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Abstract 

 

Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by 

adjusting the osmolality of their cytoplasm. To obtain insights into underlying metabolic adaptions, 

we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using 

non-targeted mass spectrometry. We observed that 52% of 1,071 detected metabolites, including 

known osmoprotectants, changed abundance with increasing salt challenge. Unexpectedly, 

unsupervised data analysis revealed a substantial increase of most intermediates in the ubiquinone-8 

(Q8) biosynthesis pathway and a 110-fold accumulation of Q8 itself, as confirmed by quantitative 

lipidomics. We then demonstrate that Q8 is necessary for acute and sustained osmotic stress 

tolerance using Q8 mutants and tolerance rescue through feeding non-respiratory Q8 analogues. 

Finally, in vitro experiments with artificial liposomes reveal mechanical membrane stabilization as a 

principal mechanism of Q8-mediated osmoprotection. Thus, we find that besides regulating 

intracellular osmolality, E. coli enhances its cytoplasmic membrane stability to withstand osmotic 

stress.  
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Introduction 

 

Bacteria are frequently exposed to abruptly changing solute concentrations in their environments. 

Desiccation in biofilms, tidal sweeps of salt water into rivers or sudden nutrient bursts in the gut of 

host organisms increase the extra-cellular osmolality, whereas rainfall or retreating tides decrease 

osmolality. Since the cytoplasmic membrane is impermeable to most large and polar solutes, trans-

membrane concentration gradients of non-permeating compounds are established that are 

compensated for by freely diffusing water molecules. The consequences are changing cellular volume 

and turgor pressure that exert strong mechanical forces on the cytoplasmic membrane and 

associated proteins and, if too high, preclude growth of the bacterium and eventually cause cell 

death1. To cope with osmotic stress, bacteria evolved several strategies such as adapting their 

intracellular osmolality2–4 or increasing their cell wall stability5, allowing them to grow in a broad 

range of solute concentrations.  

The regulation of intracellular osmolality by transport or biosynthesis of compatible solutes is 

believed to be the principal osmoprotection response in the gram-negative bacterium Escherichia 

coli
6 that can be mediated by several molecular mechanisms. First, E. coli controls in- and outflux of 

water and other small molecules by activation of aquaporins as an immediate response to sudden 

changes in osmotic pressure7. Second, it regulates intracellular potassium levels by adjusting the 

expression of potassium transporters such as Kup, KdpFABC or TrkA for transient adaptation to short-

term osmotic stress8. Third, in case of prolonged osmotic stress, E. coli can take up the 

osmoprotectants glycine betaine and proline from the environment via the proVWX-encoded ABC 

transporter or synthesize glycine betaine from the extracellular precursor choline2,9,10. Fourth, if no 

extracellular compatible solutes are available, E. coli induces expression of trehalose-6-phosphate 

synthase (OtsA) and phosphatase (OtsB) to produce high intracellular concentrations of the non-

reducing disaccharide trehalose from the precursors UDP-glucose and glucose 6-phosphate, 

conveying long-term resistance to sustained osmotic stress11–13. Quantitative studies indicated, 
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however, that the amounts of compatible solutes produced by E. coli may not be sufficient to 

maintain cell turgor exclusively based on increasing intracellular osmolality, implying accompanying 

effects such as molecular crowding14. Besides adjusting intracellular osmolality, other bacteria have 

been shown to modify their cell wall structure upon osmotic stress5, but this mechanism has not 

been observed in E. coli. Virtually all known osmoprotection mechanisms in E. coli therefore relate to 

the modulation of intracellular osmolality. The only exception are molecular dynamics studies that 

demonstrated an interaction between accumulated trehalose with membrane lipid head groups15, 

although this effect was found to be quantitatively insufficient to fully account for the resistance of 

membranes to strong osmotic stress16. 

Since nearly all known osmoprotection mechanisms are related to metabolism, we aimed to 

obtain global and unbiased insights into the metabolic adaptation of E. coli to sustained osmotic 

stress. Specifically, we analyzed the intracellular steady state metabolome of exponentially growing 

E. coli at six levels of sodium chloride (NaCl)-induced hyperosmotic stress. To this end, we used our 

previously developed non-targeted flow injection time-of-flight mass spectrometry (MS) platform17 

that allows to measure the semiquantitative levels of hundreds of intracellular metabolites. The 

acquired data not only shed light on complex metabolic rearrangements, but also led to the 

discovery of a novel mechanism for coping with osmotic stress, namely the active improvement of 

cell membrane stability by accumulation of the electron carrier and lipid ubiquinone-8.  
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Results 

