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Ubiquitination, a crucial post-translation modification, regulates the localization and

stability of the substrate proteins including nonhistone proteins. The ubiquitin-

proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular

processes such as DNA repair, transcription, signal transduction, and apoptosis. Its

dysregulation induces various diseases including cancer, and the identification of this

process may provide potential therapeutic targets for cancer treatment. In this review, we

summarize the regulatory roles of key UPS members on major nonhistone substrates in

cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage

repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel

therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and

deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-

targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in

modulating protein target levels with the aid of UPS.
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INTRODUCTION

Post-translational modification with ubiquitin plays an important role in the regulation of protein

degradation and turnover. Ubiquitin, a small protein of 76 amino acids, can be covalently attached

to target proteins to form mono- or polyubiquitinated types. This process occurs by a cascade of

enzymatic reactions including E1-activating enzymes, E2-conjugating enzymes, and E3 ubiquitin

ligases. Polyubinquitin with different chain topologies on specific lysine residues on substrates is

related to different functional consequences (1). Generally, polyubiquitin chains linked at the 48
lysine site (K48) or K11 site lead to 26S proteasome-mediated proteolysis, which plays an essential

role in maintaining protein homeostasis, regulating cell cycle, and apoptosis. On the other hand,

chains with K63 site, as well as monoubiquitination, representing non-proteolytic ubiquitination,

participate in diverse cellular processes, such as signal transduction, autophagy, and DNA damage

repair (2, 3). As for most substrates, they are first covalently modified by ubiquitin and then directed

to the proteasome to be degraded. Also, the function of ubiquitin ligases can be reversed by

deubiquitinating enzymes (DUBs), which remove ubiquitin from substrate proteins and participate
in the regulation of various cellular pathways (4).
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Ubiquitination is ubiquitous, and second only to

phosphorylation in abundance (5). Some reports have shown

that histone ubiquitination regulating DNA-driven processes

such as gene transcription and DNA damage repair (6, 7), and

aberrant histone ubiquitination frequently occurs in cancers (8).

Accumulating evidences indicate that ubiquitylation of
nonhistone proteins plays an important role in many cellular

processes, including DNA repair, transcription, signal

transduction, autophagy, apoptosis, and so on (9). Nonhistone

protein substrates for ubiquitination include general transcription

factors, transcriptional activators or repressors, nonhistone

chromatin-associated protein, and nuclear receptor coactivators.
Dysregulation of nonhistone lysine ubiquitination is closely

associated with various human cancers (10). Therefore, it is

more important to study the role of nonhistone ubiquitination

in tumorigenesis and tumor treatment. Moreover, interrogating

the regulatory networks of UPS can offer a strategy for delineating

the mechanism of cancer development and facilitate the
identification of therapeutic targets. Meanwhile, the UPS

exhibits high substrate specificity, which makes targeting it a

promising strategy for cancer treatment. Nowadays, many UPS

inhibitors such as bortezomib, carfilzomib and ixazomib, have

been well applied in cancer treatment (11, 12). In this review, we

summarize the regulatory roles of key UPS members on major

nonhistone substrates in cancer-related processes.
Recently, a novel strategy named proteolysis-targeting

chimeras (PROTACs) has been developed. PROTAC is a

strategy that utilizes a hybrid molecule (a short peptide or a

small molecule) to link a specific protein to an E3 ubiquitin ligase

and induces the targeted protein degradation by the UPS in the cell

(13). PROTACs link the target protein to an E3 ubiquitin ligase by
a designed hybrid molecule, providing a path for ubiquitinating

undruggable proteins such as transcription factors, scaffolding

proteins and nonenzymatic proteins. Due to their high

selectivities, low working concentrations, and less off-target

toxicities, PROTACs may boost the development of drug

discovery (14).

Considering the importance of UPS in the regulation of
cancer development and treatment, we focus on the regulatory

roles of key UPS members on nonhistone proteins in cancer

development and highlight the novel therapeutic options

targeting them. In addition, we also discuss and summarize the

applications and recent advances of PROTAC technology

focusing on nonhistone proteins.

