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On the Influence of Gravitation on the Propagation of Light

By A. Einstein.

In a contribution published four years ago* I tried to answer the question whether
the propagation of light is influenced by gravitation. I return to this theme because
my previous presentation of the subject does not satisfy me, but even more because
I now see that one of the most important consequences of my former treatment is
capable of being tested experimentally. For it follows from the theory to be presented
here, that light-rays passing close to the sun are deflected by its gravitational field so
that the apparent angular distance between the sun and a visible fixed star near to
it is increased by nearly a second of arc.

In the course of these investigations further results which relate to gravitation
are shown. But, as the exposition of the entire group of considerations would be
rather difficult to follow, only a few quite elementary investigations will be given in
the following pages, from which the reader will readily be able to orient himself as
to the direction and train of thought of the theory. The relations here deduced, even
though the theoretical foundation is sound, are valid only to a first approximation.

§ 1. A Hypothesis as to the Physical Nature of the Gravitational Field

In a homogeneous gravitational field (acceleration of gravity γ) let there be a station-
ary system of co-ordinates K, orientated so that the lines of force of the gravitational
field run in the negative direction of the z-axis. In a space free of gravitational fields
let there be a second system of co-ordinates K ′, moving with uniform acceleration
(γ) in the positive direction of its z-axis. To avoid unnecessary complications, let us
for the present disregard the theory of relativity, and regard both systems from the
customary point of view of kinematics, and the movements occurring in them from
that of ordinary mechanics.

Relative to K, as well as relative to K ′, material points which are not subjected
to the action of other material points, move according to the equations:

d2xν
dt2

= 0,
d2yν
dt2

= 0,
d2zν
dt2

= −γ .

For the accelerated system K ′ this follows directly from Galileo’s principle, but for the
system K, at rest in a homogeneous gravitational field, it follows from the experience
that all bodies in such a field are equally and uniformly accelerated. This experience,
of the equal falling of all bodies in the gravitational field, is one of the most universal
which the observation of nature has yielded to us; but in spite of this, this law has
found no place in the foundations of our world view (Weltbildes) of the physical
universe.

But we arrive at a very satisfactory interpretation of this empirical law, if we
assume that the systems K and K ′ are physically exactly equivalent, that is, if we

* A. Einstein, Jahrbuch für Radioact, und Electronik, 4, 1907.
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assume that we may just as well regard the system K ′ as being in a space free
from gravitational fields; then we must regard K as uniformly accelerated. This
assumption of exact physical equivalence makes it impossible for us to speak of the
absolute acceleration of the system of reference, just as the usual theory of relativity
forbids us to talk of the absolute velocity of a system;1 This assumption also makes
the equal falling of all bodies in a gravitational field seem obvious.

As long as we restrict ourselves to purely mechanical processes in the realm where
Newton’s mechanics is valid, we are certain of the equivalence of the systems K and
K ′. But our view of this will not have any deeper significance unless the systems K
and K ′ are equivalent with respect to all physical processes, that is, unless the laws
of nature with respect to K are in entire agreement with those with respect to K ′.
By assuming this to be so, we arrive at a principle which, if it is really true, has great
heuristic importance. For by theoretical consideration of processes which take place
relative to a system of reference with uniform acceleration, we obtain information
as to the behavior of processes in a homogeneous gravitational field.2 We shall now
show, first of all from the standpoint of the ordinary theory of relativity, that our
hypothesis has considerable probability.

§ 2. On the Gravitation of Energy

The theory of relativity shows that the inertial mass of a body increases with the
energy it contains; if the increase of energy amounts to E, the increase in inertial
mass is equal to E/c2, where c denotes the velocity of light. Now, is there an increase
of gravitational mass corresponding to this increase of inertial mass? If not, then a
body would fall in the same gravitational field with varying acceleration according
to the energy it contained. And then the highly satisfactory result of the theory of
relativity, by which the law of the conservation of mass leads to the law of conservation
of energy, could not be maintained, because it would compel us to abandon the law
of the conservation of mass in its old form for inertial mass, but maintain it for
gravitational mass.

This must be regarded as very improbable. On the other hand, the usual theory
of relativity does not provide us with any argument from which to infer that the
weight of a body depends on the energy contained in it. But we shall show that our
hypothesis of the equivalence of the systems K and K ′ gives us gravitation of energy
as a necessary consequence.