Osmotic stress causes complex changes in metabolism 

To quantify its sensitivity to salt, E. coli BW25113 was cultivated at 37° C in mineral medium 

containing glucose as the sole carbon source, supplemented with 50 to 750 mM NaCl. The maximum 

specific growth rate was calculated for each NaCl concentration, yielding a half-maximal inhibitory 

concentration (IC50) of 450 mM (Fig. 1a). Based on these results, we selected 6 NaCl concentrations 

between 50 and 500 mM that allowed for distinct exponential growth phases and sufficient biomass 

concentrations to permit metabolomics experiments. For each NaCl concentration we then extracted 

intracellular metabolites with hot water from exponentially growing E. coli cultures at an optical 

density at 600 nm of 1.0 (Fig. 1b). Using non-targeted flow injection time-of-flight MS17, we detected 

8,961 ions of which 535 could be annotated based on accurate mass, corresponding to up to 1,071 

unique metabolites. For further analyses we considered only the 535 annotated ions and normalized 

all ion intensities to the values determined in cells not suffering from hyperosmotic stress, that is, 

grown in the presence of 50 mM NaCl. In total, 52% of the annotated ions changed abundance more 

than 2-fold between 50 mM NaCl and 500 mM NaCl (Supplementary Results, Supplementary 

Dataset 1), underlining the complexity and global dimension of the metabolic response to 

hyperosmotic stress. As expected, we found 40-fold increased intracellular concentrations of 

trehalose, the major osmoprotectant metabolite in E. coli (Fig. 1c). Glycine betaine and glutamate 

levels did not increase (Fig. 1c), confirming that these compounds are only used as osmoprotectants 

if available in the environment10. Moreover, we observed an over 10-fold decrease of various cyclic 

nucleotide monophosphate levels with increasing salt concentration (Fig. 1c), supporting the 

hypothesis that cAMP-based modulation of CRP activity triggers the E. coli response to osmotic 

stress18,19. 

To obtain an overview of the global metabolic response to osmotic stress, we performed 

unsupervised k-means clustering of all metabolite ion fold-changes over increasing salt 

concentration, specifying a number of 4 clusters (Fig. 2a). Cluster 1 contains 98 ions that decrease 
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with increasing salt levels. Cluster 2 contains 348 non-responsive ions without a clear trend. Cluster 3 

contains 24 ions that increase more than 100-fold with increasing salt levels. Cluster 4 contains 65 

moderately increasing (~30-fold) ions. Metabolic pathway enrichment analysis was performed to 

identify metabolically connected groups of compounds that correlated with salt levels in clusters 1, 3 

and 4 (Fig. 2b). The decreasing metabolites in cluster 1 were significantly enriched for nucleotide and 

amino acid biosynthesis, probably reflecting a lower demand for these biosynthetic precursors as an 

indirect consequence of the reduced growth rates at elevated salt levels. The moderately increasing 

metabolites in cluster 4 were mainly found in pathways for uptake and biosynthesis of carbohydrates 

such as starch, sucrose or galactose, consistent with the osmoprotective properties of sugars and 

other poly-hydroxylated compounds20. The strongly increasing metabolites in cluster 3 were 

significantly enriched in only four pathways, namely the phosphotransferase system, starch and 

sucrose metabolism, galactose metabolism, and ubiquinone/terpenoid quinone biosynthesis. 

Whereas the accumulation of carbohydrates was anticipated, the major increase in the 

concentrations of compounds participating in ubiquinone biosynthesis was entirely unexpected, and 

was not coupled to increased gene expression as shown by green fluorescence reporter assays with 

the ubiquinone biosynthesis genes ubiC, ubiE, ubiF, ubiG and ubiX (Supplementary Fig. 1) in 

agreement with previous gene expression data21. Essentially all intermediates in the ubiquinone 

biosynthetic pathway accumulated on average 40-fold, consistent with a high demand caused by the 

250-fold accumulation of the pathway end-product ubiquinone-8 (Q8) at high salt concentrations 

(Fig. 3a).  

Because the aqueous extraction procedure used in our metabolomics experiment was not 

optimal to capture lipids such as Q8, we extracted E. coli cells grown in isosmotic and hyperosmotic 

conditions with chloroform and methanol22 and measured lipid levels by flow injection MS17. In 

agreement with our previous metabolomics experiment, non-targeted lipidomics confirmed a 110-

fold salt-dependent increase in Q8 levels, the highest fold-change among all detected lipids, 

concomitant with an apparent decrease of shorter-chain isoprenoid lipids (Fig. 3b). We subsequently 
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quantified Q8 levels relative to the main E. coli membrane phospholipids diacyl-

phosphatidylethanolamine and diacyl-phosphatidylglycerol by MS using dilution series of commercial 

lipid standards as reference. Whereas under isosmotic conditions Q8 was below the quantification 

limit, its fraction increased to 1% (w/w) upon osmotic stress (Fig. 3c), implying that Q8 contributes 

substantially to the membrane lipid composition. Since to our knowledge Q8 accumulation in 

response to hyperosmotic stress has never been described, we investigated in the following whether 

it serves a functional role in osmotic stress tolerance. 