THE UBIQUITINATION CASCADE
AND DEUBIQUITINATION

The enzymes of Ubiquitination
and Deubiquitination
The UPS contains a series of essential components: ubiquitin,

E1s, E2s, E3s, DUBs, and the 26S proteasome. Until now, two E1s

and about 40 E2s have been discovered, with more than 600 E3s

conferring the diversity of protein substrates (15). Generally, E3

ligases are structurally classified into three subtypes: really

interesting new gene (RING), homologous to E6-associated

protein C-terminus (HECT) and RING-in-between-RING

(RBR) E3s. RING E3 ligases are most abundant with more

than 600 members in humans. About 30 HECT E3 ligases

have been found in humans, including the NEDD4 family, the

HERC family and other HECTs. RBR E3s have 14 members and
work as hybrids of RING E3s and HECT E3s (16). In addition,

there are approximate 100 DUBs and they are subdivided into 6

families based on sequence and structural similarity namely

ubiquitin-specific proteases (USPs), ubiquitin carboxy-terminal

hydrolases (UCHs), ovarian-tumor proteases (OTUs), Machado-

Joseph disease protein proteases (MJD), JAB1/MPN/MOV34
metalloenzymes (JAMMs), and monocyte chemotactic protein-

induced proteases (MCPIPs) (17). To date, more than 40 DUBs

have been implicated in tumorigenesis (4).

The Process of Ubiquitination
and Deubiquitination
The process of ubiquitylation contains three steps (Figure 1).

Initially, the a-carboxyl group of the C-terminal glycine residue of

ubiquitin links to a cysteine residue on E1 in an ATP-dependent

manner, and a thioester bond is formed. Subsequently, E2 binds to

the activated ubiquitin, and the complex of E1 and ubiquitin is

transferred to the catalytic cysteine of E2 via a trans(thio)
esterification reaction. Finally, E3 recognizes the substrate and

catalyzes the linking of ubiquitin to a specific lysine residue on the

substrate. The function of E3 ligases can be reversed by DUBs,

which mediate the removal and processing of ubiquitin. DUBs

regulate multiple biological processes including the cell cycle,

DNA repair, apoptosis, inflammation, and signaling pathways.

THE ROLES OF E3 LIGASES AND DUBS IN
REGULATING CANCER DEVELOPMENT

The UPS regulates diverse important cellular processes including

cell cycle arrest, cell proliferation, and apoptosis. Thus,

dysregulation of its key members and their regulatory network

is often associated with human diseases, particularly cancer.

Increasing studies have revealed that E3 ligases and DUBs are
involved in cancer development through various biological

processes, such as cell cycle, cell proliferation, apoptosis, DNA

damage repair, inflammation, and T cell dysfunction in cancer

and some of them are shown in Tables 1 and 2 (15).

E3 ligases and DUBs Regulate Cell Cycle
Cell cycle progression and arrest are commonly deregulated in

cancer (73). Increasing evidence indicates that multiple E3s

participate in regulating cell cycle progression (Figure 2). Thus,

the deregulation of E3s leads to the sustained proliferation and

genomic instability of cancer cells. The anaphase-promoting
complex named the cyclosome (APC/C) is the most

sophisticated RING E3 ligase. It precisely governs cell cycle

progression by recruiting cell division cycle 20 (CDC20) and

CDC20-like protein 1 (CDH1) in turns. APC/C-CDC20

regulates cell cycle transition from metaphase to anaphase, while
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APC/C-CDH1 mediates mitotic exit and early G1 entry. Many

studies indicate that Cdh1 functions as a tumor suppressor,

whereas CDC20 may function as an oncoprotein to promote the

development and progression of cancers (18, 74).
Another representativeexample isSCFE3 ligases,whichconsistof

four components: S-phase kinase-associated protein 1 (SKP1), cullin

1, Roc1/Rbx1/Hrt1 and an F-box protein (FBP). Commonly, FBPs

serve for substrate recognition in the complexes and selectively

regulate diverse biological processes (19). FBXW7, F-box/WD

repeat-containing protein 7 (FBXW7), S-phase kinase associated
protein2 (SKP2), and b-transducin repeat containing proteins (b-
TrCPs) arewell-studiedFBPs. FBXW7a tumor suppressor,works on

