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Abstract

Canonical Wnt signaling is controlled intracellularly by the level of b-catenin protein, which is dependent on Axin
scaffolding of a complex that phosphorylates b-catenin to target it for ubiquitylation and proteasomal degradation. This
function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-
activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation
(PARsylation), which destabilizes Axin and promotes signaling. Mechanistically, how tankyrase limits Axin protein
accumulation, and how tankyrase levels and activity are regulated for this function, are currently under investigation. By
RNAi screening, we identified the RNF146 RING-type ubiquitin E3 ligase as a positive regulator of Wnt signaling that
operates with tankyrase to maintain low steady-state levels of Axin proteins. RNF146 also destabilizes tankyrases TNKS1 and
TNKS2 proteins and, in a reciprocal relationship, tankyrase activity reduces RNF146 protein levels. We show that RNF146,
tankyrase, and Axin form a protein complex, and that RNF146 mediates ubiquitylation of all three proteins to target them
for proteasomal degradation. RNF146 is a cytoplasmic protein that also prevents tankyrase protein aggregation at a
centrosomal location. Tankyrase auto-PARsylation and PARsylation of Axin is known to lead to proteasome-mediated
degradation of these proteins, and we demonstrate that, through ubiquitylation, RNF146 mediates this process to regulate
Wnt signaling.
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Introduction

Wnt signaling is a fundamental morphogenetic pathway of

metazoans that is deployed in diverse settings throughout

development to regulate processes such as cell fate specification,

stem cell regeneration, and neuronal migration [1]. Wnt signaling

can become deregulated through multiple mechanisms to produce

cancer or other diseases, particularly colorectal cancer for which

APC or b-catenin is mutated in approximately 95% of tumors [2].

Consequently, many mechanisms have evolved to control the

level, activity, and subcellular localization of multiple Wnt

pathway components [3]. For example, Wnt ligands and their

access to receptors of the FZD family and coreceptors LRP5 and

LRP6 are modulated by decoy receptors, such as SFRP1, and by

heparan sulfate proteoglycans, such as glypicans. Intracellularly,

the best characterized mode of Wnt signaling regulation is the

degradation of b-catenin by a protein complex that includes Axin

and APC. This complex mediates the phosphorylation of b-

catenin by CK1 and GSK3, which then signals b-catenin

ubiquitylation by the SCFb-TrCP complex to target b-catenin to

the proteasome for proteolysis.

Axin protein, present in two isoforms, appears to be the most

quantitatively limiting component of the b-catenin degradation

complex [4,5]. When Wnts engage their receptors, LRP5/6 is

phosphorylated and recruits Axin into the receptor complex at the

plasma membrane, where GSK3 bound to Axin becomes

inactivated, thus preventing b-catenin degradation [6]. The

critical role of Axin in controlling b-catenin levels and Wnt

signaling is reflected in the multiple mechanisms of regulating Axin

protein abundance in cells. AXIN2 is a direct transcriptional

target of TCF/LEF transcription factors, thus generating a

negative feedback loop whereby Wnt signaling increases AXIN2

mRNA, and consequently protein, levels to ultimately downreg-

ulate b-catenin [7]. In contrast, AXIN1 is part of a positive

feedback mechanism for Wnt signaling since signaling destabilizes

AXIN1 protein [8]. In this mechanism, since AXIN1 phosphor-

ylation by GSK3 normally stabilizes AXIN1 protein, Wnt-induced

GSK3 inactivation destabilizes AXIN1. More recently, the
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poly(ADP-ribose) polymerase (PARP) tankyrase was shown to

poly(ADP-ribosyl)ate (PARsylate) AXIN1 and AXIN2 proteins to

mediate their proteasomal degradation [9]. Small-molecule

inhibitors of tankyrases TNKS1 and TNKS2 can downregulate

Wnt signaling, and they also block the accumulation of

ubiquitylated Axin upon proteasome inhibition. The ubiquitin

E3 ligase SMURF2 also has been reported to ubiquitylate and

degrade Axin [10].

Ubiquitylation is a fundamental mechanism for regulating the

stability, interaction, and subcellular localization of many proteins,

thereby controlling the activity of signaling pathways [11].

Ubiquitin molecules in polyubiquitin chains can be linked to each

other through any one of seven Lys residues (or through the N-

terminus), and this linkage type, or mixture of linkage types, can

specify the fate of the attached protein. K48- or K11-linked

polyubiquitin predominantly targets proteins for degradation by

the 26S proteasome, whereas K63 linkage typically mediates

protein-protein interactions or targets proteins for lysosomal

degradation. Ubiquitin E3 ligases confer the substrate specificity

of ubiquitylation by binding both the substrate and an ubiquitin-

conjugating E2 enzyme, facilitating the transfer of ubiquitin from

E2 to substrate. There are more than 600 human E3 ligases, and

the largest structural class contains a RING domain that binds an

E2. Together, the E2-E3 pair specifies the ubiquitin linkage type

synthesized [12].

PARsylation can also control the function and localization of

some proteins, and there are 17 human PARP family members,

including TNKS1 and TNKS2 [13]. For example, tankyrase

PARsylates TRF1 protein to inhibit its binding to telomeres, and

this allows telomerase to access and lengthen telomeres [14].

Tankyrase-mediated PARslyation may sometimes be linked to

ubiquitylation and protein degradation, as mentioned above for

the apparent role of tankyrase in promoting the ubiquitylation and

proteasome targeting of Axin [9]. Release of PARsylated TRF1

from telomeres results in TRF1 degradation by the proteasome

[15]. Also, inhibition of tankyrase activity with a small-molecule

inhibitor suggests that auto-PARsylation can translocate tankyrase

from epithelial cell lateral membranes into the cytoplasm for

ubiquitylation and proteasomal degradation [16].

In this report, we identify the E3 ligase RNF146 as a positive

regulator of Wnt signaling that ubiquitylates and destabilizes Axin

and tankyrase. We also show that tankyrase PARsylation activity

reciprocally destabilizes RNF146 protein. Both RNF146 and auto-

PARsylation activity also prevent tankyrase aggregation at a

centrosomal location. Our results suggest that RNF146, tankyrase,

and Axin form a complex in which ubiquitylation and PARsyla-

tion of all three proteins mediate their proteasomal degradation.

