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Abstract. In this paper we introduce UBCSAT, a new implementation and experimentation environ-
ment for Stochastic Local Search (SLS) algorithms for SAT and MAX-SAT. Based on a novel triggered
procedure architecture, UBCSAT provides implementations of numerous well-known and widely used
SLS algorithms for SAT and MAX-SAT, including GSAT, WalkSAT, and SAPS; these implementa-
tions generally match or exceed the efficiency of the respective original reference implementations.
Through numerous reporting and statistical features, including the measurement of run-time distribu-
tions, UBCSAT facilitates the advanced empirical analysis of these algorithms. New algorithm variants,
SLS algorithms, and reporting features can be added to UBCSAT in a straightforward and efficient way.
UBCSAT is implemented in C and runs on numerous platforms and operating systems; it is publicly
and freely available at http://www.satlib.org/ubcsat.

1 Introduction

The propositional satisfiability problem (SAT) is an important subject of study in many areas of computer
science, and is the prototypical ��� -complete problem. MAX-SAT is the optimisation variant of SAT;
while in unweighted MAX-SAT, the goal is to find a variable assignment that satisfies a maximal number of
clauses of a given CNF formula, in weighted MAX-SAT, a weight is assigned to each clause, and the goal is
to find an assignment that maximises the total weight of the satisfied clauses. MAX-SAT is a conceptually
simple ��� -hard combinatorial optimisation problem of substantial theoretical and practical interest; many
application-relevant problems, including scheduling problems or most probable explanation (MPE) finding
in Bayes nets, can be encoded and solved as MAX-SAT.

Some of the best known methods for solving certain types of SAT instances are Stochastic Local Search
(SLS) algorithms; these are typically incomplete, i.e., they cannot determine with certainty that a formula is
unsatisfiable, but they often find models of satisfiable formulae surprisingly effectively [8]. For MAX-SAT,
SLS algorithms are by far the most effective methods for finding optimal or close-to-optimal solutions [5].
Although SLS algorithms for SAT and MAX-SAT differ in their details, the basic approach is mostly the
same. In the following, we mainly focus on SLS algorithms for SAT, while MAX-SAT algorithms will be
discussed in more detail in Section 6.

In Figure 1 we provide pseudo-code for a typical SLS algorithm for SAT. Each run of the algorithm
starts by determining an initial, complete assignment of truth values to all variables in the given formula �
(search initialisation). Then, in each search step, a set of variables is selected, whose truth values are then
changed from true to false or vice versa. Each change of a single variable’s truth value is called a variable
flip; almost all SLS algorithms perform exactly one variable flip in each search step, but there are cases in
which a given SLS algorithm may flip no variables in a given search step (a so-called null-flip), or several
variables at once (which is known as a multi-flip). Variable flips are typically performed with the purpose
of minimising an evaluation function that measures solution quality in terms of the number of unsatisfied
clauses under a given variable assignment. The search process is terminated when a termination condition
is satisfied; this is typically the case when either a solution, i.e., a satisfying assignment, has been found or
when a given bound on the run-time, which is also referred to as cutoff time and which may be measured
in search steps or CPU time, has been reached or exceeded. To overcome or avoid search stagnation, many
SLS algorithms for SAT make use of a restart mechanism that re-initialises the search process whenever a
restart condition is satisfied. For example, all GSAT and WalkSAT algorithms restart the search periodically
[14, 13]. While restart mechanisms are crucial for the performance of some SLS algorithms for SAT, such
as basic GSAT [14], they have been found to be ineffective in other cases [8].



procedure SLS-for-SAT � �	�
input: propositional formula �
output: satisfying assignment of � or ‘no solution found’
�� ������ � ����� � ������������ �! �#"$� ;
while not % ����&�� ���'�#� �#")( � � do

if * �����#���+� �#")( � � then
��  * ������� � ����� � ������������ �! �#"$� ;
else, � ������ �� +�+-.����� %�/�" � � 0 �#")( � � ;
��  " � � 01-.����� �#")( � (�23� ;
end

end
if � / � 45��6 �#")( � � then

return 

else

return ‘no solution found’
end

end SLS-for-SAT

Fig. 1. Pseudo-code for a typical Stochastic Local Search algorithm for SAT; 7 is a variable assignment, 8 is a set of
variables in the given formula 9 .