Let two material systems S1 and S2 (Fig. 1), each provided with measuring instru-
ments, be situated on the z-axis of K at the distance h from each other,3 so that the
gravitational potential at S2 is greater than that at S1 by γh. Let a definite quantity of

1 Of course, we cannot replace an arbitrary gravitational field by a state of motion
of a system without a gravitational field, just as we cannot transform to rest all the
points of an arbitrarily moving medium by means of a relativistic transformation.

2 It will be shown in a subsequent paper that the gravitational field considered here
is homogeneous only to a first approximation.

3 S1 and S2 are regarded as infinitely small in comparison with h.
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energy E be emitted from S2 towards S1. Let the quantities of
energy in S1 and S2 be measured by devices which – brought
to one location in the system z and there compared – are
perfectly alike. As to the process of this energy transmission
by radiation we can make no a priori assertion because we
do not know the influence of the gravitational field on the
radiation and the measuring instruments at S1 and S2.

But by our postulate of the equivalence of K and K ′ we
are able, in place of the system K in a homogeneous grav-
itational field, to set the gravitation-free system K ′, which
moves with uniform acceleration in the direction of positive
z, and by the z-axis of which the material systems S1 and S2
are rigidly connected.

γ

z

x

y
h

S2

S1

Fig. 1.

We consider the process of transmission of energy by radiation from S2 to S1 from
a system K0, which is free of acceleration. At the moment when the radiation energy
E2 is emitted from S2 toward S1, let the velocity of K ′ relative to K0 be zero. The
radiation will arrive at S1 when the time h/c has elapsed (to a first approximation).
But at this moment the velocity of S1 relative to K0 is γh/c = v. Therefore by the
ordinary theory of relativity the radiation arriving at S1 does not possess the energy
E2, but a greater energy E1, which is related to E2, to a first approximation, by the
equation1:

(1) E1 = E2

(
1 +

v

c

)
= E2

(
1 +

γh

c2

)
.

By our assumption exactly the same relation holds if the same process takes place
in the system K, which is not accelerated, but is provided with a gravitational field.
In this case we may replace γh by the potential Φ of the gravitation vector in S2, if
the arbitrary constant of Φ in S1 is set to zero. We then have the equation:

(1a) E1 = E2 +
E2

c2
Φ.

This equation expresses the energy law for the process under observation. The energy
E1 arriving at S1 is greater than the energy E2, measured by the same means, which
was emitted from S2, the excess being the potential energy of the mass E2/c

2 in the
gravitational field. This shows that in order to satisfy the energy principle we have
to ascribe to the energy E, before its emission from S2, a potential energy, due to
gravity, which corresponds to the (gravitational) mass E/c2. Our assumption of the
equivalence of K and K ′ thus removes the difficulty mentioned at the beginning of
this Section, which is left unsolved by the ordinary theory of relativity.

The meaning of this result is shown particularly clearly if we consider the following
cycle of operations: –

1 A. Einstein, Ann. d. Phys. 17, p. 913 – 914. 1905.
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1. The energy E, as measured in S2, is emitted in the form of radiation from S2
towards S1, where, by the result just obtained, the energy E(1 + γh/c2) (as
measured in S1) is absorbed.

2. A body W of mass M is lowered from S2 to S1, work Mγh thereby being done.

3. The energy E is transmitted from S1 to the body W while W is in S1. The
gravitational mass M is thereby changed so that it acquires the value M ′.

4. Let W be again raised to S2, work M ′γh being done as a result.

5. Let E be transmitted from W back to S2.

The effect of this cycle is simply that S1 has undergone an energy increase of
E(γh/c2), and that the quantity of energy

M ′γh−Mγh

has been supplied to the system in the form of mechanical work. By the energy
principle, we must therefore have

E
γh

c2
= M ′γh−Mγh

or

(1b) M ′ −M =
E

c2
.

The increase in gravitational mass is thus equal to E/c2, and therefore equal to the
increase in inertial mass as given by the theory of relativity.