Results

RNF146 is a Positive Regulator of Wnt Signaling
To identify new genes mediating Wnt signaling, we screened

653 siRNA pools targeting the complete set of predicted ubiquitin

E3 ligases, as well as a small group of zinc finger proteins of

unknown function. The screen was conducted in a HEK293 cell

line stably expressing different luciferase reporters driven by either

TCF binding sites or the SV40 promoter, and purified Wnt3a

protein was used to stimulate signaling [17]. A Z-score cutoff of -

1.65 was used to identify the top 5.7% of screen hits (37 targeted

genes) that reduce Wnt reporter activity (normalized to SV40

reporter activity), and these hits were further limited to 26 genes

that did not significantly affect SV40 luciferase activity (Z-score

less than 1.7; Figure 1A). When individual siRNAs were tested,

four genes, including RNF146, showed at least 3 of 4 siRNAs

producing greater than two-fold reduction of Wnt signaling in

HEK293 cells (Figure 1B and Table S1). Doxycycline-inducible

RNF146 miRNA expression also inhibits Wnt signaling, and this

effect is rescued by RNF146 overexpression (Figure 1C). We tested

RNAi of these genes for effects on endogenous Wnt target gene

expression in PA-1 teratocarcinoma cells, which display autocrine

Wnt signaling [18], and found that multiple siRNAs for only

RNF146 inhibit expression of Wnt-activated genes GAD1 and

SAX1, as well as enhance expression of Wnt-repressed genes

LEFTY1 and LEFTY2 (Figure 1D).

RNF146 Destabilizes Axin and Cooperates with Tankyrase
To define the level in the Wnt pathway at which RNF146

functions, we stimulated signaling by overexpressing Wnt

coreceptor LRP6 or a constitutively active form of LPR6 in

HEK293 cells [19], and found that RNF146 siRNAs reduce

signaling (Figure 2A). RNF146 RNAi also inhibits Wnt3a-

stimulated b-catenin stabilization (Figure 2B) and, at least in the

absence of Wnt induction, promotes b-catenin phosphorylation at

sites that mediate its degradation (Figure 2C). We next examined

the effects of RNF146 RNAi on proteins that act in the Wnt

pathway between LRP6 and b-catenin, and found that AXIN1

and AXIN2 steady-state levels are dramatically increased, whereas

total and phospho-GSK3a and -GSK3b levels are not altered

(Figure 2C). RNF146 functions to destabilize Axin with or without

induction of signaling by Wnt3a (Figure 2C), and this appears to

be a post-transcriptional effect, since RNAi does not increase

AXIN1 or AXIN2 mRNA (Figure 2D).

Since tankyrases TNKS1 and TNKS2 also positively regulate

Wnt signaling by destabilizing Axin [9], we compared the effects of

RNF146 and tankyrase RNAi in HEK293 cells. The level of Wnt

signaling inhibition (Figure 3A) and AXIN1 or AXIN2 stabiliza-

tion (Figure 3B) are similar for RNAi of RNF146 (lanes 1 and 2),

tankyrases (both TNKS1 and TNKS2; lanes 5 and 6), or the

combination of RNF146 and tankyrases (lanes 9 and 10),

suggesting that RNF146 and tankyrase function together in a

linear pathway rather than in parallel pathways that might have

additive effects. This result is particularly evident in the presence

of AXIN1 RNAi to enhance Wnt3a stimulation and limit the

inhibitory effects of RNF146 and tankyrase RNAi to that resulting

from only AXIN2 stabilization (Figure 3A), since AXIN1

stabilization is blocked by AXIN1 RNAi (Figure 3B, lanes 3, 4,

7, 8, 11, and 12). Surprisingly, we found that RNF146 RNAi also

increases TNKS1 and TNKS2 protein levels (Figure 3C and S1).

Just as for Axin destabilization, RNF146 destabilizes tankyrases

independent of Wnt stimulation (Figure 3C) and at a post-

transcriptional level (Figure S2). Proteasome inhibition can also

stabilize tankyrase proteins, though less strongly than RNF146

RNAi (Figure S1). Temporally, effects on Axin, tankyrase, and b-

catenin proteins coincide such that induction of RNF146 RNAi

maximally stabilizes Axin and tankyrase proteins by 48 h, the

same time at which enhanced b-catenin phosphorylation becomes

apparent, and 24 h after RNF146 protein levels begin to decline

(Figure 3C).

We generated an antibody against RNF146 protein, and show

that tankyrase also destabilizes RNF146 protein. Combined

TNKS1 and TNKS2 RNAi increases RNF146 steady-state

protein levels (Figure 3B, lanes 5 and 6), but does not affect

RNF146 mRNA levels (Figure S2). Tankyrase-mediated degrada-

tion of RNF146 protein is independent of Wnt stimulation in

HEK293 cells (Figure 3B, lane 5) and requires the catalytic activity

of tankyrases, since the IWR-2 small-molecule inhibitor of TNKS1

and TNKS2 [9,20] also stabilizes RNF146 protein in a dose-

RNF146 Regulates Tankyrase and Wnt Signaling
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Figure 1. RNF146 positively regulates Wnt signaling. (A) Scatter plot of Z-scores for the RNAi screen of human E3 ligase siRNA pools in Wnt3a-
stimulated HEK293 cells stably expressing dual luciferase reporters [17]. Z-scores on the y axis represent TOPbrite Wnt reporter values normalized to
SV40 reporter values. Positively and negatively regulating siRNA pools that deviate from the Z-score cut-off lines are shown in green and red,
respectively, by gene name. Control siRNAs targeting CTNNB1 (b-catenin), LRP6 and APC, as well as control wells not induced with Wnt3a protein, are
depicted in blue but were excluded from the distribution analysis. SV40 reporter values are plotted to the right, with outliers deviating from the
normal distribution listed in gray on both graphs. (B) RNF146 RNAi by transient transfection of four individual and pooled siRNAs in HEK293 cells
showing inhibition of the Wnt3a response (red) and lack of nonspecific effects on uninduced (blue) reporter activity. Inhibition by LRP6 and b-catenin

RNF146 Regulates Tankyrase and Wnt Signaling
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dependent manner similar its stabilization of Axin protein

(Figure 3D).

Overexpression of TNKS2 in HEK293 cells induces Wnt

signaling in the absence of ligand, and also enhances signaling

stimulated by Wnt3a protein (Figure 3E). In contrast, RNF146

overexpression does not affect signaling with or without Wnt3a

stimulation, but it does further potentiate signaling in combination

with TNKS2 overexpression. Combined overexpression of

RNF146 and TNKS2 also reduces Axin protein levels

(Figure 3F, lanes 23 and 24).