Q8 is necessary for osmotic stress tolerance in vivo 

Since Q8 can act as a radical scavenger23, we first wanted to exclude that its accumulation was 

due to oxidative stress, which has been postulated to be an indirect consequence of osmotic 

stress24,25. We therefore measured the levels of reactive oxygen species (ROS) at low and high salt 

concentrations in wild-type E. coli and a ∆ubiG deletion mutant that is unable to synthesize Q826. ROS 

levels were only marginally elevated under hyperosmotic conditions and were generally reduced in 

the ∆ubiG mutant (Supplementary Fig. 4a). Moreover, the ratio of the radical scavenger glutathione 

to its oxidized form did not decrease at higher salt levels (Supplementary Fig. 4b) and cells did not 

secrete oxidized glutathione to detectable levels, as one would expect if intracellular ROS increased 

with osmotic stress27. These results demonstrate that cells in our experiments did not suffer severely 

from oxidative stress, which is further corroborated by the accumulation of not only oxidized Q8 but 

also its reduced Q8H2 form (Fig. 3a). 

To confirm that the observed ubiquinone accumulation indeed contributes to resistance 

against sustained hyperosmotic stress and is not merely a side effect of a global stress response, we 

tested the salt sensitivity of the ∆ubiG deletion mutant. Indeed, the IC50 value of the ∆ubiG mutant 

for NaCl was drastically reduced compared to wild-type (Fig. 4a and b). Moreover, the decrease of 

the ∆ubiG mutant's salt tolerance was significantly more severe than in the ∆galU, ∆otsA and ∆otsB 

mutants that are unable to synthesize the major osmoprotectant trehalose12 (Fig. 4b). Thus, the 

presence of Q8 is necessary for resistance to osmotic stress. To exclude that the osmoprotective 
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effect is more trivially related to the known role of Q8 as a membrane-localized electron carrier in 

the respiratory chain28, we tested salt sensitivity of the wild-type strain and the ∆ubiG mutant during 

fermentative anaerobic growth where respiration is inactive. Since the anaerobic salt tolerance of 

both strains was unchanged compared to the aerobic condition (Fig. 4a and b), we can exclude 

respiratory chain interruption as the cause for increased salt sensitivity of the ∆ubiG mutant. The 

independence of osmotolerance from respiration is further corroborated by the finding that salt 

tolerance of the ∆ubiG mutant could be restored to nearly wild-type levels by extracellular addition 

of the human Q8 analog ubiquinone-10 (Q10) (Fig. 4a and b). Q10 cannot substitute Q8 as an 

efficient electron carrier in E. coli as judged by low growth rate of the Q10-supplemented ∆ubiG 

mutant in isosmotic conditions (Fig. 4a and b). Collectively, these experiments demonstrate that Q8 

is necessary for osmotic stress tolerance in E. coli and that this tolerance improvement cannot be 

explained by the so far known functions of Q8 as a radical scavenger or respiratory electron carrier.  

We hypothesized that Q8-mediated osmoprotection is caused by mechanical stabilization of 

the cytoplasmic membrane because Q10 with similar physicochemical properties can restore 

osmotolerance in a ∆ubiG mutant. The cytoplasmic membrane is involved in maintaining size and 

shape of bacterial cells and E. coli is known to passively decrease in volume upon hyperosmotic 

stress29. To elucidate whether the presence of ubiquinone affects cellular morphology upon an 

osmotic shock, we subjected wild-type E. coli as well as the ∆ubiG mutant and the ∆ubiG mutant 

supplemented with Q10 to different intensities of acute osmotic shock and analyzed cell morphology 

by microscopy within 5 minutes. Indeed, ∆ubiG cells were significantly smaller than wild-type and 

supplementation with Q10 increased the cell volume of the ∆ubiG mutant back to wild-type levels 

(Fig. 4c and d), indicating that the physical presence of Q8 in the membrane helps to prevent a strong 

volume decrease upon osmotic shock. From molecular dynamics simulations it is known that the 

ability of vesicles to resist mechanical forces decreases with increasing membrane surface area30, 

implying that larger cells require more stable cell envelopes to resist osmotic pressure. Thus, the 
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small-size morphotype of ∆ubiG mutants lacking the possibility to accumulate Q8 supports our 

hypothesis that Q8 is involved in mechanical membrane stabilization upon osmotic shock.  