manyoncogenes includingMyc, c-Jun, cyclinE,mTOR,Notch-1and

Mcl-1. It is often mutated or deleted in lots of cancers such as

metastatic colorectal adenocarcinoma, T-cell acute lymphoblastic

leukemia, and cholangiocarcinomas (20–22, 75). SKP2plays a critical

role during S and G2/M phases through regulating some cell cycle
proteins, such as p21, p57, cyclin A, cyclin E, cyclin D1, and CDK

inhibitors (e.g. p27). SKP2 is an important oncogene and is widely

overexpressed in various cancers, such as breast cancer (23) and

hepatocellular carcinoma (26). b-TrCPs-containing SCF complexes

play a dual role in cell cycle checkpoint control: mediating and

relieving cell cycle arrest via bonding different substrates (28, 76).
Thus, the SCF complexes work on a subset of cyclins and CDK

inhibitors to regulate the progression fromG1 to the onset ofmitosis.

In addition, Parkin, a well-known RBR E3 ligase, controls the cell

cycle by downregulating some G1/S kinases such as cyclin D and

cyclin E (29, 30).

DUBs also participate in the regulation of cell-cycle

progression (Figure 2) (31). For instance, E2F transcription

factors play a key role in cell-cycle progression through G1 and

into S-phase (77). The tumor suppressor retinoblastoma protein

(Rb) maintains the cell in G1 through inhibiting E2F (78).

However, hyperphosphorylated Rb dissociates from E2F, leading
to the transcription of S-phase genes. The E3 ligase MDM2

promotes Rb degradation via ubiquitylation (79). On the

contrary, the DUB USP7 directly reverses MDM2-mediated

polyubiquitylation of Rb, stalling the cell cycle in G1 and

inhibiting cell proliferation (32). Tumor suppressor BRCA1-

associated protein 1 (BAP1), whose mutations can be seen in
many cancers (62), has been found that it also could promote cell

proliferation through deubiquitylating host cell factor 1 (HCF-1).

HCF-1, an important transcriptional co-regulator of E2F,

promotes cell cycle progression at the G1/S boundary by

activating the E2F1 transcription factor. Therefore, BAP1

regulates cell proliferation at G1/S by co-regulating transcription

from HCF-1/E2F-governed promoters. Moreover, BAP1
knockdown leads to G1 arrest and decreases the expression of S

phase genes in OCM1 cells and NCI-H226 lung carcinoma cell

line (47, 48, 80). It is well known that APC/C plays a crucial role in

the completion of mitosis and maintenance of G1. Recently,

OTUD7B/Cezanne has been reported to deubiquitinate and

stabilize the APC/C substrates, as well as promote mitotic
progression and cell proliferation. Cezanne is upregulated in

multiple tumors, suggesting a potential role in cancer cell

proliferation (49). Besides, the transcription factor FOXM1

participates in cell cycle progression and is upregulated in basal-

like breast cancer. Arceci et al. reveal that USP21 directly binds to

FOXM1, makes it deubiquitinate, and increases its expression level

in vitro and in vivo. Suppression of USP21 causes a mitotic entry

FIGURE 1 | Overview of the ubiquitin-proteasome system (UPS) and targeting strategies for the UPS. The ubiquitin is activated with E1 in an ATP dependent

manner, transferred to E2, and then transferred to the substrate through E3 ligase recognization, forming a mono- or polyubiquitinated protein. K48 or K11

polyubiquitin chains lead to 26S proteasome-mediated degradation. Monoubiquitination or K63 polyubiquitin chains are nonproteolytic ubiquitination signals and

participate in many biological processes. DUBs remove or edit ubiquitins from substrate proteins. The targeting of E1s, E2s, E3s, proteasome and DUBs is a

promising strategy for cancer treatment.
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delay to slow proliferation and sensitivity to paclitaxel in cell

