
Open Research Online
The Open University’s repository of research publications
and other research outputs

UbiqLog: a generic mobile phone based life-log
framework

Journal Item

How to cite:

Rawassizadeh, Reza; Tomitsch, Martin; Wac, Katarzyna and Tjoa, A Min (2013). UbiqLog: a generic mobile
phone based life-log framework. Personal and Ubiquitous Computing, 17(4) pp. 621–637.

For guidance on citations see FAQs.

c© 2012 Springer-Verlag London Limited

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/s00779-012-0511-8

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/s00779-012-0511-8
http://oro.open.ac.uk/policies.html


Noname manuscript No.

(will be inserted by the editor)

UbiqLog: A Generic Mobile Phone based Life-Log

Framework

Reza Rawassizadeh · Martin Tomitsch ·

Katarzyna Wac · A Min Tjoa

Received: date / Accepted: date

Abstract Smart phones are conquering the mobile phone market; they are not just

phones they also act as media players, gaming consoles, personal calendars, storage, etc.

They are portable computers with fewer computing capabilities than personal comput-

ers. However unlike personal computers users can carry their smartphone with them

at all times. The ubiquity of mobile phones and their computing capabilities provide

an opportunity of using them as a life logging device. Life-logs (personal e-memories)

are used to record users’ daily life events and assist them in memory augmentation.

In a more technical sense, life-logs sense and store users’ contextual information from

their environment through sensors, which are core components of life-logs. Spatio-

temporal aggregation of sensor information can be mapped to users’ life events. We

propose UbiqLog, a lightweight, configurable and extendable life-log framework that

uses mobile phone as a device for life logging. The proposed framework extends pre-

Reza Rawassizadeh
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrasse 9-11/188
A-1040 Vienna, Austria
E-mail: rrawassizadeh@acm.org

Martin Tomitsch
Design Lab-Faculty of Architecture, Design & Planning
The University of Sydney
2006 NSW Australia
E-mail: martin.tomitsch@sydney.edu.au

Katarzyna Wac
Institute of Services Science
University of Geneva
Rue de Drize 7, Battelle A
CH-1227 Geneva, Switzerland
E-mail: katarzyna.wac@unige.ch

A Min Tjoa
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrasse 9-11/188
A-1040 Vienna, Austria
E-mail: amin@ifs.tuwien.ac.at



2

vious research in this field, which investigated mobile phones as life-log tool through

continuous sensing. Its openness in terms of sensor configuration allows developers to

create flexible, multipurpose life-log tools. In addition to that this framework contains

a data model and an architecture, which can be used as reference model for further

life-log development, including its extension to other devices, such as ebook readers,

T.V.s, etc.

Keywords Life-Log · Mobile Sensing · Smart Phone · Personal Digital Memory

1 Introduction

In the past most life-log tools were custom-built devices or applications using exter-

nal hardware as sensors (e.g. [35], [11]). With the advent of smart phones, the mobile

phone has become a feature-rich mobile device, creating an opportunity to use it as

platform for life logging. It is not easy to convince users to carry something other than

their usual digital devices such as mobile phones or watches to perform a novel activity

which in this case is recording their daily activities. Smart phones are small comput-

ers with computing capabilities, but more importantly they are equipped with sensors

and networking technologies, such as Bluetooth, which can sense and communicate

with the user’s environment. Their networking capabilities enable these devices to be

connected to a larger computing or storage media, becoming a hub for personal or

body area networks [34]. Further, smart phones can provide useful information about

our daily activities such as received and dialed calls, text messages, application usage,

phone camera pictures, etc. A disadvantage of dedicated life-log devices is that, users

need to carry yet another device with them just for the purpose of recording their

daily activities. Based on smart phone capabilities and features we believe that they

represent a promising platform for life logging. Therefore the focus of this study was to

create a life-log tool, which resides in the user’s smart phone and does not require any

additional hardware (except that hardware is a new extrenal sensor). However smart

phones are not designed to be used as life-log tools, leading to a number of challenges

when using them for this purpose. For example the performance of the phone could be

affected by the amount of resources required by a life-log application running on the

phone.

Bell et al. [8] introduced some challenges of personal archives which we call life-log

dataset in this article. These challenges include controlling the access to the information

and personal security, browsing and searching the archive, and the requirement that the

archive should support long-term preservation of information. Log-term preservation

is an important requirement, since life-logs are worth to be kept at least as through

the owner’s life.

Briefly, design requirements of a life-log system are: seamless integration into daily life,

resource efficiency, security, long-term digital preservation, and information retrieval

from the life-log dataset.

This research proposes UbiqLog, a life-log framework for smart phones that addresses

life-log challenges, while remaining configurable, flexible and extendable. More on this

will described in following sections. It is important to note that the focus is on the

collection stage of life-logging and therefore this research does not delve deep into

reflection methods. Although, for the purpose of demonstration, we provide visual-

ization features, which will be examined in the evaluation section. Additionaly, the



3

prototype features a search facility to enable users manage their life-log dataset and

remove undesired information from their dataset directly on their mobile device. This

is an important requirement due to the fact that users are the owners of their life-log

dataset and thus they should have full control on their personal information. Sensors

are core components of life-logs. The proposed framework allows users to configure the

sensors they want to use for recording their life-logs by disabling or enabling a sensor,

or changing a sensor settings. Additionally users can add a new sensor to the framework

or remove an existing sensor from the framework. Flexibility to this extent requires a

specific data model and architecture, which we propose as a part of this research. Based

on the proposed data model and architecture, we implemented a prototype of a life-log

tool running on the Android 2 platform for Android phones. The prototype is flexible

enough to be used for other platforms just by changing sensors according to the target

platform. So far Android has been used for mobile phones and tablet computers, but

it could be used on other things such as T.V.s 1, and vehicles. Although the imple-

mentation have been done on the Android platform, the architecture and data-model

is not Android dependent and can be used on other platforms as well.

This work provides a novel approach to life logging by enabling users to configure ses-

nors and add new sensors. Other efforts, which employ mobile phones for life logging,

provide a closed architecture, making it difficult or impossible to customize the life-log

tool. Related projects that use an open architecture such as MyExperience [15] are not

designed for life logging. Their focus is on other research aspects such as context sens-

ing, and to our knowledge there is no other open architecture for a life-log framework

available.

Since life-log systems are similar to context-aware systems, it is notable that a life-

log tool is different from a context-aware tool in several aspects. For example, life-log

tools should archive data for long-term access, consider the annotation of datasets,

and so on. Context-aware systems are typically not designed to maintain information

for long-term access, making annotation and privacy less important concerns in most

cases. Moreover context-aware systems, unlike life-log systems, do not need to always

run in the background of the device eliminating the issue of resource usage.

The remainder of the paper is organized as follows. We begin with a discussion of

related works. Next design considerations of using mobile phones for life logging will

be identified. Then the framework architecture and its associated data model will be

described. Afterwards, an implementation of this framework will be described. Subse-

quently the implementation of the framework will be evaluated. Finally we conclude

this paper.

2 Related Work

As has been described before, using a mobile phone as a life-log tool is not new. How-

ever to our knowledge, there is no life-log tool with an open architecture available,

which considers the described challenges of storing life-time information. Furthermore

existing applications or tools are not flexible enough to enable users configure sensors.

In this section we first list approaches which provide a life-log or a similar tool. Life-logs

are subset of context-aware applications, and thus life-log applications on mobile phones

might be assumed as context-aware applications. Therefore we discuss context-aware

1 http://www.google.com/tv



4

approaches, which were designed for mobile phones (or any other pervasive devices

such as PDAs) and they sense and record contextual information in a continues man-

ner. These related works served as inspiration for the UbiqLog architecture described

in this paper.