Even though SLS algorithms for SAT and MAX-SAT have achieved great levels of success, we be-
lieve that there is still significant potential for further improvements. To further explore this potential we
developed UBCSAT: an implementation and experimentation framework for SLS algorithms for SAT and
MAX-SAT. Our primary objective was to create a software environment that facilitates research on and
development of SLS algorithms. Specifically, the development of UBCSAT was based on the following six
design principles and goals:

1. include highly efficient, conceptually simple, and accurate implementations of a wide range of promi-
nent SLS algorithms for SAT and MAX-SAT;

2. facilitate the development and integration of new algorithms (and algorithm variants);
3. provide support for advanced empirical analysis of the performance and behaviour of SLS algorithms

without compromising implementation efficiency;
4. provide explicit support for algorithms designed to solve the weighted and unweighted MAX-SAT

problems;
5. provide an open-source software package that is publicly available to the academic community;
6. implement the project in a platform-independent way, avoiding non-standard programming language

extensions.

Before discussing the design and features of UBCSAT in more detail, we briefly discuss two related
software projects: OpenSAT and COMET.

The OpenSAT project [1] (www.opensat.org) was developed as a Java-based open source project
for complete SAT solvers. A primary goal of OpenSAT was to make the advanced techniques and data
structures used by state-of-the-art complete SAT solvers openly available in order to accelerate the develop-
ment of new SAT solvers. Generally, the architecture and implementation of complete SAT solvers, which
are based on the David-Putnam-Loveland procedure, differs considerably from that of SLS-based SAT al-
gorithms, and traditionally there has been very little overlap between the algorithmic and implementation
details used in these two types of SAT solvers. Therefore, using OpenSAT as the basis for achieving the
previously stated goals, while probably not completely infeasible, appears to be problematic. In addition to
the difficulty of supporting the development and implementation of SLS algorithms in a straight-forward
way, the current lack of support for MAX-SAT solvers, and the fact that OpenSAT currently does not pro-
vide dedicated support for the advanced empirical analysis of SAT algorithms, it is somewhat questionable
whether its Java-based implementation makes it possible to achieve performance that is competitive with the
native reference implementations of high-performance SLS algorithms such as WalkSAT [13] or SAPS [9].

COMET [17] is an object-oriented language that supports a constraint-based architecture for local
search. The COMET language is very sophisticated and can model SLS algorithms for solving advanced
constraint satisfaction problems, but it neither offers explicit support for SAT/MAX-SAT nor does it provide
tools for advanced empirical evaluation. While in principle, both of these issues could be addressed by real-
ising the respective functionality within COMET, implementing UBCSAT in COMET seemed to pose the
risk that in order to take full advantage of UBCSAT, users would have to understand both the idiosyncrasies



of COMET in as well as the architecture and interface of UBCSAT; we believe that as a consequence,
UBCSAT would have been less accessible to its main target group, namely researchers interested in SAT
and MAX-SAT. While there is evidence that COMET algorithm implementations are quite efficient, we do
not have any perspective as to how these would compare with the native reference implementations of the
state-of-the-art SLS algorithms covered by UBCSAT.

To achieve our goals of a platform-independent and highly efficient implementation, UBCSAT has been
developed in strict ANSI C and tested on the most popular operating systems (Linux, WindowsXP, SunOS).
In order to provide a state-of-the-art and platform-independent source of pseudo-random numbers, we have
incorporated the “Mersenne Twister” pseudo-random number generator [10]. UBCSAT is publicly available
for academic (non-commercial) use without restriction to encourage free and open use throughout the SAT
research community1.

For the remainder of this paper, we will describe the UBCSAT project in greater depth. In Section 2
we give an overview of the UBCSAT architecture and illustrate the fundamental concept of triggered pro-
cedures, which lies at the core of UBCSAT’s efficient yet highly flexible design and implementation. In
Section 3, we outline the current collection of SLS algorithms for SAT that are currently implemented
within UBCSAT and compare their performance against that of the respective native reference implementa-
tions. In Section 4 we demonstrate how new algorithms are implemented within UBCSAT. In Section 5 we
discuss the importance of empirical analysis in SLS research, and how UBCSAT can help facilitate empiri-
cal analysis. In Section 6, we describe how UBCSAT supports SLS algorithms for weighted and unweighted
MAX-SAT. Finally, in Section 7 we summarise the key features and contributions of the UBCSAT project
and outline some directions for future work.