culture and animal xenografts (50). The deubiquitinating enzyme
USP5 is overexpressed in numerous malignancies, promoting

tumor growth via modulating cell cycle regulators such as

FoxM1. USP5 deficiency also induces DNA damage, cell cycle

arrest and apoptosis in pancreatic ductal adenocarcinoma cells

(51, 53). Besides, USP2 and USP14 regulate the cancer cell cycle

via deubiquitinating cyclin D1 (54) and Cyclin B1 (55),

respectively. Knocking down USP14 arrests cell cycle at the G2/
M phase and inhibits the proliferation and migration of breast

cancer cells (55), USP44 deubiquitinates the APC-inhibitory

Mad2-Cdc20 complex, thereby preventing anaphase onset (57,

58). USP37 deubiquitinates and stabilizes Cyclin A and promotes

S phase entry (59).

E3 Ligases and DUBs Regulate
Cell Proliferation
Many oncogenes can induce cancer cell proliferation, and UPS

mediates their transcription by modulating general transcription

factors, transcriptional activators and transcriptional coactivators

via proteolytic and nonproteolytic ubiquitination (60). Here, we
take the oncogene c-Myc as an example to show how

ubiquitination regulates the transcription of oncogenes in cancer.

The overexpression of c-Myc is widely found in many cancers

and is related to cell growth, proliferation, apoptosis and

metabolic pathways (81). Its accumulation is also associated

with poor cancer outcomes (82). Myc levels are controlled

through targeted degradation by UPS (83). Multiple E3s are
involved in modulating c-Myc activity in a tissue-specific

manner. For instance, the ubiquitin ligase SCF-FBXW7 directly

catalyzes c-Myc ubiquitination in a glycogen synthase kinase 3

phosphorylation-3-dependent manner and leads to c-Myc

degradation in vitro (84). Furthermore, FBXW7 regulates the

ubiquitylation of c-Myc protein and mediates leukemia-
initiating cell activity (24). TRPC4AP (transient receptor

potential cation channel, subfamily C, member 4-associated

protein)/TRUSS (tumor necrosis factor receptor-associated

ubiquitous scaffolding and signaling protein) binds to c-Myc

TABLE 1 | Some E3s involved in cancers.

E3 Substrate Category Associated cancer or cancer line Biological

functions

Model Alteration in

tumors

Reference

APC/C-

CDC20

Cyclin A, cycin B1,

securin,

Oncogene Colorectal cancer Cell cycle

regulation

In vivo Overexpression (18)

APC/C-

CDH1

CDC20, CDC25A Tumor

suppressor

Breast cancer Cell cycle

regulation

In vivo (19)

SCFFBXW7 c-Myc, c-Jun, cyclin E,

mTOR, Notch-1, Mcl-1,

Tumor

suppressor

Metastatic colorectal denocarcinoma, T-cell acute

lymphoblastic leukemia, and cholangiocarcinomas

Cell cycle

regulation,

In vivo Mutation (20–23)

c-Myc Tumor

suppressor

Leukemia-initiating cell Cell

proliferation

In vitro Mutation (24, 25)

SCFSKP2 p27, p21, p57, cyclin A,

cyclin E, cyclin D1

Oncogene Breast cancer

lung cancer

Cell cycle

regulation

In vivo Overexpression (26)

c-Myc, Cell

proliferation

In vivo Overexpression (27)

SCFbTrCPs Mcl-1, BimEL, PDCD4,

STAT1

depends on

substrates

Colorectal cancer, pancreatic cancer Cell cycle

regulation

In vivo Overexpression (28, 29)

Parkin cyclin D, cyclin E Tumor

suppressor

Glioma,

colorectal cancer

Cell cycle

regulation

In vivo Mutation (30, 31)

MDM2 Retinoblastoma protein,

p53

Oncogene Lung cancer, colorectal cancer, cutaneous

melanoma, breast cancer

Cell cycle

control,

Apoptosis

In vivo Overexpression,

Mutation

(32, 33)