Which moiety of the Q8 molecule is responsible for its osmoprotective properties? Q8 

consists of a decorated benzoquinone ring with an attached hydrophobic chain of eight isoprenyl 

subunits (Fig. 4e). To test whether the length of the polyprenyl chain influences the osmoprotective 

effect of ubiquinone, we cultivated the ∆ubiG mutant in the presence of different ubiquinones with 

zero (Q0), two (Q2), four (Q4) or ten (Q10) isoprenyl subunits and microscopically analyzed its 

morphology after a strong osmotic shock. A positive correlation was observed between post-shock 

cell size and polyprenyl chain length, but only Q10 restored wild-type cell size of the ∆ubiG mutant 

(Fig. 4f). Chain length-dependent morphotype restoration was also observed with different non-

quinone isoprenoids carrying a polar hydroxyl headgroup but was not successful with lycopene that 

lacks a polar headgroup (Supplementary Fig. 5). This implies that a polar headgroup is necessary for 

osmoprotection by isoprenoids in vivo but that the chemical nature of this headgroup is of secondary 

importance. We conclude that osmoprotection by ubiquinones is conveyed by the octaprenyl chain 

and not by the benzoquinone moiety, and that chains of sufficient length are required for wild-type 

osmotolerance. This finding is consistent with previous in vitro data showing that the polyprenyl 

chain length of ubiquinones influences melting profile and surface pressure of artificial phospholipid 

membranes31,32. Further circumstantial evidence for our conclusion that Q8 mechanically stabilizes 

the cytoplasmic membrane of E. coli comes from the fact that membranes of halotolerant and 

halophilic archaea are almost exclusively composed of lipids with saturated isopranyl side chains33, 

which are known to be crucial for their survival in extreme saline environments34,35.  

Q8 improves stability of artificial liposomes 

To directly test whether ubiquinone improves the mechanical stability of lipid membranes rather 

than properties of membrane-associated proteins, we prepared protein-free artificial liposomes with 

different Q10 contents and subjected them to acute hyperosmotic stress by increasing the osmolality 

of the external buffer within 1 second (Fig. 5). Whereas 1% (w/w) Q10 did not markedly improve 
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liposome stability, a concentration of 5% (w/w) Q10 allowed most liposomes to withstand a strong 

osmotic shock with 1M NaCl. Liposomes without Q10 started to disintegrate already at 300 mM NaCl 

and were almost completely destroyed at 500 mM NaCl. Liposome stability was also enhanced by the 

non-quinone isoprenoids solanesol and lycopene (Supplementary Fig. 6), confirming that it is the 

polyprenyl moiety of Q10 and not its benzoquinone headgroup that conveys osmoprotection. The 

observation that lycopene has an osmoprotective effect on liposomes but not on living cells could 

potentially be explained by different membrane assembly mechanisms that are enzymatically 

regulated in vivo in contrast to spontaneous formation occurring in vitro. Thus, these results 

demonstrate that the presence of Q10 is sufficient to increase the osmotic stress resistance of lipid 

membranes and that this effect can occur independently of membrane proteins. We therefore 

conclude that Q8 contributes to osmoprotection in E. coli by mechanically stabilizing its cytoplasmic 

membrane.  
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Discussion 

 

In this study, we investigated the global metabolic response of E. coli to sustained hyperosmotic salt 

stress using non-targeted metabolomics, and unexpectedly found the respiratory electron carrier Q8 

as the by far most accumulated metabolite. Data of deletion mutants defective in Q8 biosynthesis 

demonstrated the presence of Q8 to be essential for osmotic stress tolerance. The known roles of Q8 

in the respiratory chain or as a radical scavenger cannot explain its beneficial effect because i) salt 

sensitivity under anaerobic conditions was unchanged and ii) salt tolerance can be restored by the 

addition of Q8 analogs that are not efficiently used for respiration in E. coli. This independence of Q8 

osmoprotection from respiration is further supported by previously reported unchanged trans-

membrane proton gradient and respiratory activity during osmotic stress36. Instead, we demonstrate 

through in vitro experiments with protein-free artificial liposomes and through in vivo morphotyping 

that Q8 enhances membrane stability, strongly suggesting a causal link between Q8 accumulation 

and osmotic stress resistance by direct stabilization of the cytoplasmic membrane. Because Q8 

accumulated to up to 1% of main membrane lipids in vivo whereas liposome stabilization required at 

least 5% Q10 content, we cannot exclude that Q8 accumulation might additionally improve function 

or stability of membrane proteins by direct interactions with their membrane-localized domains37 or 

by molecular crowding14,38, or alter bioenergetic membrane properties by reducing sodium ion 

leakage39. 