Nokia Photos formerly known as Nokia Lifeblog [26], is a life-log tool designed for

Nokia mobile phones. Inputs for this life-log tool are images and videos captured by

the phone’s camera, sent and received multi-media messages, sent and received text

messages, user created text notes, blog posts and recorded sounds. Lifeblog enables

users to post their information to their blogs. It has a closed architecture and there is

no possibility to extend or configure its sensors.

MyLifeBits [16], a research project proposed by Microsoft, focuses on capturing most

desktop activities of users and storing them digitally. Desktop activities include read

articles, books, emails, presentations, pictures, home movies, video taped lectures, and

voice recordings. This project can be considered one of the largest efforts toward design-

ing a life-log system. In addition, it supports some ubiquitous sensors such as Sensecam

[17], which is a body mounted camera.

Reality Mining [14] employ mobile phones for life logging. They sense and record users’

location (using bluetooth beacons), social proximity (using the phone’s bluetooth sen-

sor), phone usage including application usage and dialed and received calls. Text mes-

sages and call contents are not included. It focuses on learning the social behavior of

a group of users. Unlike Reality Mining our focus is on a life-log framework which

contains an application architecture and its associated data model. As has been noted

before, UbiqLog was not designed for a specific purpose. In other words, our research

does not focus on any specific life-log use cases such as analyzing user’s social behavior.

iRemember [42] uses a PDA to continuously record users’ conversations in order to help

them augmenting their memory at a later stage. It converts users’ generated audio to

the text and enables them to search and browse these texts. Audio requires more stor-

age than text, therefore due to a lack of local storage on PDAs audio data is transferred

to a large storage server.

MyExperience [15] is a data collection framework for mobile phones, which allows users

to automatically log phone sensors data. The recorded data can be enriched through

self-report surveys. MyExperience senses and records device usage, user’s contextual

information and environmental sensors. It is open source and it provides an interface

for configuring and extending sensors. These are useful features for a life-log tool. How-

ever MyExperience is not a life-log tool, because it does not support other requirements

for life-logs such as long term preservation, annotation, user privacy and resource effi-

ciency.

Pensieve [3] is a another mobile phone based approach for augmenting users’ memory.

It uses captured pictures and audio as an inputs for its dataset. Likewise, it provides

manual and automatic annotation features for the recorded data.

Experience Explorer [6] is a recent life-log approach, which uses a mobile phone to

sense and capture contextual information. It provides an open interface to commu-

nicate with third parties such as the Flickr photo service 2, to let users share media

content. In contrast to Experience Explorer, UbiqLog does not provide any social net-

working features, since social networking requires an external server that hosts the

users’ information and go beyond the scope of a mobile phone. Instead the focus when

designing UbiqLog was to stay within the mobile device and to exclude other issues

2 http://Flickr.com



5

such as connecting to external servers. It is notable that there is a feature to transfer

life-log information to another media, but this is an optional component and not a

mandatory option. This will be explained in more detail in the following sections.

ContextPhone [29] is a software platform designed to sense and record contextual in-

formation and it runs on the Symbian OS of Nokia series 60 smart phones. It consists of

interconnected modules, which can sense and record contextual information, connect

and communicate with external services, customize applications such as recent calls

and launch background services such as status display.

Lu et al. [22] described that long-term continues sensing on mobile phones is a chal-

lenge, because of lack of resources. Jigsaw [22] contains a design and implementation

of a continues sensing application which balances the performance needs of the appli-

cation and the resource demands of continues sensing on the phone. Jigsaw has been

implemented for GPS, Accelerometer and Microphone sensors. The Jigsaw itself is an

engine which runs in the background of mobile devices. Two application have been

built based on Jigsaw, JigMe which provides a log of users’ daily activity (life-log), and

GreeSaw which provides carbon footprint and caloric expenditure information. Similar

to Jigsaw our approach could be used as API or application.

CenceMe [24] is a Symbian based platform designed for N95 Nokia Mobile phones. It

is designed to infer users’ sensing presence (e.g. dancing in a party with friends) and

share this presence through a social network such as Facebook. As sensor it employs

GPS, Microphone, captured picture, accelerometer and Bluetooth. CenceMe contains

a mobile application and a backend infrastructure on a server machine. The mobile

application performs sensing, classifies raw sensor data in order to produce meaning-

ful data and finally it presents users’ presence directly on the phone and upload this

information to the backend server.

Mobile Lifelogger [10] is designed to provide a digital memory assistance via life log-

ging. It collects accelerometer and GPS sensor data, and it tackles the issue of large

life-log dataset by indexing those data objects using an activity language. Their in-

dexing approach supports easy retrieval of life-log segments representing past similar

activities and automatic life-log segmentation. In general the proposed framework is

composed of three parts: Mobile Client, Application Server and Web Interface. The

Mobile Client will be installed as a mobile application on users phone and handles the

sensing. The Application Server is responsible for storing, pre-processing, modeling

recorded data as an activity language and finally retrieving similar activities of the

user. The Web Interface is a web application that enables users to browse and access

their life-log information. In order to facilitate information retrieval add semantic to

raw sensor information, we provide semantic enrichment which will be described in the

“Annotation” section. Moreover, from sensor extension and configuration perspective,

our approach is flexible.

There are some context-aware approaches such as ViTo [27], UbiFit [12] and PEIR

[25], which are not considered as continuous sensing tools but they employ mobile

phones or PDAs to sense contextual information and record them. ViTo uses a PDA

as a home entertainment remote control device which records usage duration of T.V,

Music player, etc. It assists users to alter their behavior by embedding behavior change

strategies into normal interaction with the device. UbiFit is another smartphone based

approach to record users’ physical activities. It provides an aesthetic representation of

the physical activities to encourage users do exercises. PEIR (Personal Environment

Impact Factor) which uses GPS of mobile phones to collect users location changes,



6

and by using a accelerometer sensor data and Hidden-Markov-Model based activity

classification, it determines users transportation mode.

3 Design Considerations

Mobile phones (or in general pervasive devices) by their very nature are not designed

to host large computing applications. There are some restrictions such as resource

limitation, user interface, etc. in comparison to personal computers. Life-log tools are

very privacy sensitive and this research proposes to bring this tool on mobile phones,

which are prone to loss or damage [37]. It is therefore important to take some design

considerations into account when implementing a life-log application for mobile phones.

These considerations constitute the foundation for the implementation of the UbiqLog

framework.

3.1 Controversial History of Life-logs and Security

Since life logging promises recording every activities of individuals, life-logs are very pri-

vacy sensitive tools. They have a controversial history, e.g. the DARPA lifelog project

[39] which was canceled in 2004 because of the criticism of the privacy implications of

the system. Allen [4] identified two important potential hazards of life-logs: pernicious

memory and pernicious surveillance. In another classification [30] risks have been listed

as surveillance, long term availability of personal information, the theft of life-log in-

formation and memory hazards as potential risks of sharing life-log data with society.

However, life-logs propose a complimentary assistance to our biological memory and

they are highly capable of augmenting our life. Therefore, these risks should not hinder

technological development and they can be reduced by considering users’ security and

privacy in the implementation of a life-log system. UbiqLog framework handles these

issues via introducing a security component, which secures the sensing and recording

process. This component will be described in more detail in the “Security and Privacy

related issues” section.