RNF146 is a predicted ubiquitin E3 ligase that contains a RING

domain, presumably binding E2 ubiquitin conjugating enzymes,

and a WWE domain [21], putatively binding to substrates

(Figure 3G). Expression of mutant forms of RNF146 that either

delete the RING domain (DRING) or replace the putative zinc-

coordinating His53 with Ala (H53A) partially suppresses signaling

in Wnt3a-stimulated HEK293 cells (Figure 3E) and stabilize Axin

and tankyrase proteins with or without Wnt3a induction

(Figure 3F, lanes 9, 10, 17, and 18, and 3H). The dominant-

negative effects of these mutant RNF146 transgenes on Wnt

Figure 2. RNF146 acts in the Wnt pathway at the level of Axin protein destabilization. (A) Effects of individual RNF146 (red) and control
(blue) LRP6, b-catenin, or non-targeting siRNAs on Wnt reporter activity in HEK293 cells stably expressing TOPbrite and SV40 reporters, and transiently
transfected with expression construct for either wildtype LRP6 or a constitutively active LRP6 with the extracellular domain deleted (deltaN). (B) Western
analysis of the effects of individual RNF146 siRNAs on b-catenin stabilization induced by Wnt3a (+) in HEK293 cells. LRP5 and LRP6 siRNAs are used as
negative and positive controls, respectively, since Wnt signaling in HEK293 cells depends on LRP6 and not LRP5 [17]. b-catenin siRNA indicates that the
higher molecular weight band in the panel corresponds to b-catenin protein. Clathrin heavy chain immunoblotting was used as a gel loading control. (C)
Western analysis of AXIN1, RNF146, b-catenin phosphoshorylated on Ser33, Ser37, and Thr41, and active GSK3a/b auto-phosphorylated on Tyr279/216
after transfection of individual RNF146 siRNAs in HEK293 cells with (+) or without (2) Wnt3a stimulation. b-catenin and AXIN1 RNAi confirm the
specificity of the antibodies. GAPDH was used as a loading control. (D) qRT-PCR analysis of AXIN1, AXIN2, and RNF146 mRNA after transfection of
individual RNF146 siRNAs in HEK293 cells. Note that AXIN2 expression is weakly induced by Wnt3a (red), and this response is regulated by the RNAi
treatments.
doi:10.1371/journal.pone.0022595.g002

siRNAs, and activation by AXIN1 and AXIN2 siRNAs, are shown as controls. Error bars in this and all figures represent the standard deviation of at least
three replicate samples. (C) RNF146 RNAi in HEK293T cells stably expressing doxycycline (Dox)-inducible miRNA targeting RNF146, and transiently
transfected with TOPbrite Wnt luciferase reporter with or without wildtype or dominant-negative (H53A) RNF146 expression constructs. (D) qRT
(quantitative real-time)-PCR mRNA expression analysis of Wnt target genes in PA-1 cells transfected with RNF146, LRP6 (positive control), and non-
targeting (negative control) siRNAs. Cells were either unstimulated with exogenous Wnt3a (blue) to test effects on autocrine Wnt signaling [18], or
further induced with Wnt3a (red).
doi:10.1371/journal.pone.0022595.g001

RNF146 Regulates Tankyrase and Wnt Signaling
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Figure 3. RNF146 and tankyrase function coordinately in Wnt signaling and regulate each other’s protein stability. (A) Effects on Wnt
signaling in the HEK293 reporter stable cell line with and without Wnt3a stimulation for siRNAs targeting RNF146, the combination of tankyrases
TNKS1 and TNKS2, or the combination of all three genes. On the right half of the graph, these siRNAs are also combined with AXIN1 siRNA. AXIN2, b-
catenin, and non-targeting siRNAs serve as controls. (B) Western analysis of whole cell lysates for HEK293 cells treated as in (A). (C) Time course of
tankyrase (TNKS1 and TNKS2) and Axin stabilization in HEK293T cells stably expressing RNF146 miRNA that was induced for the indicated times with
doxycycline (DOX), with or without Wnt3a added for the final 12 h of DOX induction. b-catenin phosphorylation and RNF146 protein knockdown

RNF146 Regulates Tankyrase and Wnt Signaling
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signaling and Axin protein can be reversed by overexpression of

wildtype RNF146 (Figure 3E and 3F, lanes 11, 12, 19, and 20),

suggesting that the mutant RNF146 proteins may lack ligase

activity and compete with wildtype protein for substrate binding.

Expression of mutant RNF146 in which the evolutionarily

conserved Trp105 in the WWE domain is replaced with Ala

(W105A) did not show any of these dominant-negative effects

(Figure 3E–H).

In colorectal cancer cell line SW48, Wnt signaling is activated

by b-catenin mutation S33Y at a GSK3 phosphorylation site

required for Axin-mediated b-catenin degradation [22]. As

expected in these cells, RNF146 RNAi does not inhibit expression

of b-catenin-activated genes AXIN2 and SP5 (Figure 4A).

Colorectal cancer cell line HCT-15 is activated for Wnt signaling

by an APC truncating mutation, and signaling is partially inhibited

by tankyrase RNAi (Figure 4B). While RNF146 RNAi in HCT-15

cells can stabilize TNKS1 and TNKS2 proteins, it unexpectedly

does not stabilize Axin (Figure 4C) or inhibit Wnt luciferase

reporter activity (Figure 4B). RNF146 siRNAs have no effect on

signaling even in combination with b-catenin siRNA at concen-

trations that only partially inhibit Wnt signaling. Lastly, in the

colorectal cancer cell line SW480 that also possesses a truncating

APC mutation, tankyrase RNAi stabilizes AXIN1, AXIN2, and

RNF146 proteins (Figure 4D). In contrast, RNF146 RNAi in

SW480 cells stabilizes tankyrase proteins but not AXIN1 or

AXIN2.

RNF146 Binds and Ubiquitylates Tankyrase and Axin
We confirmed that RNF146 possesses E3 ligase activity by

purifying recombinant GST-RNF146 fusion protein from E. coli

and demonstrating that it can catalyze in a dose-dependent

manner auto-ubiquitylation in vitro in combination with purified

E2 (UBCH5C) and E1 (UBE1) enzymes (Figure 5A). Immuno-

precipitation with antibodies specific for K11, K48-, or K63-linked

polyubiquitin [23,24] indicates that all three linkage types can be

specified by RNF146 and UBCH5C in vitro (Figure 5B). Since we

demonstrate below that RNF146 ubiquitylates tankyrase and

Axin, and these proteins are known to be PARsylated, we added

poly(ADP-ribose) [PAR] polymers into the reaction and found that

PAR enhanced RNF146 auto-ubiquitylation with all three linkage

types (Figure 5B).

We used the active GST-tagged RNF146 protein and GST

control protein to affinity purify interacting proteins from cell

lysates of three cell lines (HEK293, HEK293 activated for Wnt

signaling by LRP6 overexpression, and HCT-15). Mass spectro-

metric identification of protein interactors revealed seven proteins

that were identified by at least 10 unique peptides in all three cell

lines by GST-RNF146, but were not identified in any of the cell

lines using the GST control protein (Figure S3). These specific

interacting partners include PARP1 and three other proteins

involved in DNA damage response.

As a complimentary approach to identify RNF146 interacting

proteins, we expressed in HEK293 cells RNF146 wildtype and

DRING proteins, as well the control E3 ligase HECTD1, and

immunoprecipitated these HA-tagged proteins from cell lysates.