Our summarized findings lead us to propose the following model of Q8-mediated 

osmoprotection in E. coli (Supplementary Fig. 7). Upon exposure to conditions of osmotic stress and 

apparently independent of transcriptional regulation, a yet unknown regulatory mechanism triggers 

the accumulation of Q8 to up to 1% of total membrane lipids. The Q8 molecule has been shown to 

reside flat in the center of the lipid bilayer32,39, implying that the observed substantial accumulation 

of Q8 would increase the hydrophobic thickness of the cytoplasmic membrane. Intriguingly, such an 

effect has already been observed in vitro with the isoprenoid zeaxanthin, of which concentrations 
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between 1% and 10% increased the hydrophobic thickness of artificial lipid bilayer membranes40. 

Furthermore, the branched methyl groups of the octaprenyl moiety may interconnect the lipids 

within and between the monolayer leaflets by interacting with their phospholipid side chains, thus 

increasing membrane stability. Together, these mechanisms would make the cytoplasmic membrane 

more resistant to forces imposed by osmotic pressure41. 

 Since the cytoplasmic membranes of archaea that are able to resist harsh environmental 

conditions consist mainly of isopranoid lipids33, it is tempting to speculate that transient or 

permanent stabilization of biological membranes through isoprenoids may be an ancient and well-

conserved property. Unlike Q8, archaeal membrane lipids are generally saturated, contain ether 

bonds and are, in some cases, bipolar35. Nevertheless, the overall structural and chemical similarity 

between Q8 and archaeal isopranoid lipids and our finding that isoprenoids with different 

headgroups can substitute for Q8 in restoring osmotolerance both in vitro and in vivo support our 

conclusion that increased concentrations of Q8 indeed stabilize membranes. To our knowledge, this 

is the first report that a bacterium actively enhances the mechanical stability of its cytoplasmic 

membrane by ubiquinone accumulation to withstand osmotic stress. Should these findings extend 

beyond E. coli to other species and possibly other membrane-related stresses, it might be a 

promising approach to target stress-induced ubiquinone accumulation for the treatment of 

infectious and other diseases. For instance, recent studies have found that human patients suffering 

from nephrotic syndrome displayed reduced Q10 levels42, and a mutation in a Q10 biosynthetic 

enzyme in mice caused pathological symptoms similar to Parkinson’s disease43. Finally, induction of 

Q8 accumulation by elevated salt levels might be an effective strategy for the biotechnological 

production of this or related compounds44.  
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Figure legends 

 

Figure 1 | Analysis of the salt-induced metabolic changes in E. coli by mass spectrometry. (a) 

Maximum exponential growth rates of wild-type E. coli BW25113 in glucose mineral medium 

supplemented with increasing salt concentrations. The half-maximal inhibitory concentration (IC50) 

was calculated by fitting a Hill-type model to the data (solid line). Data points and error bars 

represent mean and standard deviation of three biological replicates. Blue circles indicate salt 

concentrations used in the subsequent metabolomics experiment. (b) E. coli was cultivated in glucose 

mineral medium with the indicated salt concentrations until an optical density of 1.0. Intracellular 

metabolites were extracted from four biological replicates with hot water and measured in technical 

duplicates by non-targeted flow injection time-of-flight MS17. (c) Effect of increasing salt 

concentration in the growth medium on selected intracellular metabolites in exponentially growing 

E. coli. Compounds were annotated as [M-H+] derivatives with 0.001 Da mass tolerance, and levels 

were normalized to the 50 mM NaCl values. Data points and error bars represent mean and standard 

deviation of four biological and two technical replicates (n = 8).  aAmbiguous sum formula, see 

Supplementary Dataset 2 for alternative annotations. 

 

Figure 2 | The global metabolic response of E. coli to hyperosmotic stress. (a) K-means clustering of 

the log-transformed annotated ion responses normalized to the 50 mM NaCl condition. A number of 

k = 4 clusters was specified and ions were assigned to the clusters based on squared Euclidean 

distance. The ions in the strong response cluster 3 were re-clustered based on correlation with k = 2, 

giving clusters 3a (response already at low NaCl levels) and 3b (response only at higher NaCl levels). 

The black line represents the centroid of each cluster, and n is the number of ions. (b) Metabolic 

pathway enrichment analysis of clusters 1, 3, 3a, 3b and 4 of the k-means clustering shown in (a), 

sorted by hierarchical clustering based on p-values. Pathway definitions from KEGG specific for E. coli 
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were used45, and the statistical significance of each enriched pathway was calculated with a 

hypergeometric test with a threshold of p < 0.0001. For each pathway, both the p-value and the 

average fold change of the respective metabolites are represented by color intensity. 