3.2 User Intervention

Sensors are the core components of a life-log. They continuously sense contextual infor-

mation and therefore interruption and resumption of interruption should be addressed

[2]. In particular, a service is always running in the background. Ideally a life-log ap-

plication runs in the background of a device 24/7, hence user administration or user

intervention should be reduced as much as possible. On the other hand users should

have appropriate understanding and enough control over the application. While users

should be able to configure sensors, but sensing and logging (recording) processes

should not depended on any user intervention. According to the expectancy theory

[43], performing administration tasks has a negative impact on the user experience.

UbiqLog does not require any user intervention or supervision during the sensing and

recording phases, which is assumed to improve usability. Only administration tasks,

such as configuring sensors or managing temporary disk spaces, require user interven-

tion. Users have sufficient control on managing UbiqLog, but it does not interrupt users



7

and thus it is unobtrusive, which is assumed to be an intelligibility fact. To evaluate

the UbiqLog user interface we performed an evaluation based on Nielsen’s usability

heuristics. Test result indicates that participants were satisfied with the user control

on the application. Further details about the usability evaluation are provided in the

“Evaluation and Verification” section.

3.3 Application Performance

Mobile phones, like other pervasive devices, suffer from resource weaknesses [36]. Client

thickness [37] of mobile applications, from resource usage perspective, is a challenging

issue in mobile computing. As described above Life-log applications, by their very

nature, are always running in the background of the system. A service running in the

background of a mobile system should not consume too much resources and it should

not affect other functionalities of the system. It is therefore important to consider

the resource usage of such applications. We study and analyze the resource usage and

performance of this framework in the “Performance Evaluation” section. There we

prove that running UbiqLog always in the background does not have significant effect

on the target device resources.

3.4 Storage

The disk space available on mobile phones and other pervasive devices is smaller than on

personal computers. While sensors that store data in the textual format do not consume

much disk space, binary data such as audio, picture or video consume more disk space.

Satyanaranyann [36] described that mobile phones, like other portable computers are

more vulnerable to loss or damage than desktops (reliability treat). On the other hand,

as far as a life-log application is working its dataset size is continuously increasing. All

these facts lead us to conclude that a server with enough storage capacity must be the

main residence of the data and life-log information will be maintained only temporarily

on the target phone. Data needs to be uploaded to the server either manually or

automatically. Users should be able to access and manipulate life-log dataset on the

server too, but uploading to an external storage is not in the scope of this research.

Similar solutions were used in related projects, e.g. iRemember [42] transfers recorded

audio to a large capacity server.

3.5 Sensor Extendability

Another potential problem with using smart phone sensors are their limited precision

and weakness compared to external sensors. For instance an external GPS device is

more powerful than the phone’s built-in GPS or the quality of a photo from a digi-

tal camera is better than the quality of a photo taken with the phone’s camera. On

the other hand, mobile phones are increasingly equipped with more capabilities and

features. It can be anticipated that in the future, new sensors will get integrated into

mobile phones. Therefore, it is a crucial requirement to provide an open interface that

allows adding new sensors. In order to deal with this problem we propose an integration

interface to enable developers integrate external sensors into UbiqLog. For instance, an



8

external GPS can be connected to the phone via bluetooth. The interface for the exter-

nal sensor integration will be discussed in more detail in the “Framework Architecture”

and “Implementation” sections.

3.6 Support for Multiple Use-cases

As described earlier the information recorded by life-logs can be used in many different

domains. Our focus is to provide a generic life-log framework, which is capable to be

configured based on the users’ requirements. Users can add/remove (extendability)

or disable/enable (flexibility) sensors and change settings of available sensors. This

capability makes the framework flexible enough to be used for different purposes. For

instance, once it can be used as health monitoring device and in another use case it can

be used to study a group behavior such as employees’ geographical location changes in

a firm. Li et al. [21] stated that an individual’s life has different facets and available

systems are mostly uni-faceted. However, we claim that UbiqLog is a multi-faceted

system, because it is capable to be used for different use-cases.

4 Data Model

UbiqLog stores each life event as a data entity. A life-log dataset composed from a set

of infinite life events. Each life event of users is a record in this dataset. We are living

in a spatio-temporal world. Meanings, all of our life events except dreams happen in a

specific location and at a specific date-time. Based on the current available technologies

it is not always possible to sense the location, because location sensors such as GPS

do not function in every environment. For instance a GPS can not function in indoor

environments. There are other approaches such as A-GPS (Assisted GPS) to solve this

problem, but they are not always able to sense location and they are imprecise. On the

other hand most operating systems have date-time, which is accessible as long as the

target device has not been turned off. This means most devices with computing capa-

bilities can provide time-stamps. Therefore we conclude that date-time is a necessary

field for any life-log record and all life-log information objects will be stored with the

time-stamp.

The Life-log dataset of a user U represented via L(U) and L(U) = {E1, E2, ...En},

n → +∞. n is going to to infinity because the user’s life is ongoing and the life-log

dataset size is increasing continuously. The life-log data entity E is a 3-tuple (D, T, A),

where T is the time-stamp, which can be continuous or discrete. If it is continuous, it

will be the start time-stamp and the end time-stamp, if it is discrete then it will be

only a time-stamp. D is the information object and it can be a binary data e.g. image,

audio or textual data e.g. GPS location, micro blog content, etc. A is the annotation

associated with this data object. Annotations are text data and used to enrich the

semantic of a data entity. More on this will be explained in the “Annotation” section.

The UbiqLog framework was implemented based on this data model, and to our knowl-

edge yet there is no specific data model designed for life-log systems. Some example

records of the proposed data-model will be shown in the next sections. This data model

is technology independent and can be implemented for any life-log system.



9

5 Framework Architecture

In order to achieve a versatile and flexible architecture we use a layered architecture

model [44]. Components were designed to be abstract and thus it is possible to add new

components or remove an existing component. One of the main design requirement was

to create a flexible and extendable system, which enables users to integrate new sen-

sors or configure current sensors. This sensor extendibility feature is called versatility

in context-aware approaches [23]. Figure 2 shows the architecture of the framework. As

it has been stated before, the proposed architecture is not intended for context-aware

applications, although life-logs might be interpreted as a subset of context-aware ap-

plications.

Figure 1 shows the sensing process sequence diagram of this framework. It is notable

Fig. 1 Sensing process sequence diagram.

that our focus was on creating a tool for data collection and not reflecting data to

users. However in order to enable end users evaluate the implementation some visual-

ization approaches have been proposed. We will explain them more in the “Usability

Evaluation” section.

In this section, we first describe general components, followed by a discussion of a set

of components that are being used in the sensing and data collecting phases of the

life logging process. Application Log is being used to log errors and messages of the

application in order to assist developers in debugging. Extension Interface is used as

an interface for adding new sensors to the framework. An external sensor might be an

application or it might be a hardware component such as a device with a Bluetooth

connectivity feature. How to add a new sensor to the framework will be described in

more detail in the implementation section.

Similar to other context-aware approaches this framework contains two major oper-

ations, sensing and recording. Chen and Kotz suggested [9] to decouple the context



10

Fig. 2 UbiqLog Framework Architecture.

sensing part from other parts of the application in order to maintain a flexible environ-

ment for sensors configuration. The UbiqLog framework is based on their suggestion.

Mostly life-log tools are composed of two types of hardware: a data acquisition device

and sensors. Sensors are responsible for sensing the environment and reading the con-

textual data in a raw format. The data format varies based on the sensor. The raw

data of each sensor should be aggregated in a format that is appropriate to gather

all readings in one dataset. Therefore the data acquisition device is required, which

is responsible to gather and aggregate raw data from the sensors. Aggregation here

means converting raw data into a data format, which the framework is able to parse.