Mass spectrometric identification of proteins in all Coomassie-

stained electrophoretic gel bands (Figure 5C) yielded TNKS1,

TNKS2, PARP1, and PARP2 among the most prevalent proteins

captured by RNF146DRING but not HECTD1, in addition to 11

other proteins known to bind PARP1/2 or function in DNA

damage response (Figure 5D). Most of these protein interactors

were also captured by wildtype RNF146 protein, although

typically identified by fewer total peptides, suggesting that

ubiquitylation by active RNF146 may release interactors from a

complex. In contrast, specific interacting proteins that were

identified by more peptides after capture by wildtype rather than

DRING RNF146 include ubiquitin and the HECT-type ubiquitin

E3 ligase HUWE1.

We confirmed by Western analysis that RNF146 binds

tankyrase by immunoprecipitating tagged RNF146 expressed in

HEK293 cells (Figure 5E). Both wildtype and H53A mutant

RNF146 proteins co-immunoprecipitate with endogenous

TNKS1, apparently the predominant tankyrase in HEK293 cells,

and with overexpressed TNKS2. Note that proteasome inhibitor

ALLN weakly stabilizes TNKS2 and RNF146 when both are

overexpressed. While we did not identify Axin proteins in the

RNF146 affinity purifications for mass spectrometric analyses, we

were able to show that at least overexpressed AXIN1 associates

with tagged RNF146 and tankyrase (Figure 5F). TNKS1 co-

immunoprecipitates with AXIN1, and this interaction does not

require the PARP catalytic domain of TNKS1. These complexes

can also contain RNF146 or, more abundantly, RNF146DRING

protein. Overexpressed PARP1, with or without the PARP

catalytic domain, is not specifically co-immunoprecipitated with

AXIN1, although a small amount is nonspecifically immunopre-

cipitated under these conditions, with longer photographic

exposure time required for detection. RNF146 wildtype and

DRING proteins can also be identified in the AXIN1 complexes at

similar abundance with or without TNKS1 overexpression,

suggesting that RNF146 may bind directly to Axin as well as

tankyrase.

Since RNF146 interacts robustly with tankyrase in biochemical

and genetic assays, we tested whether RNF146 ubiquitylates

tankyrase in cells. Affinity purification of HEK293 cell lysate with

the FK2 anti-polyubiquitin antibody, which recognizes multiple

ubiquitin linkage types, does not allow detection of endogenous

tankyrase or RNF146 by Western analysis, but overexpressed

RNF146 shows high-molecular-weight polyubiquitylated species

(Figure 6A). Since mutant RNF146H53A protein displays much less

ubiquitylation, most of the ubiquitylation of wildtype RNF146 in

cells is likely mediated by auto-ubiquitylation. TNKS2 overex-

pression alone or in combination with RNF146H53A yields little or

no polyubiquitylated tankyrase, however co-expression with

levels are also shown. GSK3a/bimmunoblotting was used as a loading control. (D) Western analysis of HEK293 cells treated with tankyrase small-
molecule inhibitor IWR-2 at the indicated concentrations for 16 h without (2) or with (+) Wnt3a induction. Whole cell lysates were monitored for
AXIN1, RNF146, and b-catenin protein levels, and GAPDH serves as a loading control. Transgenic overexpression of RNF46 partially blocks AXIN1
protein stabilization by IWR-2 compound (right-most two lanes). (E) Wnt reporter activity in the HEK293 stable cell line transfected with expression
constructs for the indicated RNF146 alleles, co-expressed with either control vector (blue, without Wnt3a stimulation, or red, with Wnt3a) or RNF146
(green, without Wnt3a, or purple, with Wnt3a). A cell viability assay was used to normalize Wnt luciferase reporter activity [17]. (F) Corresponding
Western analysis of Axin, RNF146, and tankyrase proteins for cells treated as in (E). (G) Schematic representation of the RNF146 proteins produced by
the expression constructs, with structural domains and mutation sites indicated. (H) Western analysis of endogenous tankyrase and Axin protein
levels in HEK293T cells stably expressing doxycycline-induced RNF146 (RNF) or control (lacZ) miRNA after transfection with the indicated RNF146 or
control vector expression plasmids, without (2) or with (+) Wnt3a induction. Anti-HA immunoblotting shows the expression level and RNAi-mediated
knockdown of HA-RNF146 protein, and GAPDH levels serve as a loading control.
doi:10.1371/journal.pone.0022595.g003

RNF146 Regulates Tankyrase and Wnt Signaling
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wildtype RNF146 dramatically ubiquitylates TNKS2. Proteasome

inhibitor ALLN partially attenuates RNF146-mediated degrada-

tion of total tankyrase protein levels while stabilizing TNKS2 that

is polyubiquitylated by RNF146, suggesting that at least some of

the ubiquitylated tankyrase is normally targeted to the proteasome.

These effects seem to result from specific interactions between

RNF146 and tankyrase. Neither tankyrase degradation nor

ubiquitylation is observed with overexpression of a different

RING-type E3 ligase, AMFR (Figure 6A). Although overexpressed

RNF146 binds co-expressed PARP1, it does not mediate its

ubiquitylation or destabilization (Figure 6B).

To define the ubiquitin linkage types specified by RNF146 on

itself or on substrate proteins in cells, we analyzed the high-

molecular-weight gel bands of the cell lysates immunoprecipitated

for HA-RNF146 wildtype and DRING proteins (Figure 5C) for

mass spectrometric peptide signatures of K48-, K63-, or K11-

linked polyubiquitin [25]. All three ubiquitin linkage types were

identified in the RNF146, but not RNF146DRING, immunopre-

cipitate (Figure 6C). Additional mass spectrometric analyses of

these high-molecular-weight fractions revealed that the only

proteins displaying appreciably more peptide spectral masses in

the RNF146 bands than in the RNF146DRING bands were

ubiquitin, RNF146, and HUWE1 (data not shown). This suggests

that the primary carrier of ubiquitin in these bands is RNF146

and, to a lesser extent, HUWE1. Presumably other ubiquitylated

substrates are not observed in the wildtype RNF146 immunopre-

cipitate because they dissociate from the ligase complex upon

ubiquitylation.