2 The UBCSAT Architecture

One of the challenges of developing the UBCSAT project was to build a flexible, feature-rich environment
without compromising algorithmic efficiency. To achieve our goals, UBCSAT has been designed according
to what we have named a triggered procedure architecture. The main ideas underlying this architecture are
closely related to certain concepts from object- and event-oriented programming. The UBCSAT software is
structured around a set of event points that occur throughout the execution of a SLS algorithm for SAT, and
a set of triggers, each of which associates a software procedure with an event point. For each event point: , a list of procedures is maintained that are executed whenever event point : is reached; this list is called
the trigger list of : , and its elements are called the triggered procedures of : . Initially, all trigger lists are
empty; when a trigger is activated, its associated procedure is added to the trigger list of the corresponding
event point.

In addition to its associated procedure, event point, and activation status, a trigger ; can have depen-
dency list of other triggers that are automatically activated when ; is activated. In UBCSAT, this is used, for
example, to ensure that when using certain variable selection heuristics that rely on proper updating of spe-
cial data structures after each flip, the triggers for the procedures that perform these updates are activated.
Similarly, a trigger ; can have a list of other triggers that are deactivated whenever ; is activated, which
allows overriding default routines and generally helps to avoid conflicts between incompatible routines. Fi-
nally, triggers can include precedence information that can be used to help properly sequence the execution
of procedures with active triggers at the same event point in cases where the correct order of execution
matters.

There is also a special type of trigger called a container trigger, which has no associated procedure, but
instead a list of secondary triggers that are activated whenever the container trigger is activated. Container
triggers are used as convenient shortcuts for activating groups of triggers that are used simultaneously.

UBCSAT has over one hundred triggers, most of which have associated procedures that fall into one
of the following four categories: heuristic selection (e.g., of variables), data structure maintenance, report
and statistic data collection, and file I/O. Triggers are activated based on the SLS algorithm to be run, the
reports/statistics requested, and other system command line parameters. In the UBCSAT implementation,
the trigger lists are simply arrays of function pointers, so when each event point is reached it is very efficient
to call its triggered procedures.

1 The UBCSAT source code and x86 executables for Windows and Linux are available for download at
http://www.satlib.org/ubcsat. Throughout this paper we have endeavoured to keep our descriptions and
examples consistent with the UBCSAT software package version 1.0, but as development on UBCSAT continues, it
may deviate from these descriptions in some respects.



procedure UBCSAT���+� <=01>@?	AB�DC %	� � ;E ������� E ������&F�+�#����� � � ;C	 +� � 45�'�#�GC$� H / ��� � !5& % ��� H�HI����� � � ;C	 +� � 45�'�#� * ��0 / �+� % ��� H�HI����� � � ;J * <D� E � /  ���6�<D����� � E / ��� E ������&F�+�#����� � ;J * <D� E � /  ���6�<D����� ��* ���56������������#���� �� � ;J * <D� E � /  ���6�<D����� � AB�����'�#�+KL�'�#� � ;J * <D� E � /  ���6�<D����� � AB�����'�#���M�#�'�#������N /'� ;J * <D� E � /  ���6�<D����� � E �����M�#���+� � ;�M�#���+��AB� /  �O � � ;
while P QSRMTVUWP XFRMYFQSRMT[Z doJ * <D� E � /  ���6�<D����� � E ��� * <D� � ;

while (( P�\[]_^_`aUbP c)R�]_d'eMe ) and (not f�\gd�h R�]�P�d�T��)d�RMT[i=� ) and (not fGj$^+k'YFP T 
 ]_^+QSRMT )) doJ * <D� E � /  ���6�<D����� � E �����M�#��0 � ;J * <D� E � /  ���6�<D����� � AB!��� �O * �G���#���+� � ;
if fGQ	^�Z�] 
 k�] or � P�\[]_^_` �l � thenJ * <D� E � /  ���6�<D����� � ����� � KL�'�#� � ;J * <D� E � /  ���6�<D����� � ����� � �M�#�'�#������N /'� ;
elseJ * <D� E � /  ���6�<D����� � AB! /�/ ���'Am����6���65�'�#� � ;J * <D� E � /  ���6�<D����� � E ��� " � � 0 � ;J * <D� E � /  ���6�<D����� �#" � � 0[Am����6���65�'�#� � ;J * <D� E � /  ���6�<D����� � E / ��� " � � 0 � ;
endJ * <D� E � /  ���6�<D����� � E / ��� �M�#��0 � ;J * <D� E � /  ���6�<D����� � AB!��� �O % ����&n� ���'�#� � ;

endJ * <D� E � /  ���6�<D����� � E / ��� * <D� � ;
endo ��6IAB� /  �O � � ;J * <D� E � /  ���6�<D����� �#" � ����� � ;

end UBCSAT

Fig. 2. High-level pseudo-code of UBCSAT; event points are indicated by asterisks.

