
UberFlowUberFlow
--

A GPU-based Particle EngineA GPU-based Particle Engine

Peter Kipfer
Technische Universität

München

Mark Segal
ATI Research

Rüdiger Westermann
Technische Universität

München

MotivationMotivation

Want to create, modify and render large
geometric models
• Subdivision

surfaces

• Gridless
simulation
techniques

• Particle
systems

MotivationMotivation

Major bottleneck
• Transfer of geometry to graphics card

Process on GPU if transfer is to be avoided

• Need to avoid intermediate read-back also

Requires dedicated GPU implementations

Perform geometry handling for rendering on GPU

Bus transferBus transfer

• Send geometry for every frame

– because simulation or visualization is time-dependent

– the user changed some parameter

• Render performance: 12.6 mega points/sec

• Make the geometry reside on the GPU

– need to create/manipulate/remove vertices without read-back

• Render performance: 114.5 mega points/sec

ATI Radeon 9800Pro, AGP 8x, GL_POINTS with individual color

MotivationMotivation

Previous work
• GPU used for large variety of applications

– local / global illumination [Purcell2003]

– volume rendering [Kniss2002]

– image-based rendering [Li2003]

– numerical simulation [Krüger2003]

• GPU can outperform CPU for both compute-bound
and memory-bound applications

Geometry handling on GPU potentially faster

GPU Geometry ProcessingGPU Geometry Processing

Need to re-invent algorithms, because
• different processing model (stream)

• different key features (memory bandwidth)

• different instruction set (no binary ops)

Simple copy-existing-code-to-shader
solutions will not be efficient

GPU Geometry ProcessingGPU Geometry Processing

Need shader access to vertex data
• OpenGL SuperBuffer

– Memory access in fragment shader

– Directly attach to compliant OpenGL object

• VertexShader 3.0

– Memory access in vertex shader

– Use as displacement map

• Both offer similar functionality

OpenGL SuperBufferOpenGL SuperBuffer

Separate semantic of data from it's storage
• Allocate buffer with a specified size and data layout

• Create OpenGL objects

– Colors: texture, color array, render target

– Vectors: vertex array, texcoord array

• If data layout is compatible with semantic, the buffer
can be attached to / detached from the object

– Zero-copy operation in GPU memory

– Render-to-vertex-array possible by using floating-point
textures and render targets

OpenGL SuperBufferOpenGL SuperBuffer

• Example: floating point array that can be read and
written (not at the same time)

OpenGL
memory object

OpenGL
texture object

OpenGL
render target
(offscreen)

change of attachment
possible outside
rendering activity

RGBA_FLOAT32_ATI

glGenTextures() glDrawBuffer()

GPU Particle EngineGPU Particle Engine

Demo

OverviewOverview

GPU particle engine features
• Particle advection

– Motion according to external forces and 3D force field

• Sorting

– Depth-test and transparent rendering

– Spatial relations for collision detection

• Rendering

– Individually colored points

– Point sprites

Particle AdvectionParticle Advection

Simple two-pass method using two vertex
arrays in double-buffer mode
• Render quad covering entire buffer

• Apply forces in fragment shader

buffer 0

buffer 1

pass 1: integrate pass 2: render

bind to
texture

bind to
render target

bind to
vertex array

screen
render
target

SortingSorting

Required for correct transparency and
collision detection
• Bitonic merge sort (sorting network) [Batcher1968]

• Sorting n items needs (log n) stages

• Overall number of passes ½ (log² n + log n)

Sorting a 2D fieldSorting a 2D field

• Merge rows to get a completely sorted field

• Implement in fragment shader [Purcell2003]

– A lot of arithmetic necessary

– Binary operations not available in shader

Fast sortingFast sorting

Make use of all GPU resources
• Calculate constant and linear varying values in

vertex shader and let raster engine interpolate

• Render quad size according to compare distance

• Modify compare operation and distance by
multiplying with interpolated value

+1 -1

+1 -1

< ≥

+1 +1

-1 -1

<

≥
row sort column sort

Fast sortingFast sorting

• Perform mass operations (texture fetches) in
fragment shader

• t0 = fragment position

t1 = parameters from vertex shader (interpolated)

OP1 = TEX[t0]

sign = (t1.x < 0) ? -1 : 1

OP2 = TEX[t0.x + sign * dx,t0.y]

return (OP1 * t1.y < OP2 * t1.y) ? OP1 : OP2

Fast sortingFast sorting

• Final optimization: sort [index, key] pairs

– pack 2 pairs into one fragment

– lowest sorting pass runs internal in fragment shader

• Generate keys according to distance to viewer or
use cell identifier of space partitioning scheme

collapse into single pass collapse into single passinitial pass third pass

Fast sortingFast sorting

• Same approach for column sort, just rotate the
quads

• Benefits for full sort of n items

– 2*log(n) less passes (because of collapse and packing)

– n/2 fragments processed each pass (because of packing)

– workload balanced between vertex and fragment shaders
(because of rendering quads)

Speedup factor of 10 compared to previous solutions

Fast sortingFast sorting

• Performance: full sort
 n sorts/sec mega items/sec mega frag/sec

128² 175.0 2.8 130

256² 43.6 2.8 171

512² 9.3 2.4 186

1024² 1.94 2.0 193

128² 238.0 3.9 177

256² 109.0 7.1 429

512² 24.4 6.4 489

1024² 4.85 5.1 483

ATI Radeon 9800Pro

ATI Radeon X800 XT

Particle – Scene CollisionParticle – Scene Collision

Additional buffers for state-full particles
• Store velocity per particle (Euler integration)

• Keep last two positions (Verlet integration)

• Simple: Collision with height-field stored as 2D
texture

– RGB = [x,y,z] surface normal

– A = [w] height

– Compute reflection vector

– Force particle to field height

Particle – Particle CollisionParticle – Particle Collision

Essential for natural behavior
• Full search is O(n²), not practicable

• Approximate solution by considering only neighbors

• Sort particles into spatial structure

– Staggered grid misses
only few combinations

Particle – Particle CollisionParticle – Particle Collision

• Check m neighbors to the left/right

• Collision resolution with first collider (time sequential)

• Only if velocity is not excessively larger than
integration step size

solve quadratic equation on GPU

GPU Particle EngineGPU Particle Engine

Demo

GPU Particle EngineGPU Particle Engine

• Acknowledgements

ATI Research for providing hardware

Jens Krüger for his help on shader programming

http://wwwcg.in.tum.de/GPU