 

Figure 3 | The ubiquinone pool and its precursors increase upon osmotic stress. (a) Points and error 

bars represent mean and standard deviation of indicated metabolites in four biological and two 

technical replicates (n = 8). Curves are colored according to the cluster membership of each 

metabolite in the k-means clustering (see Fig. 2). Compounds were annotated as electrospray 

derivatives with 0.001 Da mass tolerance. aAmbiguous sum formula, see Supplementary Dataset 2 

for alternative annotations. bAdditional evidence for annotation by MS/MS fragment ion spectra 

(Supplementary Fig. 2). cCompound previously not identified in E. coli. (b) Response of detected 

phosphatidyl and prenyl lipids to hyperosmotic stress. Compounds highlighted in bold are 

intermediates in the ubiquinone-8 biosynthesis pathway. Phospholipids nomenclature: PA, 

phosphatidic acid; PS, phosphatidylserine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; 

PME, phosphatidylmethylethanolamine; digits preceding the colon, number of carbon atoms in the 

acyl side chains; digits following the colon, number of double bonds in the acyl side chains. Octa-

PMeOHMoBQ, 2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone. *, ** and *** 

indicate p-values (two-sided t-test) of < 0.05, < 0.01, < 0.001, respectively. Complete data and p-

values are presented in Supplementary Dataset 3. (c) Ratios of indicated lipids in E. coli grown with 

50 mM NaCl and 450 mM NaCl, inferred from absolute quantification using lipid standards and 13C-

labeled internal metabolite standard for matrix effect correction. PE and PG together typically 

account for ~95% of all E. coli membrane lipids46. Calibration curves and details to lipid quantification 

are presented in Supplementary Fig. 3.  
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Figure 4 | Ubiquinone is required for osmotic stress tolerance in vivo. (a) Open symbols and error 

bars represent mean and standard deviation of two replicates of each of two independently 

constructed mutants (n = 4), closed circles the calculated IC50 values and lines the best fit of a Hill-

type model to the data. ∆ubiG + Q10 is the ∆ubiG mutant supplemented with 0.2 µM Q10. (b) IC50 

values from panel (a). tre
- indicates the mean and standard deviation of the IC50–values of ∆galU, 

∆otsA and ∆otsB mutants unable to synthesize trehalose. p indicates statistical significance (left-tail 

t-test). (c) Cell volume V and sphericity S after osmotic shock were determined by microscopy. ∆ubiG 

+ Q10 is the ∆ubiG mutant supplemented with 20 µM Q10. Data points and error bars represent 

mean and standard deviation of data from at least 15 cells. Starred values indicate statistical 

significance (p < 0.05, left-tail t-test). (d) Micrographs of E. coli cells after osmotic shocks. (e) 

Ubiquinones used in this study. (f) Cell volumes of wt and the ∆ubiG mutant grown in presence of 20 

µM of ubiquinones with different polyprenyl chain lengths, determined after an acute osmotic shock 

with 800 mM NaCl. Open triangles and error bars represent mean and standard deviation of data 

from at least 15 ∆ubiG cells. The horizontal dashed line and shaded area represent mean and 

standard deviation of wild-type cell volume (n = 23). Starred values indicate significantly smaller cell 

size than wild-type (p < 0.05, left-tail t-test). 

 

Figure 5 | Ubiquinone enhances the stability of artificial liposomes. (a) Light microscopy images of 

artificial liposomes containing 0% (w/w) Q10 (upper panels) or 5% (w/w) Q10 (lower panels) in the 

lipid mixture after no osmotic shock (left panels) or a strong osmotic shock with 1000 mM NaCl (right 

panels). In each panel, fluorescence of the liposome-localized lipid dye FM1-43, bright field images 

(BF), merged images as well as a 10x zoom into the indicated region of the merged image showing a 

representative particle are shown. Note that the overall liposome formation efficiency was 

considerably enhanced by the presence of Q10. (b) Method of assessing liposome intactness after 

osmotic shock. Particles in the microscopy images were detected and classified into liposomes or 

debris by fitting the shown model images. If the circular shape achieved the best fit particles were 
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classified as liposomes, whereas if either of the straight lines achieved the best fit particles were 

classified as debris. The quality of each fit was assessed by root-mean-square deviation (RMSD) 

between particles and model images. (c) Fractions of liposomes with different Q10 contents 

(percentage values refer to weight-%) resisting acute osmotic shocks with indicated NaCl 

concentrations. An average of 58 and not less than 15 particles were analyzed per condition. 

Liposome stability was also enhanced by non-quinone isoprenoids (Supplementary Fig. 6). 
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Online methods 

 

Metabolomics. E. coli BW25113 was aerobically cultivated in M9 mineral medium containing 

7.52 g Na2HPO4�2H2O, 3 g KH2PO4, 0.5 g NaCl, 2.5 g (NH4)2SO4, 14.7 mg CaCl2�2H2O, 246.5 mg 

MgSO4�7H2O, 16.2 mg Fe(III)Cl3�6H2O, 180 μg ZnSO4�7H2O, 120 μg CuCl2�2H2O, 120 μg MnSO4�H2O, 

180 μg CoCl2�6H2O and 1 mg thiamine�HCl per liter of deionized water, supplemented with 4 g/L 

glucose as carbon source as well as different NaCl concentrations (50, 100, 200, 300, 400, and 500 

mM). All these and subsequently mentioned compounds were obtained from Sigma Aldrich (St. 