Figure 2 shows a high-level pseudo-code representation of UBCSAT and indicates many of its most
important event points. The following example further illustrates the use of event points and the concept of
triggered procedures.

Let us consider WalkSAT/TABU, a well-known high-performance SLS algorithm for SAT that is based
on the WalkSAT architecture [12]. As in most WalkSAT-based algorithms, WalkSAT/TABU starts each
search step by uniformly selecting a clause from the set of currently unsatisfied clauses. Each variable in
the clause is assigned a score, corresponding to the change in the number of unsatisfied clauses that would
occur if that variable were flipped. The variable with the best score that is not tabu is selected as the flip
variable (breaking ties randomly). A variable is tabu if it has been flipped within the last TabuTenure search
steps, where TabuTenure is a parameter of the WalkSAT/TABU algorithm. If all of the variables in the
selected clause are tabu, then no flip occurs at that step.

In UBCSAT, the main heuristic procedure for WalkSAT/TABU is PickWalksatTabu(), and a trigger of
the same name exists which maps the procedure to the ChooseCandidate event point. Most algorithms in
UBCSAT also activate the DefaultProcedures trigger, a container trigger that includes triggers for handling
common tasks, such as keeping track of the current truth assignment, and reading the formula into memory.
Efficient implementations of WalkSAT-based algorithms require a list of the currently unsatisfied clauses,
which is maintained by a set of procedures whose triggers are all included in the FalseClauseList container
trigger.

Different from, say, WalkSAT/SKC, WalkSAT/TABU needs to know when each variable has been
flipped last, in order to determine its tabu status. This requires a simple data structure (an array of values)
that is maintained using three triggered procedures: CreateVarLastChange() allocates the memory required
for the data structure, InitVarLastChange() initialises it at the beginning of each run and after restarts, and
UpdateVarLastChange() updates it after each flip. Each of these procedures has a trigger that associates it
with the event points CreateStateInfo, InitStateInfo, and PostFlip, respectively. For convenience, these three
triggers are grouped into a container trigger named VarLastChange. When the PickWalksatTabu trigger is
registered in UBCSAT, it lists VarLastChange in its dependency list, so when the Walksat/TABU algorithm
is selected, the PickWalksatTabu trigger is activated, which will activate the VarLastChange trigger, and
hence the three previously described triggers. (See also Figure 3.)



p'q r s�t r u.r v s�w x t y#t s#t r z { v |#} ~

�S��� �����D��� ���I������ � �#� � � �

p�q r s�t r �=s�x � r p'x s�w�� r ��� � t } ~

�'� � � ���+� � ��� � ��� � ���� �_� �_� � �'�  �¡ � ¢ �_� � �

p'q r s#t r y_t s�t r z { v |

��� ¡ £�¤M� � £ � � � ¥���¦�� §�� � �'� � � ��¨_�#©#ª��

p'q r s�t r�«�s�q ��s#� t p�¬#s�{ _r } ~
u.r v s�w�x t z {�� t «_s q � } ~z { � t u.s�t s
z { � t u.r v s�w#x t y#t s�t r z { v |#} ~ z {#� t �=s�x � r p'x s�w�� r ��� � t } ~z {�� t y_t s�t r z { v | z {#� t «_s#q ��s#� t p'¬�s { _r } ~
® � ¯ °�±�s�x ° � s�t ²_s�³�w_} ~p'¬�|�|#� r p's�{#´�� ´#s�t r
u�r v s�w#x t �=x � µ�} ~�=x � µ+p's�{#´�� ´#s�t r

¶ µ+´#s�t r �=s�x � r p�x s�w�� r �+� � t } ~ ¶ µ�´�s�t r�«_s q ��s#� t p'¬�s { _r } ~® |�� t �'x � µ

·�¸#� ¹�º+»+¼ � ¹_º � �'� � � � � � � ½M»�� ¼�¾ � ½_¿G� � �

Fig. 3. The WalkSAT/TABU algorithm triggers, and the triggered procedures that appear in the event point trigger lists.
The dashed arrows illustrate how the VarLastChange procedures were added to the trigger lists by the activation of
the PickWalksatTabu trigger. Note that some procedures and event points are not listed, including a few additional
procedures triggered by DefaultProcedures.