(34),

TRPC4AP/

TRUSS

c-Myc IMR5 neuroblastoma cells, U2OS, HeLa cells Cell

proliferation

In vitro (35)

KCTD2 c-Myc Glioma stem cells Cell

proliferation

In vitro Suppression (36)

CHIP c-Myc Glioma Cell

proliferation

(37)

HectH9 c-Myc Oncogene HeLa, T47D, MCF7, MRC5 cells Cell

proliferation

In vivo,

In vitro

Overexpression (38)

hUTP14a c-Myc Oncogene Colorectal cancer Cell

proliferation

In vivo Upregulation (39)

p53, retinoblastoma

protein

Oncogene U2OS cell, H1299, HCT116 cell Apoptosis In vitro,

In vivo

Upregulation (40, 41)

TRAF6 TAB2 Inflammation (42)

Fbxo38 PD-1 Tumor

suppressor

T cell

dysfunction in

cancer

In vivo Downregulation (43)

Stub1,Cbl-

b

Foxp3 Tumor

suppressor

Colitis Inflammation In vivo Downregulation (44, 45)

VHL HIF-1a Tumor

suppressor

Pancreatic cancer Inflammation (46)
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and promotes its ubiquitination and degradation in multiple

cancer cells (25). CRL3-potassium channel tetramerization

domain-containing 2 (KCTD2) mediates c-Myc protein

degradation by ubiquitination and suppresses gliomagenesis
(35). E3 ligase CHIP interacts and degrades c-Myc by

ubiquitination in glioma cells (36). In addition, 11S proteasomal

activator REGg has been reported to induce the degradation of c-

Myc in cancer cells (37). On the other hand, SCF-SKP2 enhances

c-Myc transcriptional activity by enabling the formation of c-Myc

activator complexes (85). The E3 ligase HectH9 regulates the
transcriptional activation of Myc through forming a lysine 63-

linked polyubiquitin chain and promotes tumor cell proliferation

in vivo and in vitro (27).

The deubiquitinating enzymes can prevent c-Myc degradation,

maintain its stability, and then promote cancer progression. USP28

was the first DUB shown to regulate c-Myc stability. It is highly

expressed in colon and breast carcinomas and binds toMyc through
interacting with FBW7alpha to stabilize Myc in the nucleus (38).

USP22 increased c-Myc stability via deubiquitination in breast

cancer cells (68). We previously found that USP37 was

significantly upregulated in human lung cancer tissues, and

directly deubiquitinated and stabilized c-Myc independent of

Fbw7 (67). USP36, a highly expressed USP in a subset of human

breast and lung cancers, could interact with the nucleolar Fbw7g
andmaintain c-Myc stability in the nucleolus (61). Recently, a novel

E3 ligase, human U three protein 14a (hUTP14a) is upregulated in
human colorectal cancer tissues, and it stabilizes c-Myc through

forming a complex with USP36/Fbw7g in the nucleolus and

promote cancer progression (69).

E3 Ligases and DUBs Regulate Apoptosis
Apoptosis could inhibit aberrant cell cycle progression and

prevent tumorigenesis (39). If apoptotic pathways are

abrogated, the cells may not appropriately induce apoptosis,
which may lead to tumorigenesis. As a tumor suppressor protein,

p53 is frequently mutated in most cancers and plays a pivotal role

in apoptosis, genome instability and mutation. Ubiquitination

has been found to play a key role in regulating p53 degradation as

well as its activity and localization. For instance, MDM2 (murine

double minute 2) has been found to negatively regulate p53 with
diverse mechanisms. It can interact directly and degrade p53 via

ubiquitination. Besides, it can connect p53 and pRb to form an

Rb-Mdm2-p53 trimeric complex for the regulation of p53-

induced apoptosis (86). Mdm2 can also form a heterodimer

TABLE 2 | Some DUBs involved in cancers.