This result emerges still more directly from the equivalence of the systems K and
K ′, according to which the gravitational mass of K is exactly equal to the inertial
mass of K ′; energy must therefore possess a gravitational mass which is equal to its
inertial mass. If a mass M0 be suspended on a spring balance in the system K ′ the
balance will indicate the apparent weight M0γ on account of the inertia of M0. If
the quantity of energy E be transmitted to M0, the spring balance, by the law of the

inertia of energy, will indicate
(
M0+ E

c2

)
γ. By reason of our fundamental assumption

exactly the same thing must occur when the experiment is repeated in the system K,
that is, in the gravitational field.

§ 3. Time and the Velocity of Light in the Gravitational Field

If the radiation emitted in the uniformly accelerated system K ′ in S2 toward S1 had
the frequency ν2 relative to the clock at S2, then, relative to S1, at its arrival at S1
it no longer has the frequency ν2 relative to an identical clock at S1, but a greater
frequency ν1, such that, to a first approximation

(2) ν1 = ν2

(
1 + γ

h

c2

)
.

If we again introduce the unaccelerated reference system K0, relative to which at the
time of the emission of light, K ′ has no velocity, then S1, at the time of arrival of
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the radiation at S1 has, relative to K0, the velocity γ(h/c) from which, by Doppler’s
principle, the relation as given results immediately.

In agreement with our assumption of the equivalence of the systems K ′ and K,
this equation also holds for a stationary system of co-ordinates K0 in a uniform
gravitational field, if in it the transmission by radiation takes place as described. It
follows, then, that a light-ray emitted from S2 with a definite gravitational potential,
and possessing at its emission the frequency ν2 – compared with a clock at S2 – will,
at its arrival at S1, possess a different frequency ν1 measured by an identical clock at
S1. For γh we substitute the gravitational potential Φ of S2 – that of S1 being taken
as zero – and assume that the relation which we have deduced for the homogeneous
gravitational field also holds for other forms of field. Then

(2a) ν1 = ν2

(
1 +

Φ

c2

)
This result (which by our derivation is valid to a first approximation) permits, first,
the following application. Let ν0 be the oscillation-number of an elementary light-
generator, measured by a clock U at the same location. This oscillation-number is
then independent of the locations of the light-generator and the clock. Let us imagine
them both at a position on the surface of the Sun (where our S2 is located). Of the
light emitted from there a portion reaches the Earth (S1), where we measure the
frequency ν of the arriving light with a clock U of exactly the same properties as the
one just mentioned. Then by (2a),

ν = ν0

(
1 +

Φ

c2

)
where Φ is the (negative) difference of gravitational potential between the surface of
the Sun and the Earth. Thus according to our view the spectral lines of sunlight, as
compared with the corresponding spectral lines of terrestrial light sources, must be
somewhat displaced toward the red, in fact by the relative amount

ν0 − ν
ν0

=
−Φ

c2
= 2× 10− 6 .

If the conditions under which the solar lines arise were exactly known, this shifting
would be susceptible of measurement. But as other influences (pressure, temperature)
affect the position of the centers of the spectral lines, it is difficult to discover whether
the inferred influence of the gravitational potential really exists.1

On superficial consideration equation (2) or (2a), respectively, seems to assert an
absurdity. If there is constant transmission of light from S2 to S1, how can any other
number of periods per second arrive at S1 than is emitted from S2? But the answer is

1 L. F. Jewell (Journ. de Phys., 6, p. 84, 1897) and particularly Ch. Fabry and H.
Boisson (Compt. rend. 148. p. 688-690, 1909) have actually found such displacements
of fine spectral lines toward the red end of the spectrum, of the order of magnitude
here calculated, but have ascribed them to an effect of pressure in the absorbing layer.
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simple. We cannot regard ν2 or respectively ν1 simply as frequencies (as the number
of periods per second) since we have not yet determined a time in system K. What
ν2 denotes is the number of periods per second with reference to the time-unit of the
clock U at S2, while ν1 denotes the number of periods per second with reference to
the identical clock at S1. Nothing compels us to assume that the clocks U in different
gravitation potentials must be regarded as going at the same rate. On the contrary,
we must certainly define the time in K in such a way that the number of wave crests
and troughs between S2 and S1 is independent of the absolute value of time: for the
process under observation is by nature a stationary one. If we did not satisfy this
condition, we should arrive at a definition of time such that by its application time
would enter explicitly into the laws of nature, and this would certainly be unnatural
and inappropriate. Therefore the two clocks at S1 and S2 do not both give the “time”
correctly. If we measure time at S1 with the clock U, then we must measure time
at S2 with a clock which goes 1 + Φ/c2 times more slowly than the clock U when
compared with U at one at the same location. For when measured by such a clock,
the frequency of the light-ray which is considered above is at its emission from S2

ν2

(
1 +

Φ

c2

)
,

and is therefore, by (2a), equal to the frequency ν1 of the same light-ray on its arrival
at S1.