The primary advantage of the triggered procedure architecture is that of the many procedures that are
needed to realise the many SLS algorithms and report formats supported by UBCSAT, only those required
in any given run are activated and used, while the remaining, inactive or non-triggered procedures do not
affect UBCSAT’s performance. A secondary advantage is that different algorithms and reports can share
the same data structures and procedures, saving much programming effort. Potential drawbacks stem from
the implementation overhead of having to register all triggers, and from the fact that in this framework,
algorithms are typically split into many rather small procedures, which can lead to decreased performance
compared to more monolithic implementations. However, we have found that these disadvantages are far
outweighed by the advantages of UBCSAT’s triggered procedure architecture. In particular, as we will
demonstrate in the following section, the performance of UBCSAT is very competitive with native reference
implementations of the respective SAT algorithms.

3 A Collection of Efficient Algorithm Implementations

UBCSAT is not an SLS algorithm, but rather a collection of many different SLS algorithms. Compared to
the respective reference native implementations of these algorithms, by integrating them into the UBCSAT
framework several advantages can be realised: Generally, by using a single executable with a uniform in-
terface, working with different algorithms becomes easier and more convenient. From an implementation
point of view, different algorithms share common data structures and procedures, which reduces implemen-
tation effort and the likelihood of programming errors. And from an empirical algorithmics point of view,
comparing two algorithms is facilitated by the fact that UBCSAT allows fairer comparisons between algo-
rithms that share components, such as common operations, and use the same statistical calculations, input
and output formats.

The UBCSAT software package currently implements the following SLS algorithms for SAT:

– GSAT [14]
– GWSAT [13]
– GSAT/TABU [11]
– HSAT [3]
– HWSAT [4]
– WalkSAT/SKC [13]

– WalkSAT/TABU [12]
– Novelty and R-Novelty [12]
– Novelty À and R-Novelty À [6]
– Adaptive Novelty À [7]
– SAPS and RSAPS [9]
– SAPS/NR [16]

UBCSAT is designed to support weighted MAX-SAT versions (see also Section 6) as well as variants,
which may differ in their behaviour or implementation from the basic version of a given algorithm. Con-
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Fig. 4. Quantile-quantile plot of the run-time distributions for UBCSAT vs. GSAT v41 (left) and WalkSAT v43 (right)
based on ÁSÂ�Â�Â runs per algorithm (run-time is measured in search steps). For GWSAT (left) the instance is uf200-
easy and for WalkSAT/SKC (right) the instance is bw large.a.

sequently, each algorithm within UBCSAT is identified as a triple Ã “algorithm” ÄgÅIÆÈÇ�ÉGÊ1Ë1;�ÇMÌÍÄ “variant” Î ,
selectable on the command line as ubcsat -alg ÏgÐ#ÊBÑMÒMÉ�;�Ë1Ó [-w] [-v ÔgÏ@ÒMÉ+Ï@ÕS; ].

For each of the previously listed algorithms, we ensured that the UBCSAT implementation behaves
identically to the respective original reference implementation, taking into consideration the stochastic na-
ture of the algorithms. This is illustrated in Figure 4, in which run-time distributions for the UBCSAT
implementations of GWSAT and WalkSAT/SKC are compared with those for the original GSAT (version
41) and WalkSAT (version 43) implementations.

At the same time, the UBCSAT versions of all algorithms were optimised for efficiency, with the goal
of matching or exceeding the time performance of the respective reference implementations. For many
SLS algorithms the key to an efficient implementation lies in the way crucial data structures are organised
and incrementally maintained. For example, many algorithms (i.e. GSAT-based algorithms) assign a score
to each variable that is defined as the number of clauses made satisfiable minus the number of clauses
made unsatisfiable if that variable is flipped. Rather than recomputing all variable scores in each step, they
can be stored and incrementally updated, such that after each flip only the scores affected by that flip are
recalculated [8]. However, we have found that in some situations too much time can be spent by using
this scheme; in particular, using it in the implementation of WalkSAT algorithms actually decreases their
performance. To further complicate matters, the optimal incremental update strategy often depends on the
characteristics of the given problem instance.

In our UBCSAT implementation, we strove to use data structures and incremental updating schemes that
are efficient, yet reasonably straightforward to understand and implement. The UBCSAT architecture sup-
ports functionally identical algorithm variants that are implemented using different data structures and/or
incremental updating schemes in a straight-forward way, which makes it easy to implement new develop-
ments in this area (such as Fukunaga’s recent scheme [2]).

The performance of the UBCSAT implementations of all supported algorithms has been tested against
that of the respective reference implementations in order to ensure that the former are at least as efficient
(in terms of run-time) as the latter. More importantly, for GSAT- and WalkSAT-algorithms, the UBCSAT
implementations have been shown to be significantly faster (see Table 1 for representative results).