DUB Substrate Category Associated cancer or cancer line Biological functions Model Alteration in

tumors

Reference

BAP1 HCF-1 Tumor

suppressor

OCM1 cell, NCI-H226 lung carcinoma cell

line

Cell proliferation In vitro Loss, mutation (47–49)

OTUD7B/

Cezanne

APC/C Oncogene HCT116, RPE1, HeLaS3, U2OS cells Cell proliferation In vitro Overexpression (50)

USP21 FOXM1, p53 Oncogene Breast cancer Cell cycle progression,

NF-kB signing

In vitro,

In vivo

Overexpression (51)

BRCA2 Oncogene Hepatocellular carcinoma DNA damage repair, NF-kB

signaling

In vivo Overexpression (52)

USP5 FoxM1 Oncogene Pancreatic cancer Cell cycle regulation Overexpression (53, 54)

USP2 Cyclin D1, MDM2 Oncogene Hepatoma and breast cancer cells Cell cycle regulation,

apoptosis

In vitro Overexpression (55, 56)

USP14 Cyclin B1 Breast cancer, colorectal cancer, non-small

cell lung cancer

Cell cycle regulation In vitro (57)

USP44 Cdc20 Oncogene HeLa cell, T-cell leukemias Cell cycle regulation In vitro,

In vivo

Overexpression (58, 59)

USP37 Cyclin A, U2OS cells, HeLa cells, lung cancer Cell cycle regulation,

apoptosis

In vitro,

In vivo

Overexpression (60, 61)

USP7 Retinoblastoma

protein,

p53, MDM2,

FOXO4

Tumor

suppressor

HEK293, prostate cancer,

colon cancer, non-small cell lung cancer

Cell cycle arrest, apoptosis,

Cell proliferation

In vitro,

In vivo

Downregulation (62, 63) (32,

34),

USP11 BRCA2 Oncogene U2OS cell, breast cancer DNA damage repair, In vitro,

In vivo

Upregulation (64, 65)

USP13 RAP80 Oncogene Ovarian cancer DNA damage response In vivo Overexpression (66)

USP22 c-Myc Tumor

promoter

Breast cancer apoptosis In vivo Overexpression (67)

USP28 c-Myc Oncogene Colon cancer, breast cancer Cell cycle regulation,

apoptosis,

DNA damage repair

In vivo Overexpression (68)

USP36 c-Myc Oncogene Breast cancer, lung cancer Apoptosis In vivo Overexpression (69)

USP10 p53 Tumor

suppressor

HCT116 cell DNA damage repair In vitro Downregulation (70)

A20 TRAF2, TRAF6,

RIP1

Tumor

suppressor

B-cell lymphomas inflammation, apoptosis

inflammation

In vivo Downregulation (71)

CYLD IkK Tumor

suppressor

Cylindromatosis inflammation In vivo Downregulation (72)
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with MdmX (Mdm4) and participate in ubiquitin-mediated p53

degradation (33). Moreover, Mdm2 is upregulated in multiple

cancers such as colorectal cancer, cutaneous melanoma and
breast cancer (63). Therefore, the inhibition of p53-MDM2

interaction facilitates p53-mediated cell-cycle arrest or

apoptosis in cancer cells.

Up to now, many DUBs are involved in the regulation of p53.

For example, USP7 modulates the stability of both p53 and

MDM2, and maintains the level of p53 ubiquitylation (34, 87);
USP2 affects the stability of MDM2 (88); Otub1 inhibits p53

ubiquitination and activates p53 in cells (56); USP10 regulates

the location and stability of p53, and stabilize both mutated and

wild-type p53, thereby having a dual role in tumorigenesis (89).

Several E3s target anti-apoptotic protein myeloid cell

leukemia 1 (MCL1) and sensitize cells to apoptosis. For

example, DNA damage promotes HUWE1 bind to MCL1 and
marks MCL1 for proteasomal degradation; the cell cycle

regulators APC/C-CDC20 and SCF-FBXW7 degrade MCL1

and link apoptosis to prolonged mitotic arrest. Human

UTP14a is upregulated in several types of tumors and involved

in tumor progression via multiple mechanisms. It also exhibits

an anti-apoptotic activity through the intrinsic apoptotic
pathway, and protects tumor cells from chemotherapeutic

drug-induced apoptosis (70). It binds p53 and induces p53

degradation through a ubiquitin-independent manner (40).