To directly analyze the ubiquitin linkage types ligated onto

substrate proteins by RNF146, we overexpressed RNF146 with

tankyrase or Axin in HEK293 cells and immunoprecipitated

polyubiquitylated proteins with antibodies specific for K48- or

Figure 4. RNF146 RNAi does not inhibit Wnt signaling in b-catenin or APC mutant colorectal cell lines. (A) Expression levels of
endogenous b-catenin-activated genes AXIN2 (blue) and SP5 (red) in SW48 cells after transfection of individual or pooled RNF146 siRNAs. b-catenin
and non-targeting siRNAs serve as positive and negative controls, respectively, and the level of knockdown of RNF146 mRNA expression is indicated
in green. (B) Co-transfection of RNF146 (red), tankyrase (both TNKS1 and TNKS2; green), or control non-targeting siRNA with b-catenin siRNA at the
indicated concentration in HCT-15 cells stably expressing TOPbrite Wnt reporter. Reporter activity is normalized to cell number and non-targeting
siRNA treatment alone. (C–D) Western analysis of tankyrase, Axin, and RNF146 protein levels in HCT-15 (C) or SW480 (D) cells after siRNA treatment
targeting the indicated genes.
doi:10.1371/journal.pone.0022595.g004
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Figure 5. RNF146 displays ubiquitin E3 ligase activity in vitro and binds to tankyrase, PARP1, and Axin proteins. (A) Western analysis of
auto-ubiquitylation reactions with variable amounts of GST-RNF146 protein (see Materials and Methods) immunoblotted for flag-ubiquitin,
polyubiquitin, or GST. GST protein serves as a negative control. (B) Western analysis as in (A) for GST-RNF146 ubiquitylation reactions incubated in the
absence (2) or presence (+) of poly(ADP-ribose) [PAR] and immunoprecipitated with antibodies specific for K11-, K48-, or K63-linked polyubiquitin.
Immunoblotting with RNF146 antibody serves as a loading control. Note that the K48 linkage-specific antibody more efficiently immunoprecipitates
ubiquitylated RNF146, although the polyubiquitin chains are shorter in length and therefore less readily detected by anti-flag or -ubiquitin
immunoblotting. (C) Coomassie-stained gel of anti-HA immunoprecipitates from cells transfected with the indicated expression constructs for
RNF146 or control E3 ligase HECTD1. Numbered protein bands and lettered high-molecular-weight bands were excised for mass spectrometric
analysis. (D) Table of proteins identified from the mass spectrometric analysis showing total numbers of peptides identified for each protein,
combined for all numbered protein bands in (C). Shown are 23 proteins with the highest number of total peptides identified by interaction with
RNF146DRING protein, and with fewer than three peptides in the spectrometric analysis of HECTD1 protein interactors. The second set of 5 proteins
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K63-linked polyubiquitin (Figure 6D). RNF146 strongly induced

both K48- and K63-linked ubiquitylation of TNKS2 protein,

whereas AXIN1 showed predominantly K48-linked ubiquitin. As

a control for specificity, b-catenin in these immunoprecipitates

displayed only K48-linked ubiquitin and was not altered by

RNF146 overexpression.

RNF146 Regulates Tankyrase Subcellular Localization
We used immunocytochemistry to determine the fate of

tankyrase protein that is stabilized upon RNF146 miRNA

expression in HEK293 cells. Antibody that detects both TNKS1

and TNKS2 shows staining that is generally faint, diffuse, and

uniform throughout interphase cells, with occasional puncta

(Figure 7A) [26]. In sharp contrast, RNF146 protein depletion

by RNAi produces intensely staining puncta of tankyrase protein.

Treating cells with tankyrase small-molecule inhibitor XAV939

[9] similarly produces tankyrase puncta, typically a single large

punctum or several smaller puncta in each cell. A portion of

TNKS1 is known to localize to Golgi [27], however the

localization of the Golgi marker protein giantin does not resemble

the tankyrase puncta and is not altered by RNF146 RNAi (data

not shown). During mitosis, but not interphase, tankyrase localizes

to centrosomes [28], and we find that the single, large tankyrase

punctum induced by XAV939 treatment in individual interphase

cells colocalizes with c-tubulin, indicating centrosomal localization

(Figure 7B). In contrast to tankyrase, PARP1 shows exclusively

nuclear localization that is not altered by XAV939 treatment

(Figure S4).

The RNF146 rabbit monoclonal antibody shows diffuse

cytoplasmic staining of HEK293 cells, with a single punctum also

present in many cells (Figure 7C and S4), and this staining pattern

is eliminated by RNF146 RNAi (data not shown). XAV939

treatment increases the level of diffuse cytoplasmic RNF146

protein, but does not seem to alter the punctate staining. A mouse

monoclonal antibody against TNKS1, which detects tankyrase

diffuse and punctate expression less readily but is compatible with

the RNF146 antibody for double labeling, suggests that the

RNF146 puncta colocalize with tankyrase puncta in XAV939-

treated cells (Figure 7C).

Discussion

By screening a siRNA library targeting all human ubiquitin E3

ligases, we have identified RNF146 as a new positive regulator of

Wnt signaling. RNF146 acts with tankyrase in the constitutive

turnover of Axin proteins that maintains low levels of Axin and

allows the Wnt receptor-coreceptor complex to initiate signaling

by further repressing Axin’s function in degrading b-catenin.

Paradoxically, RNF146 also destabilizes through proteasomal

degradation the tankyrase proteins, which are also positive

regulators of Wnt signaling [9]. Upon RNF146 RNAi, the

stabilized tankyrase protein relocalizes to a centrosomal location,

which might represent aggregated and inactive protein in

aggresomes [29]. Transgenic overexpression of tankyrase does

not result in centrosomal puncta ([26,30], and data not shown)

however, interestingly, a tankyrase small-molecule inhibitor

induced a similar stabilization and relocalization of tankyrase

protein, indicating that PARsylation and ubiquitylation act

together to maintain both proteasomal degradation and cytoplas-

mic localization of tankyrase (Figure 8). Since RNF146 seems to be

localized to centrosomes, as well as the cytoplasm, this may be a

site of tankyrase ubiquitylation and degradation, as it can be for

misfolded proteins [29].

RNF146 protein is reciprocally destabilized by tankyrase

activity, indicating that PARsylation and ubiquitylation target all

three proteins in the RNF146-tankyrase-Axin complex to the

proteasome for degradation. Since tankyrase inhibition prevents

Axin ubiquitylation [9], PARsylation seems to be a signal for

subsequent ubiquitylation, as has been proposed for proteasomal

degradation of tankyrase substrate TRF1 [15] and tankyrase itself

[16]. Indeed, purified PAR stimulates RNF146 auto-ubiquityla-

tion in vitro.

During the preparation of this manuscript, Zhang et al. reported

an independent identification of RNF146 as a regulator or Wnt

signaling [31]. Consistent with our findings, Zhang et al. propose

that RNF146 ubiquitylates Axin that has been PARsylated by

tankyrase to target Axin for proteasomal degradation. We

significantly expand the mechanistic understanding of this branch

of the pathway to include: (1) RNF146 regulation of tankyrase

ubiquitylation, protein stability, and subcellular localization; (2)

tankyrase regulation of RNF146 degradation; (3) polyubiquitin

linkage types specified by RNF146 on tankyrase, Axin, and itself;

(4) RNF146 regulation of autocrine Wnt signaling in teratocarci-

noma cells, but not signaling activated by APC or b-catenin

mutation in multiple colorectal cancer cell lines; and (5) specificity

of RNF146 for ubiquitylating and regulating tankyrases and not

the related PARP1 protein.