In the UbiqLog framework we use the mobile phones’ sensors although it is possible to

integrate external sensor. This means that, in the implementation of this framework,

sensors do not reside separately from the phone and their data will be stored on users’

mobile phones.

Sensing and recording are assumed to be two different phases of the life-logging process.

Following is the detail explanation about the sensing and the recording processes.

5.1 Sensing

Context data acquisition methods predefine the architectural style of the system. There

are different approaches to read contextual data, in this framework sensor data will be

read directly via a sensor connector and no middleware will be used.

The sensing process is composed of three component: Sensors, Sensor Connectors and



11

Sensor Configuration Values

Application Enable = yes, Record Interval in ms = 10000
Telephone Enable = yes, Record Communication = no
SMS Enable = yes
Location Enable = yes, Update Rate in ms = 10000
Accelerometer Enable = no, Rate = delay game ,Force Threshold = 900
Temperature Enable = no, Measurement Unit = Celsius
Compass Enable = no
Bluetooth Enable = no, Scan Interval in ms = 60000
Orientation Enable = no

Table 1 Default Sensor Configurations

Data Acquisitor. “Sensors” are used to sense and read contextual information. They

can reside in smart phones as an application or hardware component. They can also

reside physically outside the smart phone, such as an external GPS device connected

to the smart phone via Bluetooth, or a Web service, which provides temperature based

on current location of the user.

The “Sensor Connector” establishes a connection between the framework and the sen-

sor. The Connection depends on the sensor, e.g. a sensor can send data via a Web

Service or a sensor can write data in the file only. A security component might also

be used by the sensor connector, especially when the sensor is physically located out-

side the phone. A network connection will be established between the sensor and the

framework, hence an authentication or an authorization process might be necessary. In

simple terms, the sensor connector encapsulates the sensor structure and reads data

from the sensor. We suggest having a sensor connector for each sensor, as a sensor

failure would otherwise affect other functionalities of the framework.

Information about sensors, their configuration and their connection status will be kept

in the Sensor Catalogue. The sensor connector connects to the sensor and reads infor-

mation based on the configurations, which reside in the sensor catalogue. Table 1 shows

default installed sensors and their configuration values in the implemented application

of the UbiqLog framework. Users can list sensors from the application GUI as shown in

Figure 3 Frame 3. the Accelerometer is disabled by default, because it consumes high

amount of resources and thus drains the battery. Other sensors are disabled, based on

the result of our user survey, in which users stated which sensors have higher priority

(enabled sensors).

The “Data Acquisitor” is a stream, which acts as a temporary queue to hold the read

data from sensors. It contains raw sensor data and is located between the data aggre-

gator and sensor connectors. It encapsulates data that has been read from sensors in

order to make it available for the data aggregator. This layer exists because it is not

possible to send raw data from the sensor connector to the data aggregator directly,

while there is no guarantee for reading sensor data synchronously in the real time,

therefore this component is required. For instance, an authentication process might

take time, which means a data from that sensor cannot be read in real time. In addi-

tion data aggregation processing cannot be done in real time. Thus, the data acquisitor

will be used as a temporary sensor data holder (data buffer). This leads us to conclude

that the acquired data from sensors will be logged passively and not actively.

It is notable that this architecture does not comply with any sensor classification un-

like other context-aware efforts. For instance, Raento et al. [29] has classified smart



12

phone’s sensors as location, user interaction, communication behavior and physical en-

vironment sensors. Froehlich et al. [15] categorizes phone’s sensor as hardware sensors

and software sensors such as application usage. Schmidt et al. classified sensors as

logical and physical [38]. We do not provide any sensor categorization, to avoid that

a categorization might restrict the extendability feature of the framework, since it is

possible that in the future new sensors are becoming available, which do not refer to

any of the proposed categories.

As has been described previously, mobile sensors are less precise than external sen-

sors. Likewise, it might be possible that in some situations sensors are not available

(resource can not be discovered). These problems should not affect other sensors. We

handle this via reading sensors in parallel. In more technical terms, each sensor has an

associated background service (in the implementation Android services were used). If

a sensor is not available it does not raise any errors and it does not affect other reading

processes. Only an error log entry will be created for this sensor and the associated

sensor connector does not add any data to the data acquisitor.

Sensors and the mobile device are connected mostly in a unidirectional way. If an au-

thentication or authorization mechanism is required connection can be bidirectional

between the mobile phone and the sensor.

5.2 Refining and Recording Data

The refining and recording phase consists of five components: Data Aggregator, Meta-

data Extraction, Data Management, Local Data Storage and Network Transmitter. This

phase considers scalability, manageability and reliability of a life-log dataset.

Raw data from different sensors needs to comply with a consistent data format. Fur-

thermore, the data needs to get annotated in order to facilitate browsing, search and

further data retrieval. The “Data Aggregator” receives raw data from “Data Acquisi-

tor” and transforms data to a consistent structure, which is readable for the framework.

In particular, Data Aggregator is a middle layer, which enriches sensor data via an-

notation and convert its format. Most other context-aware approaches [5] use XML

for their data format. In the implementation of this framework we convert data into

the JSON3 format, because a JSON document consumes less disk space in comparison

to similar XML documents while being as flexible as XML. The following shows two

examples of the aggregated data, one from the SMS sensor and the other one from the

Application sensor:

” Appl i cat ion ” :
{”ProcessName ” :” com . android . browser ” ,
”Time” :” Oct 15 , 2009 6 : 21 : 4 0 AM”}

”SMS” :
{”Address ” :”4444444” , ”Type : send ” ,
”Time” :”Dec 24 , 2009 11 : 23 : 01 PM” ,
”Body” :” t e s t message” }

These JSON data entities comply with the described data model, because each entity

has a date-time, a data object and an annotation. Binary data has the same structure

but instead of text they hold the location of that binary data entity. For instance a

picture data entity is as follows:

3 http://www.json.org



13

CAMERA:{
”picturename ”:”2009−12−29 2 0 . 4 2 . 0 5 . jpg ” ,
” l o c a l−Locat ion ” :”/ sdcard /dcim/camera ” ,
”Time” :”Dec 29 , 2009 8 : 42 : 0 7 PM”}

Converting a raw data to the desired data format, will use the information from the

sensor catalogue, e.g. find and use the related annotation class. Metadata Extraction

component in the proposed architecture (figure 2) will be used to annotate data in

order to make them searchable and browsable. Annotation here is adding a textual

data to the JSON record. For instance an annotated data entity from the call sensor

might be as follows:

” Cal l ” :{”Number :11111111” ,
”Duration ” :”13” , ”Time” :”Dec 24 , 2009 9 : 23 : 0 4 PM” ,
”Type ” :” outgoing ” ,
metadata :{”name” :” John Smith”}}
}

The “metadata” element of the above JSON record represents the annotation. The

Data Aggregator uses the “Metadata Extraction” component to annotate data of the

sensors. The annotation process is not only restricted to be done during the data ag-

gregation phase, it can also be done during the data acquisition phase. For instance,

in the implementation calls and SMSs get annotated during the sensor read, because

by one query to the Android content provider this information can be read.