4 A Framework for Developing New Algorithms

As discussed in the previous section, the UBCSAT environment includes a wide variety of algorithms and
data structures. To facilitate the development and integration of new SLS algorithms, UBCSAT has been
designed in such a way that new algorithms can easily re-use the existing procedures and data structures
from other algorithms; the basis for this is provided by the triggered procedure architecture discussed in
Section 2.

To illustrate how new algorithms are added to UBCSAT, in Figure 5 we present the pseudo-code re-
quired to add a new WalkSAT/TABU algorithm variant to UBCSAT. We have named the new variant



Algorithm uuf100-01 uuf400-01 jnh202 rg-200-2000-4-11
UBCSAT Original s.f. UBCSAT Original s.f. UBCSAT Original s.f. UBCSAT Original s.f.

WalkSAT/SKC 97.7 144.7 1.48 98.5 150.3 1.53 134.0 217.2 1.62 142.1 310.7 2.19
Novelty 117.1 151.6 1.29 114.5 153.4 1.34 168.4 230.8 1.37 159.5 323.0 2.02
GSAT 106.7 305.0 2.86 114.1 316.5 2.77 202.3 1541.6 7.62 233.0 397.8 1.71
GWSAT 172.1 590.1 3.43 266.8 768.2 2.88 254.3 1894.7 7.45 541.5 1354.5 2.50

Table 1. Total run times (in seconds) on 1 GHz Linux machine for 100 000 000 search steps. The speedup factor
(s.f.) shows the software speedups of the UBCSAT implementation over the original implementations (GSAT v41 and
WalkSAT v43). Note by choosing unsatisfiable instances for this speed comparison, we ensured that in all cases exactly
the same number of search steps have been performed. The uuf-* instances are uniform random 3-SAT, the jnh
instance is random Ö -SAT, and the rg instance is a structured encoding of a graph colouring instance.

procedure AddWalksatTabuNoNull()AB�����'�#�GC$� H / ��� � !5& � “walksat-tabu” ( N+��� ��� ( “nonull” ( × algorithm, bWeighted, variant
“WalkSAT/TABU without null flips” ( × description
“McAllester, Selman, Kautz [AAAI 97] (modified)” ( × authors
“PickWalksatTabuNoNull” ( × heuristic trigger(s)Ø Ø Ø � ; × details omitted����!������ � KL�'�#� % ��� H�HI����� � “walksat-tabu” ( N+��� ��� ( “” � ;����!������ � E ������&F�+�#����� � “walksat-tabu” ( N+��� ��� ( “” � ;AB�����'�#� % ��� H�HI��� � “PickWalksatTabuNoNull” ( × trigger nameAB! /�/ ���'Am����6���65�'�#� ( × event pointE �� �O.ÙÚ��� O����'� % �5Û�<DÜ / ÜS<D� � ( × pointer to procedureØ Ø Ø � ;

end AddWalksatTabuNoNull

procedure PickWalksatTabuNoNull()E �� �O.ÙÚ��� O����'� % �5Û�< � � ;
if P �Sh P `Dc 
 T[i=P�i 
 ]_^  NULL thenP �Sh P `Dc 
 T[i=P�i 
 ]_^ �  E �� �O * ����6 / &V-.��� " � / &ÝAB� ��<D��� � ��ÙÚ��� O��DC % AB� ��<D��� � ;
end

end PickWalksatTabuNoNull

Fig. 5. Pseudo-code for adding a new WalkSAT/TABU algorithm variant to UBCSAT.

WalkSAT/TABU-NoNull, and it differs from the regular WalkSAT/TABU algorithm in only one detail:
if all of the variables in the selected clause are tabu, then a variable will be selected from the clause at
random and flipped. (This variant is interesting from a practical point of view, since WalkSAT/TABU is one
of the best-performing WalkSAT algorithms, but often suffers from search stagnation as a consequence of
null-flips.)