Louis, MO, U.S.A.) at the highest available purity (typically ≥95%). Culture volume was 1 mL in deep 

96-well plates, temperature was 37° C and agitation was 300 rpm on an orbital shaker. Four 

independent cultures per NaCl concentrations were grown until reaching an optical density at 600 

nm of 1.0 Cells were then harvested by centrifugation (5 min, 0° C, 4,500 rcf) and intracellular 

metabolites were extracted by adding 150 µL of deionized water heated to 80° C for 10 min. Debris 

were removed by centrifugation, and samples were analyzed by flow-injection time-of-flight MS with 

an Agilent 6550 QToF instrument (Agilent, Santa Clara, CA, U.S.A.) operated in negative ionization 

mode at 4 GHz high-resolution in a range from 50-1,000 m/z using published settings17. The mobile 

phase was 60:40 isopropanol:water (v/v) and 1 mM NH4F at pH 9.0 supplemented with 10 nM 

hexakis(1H, 1H, 3H- tetrafluoropropoxy)phosphazine and 80 nM taurocholic acid for online mass 

correction. Spectral processing and ion annotation based on accurate mass within 0.001 Da using the 

KEGG eco database45 as reference and accounting for [M-H+], [M+F-], [.H/Na M-H+] and [H/Na M+F-] 

ions were performed using Matlab R2012b (The Mathworks, Nattick, MA, U.S.A.) as described 

previously17.  

Lipidomics. Lipids were extracted from exponentially growing E. coli BW25113 cells at OD600 = 1.0 

using a two-step extraction procedure with 17:1 CHCL3:methanol (v/v) for non-polar and 2:1 

CHCL3:methanol (v/v) for polar lipids as described previously22. Extracted lipids from 413 mg dry cell 

weight were vacuum-dried, resuspended in 1:1 acetonitrile:methanol, spiked with fully 13C-labeled E. 
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coli extract for matrix effect correction and analyzed by flow-injection MS as described previously17. 

Absolute concentrations were inferred from 12C/13C ratios of respective lipids using a calibration 

curve of lipid standards processed in the same way (Supplementary Fig. 3).  

Compound identification by MS/MS. MS/MS spectra were acquired on an Agilent 6550 QTOF 

mass spectrometer operated in negative ionization mode, with instrument settings as described 

previously17. Precursor ions of selected compounds were targeted as [M-H+] electrospray derivatives 

with a window size of ± 2 m/z in Q1. Fragmentation of the precursor ion was performed by collision-

induced dissociation at 40 eV collision energy. Fragment ion spectra were recorded in scanning mode 

by high-resolution TOF MS. Peaks with intensity of at least 10% of the highest non-saturated peak 

intensity in the MS/MS spectra were extracted and matched with compounds in the PubChem 

database using MetFrag47. A top rank of the target compound among all matching compounds in the 

database was considered as further evidence for the initially proposed annotation based on accurate 

mass. 

Unsupervised data analysis. All steps of data analysis were performed using Matlab R2012b. K-

means clustering was performed on all 535 annotated ions over salt concentration using the squared 

Euclidean distance metric. A number of k = 4 clusters was specified to capture broad classes of salt-

dependent changing ions. Metabolic pathway enrichment analysis was based on KEGG pathway 

definitions45 using only pathways occurring in E. coli. For each pathway, we first counted how many 

metabolites were present in the respective k-means cluster and secondly computed the 

hypergeometric probability of the enrichment (hygepdf function in Matlab) as described previously48. 

All non-significantly enriched pathways with P ≥ 0.0001 were not considered. 

Growth physiology experiments. E. coli BW25113 and its respective deletion mutants were 

obtained from the KEIO collection49, and always both independent clones were analyzed to rule out 

genetic errors. Growth medium always was glucose M9 mineral medium supplemented with 

different concentrations of NaCl or ubiquinone-10 (Sigma Aldrich, C9538, ≥98% purity) where 
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indicated. Growth was monitored by cultivating cells in 200 µL medium shaking at 37° C in a TECAN 

Infinite M200 plate reading instrument (TECAN Group, Männedorf, Switzerland) and measuring the 

absorbance at 600 nm every 10 min over a period of at least 24 h. 

