

at the suboptimal solutions for the original problem (P1
′′

).

Proof: Define

Rs3(A, x, y)=min

(

1

N

N
∑

n=1

αi3 [n] (ru,i3 [n]− ru,ei3 [n])

)

,

∀i3 ∈ I3, (49)

Řs3(A, x, y)=min

(

1

N

N
∑

n=1

αi3 [n] (řu,i3 [n]− r̂u,e[n])

)

,

∀i3 ∈ I3. (50)

Firstly, in the (r+1)th iteration, because the optimal solution

Ar+1 can be obtained by solving the subproblem (SP11) under

given xr and yr, we have

Rs3(A
r, xr, yr) ≤ Rs3(A

r+1, xr, yr). (51)

Second, according to the fact that the value of the function is

equal to that of it’s first-order Taylor expansion at the given

local points, we have

Rs3(A
r+1, xr, yr) = Řs3(A

r+1, xr, yr). (52)

Then, since the optimal solution xr+1 and yr+1 are obtained

by solving the subproblem (43) under given Ar+1, we have

Řs3(A
r+1, xr, yr) ≤ Řs3(A

r+1, xr+1, yr+1). (53)

Finally, because the optimal objective value of subproblem

(48) is the lower bound of that of the subproblem (SP12), we

have

Řs3(A
r+1, xr+1, yr+1) ≤ Rs3(A

r+1, xr+1, yr+1). (54)

Thus, based on (51)-(54), we can obtain

Rs3(A
r, xr, yr) ≤ Rs3(A

r+1, xr+1, yr+1). (55)

From (55), we can know that the optimal objective value of

problem (P1
′′

) is non-decreasing and finite over iterations. As

a result, the proposed algorithm is guaranteed to converge at

the suboptimal solutions for the original problem (P1
′′

) [11],

[36], [37].

According to the results of Algorithm 1, αil [n], l = 1, 2, 3,

should be changed back into binary. If the optimized values of

αil [n] can converge to binary, this relaxation does not have any

influence on the optimization. Otherwise, we can reconstruct

αil [n] by further dividing each time slot into τ ≥ 1 sub-

slots according to [4]. Then, the number of sub-slots assigned

to User il in the nth time slot can be denoted as Nil [n] =
ταil [n]. It is obvious that as τ increases, Nil [n] will approach

an integer.

IV. SECURITY OPTIMIZATION WITHOUT CACHING

In the previous sections, we improve the network security by

optimizing UAV trajectory and time scheduling with caching.

In this section, we consider another scenario where no user

is equipped with cache. At this point, any user is easy to

be eavesdropped. To guarantee the secure transmission, we

maximize the minimum secrecy rate among all users through

jointly optimizing UAV trajectory and time scheduling, which

can be formulated as

(P2)max
A,x,y

ϕ (56a)

s.t. R̄[i]
s ≥ ϕ, ∀i ∈ I1 ∪ I2 ∪ I3 ∪ I4 (56b)

Ru ≥ γ, (56c)

αb[m] = 1, ∀m = 1, 2, ..., N1, (56d)

αb[n] = 0, ∀n = N1 + 1, ..., N, (56e)

αi[n] = {0, 1}, ∀n, ∀i, (56f)

αb[n] +
4
∑

i=1

αi[n] ≤ 1, ∀n, (56g)

x[1] = x[N ] = x0, y[1] = y[N ] = y0, (56h)

(x[n+ 1]− x[n])2 + (y[n+ 1]− y[n])2 ≤ d2ς ,

n = 1, 2, . . . , N − 1, (56i)

where the constraint (56g) implies that the UAV only commu-

nicates with at most one ground node at each time slot. The

average secrecy rate of User i in (56b) can expressed as

R̄[i]
s =

1

N

∑N

n=1
[αi[n] (r̄u,i[n]− ru,e3[n])]

+
, (57)

where

r̄u,i[n] = log2

(

1 +
P2ρ0

σ2 (H2+(x[n]−xi)2+(y[n]−yi)2)

)

. (58)

Similarly, the optimization problem (P2) can be approxi-

matively divided into two convex subproblems: (SP21) for the

UAV time scheduling optimization with fixed trajectory and

(SP22) for the UAV trajectory optimization with fixed time
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scheduling as follows.