Within UBCSAT, the new algorithm will be identified as Ã “walksat-tabu” Ä=Þ$ÏgÐGß�Ç@Ä “nonull” Î ; it differs
from the already supported WalkSAT/TABU only in its variable selection procedure, whose trigger we
name PickWalksatTabuNoNull. An algorithm can explicitly specify the data structure procedures required,
or it can inherit them from another algorithm. In this case, we will simply inherit everything from regular
WalkSAT/TABU Ã “walksat-tabu” Ä=Þ$ÏgÐGß�Ç@Ä “” Î . When an algorithm requires algorithm-specific command-
line parameters (such as the tabuTenure parameter in WalkSAT/TABU) they must be defined or optionally
inherited from an existing algorithm. In addition to creating and registering the new trigger in the system,
its associated procedure, here also called PickWalksatTabuNoNull, has to be implemented, which in this
example simply calls the regular WalkSAT/TABU variable selection procedure and then handles the special
case when a null-flip occurs. While this example illustrates a particularly straight-forward variant of an
existing algorithm, the process of adding implementations of new SLS algorithms to UBCSAT is typically
similarly straightforward.

5 An Empirical Analysis Tool

Empirical analysis plays an important role in the development and successful application of SAT algorithms.
To characterise or measure the behaviour of an SLS algorithm, typically data needs to be collected from
multiple independent runs of the algorithm. Each run corresponds to a complete execution of the algorithm
outline in Figure 1; note that the pseudo-code of Figure 2 contains code to perform multiple runs. (Note
that when restart mechanisms are used, a single run can be punctuated by one or more restarts, but this does
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Fig. 6. Pseudo-code for adding a new statistic that measures the mean age of variables when flipped.

not partition it into multiple runs.) As an example, consider the run-time data shown in Figure 4, which
is based on ínî[î[î independent runs of each algorithm involved in the respective experiment. To facilitate
the advanced empirical analysis of the SLS algorithms it implements, UBCSAT not only provides support
for measuring and reporting basic descriptive statistics over multiple runs, but also strongly supports the
analysis of run-time distributions (RTDs) [8]. In particular, UBCSAT can measure and report RTDs in a
format that can be easily plotted (see left side of Figure 7) or further analysed with specialised statistical
software.

Additional reports and statistics can be added to UBCSAT in a manner that is as straightforward as, and
conceptually closely related to the way in which new algorithms are added. Reports can be in any format,
and are implemented based on a list of triggered procedures that collect and print the required information.
Reports currently implemented in UBCSAT include the satisfying assignments found in each run, detailed
information about the search state at each search step, flip statistics for individual variables, and many
others. In UBCSAT, statistics are special objects that are used to collect and summarise data for the default
reports. Statistics can be shown for each individual run (column objects), or be summarised over all runs
(stat objects).

In Figure 6, we show the creation of a column object that will calculate the average age of variables
flipped during a run. The age of a flipped variable is calculated as the number of steps that have occurred
since the last time the variable was flipped (the calculation is shown in UpdateCurVarAge(). For this statistic,
the trigger UpdateCurVarAge is required to ensure that the correct age value is calculated at the event point
PreFlip. The trigger UpdateCurVarAge depends on the trigger VarLastChange (see Figure 3), so if the
algorithm already collects this data (e.g., WalkSAT/TABU) then the statistic will simply share the same
data structure, but if the algorithm does not normally require this data, then the trigger will ensure that it is
collected. Because this column statistic has been identified as a TypeMean (average over all search steps of
a run), an additional trigger will be automatically activated to collect the data at the end of each search step.
Like many statistics added to UBCSAT, this age statistic is now available to all algorithms (that use a single-
flip strategy); comparisons between algorithms on statistics such as these help further our understanding of
how SLS algorithms behave.

6 Support for MAX-SAT

One area where SLS algorithms have been very successful, and have defined the state-of-the-art for more
than a decade, is in solving the MAX-SAT problem, and in particular, the weighted MAX-SAT problem,
which is why supporting MAX-SAT was one of our primary goals. Although there are interesting differ-
ences between the state-of-the-art SLS algorithms for SAT and MAX-SAT, at the conceptual and implemen-
tation level, there are many similarities. Unweighted MAX-SAT can be seen as a special case of weighted
MAX-SAT where all clauses have weight one; therefore, in the following, we will mostly focus on the
weighted MAX-SAT problem. It should be noted, however, that in terms of implementation, SLS algo-
rithms for unweighted MAX-SAT are much more closely related to SLS algorithms for SAT. In UBCSAT,
unweighted MAX-SAT algorithms are therefore typically equivalent to the corresponding SAT algorithm,
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Fig. 7. An example of a run-length distribution (RLD) (left), and a time-dependent solution quality statistics (SQT) plot
(right). The data underlying these curves can be easily generated by the UBCSAT software package and plotted using
gnuplot scripts which are available on the UBCSAT website.

while weighted MAX-SAT algorithms are implemented separately, which facilitates conceptually simpler
and highly efficient implementations for both cases.