ROS assay. Intracellular ROS levels were measured using the dihydroethidium (DHE) assay as 

described previously50. Briefly, preculture cells were grown in glucose M9 mineral medium with the 

indicated salt concentrations until reaching an optical density of 1.0 in mid-exponential phase. 100 µL 

of this culture were transferred to a 96-well plate and mixed with 100 µL of pre-warmed fresh 

medium containing 20 µM of DHE (Sigma Aldrich, product code D7008, ≥95% purity). Cells were 

subsequently incubated at 37° C for 5 h to allow uptake and eventual oxidation of DHE by ROS. DHE 

oxidation was measured by fluorescence (excitation wavelength: 485 nm; emission wavelength: 595 

nm) using a TECAN Infinite M200 plate reading device. Background fluorescence from sterile medium 

containing 10 µM DHE was subtracted from the sample values. 

Morphotyping experiments. Cells were grown at 37° C in M9 glucose medium supplemented 

with 20 µM 2,3-Dimethoxy-5-methyl-p-benzoquinone (Q0, Sigma Aldrich, D9150, ≥95% purity), 

ubiquinone-2 (Q2, C8081, ≥90%), ubiquinone-4 (Q4, C2470, ≥90%), ubiquinone-10 (Q10, C9538, 

≥98%), geraniol (163333, ≥98%), farnesol (F203, ≥95%), solanesol (S8754, ≥90%) or lycopene (L9879, 

≥90%) when indicated until mid-exponential growth phase (OD600 = 1.0 ± 0.2). 5 µL of cell suspension 

were transferred to borosilicate microscopy slides, and 5 µL of buffer (10 mM TrisHCl pH 7.4 

supplemented with different NaCl concentrations) were added to reach indicated osmotic shock 

strengths. Cell imaging by microscopy and image analysis were performed as described below. 

Preparation of artificial liposomes. Liposomes were prepared from a lipid mixture containing 

45% phosphatidylcholine (Sigma Aldrich, P3556, ≥99% purity), 25% phosphatidylethanolamine 

(P8068, ≥98%), 20% phosphatidylinositol (P6636, ≥50%) and 10% phosphatidic acid (P9511, ≥98%), 

with ubiquinone-10 (C9538, ≥98%), solanesol (S8754, ≥90%) or lycopene (L9879, ≥90%) replacing the 

other lipids as indicated. The lipid mixture contained 0.02% of the fluorescent lipid dye FM1-43 
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(SynaptoGreen, Sigma Aldrich, S6814, ≥95%). All percentage values refer to weight-%. Overall, the 

lipid composition thus was representative for a biological lipid bilayer membrane. Liposomes were 

prepared using a solvent evaporation - rehydration approach published previously51. The liposome 

formation buffer contained 5 mM Tris Base, 30 mM K3PO4, 30 mM KH2PO4, 1 mM MgSO4, 0.5 mM 

EDTA, 1% glycerol, and pH was adjusted to 7.8 with KOH. Liposomes of 1 mg/mL total lipids were 

allowed to form for 5 min on borosilicate microscope slides, and subsequently formation buffer 

supplemented with NaCl was added to reach the indicated external salt concentrations.  

Fluorescence microscopy and image analysis. Microscopy of artificial liposomes and living E. coli 

cells was performed within 5 min after NaCl addition using a Nikon Eclipse Ti inverted 

epifluorescence microscope equipped with a CoolLED PrecisExcite light source and a Nikon 60x oil 

immersion objective providing a total magnification of 600-fold. Filters used for fluorescence imaging 

of FM1-43 were 470 ± 40 nm (excitation) and 525 ± 50 nm (emission), respectively, and exposure 

time was set to 2.5 s. Image acquisition and basic analysis (brightness and contrast optimization, 

image sharpening) were performed using µManager52 and ImageJ53, respectively. For the liposome 

experiment, detection and classification of particles larger than 100 pixels was performed using 

Matlab. To each detected particle five prototypic image patterns were fitted (shown in Fig. 5), and 

the root-mean-square deviation (RMSD) of each fit was computed. The image with lowest RMSD was 

used to classify the particle into liposome (in case the circular shape fit had lowest RMSD) or debris 

(in case one of the four straight lines had lowest RMSD). Particles with RMSD > 0.3 (usually several 

liposomes in very close proximity or U-shaped debris leading to false classification) were re-classified 

by visual inspection. At least 15 and on average 58 particles were classified for each experimental 

condition. For cell volume determination, bright-field images of cells were acquired using a Nikon 

100x oil immersion objective providing a total magnification of 1,000-fold. The geometry and volume 

of individual cells was calculated by assuming cylindrical shape and measuring cell length and 

diameter based on a 10 µm micro-ruler. At least 15 cells per condition were analyzed. 
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Statistical analysis. Statistical analysis of data was performed using Matlab R2012b and functions 

embedded in the Bioinformatics and Statistics toolboxes. The types of statistical tests used and the 

returned P-values are indicated when referring to these tests.  
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