After the data getting annotated and converted to the data entity format, the result-

ing information object will be stored locally on the phone (data will be stored locally,

because of the data connection cost and reliability of mobile phones. However, we en-

able users to transfer them to a reliable storage). These information objects will be

written to the “Local Data Storage” by the Data Aggregator. The write process will be

done passively and not actively or real time, because raw data must be converted to a

readable data format. Furthermore, the data aggregation process cannot be done in a

realtime e.g. an annotation could be done via an external web-service call, which costs

time. First data will be stored locally because of two reasons. A network connection

is not always available and previous research efforts [11] show that transferring data

automatically to anther storage, increases the risk of packet loss and requires data

compression. Mobile phone storage has limited capacity therefore we provide a feature

that allow users to manually upload the data to a reliable storage media (RSM) or

even automatically. The RSM could be the personal computer of the device owner or

a server on the cloud, which is capable of hosting life-log information. Uploading data

to the RSM will be done by the “Network Transmitter” layer.

The life-log dataset consists of files, which are either binary files (pictures, videos, calls,

etc) or text files. Manual upload to the RSM requires user intervention, which is not

desirable. Therefore, “Data Manager” will be used. Data Manager is responsible to

check if the maximum size of the UbiqLog folder is reached or not, if it reaches the

maximum size a secure network connection will be established by the “Network Trans-

mitter” and it uploads data-set files to the RSM. After a successful file receive, RSM

acknowledges the framework. If files are successfully uploaded to the RSM then Data

Manager removes files from the local storage. Moreover, Data Manager is responsible

to compress the content of text files. For instance, Data Manager can check the log file

and remove redundant records or compressing files if there is lack of disk space on the

local storage.



14

5.3 Annotation

Annotation describes the attachment of extra information to a piece of information [18].

Life-log datasets host large amounts of contextual information about owners and their

activities. In addition, dataset size increases continuously and information retrieval is

a major challenge. Since the data comes to the life-log dataset from heterogeneous sen-

sors, basic issues that are being solved in RDBMS are critical challenges in the context

of PIM and also life-log systems [20].

A possible approach for assigning semantics and enriching life-log datasets based on de-

scribed requirements is the use of annotation. Here by annotation we mean tagging and

thus meta-data creation which is data about the data. Meta-data information objects

will be extracted from other resources and they will be collected based on date-time

and (if possible) location. Annotation can be done either manually or automatically.

Due to the fact that life-log dataset structure is always growing in size, manual an-

notation is not feasible and cumbersome. Annotation can be stored embedded in the

information objects or separated from the target information objects [18].

We embed some annotations within the data entities in the “metadata” tag, as shown

in the above examples. Some annotations will be stored separately from the life-log

dataset, but those files have similar structure. Annotations that are not embedded in

the data entities, will be done by calling external web services. Those services collect

textual annotation from other information resources such as personal calendar, social

network activities and news. In the implementation, we use a service to call Google

calendar and it collects calendar events in a text file. Although this feature is available,

we suggest to perform this type of annotation on RSM and not on the device, because

establishing a connection to an external service consumes bandwidth.

Moreover, to consider the readability and flexibility of the framework we suggest to

perform the annotation during the data aggregation phase and not during the data

acquisition phase.

5.4 Digital Preservation

Digital preservation is maintaining information, in a correct and independently under-

standable form, over the long term [13]. Likewise, it can be interpreted as method to

preserve the content in an understandable form in long term, therefore digital preser-

vation prevents data format obsolescence.

As has been described, life-log information is worth keeping during the owner’s life.

Bell et al. [8] noted that this problem is one of the major challenges of using life-log

tools. There are two challenges with long term archival of digital data, hardware and

software. The hardware problem is not in the scope of this research but we provide a

solution for the software problem.

A digital preservation process composed of different processes such as migration, evalu-

ation, emulation and etc. [45]. Migration is a process of changing the format of a digital

object to a another format which is long term archiveable [1]. Migration eliminates the

need to retain the original application for opening binary files. Bell [7] named long

term preservable data formats “Golden” data formats. For instance, TIFF is a golden

data format for long term preservation of image files. Text files such as XML are golden

data format. Life-log files are either in text format or binary format. Binary files format

needs to be checked and if it is not long term preservable it must be changed to a long



15

term preservable format.

Rawassizadeh and Tomitsch [33] proposed a framework to consider the long-term

preservation of the digital objects for pervasive devices. There they suggested to han-

dle the file conversion to an external Web-service, because file conversion is a resource

intensive process. We converted binary objects which are not long-term preservable to

a preservable format. Therefore users do not need to have any interaction with the

system and file conversion is being done in the background.

In the UbiqLog framework we intend not to bound ourselves to any external tool such

as Web services, which require external service call. Thus users can choose how to han-

dle their binary objects. Either they can use the described method or a second method,

which is lighter. The second method is a simple evaluation mechanism based on the

data format. If the file format is not preservable (not in a golden format category) an

entry for the metadata information of that file will be created. All binary files in the

framework have a record in a textual file, which contains information about the files.

This textual file will be sent to the RSM with the associated binary files. File format

conversion can then be handled on the RSM side and the results can be automatically

evaluated by another component. In simple terms, in the second method only the file

format will be checked on the mobile device. If it is not long term preservable an en-

try will be written in the text file. We suggest to use the second method, because it

consumes less resources such as bandwidth and CPU and there is no guarantee that

external services are always available for the file format conversion.

5.5 Security and Privacy

Allen [4] described that using life-log with the existing privacy laws and policies do

not set appropriate limits on unwanted usage of information is using life-logs. She de-

scribed that there is a high potential of incivility, emotional blackmail, exploitation,

prosecution and social control by government while using life-log tools. Strahilevitz [41]

stated that the most private information consists of sensitive personal matters such as

sexual encounters and bodily functions, sensitive medical information and knowledge of

owners fundamental weaknesses. A life-log tool can sense and record this information,

therefore, from a privacy perspective, a life-log dataset is a very sensitive object. These

facts show the importance of securing the life logging process. Security issues need to

be considered during the design and implementation of life-log tools and not only after

the implementation of the target tool is finished.

Usually a life logging system has three stages [32]. Each stage requires specific security

considerations. The first stage is sensing the information from the user environment by

sensors; the second stage is collecting the sensed information; and the third stage en-

ables users to browse and retrieve information from their life-log dataset. Users should

be able to define what information object they intend to collect. They might need to

configure sensors in order to set their configuration parameters such as sensing inter-

val, etc. The first stage connects the life-log system to sensors and reads sensors data.

In this stage two parts might require to be secure. First some sensors might require

authentication, second if the sensors’ data contains sensitive information data trans-

mission from the sensor to the life-log tool should be secure too e.g. encrypted data.

The second stage collects the sensed information in the life-log device. This stage cre-

ates a dataset of the life-log information. The dataset contains a set of life-log records.

Data that comes from sensors are mostly raw data and in order to enable users to



16

browse and access them, some changes have to be done on the raw data. Changes

might include annotation, aggregating sensors’ data, migrating data from one format

to another format, etc. During the collection phase developers should consider the third

party tools that they are using for changing data. For instance a security threat might

be the use of an annotation engine from a third party which sends users’ information

to that third party.

The third stage is storing the life-log data. Here storages, which host life-log informa-

tion, should be secure. We suggest maintaining data in an encrypted format if data is

intended to be stored as text files, or if it will be stored in a database, designers should

consider to define appropriate access limitation on the database.

This framework performs all of those three stages internally and no connection to a

third party tool will be established. Furthermore we do not use any external libraries

for these stages. Therefore we respect security by those stages internally, without any

external access. However if a sensors require a third party tool or library for sensing

we can not guarantee the security of that specific sensor.