Moreover, hUTP14a can also bind tumor suppressor pRb, and

promote the polyubiquitination and degradation of pRb in vitro

and in vivo (90). Thus hUTP14a might possess the potential as a

target for anti-tumor therapy.

E3 ligases and DUBs Regulate DNA
Damage Repair
Errors in DNA replication and repair often cause genomic

instability (73). DNA damage repair is critical to maintain

genome integrity and prevent cancer. Many E3s including
MDM2 and BRCA1 participate in regulating the DNA damage

response and cell cycle checkpoints to cancer development. In

brief, DNA double-strand breaks (DSBs) induce the activation of

DNA damage sensors, which leads to the inactivation of MDM2,

maintenance of p53 stability, promotion of SCF-b-TrCP mediated

degradation of CDK phosphatase, and decrease of CDK activity.
In the meantime, DNA repair machines are recruited to DNA

damage sites under the control of ubiquitination. The inhibition of

homologous recombination (HR) during G1 is also dependent on

ubiquitylation mediated by APC/C-CDH1 and cullin 3-RING-E3

ligase (CRL3)-kelch-like ECH-associated protein 1 (KEAP1).

USP11 is also involved in the regulation of DNA double-strand

break repair, which is often up-regulated in cancer, resulting in
resistance to poly ADP ribose polymerase 1 (PARP) inhibitors (41,

64). USP21 deubiquitinates and stabilizes BRCA2, promotes HR

efficiency, and enhances homologous recombination efficiency

and tumor cell growth (65). USP13 deubiquitinates receptor-

associated protein 80 (RAP80) and promotes DNA damage

response. Therefore, inhibiting USP13 makes ovarian cancer
cells sensitive to cisplatin and olaparib (a PARP inhibitor) (52).

E3 ligases and DUBs Regulate Inflammation
Cancer-related inflammation plays an important role in tumor

development and progression. The transcription factor NF−kB

FIGURE 2 | Ubiquitin ligases and DUBs coordinate to regulate cell cycle progression. E3 ligase APC/C (anaphase-promoting complex; also named as the

cyclosome) recruits cell division cycle 20 (cdc20) and CDC20-like protein 1 (CDH1). APC/C-CDC20 promotes cell cycle transition from metaphase to anaphase,

while APC/C-CDH1 mediates mitotic exit and early G1 entry. E3 ligases SCF (S-phase kinase-associated protein 1-cullin 1-F-box protein) complexes work on a

subset of cyclins and CDK inhibitors and regulate progression from G1 to the onset of mitosis. FBXW7, SKP2, and b-TrCPs are well-studied F-box proteins. E3

Parkin downregulates some G1/S kinases. Several DUBs play crucial roles in cell-cycle progression in cancers. Some example substrates of E3 and DUBs are

shown in the gray boxes. The E3 and DUBs in green are tumor promoters and the ones in blue are tumor suppressors.
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regulates multiple biological processes including inflammation,

immunity, cell proliferation and apoptosis. Abnormal activation of

NF-kB has been involved in tumorigenesis. Ubiquitination regulates

NF-kB pathways in proteasome-dependent and independent

mechanisms (Figure 3) (66). For example, NF-kB is activated by the

inflammatory cytokine interleukin-1 (IL-1). Without simulation, NF-
kB is inactive in the cytoplasmbinding to the inhibitory proteins of the

kB family (IkB). IL-1b activates the ubiquitin E3 ligase tumor necrosis

factor receptor-associated factor 6 (TRAF6). TRAF6 cooperates with

the E2 enzyme Ubc13-Uev1A to synthesize K63 polyubiquitin chains

and adds them to the TAB2 (TGFb-activated kinase 1 binding protein
2) subunit of the TGF-b activated kinase 1 (TAK1) kinase complex,
resulting in TAK1 activation. TAK1 then phosphorylates the IkB
kinaseb (IkKb).PhosphorylatedIkBissubsequentlyubiquitinatedand
degradedby26Sproteasome, thereby allowingNF-kB to translocate to
the nucleus and activate gene expression.