We show that RNF146 can operate as a single-subunit RING-

type E3 catalyzing both ubiquitin-substrate ligation and ubiquitin

chain elongation in combination with E1 and E2 enzymes in vitro,

and that the RING domain is required for function in vivo.

RNF146 directs the ubiquitylation of tankyrase, Axin, and itself,

and the polyubiquitin chains specified are of multiple or mixed

linkage types, containing at least K48 and K63 linkages. These

different linkage types are consistent with RNF146 controlling

both the proteasomal degradation and subcellular localization of

tankyrase. We also identified the HECT-type ubiquitin E3 ligase

HUWE1 (also known as ARF-BP1 or MULE) as a RNF146

interacting protein that depends on the RING domain of RNF146

for binding and seems to associate with polyubiquitylated

RNF146. This suggests that HUWE1 may function as an E4

enzyme in ubiquitin chain elongation for RNF146 substrates.

Interestingly, HUWE1 contains a putative ubiquitin-binding UBA

domain and a WWE domain.

While RNF146 RNAi can inhibit autocrine Wnt signaling in

teratocarcinoma cells and also stabilize tankyrase proteins in

colorectal cancer cells with APC mutation-driven signaling, we

find that RNF146 knockdown does not significantly affect Wnt

in the table show the greatest numbers of peptides identified for the analysis of interactors with wildtype RNF146 protein, but not HECTD1 protein.
The code for the coloring is explained in the legend. (E) Western analysis of anti-V5 immunoprecipitation from HEK293 cells co-transfected as
indicated for expression of V5-tagged wildtype or H53A mutant RNF146 (RNF), HA-tagged TNKS2, or control vector in the presence (+) and absence
(2) of proteasome inhibitor ALLN. Co-immunoprecipitation of endogenous TNKS1 and overexpressed TNKS2 was assessed with anti-TNKS1/2
antibodies from the indicated two sources. RNF146 immunoblotting, anti-HA immunoprecipitation, and whole cell lysates are shown as controls. (F)
Western analysis of immunoprecipitation of flag-tagged AXIN1 expressed in HEK293 cells co-transfected with the indicated expression constructs for
HA-tagged wildtype or deletion mutant alleles of RNF146, TNKS1, or PARP1. Short exposure to film of the anti-HA immunoblot detects co-
immunoprecipitated TNKS1 proteins, whereas longer exposure reveals RNF146 and PARP1 proteins. Input whole cell lysates probed for HA and flag
detection are shown as controls for expression of the indicated proteins.
doi:10.1371/journal.pone.0022595.g005

RNF146 Regulates Tankyrase and Wnt Signaling

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22595



Figure 6. RNF146 ubiquitylates tankyrase and Axin in cells. (A) Western analysis of anti-ubiquitin (FK2 antibody) immunoprecipitation from
HEK293 cells transfected with expression constructs for wildtype or H53A mutant RNF146 (RNF) or control E3 ligase AMFR, in combination with either
TNKS2 or control vector DNA, without (2) or with (+) proteasome inhibitor ALLN treatment. Immunoblots are shown for ubiquitylated tankyrase and
RNF146 smears. Input lysate immunoblots show expression levels of tankyrase and RNF146. (B) Western analysis analogous to (A) except that HA-
tagged PARP1 is overexpressed rather that TNKS2. RNF146 binding to PARP1 is confirmed by anti-HA immunoprecipitation. (C) Relative quantitation
of the area under the mass spectra curve (AUC) for K48-, K63-, and K11-linked polyubiquitin -GG signature peptides in excised gel bands A, B, and C
depicted in Figure 5C. Results are shown for immunoprecipitation of wildtype or H53A mutant RNF146 proteins expressed in HEK293 cells. (D)
Western analysis of immunoprecipitation with K48 or K63 linkage-specific polyubiquitin antibodies for the indicated overexpression of RNF146,
tankyrase, or Axin in HEK293 cells. Immunoblotting for tankyrase, Axin, or control b-catenin proteins detects high-molecular-weight polyubiquitylated
protein species.
doi:10.1371/journal.pone.0022595.g006
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Figure 8. Model of RNF146 activity that leads to degradation of tankyrase, Axin, and RNF146 proteins. See Discussion for details. Green
arrows indicate protein relocalization. ‘‘Ub’’ indicates ubiquitylation and ‘‘PAR’’ indicates PARsylation of the indicated proteins.
doi:10.1371/journal.pone.0022595.g008

Figure 7. RNF146 RNAi and tankyrase inhibition induce tankyrase puncta in cells. (A) Immunofluorescence imaging of tankyrase (green) in
HEK293T cells stably expressing doxycycline-inducible RNF146 miRNA treated with either control DMSO, doxycycline (RNF146 miRNA), or tankyrase
inhibitor XAV939. (B) HEK293 cells treated with XAV939 and immunostained for endogenous tankyrase (red) and c-tubulin (green). The merged
image shows co-localized tankyrase with c-tubulin (yellow) counterstained for nuclei with DAPI (blue). All images are representative of at least three
independent experiments. (C) HEK293 cells were treated with DMSO or XAV939 and immunostained for endogenous RNF146 (green) and tankyrase
(red), with DAPI counterstaining (blue) in the merged image. Arrowheads indicate co-localization of RNF146 and tankyrase in puncta.
doi:10.1371/journal.pone.0022595.g007
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signaling or Axin protein stabilization in the colorectal cell lines

tested. In HCT-15 cells, tankyrase RNAi or small-molecule

inhibitors increase Axin levels and partially block signaling,

suggesting that there may be a functionally redundant ligase in

some cell types. While there are other predicted E3s in the human

genome with WWE domains, we find no clear RNF146 paralog.

Testing combination RNAi of RNF146 and HUWE1 in colorectal

cancer cells may be informative.

RNF146 can also bind PARP1 and PARP2, although

apparently with lower affinity than for tankyrase association.

PARP1 protein levels are not affected by RNF146 and, since

PARP1 protein is localized to the nucleus [32] whereas RNF146

protein is cytoplasmic, RNF146 may not mediate degradation of

all PARP family members or of all PARsylated proteins. It will be

important to further define the specificity of RNF146 in regulating

the activity of different PARP enzymes, as well as to determine

whether the other functions of tankyrases in different subcellular

locations, such as telomere elongation, are regulated by RNF146.