(SP21)max
A

ϕ (59a)

s.t.
1

N

N
∑

n=1

αi[n] (r̄u,i[n]− ru,e3[n]) ≥ ϕ, ∀i, (59b)

1

N

N
∑

n=1

αb[n]ru,b[n] ≥ γ, (59c)

αb[m] = 1, ∀m = 1, 2, ..., N1, (59d)

αb[n] = 0, ∀n = N1 + 1, ..., N, (59e)

0 ≤ αi[n] ≤ 1, ∀n, ∀i, (59f)

αb[n] +

4
∑

i=1

αi[n] ≤ 1, ∀n. (59g)

(SP22)max
x,y,S

ϕ (60a)

s.t.
1

N

N
∑

n=1

αi[n] (ˇ̄ru,i[n]−r̂u,e3[n]) ≥ ϕ, ∀i, (60b)

1

N

N
∑

n=1

αb[n]řu,b[n] ≥ γ, (60c)

x[1] = x[N ] = x0, y[1] = y[N ] = y0, (60d)

(48g), (48h), (48i). (60e)

Since the subproblems (SP21) and (SP22) above are both

convex, they can be solved efficiently by using standard

convex optimization tools. Then, similar iterative algorithm

as Algorithm 1 can solve the subproblems (SP21) and (SP22)

alternately until convergence. Therefore, we can obtain the

optimal solutions of the problem (P2) accordingly.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we provide numerical simulation results

to demonstrate the performance of our proposed UAV re-

laying network for secure transmission. We first take four

typical users, i.e., I1 = {1}, I2 = {2}, I3 = {3}, and

I4 = {4}. Set the horizontal locations of the BS and the

users are wb = (−1000m, 0m), w1 = (500m, 500m), w2 =
(500m,−500m), w3 = (1000m, 0m), and w4 = (0m, 0m)
respectively. For simplicity, we assume that all the files have

the same size equal to 150 Mbits, i.e., Wi = 150 Mbits, ∀i. We

also set γ = 3 bit/s/Hz, β = 1 bit/s/Hz and η = 0.75 bit/s/Hz.

In addition, we assume that the time allocated for the UAV

obtaining files from the BS is half of the total period, i.e.

N1ς = 0.5Nς . Unless stated, other parameters in the simula-

tions are given in Table I.

In Fig. 2, we show the UAV trajectory for different schemes

with we = (500m, 0m). We adopt the elliptical trajectory

(Scheme 1) and the linear trajectory (Scheme 2) as bench-

marks, while our proposed scheme is named as Scheme 3. In

Scheme 1 and Scheme 2, the time scheduling is optimized with

given trajectory, T is set to be 200 s, and N = 200. In Scheme

3, we set T > 2L
Vmax

= 80 s to guarantee the convergence of

UAV trajectory. From the results, we can see that the UAV

can fly closer to each user to obtain better performance in our

TABLE I
PARAMETERS FOR THE SIMULATIONS

UAV flight altitude H = 100m [4], [11]

UAV maximum speed Vmax = 50m/s [4], [11]

BS transmit power P1 = 0.1W

UAV transmit power P2 = 0.1W [4]

Noise power σ2 = −110 dBm [4]

Reference channel power for d0 = 1 m ρ0 = −60 dB [4]

Power allocation coefficients θ1 = θ2 = 0.5

−1000 −800 −600 −400 −200 0 200 400 600 800 1000

−600

−400

−200

0

200

400

600

m

m
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Fig. 2. Comparison of UAV trajectory for different schemes and different
T , when we = (500m, 0m).

proposed scheme, and the performance can be still improved

with larger T .

According to the optimized scheduling and trajectory in Fig.

2, we compare the secrecy rate (SR) of the 2nd user and the

3rd user for different period T and different schemes in Fig. 3

and Fig. 4, when the horizontal location of the eavesdropper is

set to we = (500m, 0m) and we = (700m, 0m), respectively.

ς=2 s. From the results in Fig. 3, we can see that the secrecy

rate of the 3rd user in our proposed scheme can be improved

effectively with larger T , due to the optimization of trajectory

and scheduling. For the 3rd user in Scheme 1 and Scheme 2, its

secrecy rate is much lower than that in our proposed scheme.

We can also see that the secrecy rate of the 2rd user is almost

the same in these three schemes, and will be nearly unchanged

with T . This is because the secrecy rate of the 1st and 2rd

user can be mainly guaranteed via caching as we analyzed. In

Fig. 4, the eavesdropper is set to we = (700m, 0m), which is

farther away from the 1st user and the 2nd user and closer from

the 3 user. From the results, we can see that the secrecy rate of

the 3rd user in our proposed scheme can be still improved by

optimizing the trajectory and scheduling. However, the secrecy

rate of the 3rd user in Scheme 1 and Scheme 2 cannot be

guaranteed, which is even much lower than the 2rd user.