Usually life-log devices are pervasive devices such as mobile phone, and not desktop

application. Unlike desktop computers, pervasive devices are prune to loss or damages

[36], hence they are not capable of hosting personal information. Therefore, life-logs

should maintain their data on reliable storages such as the personal computer or cloud

of the user. If a life-log tool does not use a pervasive device then there is no need to

have a local storage and data can be stored directly on a reliable storage media. But

life-logs usually contain at least a pervasive device. Transferring data from a pervasive

device to a reliable storage media might not be a standard stage for a life-logging pro-

cess, but usually it is required. Communications and data transfers are very sensitive

from a security point of view. This demonstrates that during the communication, data

should be transfer encrypted. Securing the connection can be done by the transport

layer security (TLS). However additional to TLS, using a digital signature has been

suggested as an additional way to secure the data transportation. Here we secure the

communication from the phone to the server. It means communication with the server

is encrypted via implementing TLS (Transfer Layer Security) and using HTTPS instead

of HTTP. Security Component represents security related issues such as authentication

and authorization.

6 Evaluation and Verification

To evaluate the UbiqLog framework, first an implementation of the proposed architec-

ture on the Android 2 platform will be described. The purpose of this implementation

was to evaluate and improve the feasibility of the framework. Then as a longitudinal

evaluation a nine month usage of this tool on user’s mobile phone will be analyzed.

Since the life-log tool needs to be constantly running in the background of the device, it

is important to evaluate the battery efficiency during use the implementation. Finally,

a usability evaluation of the application based on Nielsen’s heuristics [28] approaches

will be described.



17

6.1 Implementation

We have developed an implementation of the proposed architecture on the Android

2.0, 2.1 and 2.2 platforms. The implemented application was used and tested on a

Motorola Milestone(Droid), HTC Legend, Samsung Galaxy S, HTC Desire and HTC

Desire HD. This application fully complies with the described architecture.

Figure 3 shows the graphical user interface (GUI) of the application. A major consid-

eration during the GUI design was to provide sufficient functionality to enable users to

easily configure sensors without any knowledge about the lower layer of the application.

When users click on any sensor in the sensor list, as shown in Figure 3, Frame 3, they

will be shown the configuration screen for each sensor such as Frame 4. Figure 3 The

Fig. 3 GUI screenshots. Frame 1 shows the first screen that appears when the user opens
the application. The feature shown in Frame 2 enables the user exclude specific application
from being logged. Frame 3 shows the list of default sensors, which were implemented in the
application. Clicking on one of the sensors from this list takes the user to the configuration
screen, shown in Frame 4. Frame 5 shows the data management setting screen. Frame 6 shows
the screen for configuring network settings. Frame 7 shows the setting options. Frame 8 shows
the search facility.



18

user navigation flow between the different screens of the application is shown in Figure

4. Each box represents a screen in the application. Each Sensor Reader has been imple-

Fig. 4 GUI Screens Navigation Flowchart.

mented as a separate Android Service. Since Android services run in the background,

no GUI is required to run these services. For each sensor there should be an associated

sensor reader class. In order to add a new sensor into the application a developer must

implement the “SensorConnector” java interface in the “com.ubiqlog.sensor” package.

If developers intend to add the associated annotation class they should create a class

in the “com.ubiqlog.annotation” package and this class has to implement the “Annota-

tion” java interface. Currently, in the implemented application we annotate incoming

and outgoing calls and text messages (SMS) with the recipients or senders names which

are read from the contact list. After the developer creates the annotation class they

need to rebuild the framework and installs the new apk file on the target device. This

apk file contains newly added sensor. There is no possibility to add new sensors dy-

namically or during the run time to the framework, which means endusers can not do

them. They can only configure existing sensors and enable/disable them.

Android provides listener classes for some sensors, when the sensor senses a new data,

the listener will be notified e.g. calls information can be read via using “PhoneStateLis-

tener” Listener. We use these listeners to log sensors’ data, but for some sensors such as

application usage there is no such a listener. Those sensors will be checked frequently

based on a specified time interval via their associated sensor readers.

As described above the Sensor Catalogue contains information about sensors. A table

in the SQLLite database of the Android platform has been used for the Sensor Cat-

alogue implementation. This table contains sensor names, sensor reader class, sensor



19

annotation class and a list of configuration data for that sensor.

In order to implement the Data Acquisitor, which is a temporary data buffer, a static

Java Collection object (ArrayList) was used. The sensor connectors write their data

directly to this object.

Data Aggregator runs as an Android service, it reads data from the Data Acquisitor

and it performs the annotation.

Life-log data is stored as a set of text files on the SD card of the phone in a folder called

“ubiqlog”, binary files such as photos can be stored in different location. Location and

metadata about each binary file is stored in a the same file, which will be created for

every day the application is being used. Users can use the “Search” menu and access

their life-log data. They can also manipulate the search result (modify or remove an

entire record).

Life-log files will be uploaded to the RSM by the HttpClient package of the Android.

Password and server address are required, as shown in Figure 3 Frame 6, to allow the

application connecting to the RSM and uploading files. On the RSM side we have de-

signed a simple Java Servlet which reads files and stores them locally on the user’s per-

sonal computer. After a successful file receive, the RSM acknowledges the application

in the Http response (HTTP Status Code is 200)that the files have been successfully

uploaded to the RSM. Afterwards the Data Manager remove the files from the SD card

of the device. Users can specify the maximum size for the ubiqlog folder as shown in

Figure 3 Frame 5. The Data Manager can check if the threshold has been exceeded or

not and if the threshold has been exceeded, it will upload life-log files automatically

to the RSM. The Data Manager has been implemented as an Android service, which

continuously runs in the background, with the sensor readers and other services.

“Archiving Evaluation” is another Android service, which checks whether binary files

are in a long-term archive-able format. As described above this service can be used

in two ways, either to call an external Web service to convert file format or mark the

binary files that they are not in the long-term archive-able format by adding a corre-

sponding meta-data for this file in the associated record.

In order to check the long-term archive-ablitiy of life-log dataset binary files, users can

manually generate the report by using the “Generate Report” button on the “Setting”

Frame as shown in Figure 3 Frame 7. Calling an external Web service to change the

format of the file is another method which we described it in another paper [33].

6.2 Longitudinal Analysis

The application described in the previous section was used by six users over a period

of one to fourteen months. Three users immediately installed the application after they

purchased the new phone. This means that they used the application from the first day

of using their phone. Every day a text file was created containing sensor information. It

contains location of the binary objects and their meta-data. Figure 6 shows the size of

log files for about three months. Those logs are generated by using a Motorola Milestone

phone. The reason why the file size was larger in the beginning of the study period

was since the user described that he is keen in using a new phone and discovering the

device features or surfing the market for new applications. This behavior is repeated by

two other users with new phones. Therefore we conclude this is the reason of having a

large log files in the first days of usage. Besides when users have lots of location changes



20

file sizes increases. Figure 6 shows two days in this period with zero file size. On those

days UbiqLog was not running, therefore no file was created. The visualization shown

Fig. 5 Social Activitiy of the user based on the duration of received and dialed calls.

in Figure 5 demonstrates how the data recorded with the UbiqLog tool can be used to

visualize the users social activity. This visualization approach was inspired by Song et

al. [40]. Individuals’ names have been pseudonymized in respect to the users’ privacy,

therefore phone numbers are shown with Person and a number. The longer the call

duration, the closer the person is to the center of the circle.