The function of RNF146 in mouse development or human

disease is currently unknown. The chromosomal region of

RNF146 has been linked to breast cancer risk in a Jewish

Ashkenazi population, although no mutations in the protein

coding region have been identified [33,34]. While RNF146 is

expressed in all human tissues examined in one study, expression

was upregulated in the brain of Alzheimer’s disease patients [35].

It will be interesting to specifically investigate a role for RNF146 in

Wnt-dependent developmental and disease processes once mouse

knockout strains have been generated.

Materials and Methods

Cell Culture and Reagents
HEK293, PA-1, SW480, SW48, and HCT-15 cell lines were

purchased from the American Type Culture Collection. An HCT-

15 cell line stably integrated with TOPbrite reporter [17] was

selected for hygromycin resistance, and luciferase activity for these

cells was normalized to AFC fluorescence with the CellTiter-Fluor

cell viability assay (Promega).

cDNAs for human RNF146 (NM_030963), TNKS1

(NM_003747), TNKS2 (NM_025235), and PARP1 (NM_001618)

were purchased from OriGene and subcloned into pRK mamma-

lian expression vectors. The RNF146DRING allele deletes the

region from Met1 through Cys82, TNKS1DPARP deletes the

region from Ala1112 through Thr1327, and PARP1DPARP deletes

Asp797 through Trp1023. Transfections were performed with

FuGENEHD (Roche) according to the manufacturer’s instructions.

Plasmid transfections were assayed for expression at 48 h, except for

detection of ubiquitylated proteins which were assayed after 20 h.

RNF146 protein was detected with immune sera from a rabbit

immunized with GST-RNF146 protein produced in E. coli, or

using a monoclonal antibody derived from this rabbit (Epitomics,

Inc.). TNKS1 and TNKS2 were detected with rabbit antibody H-

350 (Santa Cruz Biotechnology, Inc.) or mouse monoclonal

antibody 19A449 (Genlantis). AXIN1 and AXIN2 were detected

with rabbit monoclonal antibodies C95H11 and 76G6, respec-

tively (Cell Signaling Technology). b-Catenin was detected with a

mouse monoclonal antibody (BD Biosciences). Phosphorylated b-
Catenin was detected with either rabbit anti-phospho-Ser33/

Ser37/Thr41 (Cell Signaling Technology) or mouse monoclonal

BC-22 anti-phospho-Ser33/Ser37 (Santa Cruz Biotechnology).

Wnt3a protein (R&D Systems) in a concentration range of 0.05

to 0.2 mg/ml was used for cell stimulation. Compounds XAV939

and IWR-2 were purchased from Tocris or synthesized de novo

[20], respectively.

RNAi Screening and Assays
Human E3 ligase siRNA pools (Dharmacon, Inc.) were reverse

transfected in 96-well format at a final concentration of 25 gM

into HEK293 cells stably expressing Wnt and SV40 luciferase

reporters [17]. After 72 h, cells were treated with Wnt3a-

conditioned medium for 6 h, and firefly and Renilla luciferase

activities were assayed as previously described [17]. Z-scores were

calculated for normalized luciferase activities of each siRNA pool

by determining the number of standard deviations from the mean

of all siRNA pools in the screen. siRNA pools that deviated from

the normal distribution for the SV40 control reporter were

eliminated from consideration. The positive regulators targeted by

siRNA pools for which the z-score was less than -1.65 were further

evaluated by RNAi with individual siRNAs of the pool. Detailed

data are available in Table S1.

ON-TARGETplus siRNAs and control siRNAs (Dharmacon)

were used according to the manufacturer’s instructions for

transient RNAi. Individual or pools of 4 siRNAs were used at

10 gM and 40 gM, respectively. For PA-1, SW480, SW48, and

HCT-15 cells, serial siRNA transfection was performed with cell

passaging in between transfections to prolong target knockdown.

BLOCK-iT inducible Pol II miR miRNA expression constructs

and T-REx-293 cells (Invitrogen) were used according to the

manufacturer’s instructions to generate stable cell lines for RNAi

induced by 2 mg/ml doxycycline. Targeting sequences used for

RNAi are available in Table S2.

qRT-PCR Expression Analysis
mRNA was isolated from cell lysates in an mRNA capture plate

(Invitrogen) and assayed for specific transcripts using either FAM

and TAMRA probes or FAM and non-fluorescent quencher

probes depending on the target. Primers and probes were either

purchased (Applied Biosystems) or custom designed (sequences

available in Table S2). Primer-limited VIC/MGB GAPD (human

Glyceraldehyde 3-phosphate dehydragenase) or VIC/MGB PGK

(human Protein kinase, cGMP-dependent, type I) assays (Applied

Biosystems) were used for normalization of mRNA levels to these

endogenous controls. Reverse transcription and quantitative PCR

was performed with one-step RT-PCR mix (Applied Biosystems)

and run on a 7900 HT real time PCR instrument (Applied

Biosystems). Relative mRNA values were calculated by the DDCt

method, normalizing to GAPDH or PGK mRNA.

Western Immunoblot Analysis
Cell lysates were prepared in lysis buffer: 20 mM Tris pH 7.5,

135 mM NaCl, 1% IGEPAL ca-630, 0.5% n-Dodecyl-ß-malto-

side, 10% glycerol, 1.5 mM MgCl2 and Complete EDTA-free

Protease Inhibitor and Phosphatase Inhibitor (Roche). To isolate

soluble b-catenin, cells were lysed in Passive Lysis Buffer

(Promega) supplemented with Complete EDTA-free Protease

Inhibitor Cocktail (Roche). To examine ubiquitylated proteins,

denatured lysates were obtained using lysis buffer containing 7 M

urea and 2 mM NEM. Proteasome inhibition was performed by

treating cells for 4 h with 10 mM N-Acetyl-Leu-Leu-Nle-CHO

(ALLN; EMD Chemicals). Protein concentration was measured

using a standard BCA assay (ThermoFisher). 15 mg of protein in

cell lysate was loaded for polyacrylamide gel electrophoresis.

Highly cross-adsorbed goat anti-rabbit or anti-mouse IgG

conjugated to Alexa Fluor 680 (Invitrogen) or infrared DYE 800

(Rockland) was used in combination for dual labeling and

secondary detection. Western blots were scanned using the LI-

COR Odyssey imager. Raw images were processed to visualize the

linear range with Adobe Photoshop software.
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Immunoprecipitations were performed with 50 mg of protein in

cell lysates for detection of overexpressed proteins, and with up to

500 mg for endogenous protein detection. Immunoprecipitation

for mass spectrometry or ubiquitylated proteins was performed

with 400 mg to 10 mg of protein in cell lysate. Anti-V5 agarose

(Sigma), anti-gD monoclonal antibody 952 (Genentech, Inc.), anti-

HA3F10 affinity matrix (Roche), and glutathione sepharose 4B

(GE Healthcare) were used for affinity purification of V5-, gD-,

hemagglutinin (HA)-, and glutathione S-transferase (GST)-tagged

proteins, respectively.