In Fig. 5, the secrecy rate of our proposed scheme is

compared with different number of time slots N1 allocated for

the UAV to obtain files from the BS, when we = (500m, 0m),
T = 200 s, N = 200. From the results, we can see that the

secrecy rate of the 3rd user decreases with N1, because less
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Fig. 6. Secrecy rate convergence of the 3rd user in Algorithm 1, when
T = 200 s and N = 200.

time slots will be allocated to the 3rd user to guarantee its

security. For the 1st and 2nd users, the secrecy rate remains

almost unchanged with different N1, due to the fact that their

security is mainly guaranteed via caching. On the other hand,

we cannot set N1 too small, otherwise, the constraint (13d)

cannot be satisfied. Thus, we can conclude that N1 should be

set as small as possible to achieve better performance, on the

condition that the optimization problem can be solved.

The convergence of Algorithm 1 for our proposed scheme

is shown in Fig. 6, when T = 200 s and N = 200. From

the results, we can see that the proposed Algorithm 1 can be

guaranteed to converge for both we = (700m, 0m) and we =
(500m, 0m) within about 5 iterations, which is consistent with

the analysis in Proposition 1. In addition, recall that we only

need to solve two convex problems in each iteration, and the

computational complexity of Algorithm 1 is appropriate for

practical applications.

In the simulations above, we assume that the 4th user can

obtain the required file from its local cache directly, the 1st

user and the 2nd user receive files cooperatively via caching,

and the 3rd user does not cache the required file, which can

be defined as Case 1. To analyze the performance of the

proposed scheme much more comprehensively, more cases

are considered in Fig. 7 and Table II. First, the optimized

UAV trajectories are shown in Fig. 7. From the results, we

can observe that the UAV flies close to the user without

caching within several time slots to transmit the files in all the

cases. On the contrary, it is not necessary for the UAV to fly

close to the cached-enabled users and stay there to broadcast

the files, due to the fact that the secrecy rate of these users

can be guaranteed through transmitting the pre-cached files

cooperatively to confuse the eavesdropper. Then, the secrecy

rate of the users in different cases are presented in Table II,

where ⋆ means that the file required for the user already

exists in its local cache and bold data are the secrecy rate of

the users without caching in different cases. From the results,

we can see that the secrecy rate of the user without caching

in Case 3 to Case 6 are higher than that in Case 1 and Case

2. This is because the user without caching in Case 3 to Case
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Fig. 7. Optimized trajectories for different cases. The BS is marked by blue
‘△’ and the eavesdropper is marked by red ‘⃝’. The user whose required file
already exists in its local cache is marked by blue ’✩’, the two cooperative
caching users are marked by blue �, and the user without cached file is
marked by blue ‘�’. The trajectory is sampled every 4 s and marked with
‘∗’. The sampled points marked by cyan ‘∗’ show that the UAV obtains files
from the BS. The sampled points marked by red ‘∗’ indicate that the UAV
broadcasts files to two cooperative caching users. The sampled points marked
by green ‘∗’ mean that the UAV transmits file to the user without caching.

TABLE II
SECRECY RATE FOR THE USERS IN DIFFERENT CASES

SR (bit/s/Hz) User 1 User 2 User 3 User 4

Case 1 0.7765 0.7764 0.9078 ⋆
Case 2 0.8000 ⋆ 0.9994 0.8000
Case 3 1.3691 ⋆ 0.7962 0.7962
Case 4 0.8251 1.4556 ⋆ 0.8251
Case 5 0.8256 0.8256 ⋆ 1.4597

Case 6 0.7956 ⋆ 0.7956 1.5938

6 is farther away from the eavesdropper than the user in Case

1 and Case 2.

Furthermore, we consider a more general case with six

users, which are randomly distributed. In the simulation, User

1 and User 2 have cached the files that are required for

each other, User 3, User 4 and User 5 have no caching

capability, and User 6 has already cached its required file,

i.e., I1 = {1}, I2 = {2}, I3 = {3, 4, 5} and I4 = {6}.

We aim to maximize the minimum secrecy rate of all the

uncached users by jointly optimizing the UAV trajectory and

time scheduling, with the secrecy rate of other caching users

guaranteed. We set T = 200 s, N = 100, N1 = 40, γ = 3.5
bit/s/Hz, β = 0.7 bit/s/Hz and η = 0.6 bit/s/Hz. The optimized

UAV trajectory is shown in in Fig. 8, and the secrecy rate

of the users are presented in Table III. From the results, we

can conclude that our proposed scheme can also be utilized

in the general case of more users with reliable performance.

Specifically, the minimum secrecy rate of all the uncached

users can be optimized to be 0.607 bit/s/Hz, with the secrecy

rate of cached users higher than η = 0.6 bit/s/Hz.