6.3 Resource Usage Evaluation

Jain [19] described that the application performance is composed of five factors: usabil-

ity, throughput, resource usage, response time and reliability. Evaluating the perfor-

mance of an application is necessary for evaluating the implementation of the frame-

work. Since the UbiqLog application will always run in the background (and therefore

always consume resources). As mentioned above resource consumption is one of the

major challenges of mobile computing [36], which is especially relevant for life-log ap-

plication, since they typically need to constantly run in the background. Thus the

performance of the application can influence the general functionality of the device,

which is not designed for this type of application usage. Therefore resource usage mon-

itoring is an important factor that developers need to consider while designing such



21

Fig. 6 File sizes of the life-log dataset. The unsteady part represents that user is playing
with his new phone features(the area is marked with red). Other days when the file size is big
mostly is because of using GPS outdoor and many location log entries have been generated.

applications.

The application was tested directly on the device at the end of the implementation

cycle to eliminate any data redundancy and sensor reader malfunction.

Mobile resources include battery usage, CPU usage, memory usage, disk activity and

network activity [31]. To measure mobile phone resource utilization we used a resource

monitoring tool [31]. We specifically measured battery, CPU and memory usage of our

application. Network activity and disk I/O of the life-log were not measured, since

the application did not have heavy network or disk activity. Disk write happens infre-

quently because we buffer data and then write them in the file.

When all sensors were active, result of the CPU utilization monitoring, showed that

our application consumes less than 3% of CPU in average, when administration ac-

tivities are performed and the GUI is active, it consumed about 10% of CPU in aver-

age. Average VmRSS (Virtual Memory Resident Set Size) was 15728 Kb and VMSize

is 127268 Kb. It is notable that disabling some sensors (i.e. reducing the number of

sensors) did not affect the CPU or memory utilization. This result shows that the

implementation of the UbiqLog consumes fair amount of the CPU and the memory.

Battery utilization cannot be measured per process. The GPS sensor reads the user’s

current location and the Bluetooth sensor scans the environment for discovered de-

vices, based on a configurable time interval. The default Bluetooth scan interval is 6

minutes and the default GPS location read interval is 10 seconds. Both Bluetooth and

GPS are highly battery consuming, but they produce important information for the

life-log dataset. Therefore we needed to investigate whether the implementation of the

framework had any significant impact on battery consumption. In order to perform

this study, we investigated battery utilization under different conditions, where differ-

ent sensors were activated. Each test was started at a set time in the morning with

a fully charged battery. Tests were run until the battery level reached a level of the

20%. Device usage condition have been kept constant during the entire test period.

This means that the device was still used to answer phone calls or SMS, but not for

any unusual purposes, such as playing games. However there is no guarantee that the



22

Battery Discharge Duration UbiqLog Application WiFi GPS Bluetooth

21:00 Hours deactive on off off
20:00 Hours active on off off
7:30 Hours active on on off
6:30 Hours active on on on
7:00 Hours deactive on on on
14:30 Hours active on off on

Table 2 Approximate time it took for the phone to reach a battery level of 20% (starting
from 100%) in different scenarios. When WiFi and Bluetooth are on, they were idle and not
active.

device usage is exactly the same for all tests, because the user can not control incoming

calls or etc.

Table 2 shows the approximate time it took for the phone to reach a battery level of

20% in different scenarios. It is notable that Wi-Fi, which consumes high amount of

battery, was always on in all scenarios. Furthermore to preserve more battery network

connection of the phone was set to 2G (not 3G).

The intention of this study was not to evaluate battery usage of different hardware

settings. Instead we intend to prove that the implementation of the proposed UbiqLog

framework does not have a large impact on battery utilization. As shown in Table 2

there is about one hour difference between using the application and not using it while

Bluetooth and GPS are disabled. With Bluetooth and GPS both enabled the applica-

tion decreased the battery time for half an hour. This might be due to I/O operation

increase (writing GPS and Bluetooth log on SD Card)

6.4 Usability Evaluation

This framework and its implemented prototype targets life-log system developers, but

it can benefit end users by providing self-insight. In order to enable end users benefit

from the framework we propose following visualizations Figure 7 which assist users in

better self-awareness and self monitoring about their device usages. In order to evaluate

the usability of the framework implementation we have employed Nielsen’s usability

heuristics [28]. The implementation that users evaluate contains those visualizations

under the “visualization” option of the “tools”. The usability of the implementation has

been evaluated by six users (2 female, 4 male) between 25 and 37 years of age. Four

of the participants stated having strong computer knowledge; and other two stated

having basic computer knowledge. All participants use computers and mobile phones

in their daily life. Participants owned HTC Desire, Motorola Droid (MileStone), Sam-

sung Galaxy S, HTC Legend and HTC Desire HD. We installed the application on

the participants’ phones and asked them to use the application for a period of four

weeks to one year. After this period we conducted interviews and asked them to fill

out a survey. The survey included Nielsen’s principles for user interface design [28].

We adapted those principles in form of questions and asked participants to rank the

application accordingly. The result of the evaluation shows Help and Documentation

received the lowest score (2 from 5), but other heuristic factors received satisfactory

scores (4 or 5 from 5).



23

Fig. 7 (1)Location, (2)Application usage (3)Call visualizations and (4)Movement

To meet the design requirements, based on the result of those evalutions “seamless

integration into daily life” will be supported by unobtrusive and continues sensing.

We have also described our approaches for the “Security”, “information retrieval” and

“long-term digital preservation”. Moreover the resource usage evaluation indicates the

“resource efficiency” of the UbiqLog implementation.

7 Conclusion

To our knowledge there is no open architecture available for life logging tools. Most

scientific efforts focus on a specific use-case of using life-logs without publishing any

information regarding their architecture or data model. This makes it necessary to

custom-build every new life logging application running on smart phones, which is ex-

pensive and time consuming, and requires advanced programming skills and systems

architecture knowledge. Additionally, with life-logs becoming increasingly important

as source of information for behavior learning, health monitoring, memory augmenta-

tion, etc., it is necessary to provide users with a flexible architecture and data model

allowing them to adjust the application for their life logging needs.

To address these issues, we presented UbiqLog, a life-log framework, which is flexible

and extendible to add new sensors and change the configuration of existing sensors.

Ubiqlog consists of an open architecture and propose a data model specifically designed

for life logging. The generic approach of the architecture enables developers to imple-

ment it on any devices with computing capabilities, such as e-book readers, mobile

phones, T.V.s, etc. UbiqLog is a generic and holistic framework, which can be used for

different use cases and can be configured based on the user requirements.

To evaluated the proposed framework and data model we developed an implementation

of the UbiqLog framework on the Android 2 platform for smart phones. The implemen-

tation was evaluated regarding resource utilization, longitudinal analysis and usability

requirements.



24

Acknowledgements We would like to thank all students who helped us in developing this
platform, including Victor Andrei Gugonatu and Soheil Khosravipour.