Ubiquitylation Assays
In vitro ubiquitylation was performed in 100 mM Tris pH 7.4,

100 mM MgCl2, 100 mM DTT, 100 mM NaF, 20 mM okadaic

acid, 1 mM ATP. A 30 ml reaction included 0.5 mg flag-ubiquitin,

0.5 mg untagged ubiquitin, 300 gg UBE1 (BIOMOL Internation-

al), 500 gg UBCH5C (BostonBiochem), and variable amounts of

GST-RNF146 (1.5, 3, 4.5, or 6 mg). Reactions were incubated at

30uC for 30 minutes or run to completion for 2 h. Poly(ADP-

ribose) polymer (Trevigen) was added at a 1:100 dilution of the

commercial stock.

For immunoprecipitation of ubiquitylated proteins, 50 ml of a

50% slurry of polyubiquitin monoclonal FK2-agarose (MBL) was

mixed with 400 mg of cell lysate. For immunoprecipitation with

polyubiquitin linkage-specific antibodies, 10 mg of monoclonal

2A3/2E6 anti-K11, Apu2.07 anti-K48, or Apu3.A8 anti-K63

[23,24] were each incubated with 3 mg of cell lysate, precipitated

with Protein A plus beads (ThermoFisher), and washed as

previously described [23,24].

Mass Spectrometry
Immunoprecipitation was performed as described above from

10 mg of cell lysate using 0.5 mg of GST-RNF146 or GST protein

produced in E. coli. HA-tagged wildtype and DRING RNF146

proteins expressed in HEK293 cells were isolated from 3.5 mg of

cell lysate with anti-HA 3F10 affinity matrix (Roche). Affinity

purified proteins were concentrated, reduced in sample buffer

(Sigma) at 90uC for 5 min, and alkylated in 0.176 M n-iospropyl

iodoacetamide at room temperature for 20 min. Samples were

then separated by 4–20% Tris-Glycine SDS-PAGE (Invitrogen).

The gel was stained with Coomassie Blue, and gel bands were

excised (spanning the entire gel lanes for GST affinity purifica-

tions), destained, and dehydrated as previously described [25].

Proteins were digested with trypsin (Promega) in ammonium

bicarbonate pH 8 overnight at 37uC. Peptides were extracted

from the gel slices, dried, and subsequently reconstituted in 2%

acetonitrile and 0.1% formic acid.

Samples were injected onto a 100 mM6100 mm column (BEH,

1.7 mM, Waters Corp) at a flow rate of 1 mL/min using a

NanoAcquity UPLC (Waters Corp) and peptides introduced into a

hybrid LTQ-Orbitrap mass spectrometer (ThermoFisher) via

nanospray ionization, as previously described [25]. Data was

collected in data-dependent mode with the parent ion being

analyzed in the FTMS and the top 8 most abundant ions being

selected for fragmentation and analysis in the LTQ. Tandem mass

spectrometric data was analyzed using the Mascot search

algorithm (Matrix Sciences). For examining polyubiquitin linkages,

the peak areas for ubiquitin -GG signature peptides were extracted

within a 10 ppm window using a label free approach [25].

Immunofluorescence Imaging
HEK293T cells integrated with RNF146 miRNA expression

construct were seeded in chamber slides and induced for RNAi

with 2 mg/ml doxycycline for 48 h, or treated with DMSO or

5 mM XAV939 for 16 h. Cells were fixed directly in culture

medium with 4% paraformaldehyde in 0.075% saponin, then

washed and permeabilized with 0.5% Saponin in Dulbecco’s

PBS. Rabbit anti-TNKS H-350 (Santa Cruz Biotechnology) and

mouse anti-c-tubulin GTU-88 (Abcam) antibodies were used for

subcellular localization studies. Mouse monoclonal anti-tankyrase

6D790 and BL-2 (Santa Cruz Biotechnology) antibodies were

used for co-localization studies with rabbit monoclonal anti-

RNF146 antibody (described above). Secondary detection was

with highly cross-adsorbed goat anti-mouse or anti-rabbit IgG

conjugated to either ALEXA 488 or ALEXA 555. Slides with

coverslips were mounted in Prolong Gold containing 49,6-

diamidino-2-phenylindole (DAPI; Invitrogen). Images were

captured with a Zeiss MRm camera mounted on a Zeiss

Axiovert 200M equipped with the ApoTome system. Optical

sections were acquired with Axiovision software V4.8.2, and slices

were summed using ImageJ (NIH) and combined using Adobe

Photoshop Software. For weak tankyrase staining (inset image in

Figure 7C) the brightness was adjusted using the auto levels

setting without changing the gamma level.

Supporting Information

Figure S1 Tankyrase, Axin, and RNF146 proteins are

weakly stabilized by proteasome inhibition. Western

analysis of tankyrase, RNF146, and Axin protein levels in

HEK293 cell lines stably expressing doxycycline (Dox)-inducible

miRNA targeting either RNF146 or lacZ (control). miRNA

expression was induced by Dox treatment (+) and proteasome

activity was inhibited with 20 mM MG132 for 2 h.

(TIF)

Figure S2 RNF146 and tankyrase RNAi do not signifi-

cantly inhibit Wnt signaling in SW480 colorectal cells.

qRT-PCR mRNA expression analysis of Wnt target genes AXIN2

(blue), TNKS1 (red), TNKS2 (green), and RNF146 (purple) in

SW480 cells transiently transfected with siRNAs targeting either

RNF146 or the combination of TNKS1 and TNKS2. A non-

targeting siRNA serves as a control for normalizing mRNA levels.

(TIF)

Figure S3 Affinity purification of putative RNF146

substrates with GST-tagged protein. Proteins identified by

mass spectrometry from affinity purification of cell lysates with

either GST-RNF146 or control GST protein are listed, ranked by

number of unique peptides identified from HEK293 cells. All

proteins are shown that meet the following criteria: (1) identifica-

tion in lysates from all three cell lines tested using GST-RNF146;

(2) no identification in any of the three cell lines using GST

protein; (3) identification by at least 10 unique peptides in

HEK293 cells. Color coding is as described for Figure 5D.

(TIF)

Figure S4 RNF146 RNAi does not affect PARP1 subcel-

lular localization. HEK293 cells were treated with DMSO or

XAV939 and immunostained for endogenous RNF146 (green)

and PARP1 (red). DAPI counterstaining shows nuclear PARP1 in

the merged image (magenta).

(TIF)

Table S1 E3 ligase Wnt pathway primary and secondary

screen data.

(XLS)

Table S2 Sequences used for RNAi and qRT-PCR.

(XLS)
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