Finally, we consider the scenario in which no user has

caching ability, and we maximize the minimum secrecy rate
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Fig. 8. Optimized UAV trajectory for the case of 6 users. The BS is marked
by blue ‘△’ and the eavesdropper is marked by red ‘⃝’. The user with its
required file cached is marked by blue ‘✩’, the cooperated caching users are
marked by blue ‘�’, and the users without caching are marked by blue ‘�’.
Each trajectory is sampled each 2 s and marked with ‘∗’. The sampled points
marked by cyan ‘∗’ show that the UAV obtains files from the BS. The points
marked by red ‘∗’ indicate that the UAV broadcasts files to the cached users.
The points marked by blue, mauve and green ‘∗’ show that the UAV transmits
files to the uncached users 3, 4, and 5, respectively.

TABLE III
SECRECY RATE OF THE CASE WITH 6 USERS

SR (bit/s/Hz) User 1 User 2 User 3 User 4 User5

0.635 0.635 0.607 0.607 0.607

among all users by jointly optimizing the UAV trajectory

and time scheduling according to (P2). The optimized UAV

trajectories with different locations of the eavesdropper are

presented in Fig. 9, with γ=4 bit/s/Hz. For comparison, the

optimized UAV trajectories of our proposed scheme with

caching are also presented in Fig. 10. From the results, we

can see that in the proposed scheme with caching, the UAV

can serve the two users with caching on in a much larger

range and serve the 3rd user without caching only when it

flies above it. This is because the secrecy rate of the two

caching users can be mainly guaranteed through transmitting

the pre-cached files cooperatively to confuse the eavesdropper.

While in benchmark system model without caching, we can

see that the UAV will serve a specific user if and only if

the distance between the UAV and the user does not exceed

the distance between the UAV and the eavesdropper. This is

because the instantaneous secrecy rate of all the users in each

time slot should be higher than 0; otherwise, the UAV will

serve other users with positive secrecy rate to improve the

network security. In addition, the secrecy rate of each user

in the proposed and benchmark schemes is compared in Table

IV when we = (700m, 0m). From the results, we can observe

that the secrecy rate of each user in the proposed scheme with

caching is much higher than that in the benchmark scheme

without caching. Thus, we can conclude that cooperative

caching can significantly improve the security for the UAV

relaying assisted networks.
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Fig. 9. Optimized trajectory for maximizing the minimum secrecy rate over
all users without caching. The BS is marked by blue ‘△’, the users are
marked by blue ‘�’ and the eavesdropper is marked by mauve ‘⃝’ when
we = (500m, 0m) or blue ‘⃝’ when we = (700m, 0m). The mauve
curve is optimal UAV trajectory when we = (500m, 0m), while the blue
curve is optimal UAV trajectory when we = (700m, 0m). Each trajectory is
sampled every 2 s and marked with ‘∗’ or ’�’. The sampled points marked by
cyan ‘∗’ show that the UAV obtains files from the BS. The sampled points
marked by red ‘∗’, mauve‘∗’, green ‘∗’ and yellow ‘∗’ indicate that the UAV
transmits file to the 1st user, the 2nd user, the 3rd user and the 4th user when
we = (500m, 0m), respectively. When we = (700m, 0m), the marks ‘∗’
are replaced by ’�’.
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Fig. 10. Optimized trajectory for maximizing the minimum secrecy rate over
all users with caching. The markers are similar to those in Fig. 9.

VI. CONCLUSIONS

In this paper, the security of UAV-relayed wireless networks

with caching has been studied. In our proposed scheme, the

UAV first obtains the files from the BS and then transmits them

to the users. The users with caching capability can pre-cache

some files during off-peak time. When two users have cached

the file required by the other, the UAV can broadcast the files

to them and disrupt the eavesdropping. For the users without

caching, their security can be guaranteed by optimizing the

UAV trajectory. Thus, we propose to maximize the minimum

TABLE IV
SECRECY RATE OF THE PROPOSED AND BENCHMARK SCHEMES

SR (bit/s/Hz) User 1 User 2 User 3 User 4

Proposed Scheme 0.7765 0.7764 0.9078 ⋆
Benchmark Scheme 0.3908 0.3908 0.3908 0.3908

secrecy rate of the uncached users via jointly optimizing the

UAV trajectory and time scheduling, with the performance

requirement of caching users satisfied. The problem is non-

convex, which is divided into two subproblems, and an it-

erative algorithm is proposed to solve them alternately. In

addition, we also consider the scenario in which no user is

equipped with cache as a benchmark. Simulation results are

finally presented to show the effectiveness and efficiency of the

secure transmission in proposed UAV relaying systems with

local caching.
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