This has a consequence which is of fundamental importance for our theory. For if
we measure the velocity of light at different locations in the accelerated, gravitation-
free system K ′, employing clocks U of identical properties we obtain the same mag-
nitude at all these locations. The same holds good, by our fundamental assumption,
for the system K as well. But from what has just been said we must use clocks of
unlike properties for measuring time at locations with differing gravitation potential.
For measuring time at a location which, relative to the origin of the co-ordinates,
has the gravitation potential Φ, we must employ a clock which – when transferred to
the co-ordinate origin – goes (1 + Φ/c2) times more slowly than the clock used for
measuring time at the origin of co-ordinates. If we call the velocity of light at the
origin of co-ordinates c0, then the velocity of light c at a location with the gravitation
potential Φ will be given by the relation

(3) c = c0

(
1 +

Φ

c2

)
.

The principle of the constancy of the velocity of light holds good according to this
theory in a different form from that which usually underlies the ordinary theory of
relativity.

§ 4. Bending of Light-Rays in the Gravitational Field

From the proposition which has just been proved, that the velocity of light in the
gravitational field is a function of the location, we may easily infer, by means of
Huygens’s principle, that light-rays propagated across a gravitational field undergo
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deflection. For let ε be a wave front of a plane light-wave at the time t, and let P1

and P2 be two points in that plane at unit distance from each other. P1 and P2 lie in
the plane of the paper, which is chosen so that the differential coefficient of Φ, taken
in the direction of the normal to the plane, and therefore also that of c, vanishes. We
obtain the corresponding wave front at time t+dt, or, rather, its intersection with the
plane of the paper, by describing circles round the points P1 and P2 with radii c1dt
and c2dt respectively, where c1 and c2 denote the velocity of light at the points P1

and P2 respectively, and by drawing the tangent to these circles. The angle through
which the light-ray is deflected on the path cdt is therefore

(c1 − c2)dt
1

= − ∂c

∂n′
dt,

if we calculate the angle positively when the ray is bent toward the side of increasing
n′.

n′
c1dt

c2dt

ε
P1

P2

Fig. 2.

The angle of deflection per unit of path of the light-ray is thus

−1

c

∂c

∂n′

or by (3) it is

− 1

c2
∂Φ

∂n′
.

Finally, we obtain for the deflection α, which a light-ray experiences toward the side
n′ on any path (s) the expression

(4) α = − 1

c2

∫
∂Φ

∂n′
ds.

We might have obtained the same result by directly considering the propagation of
a light-ray in the uniformly accelerated system K ′, and transferring the result to the
system K, and thence to the case of a gravitational field of any form.

By equation (4) a light-ray passing by a heavenly body suffers a deflection to the
side of the diminishing gravitational potential, that is, to the side directed toward the
heavenly body, of the magnitude

α =
1

c2

∫ ϑ=+π
2

ϑ=−π
2

kM

r2
cos(ϑ)ds =

2kM

c2∆
,

where k denotes the constant of gravitation, M the mass of the heavenly body, ∆ the
distance of the ray from the center of the body (and r and ϑ are as shown in Fig. 3).
A light-ray going past the Sun would accordingly undergo deflection by the amount of
4× 106 = 0.83 seconds of arc. The angular distance of the star from the center of the
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r

ϑ ∆

S

M

Fig. 3.

Sun appears to be increased by this amount. As the fixed
stars in the parts of the sky near the Sun are visible during
total eclipses of the Sun, this consequence of the theory may
be compared with experimental evidence. With the planet
Jupiter the displacement to be expected reaches to about
1/100 of the amount given. It would be urgently wished that
astronomers take up the question here raised, even though the
considerations presented above may seem insufficiently estab-
lished or even bizarre. For, apart from any theory, there is the
question whether it is possible with the equipment at present
available to detect an influence of gravitational fields on the
propagation of light.

Prague, June 1911.
(Submitted 21 June 1911.)