References

1. The Commission on Preservation and Access and the Research Libraries Group, Wash-
ington, D.C. : Preserving digital information : report of the Task Force on Archiving of
Digital Information (1996)

2. Abowd, G., Mynatt, E.: Charting Past, Present, and Future Research in Ubiquitous Com-
puting. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 29–58 (2000)

3. Aizenbud-Reshef, N., Belinsky, E., Jacovi, M., Laufer, D., Soroka, V.: Pensieve: augmenting
human memory. In: CHI ’08: CHI ’08 extended abstracts on Human factors in computing
systems, pp. 3231–3236 (2008)

4. Allen, A.: Dredging up the Past: Lifelogging, Memory, and Surveillance. The University
of Chicago Law Review 75(1), 47–74 (2008)

5. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

6. Belimpasakis, P., Roimela, K., You, Y.: Experience Explorer: A Life-Logging Platform
Based on Mobile Context Collection. In: Third International Conference on Next Gener-
ation Mobile Applications, Services and Technologies, pp. 77–82 (2009)

7. Bell, G.: A personal digital store. Communications of the ACM 44, 86–91 (2001)
8. Bell, G., Gemmell, J., Lueder, R.: Challenges in Using Lifetime Personal Information

Stores. In: SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 1–1 (2004)

9. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Tech. rep.
(2000)

10. Chennuru, S., Chen, P., Zhu, J., Zhang, Y.: Mobile Lifelogger-recording, indexing, and
understanding a mobile users life

11. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B.,
Hightower, J., Klasnja, P., Koscher, K., LaMarca, A., Landay, J., LeGrand, L., Lester, J.,
Rahimi, A., Rea, A., Wyatt, D.: The Mobile Sensing Platform: An Embedded Activity
Recognition System. IEEE Pervasive Computing 7(2), 32–41 (2008)

12. Consolvo, S., McDonald, D., Toscos, T., Chen, M., Froehlich, J., Harrison, B., Klasnja,
P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.: Activity Sensing in the
Wild: a Field Trial of Ubifit Garden. In: CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, pp. 1797–1806 (2008)

13. Consultative Committee for Space Data Systems. CCSDS 650.0-B-1. Recommendation for
Space Data System Standards. : Reference model for an open archival information system
(oais). Tech. rep. (2001)

14. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and
Ubiquitous Computing 10(4), 255–268 (2006)

15. Froehlich, J., Chen, M., Consolvo, S., Harrison, B., Landay, J.: MyExperience: a system
for in situ tracing and capturing of user feedback on mobile phones. In: 5th international
conference on Mobile systems, applications and services (MobiSys ’07), pp. 57–70 (2007)

16. Gemmell, J., Bell, G., Lueder, R.: MyLifeBits: A Personal Database for Everything. Com-
munication of ACM 49(1), 88–95 (2006)

17. Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur,
N., Wood, K.: SenseCam: A Retrospective Memory Aid (2006)

18. Hunter, J.: Collaborative semantic tagging and annotation systems. Annual Review of
Information Science and Technology, American Society for Information Science 43(1),
187–239 (2009)

19. Jain, R.: The Art of Computer System Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling. John Wiley & Sons (1991)

20. Jones, W.: Personal Information Management. Annual review of information science and
technology 41(1), 110–111 (2007)

21. Li, I., Dey, A., Forlizzi, J.: A Stage-Based Model of Personal Informatics Systems. In: CHI
’10: Proceedings of the SIGCHI conference on Human factors in computing systems, pp.
557–566 (2010)



25

22. Lu, H., Yang, J., Liu, Z., Lane, N., Choudhury, T., Campbell, A.: The Jigsaw Continuous
Sensing Engine for Mobile Phone Applications. In: Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems (SensSys 2010), pp. 71–84 (2010)

23. Lugmayr, A., Saarinen, T., Tournut, J.P.: The Digital Aura - Ambient Mobile Com-
puter Systems. In: 14th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP ’06), pp. 348–354 (2006)

24. Miluzzo, E., Lane, N., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S., Zheng,
X., Campbell, A.: Sensing Meets Mobile Social Networks: The Design, Implementation
and Evaluation of the CenceMe Application. In: Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems (SenSys’08), pp. 337–350 (2008)

25. Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard,
E., West, R., Boda, P.: Peir, the Personal Environmental Impact Report, as a Platform
for Participatory Sensing Systems Research. In: Proceedings of the 7th international
conference on Mobile systems, applications, and services (MobiSys 2009), pp. 55–68 (2009)

26. Myka, A.: Nokia Lifeblog - Towards a Truly Personal Multimedia Information System. In:
Proceeding of Workshop des GI-Arbeitkreises ”Mobile Datenbanken and Informationsys-
teme (2005)

27. Nawyn, J., Intille, S., Larson, K.: Embedding Behavior Modification Strategies into a Con-
sumer Electronic Device: A Case Study. In: 8th International Conference on Ubiquitous
Computing (UbiComp 2006), pp. 297–314 (2006)

28. Nielsen, J.: Ten Usability Heuristics. http://www.useit.com/papers/heuristic/

heuristic_list.html (1994)
29. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: A Prototyping Plat-

form for Context-Aware Mobile Applications. IEEE Pervasive Computing 4(2), 51–59
(2005)

30. Rawassizadeh, R.: Toward sharing life-log information with society. Behaviour and Infor-
mation Technology To Appear

31. Rawassizadeh, R.: Mobile Application Benchmarking Based on the Resource Usage Moni-
toring. International Journal of Mobile Computing and Multimedia Communications 1(4),
64–75 (2009)

32. Rawassizadeh, R., Tjoa, A.: Securing shareable life-logs. In: IEEE International Conference
on Privacy, Security, Risk and Trust, First International Workshop on Privacy Aspects of
Social Web and Cloud Computing (PASWeb-2010), pp. 1105–1110 (2010)

33. Rawassizadeh, R., Tomitsch, M.: Towards Digital Preservation of Pervasive Device Infor-
mation. http://www.personalinformatics.org/docs/chi2010/rawassizadeh_digital_

preservation.pdf (2010)
34. Roussos, G., A.J., M., Maglavera, S.: Enabling Pervasive Computing with Smart Phones.

IEEE Pervasive Computing 4(2), 20–27 (2005)
35. Ryoo, D., Bae, C.: Design of The Wearable Gadgets for Life-Log Services based on UTC.

IEEE Transactions on Consumer Electronics 53(4), 1–6 (2007)
36. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Fifteenth annual

ACM symposium on principles of distributed computing (PODC ’96), pp. 1–7 (1996)
37. Satyanarayanan, M.: Pervasive computing: Vision and challenges. Personal Communica-

tions, IEEE 8(4), 10–17 (2001)
38. Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de Velde,

W.: Advanced Interaction in Context. In: First International Symposium on Handheld
and Ubiquitous Computing, pp. 89–101 (1999)

39. Shachtman, N.: A Spy Machine of DARPA’s Dreams. http://www.wired.com/print/

techbiz/media/news/2003/05/58909 (2003). Last Accessed =[6-Aug-2010]
40. Song, M., Lee, W., J., K.: Extraction and Visualization of Implicit Social Relations on

Social Networking Services. In: Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 10), pp. 1425–1430 (2010)

41. Strahilevitz, L.: A Social Networks Theory of Privacy. The University of Chicago Law
Review 72(3), 919–988 (2005)

42. Vemuri, S., Schmandt, C., Bender, W.: iRemember: a personal, long-term memory pros-
thesis. In: CARPE ’06: Proceedings of the 3rd ACM workshop on Continuous archival
and retrieval of personal experiences, pp. 65–74 (2006)

43. Vroom, V., MacCrimmon, K.: Toward a Stochastic Model of Managerial Careers. Admin-
istrative Science Quarterly 13(1), 26–46 (1968)

44. Wac, K., Pawar, P., Broens, T., van Beijnum, B., van Halteren, A.: Using SOC in De-
velopment of Context-Aware Systems: Domain-Model Approach. In: M. Sheng, J. Yu,



26

S. Dustdar (eds.) Enabling Context-Aware Web Services: Methods, Architectures, and
Technologies, pp. 171–210. Chapman and Hall/CRC (2010)

45. Waugh, A. and Wilkinson, R. and Hills, B. and Dell’oro, J.: Preserving digital information
forever. In: Fifth ACM conference on Digital libraries (DL ’00), pp. 175–184 (2000)