The main differences between SAT and MAX-SAT is that the optimal solution quality (i.e., maximal
total weight) for a given problem instance is often unknown. Hence, the best assignment encountered during
the search, the so-called incumbent assignment, is memorised and returned at the end of the search. This
memorisation of the incumbent assignment is accomplished in UBCSAT via a report. Typically, SLS algo-
rithms for MAX-SAT are not guaranteed to find optimal solutions, i.e., maximal weight assignments, but
many state-of-the-art SLS algorithms for MAX-SAT have the property that if they search long enough, the
probability of finding an optimal solutions approaches one (the so-called PAC property, see also [6, 8]), and
in many practical cases assignments that are provably optimal or believed to be optimal can be found within
reasonable run-times. UBCSAT supports termination criteria that end a run whenever a user-specified so-
lution quality (for example, the known optimal solution quality for the given problem instance) is reached
or exceeded; alternatively, particularly when dealing with instances whose optimal solution quality is un-
known, UBCSAT can be configured with advanced criteria to determine when to terminate a run.

Currently, UBCSAT includes implementations of two dedicated algorithms for MAX-SAT, SAMD [5]
and IRoTS [15], as well as weighted MAX-SAT variants for many of the SLS algorithms listed in Sec-
tion 3. The mechanism for implementing new MAX-SAT algorithms within UBCSAT is exactly the same
as described for the case of SAT in Section 4. While for unweighted MAX-SAT instances, the same DI-
MACS CNF file format as for SAT is used, for weighted MAX-SAT instances, UBCSAT currently supports
a straight-forward extension of the this format known as the weighted CNF file format (.wcnf). To sup-
port the empirical analysis of the behaviour and performance of SLS algorithms for MAX-SAT, besides the
previously mentioned statistics and reports (see Section 5), UBCSAT supports advanced analysis methods
for stochastic optimisation algorithms. In particular, the following types of empirical performance charac-
teristics can be easily measured (see also [8]):

– qualified run-time distributions (QRTDs), i.e., empirical probability distributions of the run-time re-
quired for reaching or exceeding a specific target solution quality measured over multiple runs of the
algorithm;

– solution quality distributions (SQDs), i.e., empirical probability distributions of the best solution quality
reached within a given amount of run-time, measured in terms of search steps or CPU time over multiple
runs of the algorithm;

– time-dependent solution quality statistics (SQTs), i.e., the development of descriptive statistics (such as
quantiles) of the SQDs as run-time increases.

QRTDs, SQDs, and SQTs are determined from so-called solution quality traces, which contain information
on every point in time the incumbent solution was updated during a given run of the algorithm. The solution
quality traces are collected by UBSAT with minimal overhead during the run of any MAX-SAT algorithm.
Figure 7 (right) shows a sample SQT measured by UBCSAT.



7 Conclusions and Future Work

In this paper we have introduced UBCSAT, a new software environment that we created with the specific
goal of facilitating and supporting research on SLS algorithms for SAT and MAX-SAT. UBCSAT is built on
the basis of a novel triggered procedures architecture and includes highly efficient, conceptually simple, and
accurate implementations of a wide range of prominent SLS algorithms for SAT and MAX-SAT. UBCSAT
facilitates the development and integration of new algorithms (and algorithm variants). It provides support
for advanced empirical analysis of the performance and behaviour of SLS algorithms without compromising
implementation efficiency. UBCSAT has been implemented in a platform-independent way and is publicly
available to the academic community as an open-source software package.

While this paper has summarised the work on the UBCSAT project to date, UBCSAT is an ongoing
effort, and we are very enthusiastic about expanding and building upon the project in the future. We plan to
expand UBCSAT by including existing and new SLS algorithms for SAT and MAX-SAT. While we have
so far focussed on an ANSI C compliant implementation, there is some interest in adding C++ interfaces,
as well as extending our implementation beyond the 32-bit boundary for counters. We will continue to add
more sophisticated reports and empirical analysis tools, and we are also interested in providing more exter-
nal support features, such as gnuplot scripts and better integration with the R statistical software package.
We are very interested in adding features that will make the software more accessible and useful to the
research community, and welcome feedback and suggestions for further improvements.

But above all else, we hope that our UBCSAT framework will help advance state-of-the-art research in
SLS algorithms, to help better understand how and why SLS algorithms behave the way they do, and to
unlock some of the unexplored potential of SLS algorithms for SAT and MAX-SAT.
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