InappropriateactivationofNF-kBhasbeen linked tocancers.NF-
kBactivationcouldbe tightly controlledbydeubiquitinatingenzymes
as negative regulators of IkK. For example, DUB A20 inhibits IkK
activation via threemechanisms, replacing K63 polyubiquitin chains

from receptor-interacting protein 1(RIP1) with K48 polyubiquitin

chains, blocking the interaction between Ubc13 and TRAFs, and

inhibiting IkK phosphorylation by TAK1 (42). Another well-known

DUB is the tumor suppressor CYLD, which inhibits NF-kB
activation by cleaving K63 as well as linear polyubiquitin chains to
inhibit IkK (71). Lack of CYLD in cells would elevate NF-kB
activation, which likely contributes to tumor development.

E3 ligases and DUBs Regulate T Cell
Dysfunction in Cancer
T cell activation is critical for the initiation and regulation of the

immune response in cancer immunotherapy. It requires at least two

signals to become fully activated. One occurs after the engagement

of the T cell receptor (TCR) andmajor histocompatibility complex

(MHC). Another is provided when co-stimulator CD28 binds to

CD80 and CD86 that are expressed on antigen-presenting cells

(APCs). However, the multifaceted suppressive signals that existed

in the tumor microenvironment make intratumoral T cells
dysfunctional. The main traits of T cell dysfunction include some

inhibitory receptors (e.g., PD-1), inhibitory cells (e.g., Treg cells),

suppressive soluble mediators (e.g., TGFb), transcriptional factors
(e.g., T-bet), etc (72). UPS has been found to play a key regulatory

role in maintaining T cell dysfunction with diverse

mechanisms (91).
Dysfunctional T cells usually have abnormally high expression

of multiple inhibitory receptors such as PD-1. Inhibitory receptors

binding to their ligands negatively regulate an immune response.

A recent study has identified that E3 ligase Fbxo38 ubiquitinates

and degrades PD-1 in activated intratumoral T cells, which proves

a novel mechanism for cancer immunotherapy. Fbxo38 can be
activated by IL-2-induced STAT5 in activated T cells. In the

dysfunctional T cells, Fbxo38 is downregulated, leading to an

increased PD-1 abundance and impressive tumor immune

response (92).

Regulatory T (Treg) cells are a subpopulation of CD4+ T cells

that are crucial for maintaining immune tolerance. Treg cells

usually produce immunosuppressive molecules such as TGFb
and inhibit the function of effector T cells. Treg cell development

and function are determined by the transcription factor forkhead

box protein 3 (Foxp3) and several E3s are involved in the

process. For example, Stub1 and casitas B cell lymphoma

protein b (Cbl-b) ubiquitinate Foxp3 and negatively regulate

Treg cell development (43, 44). E3 ligase von Hippel-Lindau
(VHL), Itchy homolog (Itch) and gene related to anergy in

FIGURE 3 | Schematic diagram of the regulation of NF-kB activation by ubiquitin ligases and DUBs. IL-1b activates the ubiquitin E3 ligase TRAF6, TRAF6 cooperated with

the E2 enzyme Ubc13-Uev1A to synthesize K63 polyubiquitin chains and add them to the TAB2 subunit of the TGF-b activated kinase 1 (TAK1) kinase complex, which results

in TAK1 activation. TAK1 then phosphorylates IkKb. Phosphorylated IkB is subsequently ubiquitinated and degraded by 26S proteasome, thus allowing NF-kB to translocate

to the nucleus, and the NF-kB pathway is activated. Deubiquitinases such as A20 and CYLD inhibit the activation of the NF-kB pathway.
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lymphocytes (Grail) participate in maintaining Treg cell

repressive function (45, 46). Loss of VHL in Tregs leads to

type 1 T helper (Th1)-like cell conversion and interferon-gamma

(IFN-g) production (45). Itch deficiency in Treg cells results in

severe airway inflammation in mice, increasing TH2 cytokine

production (46). Also, GRAIL-deficient Treg cells induce
decreased suppressive function and increased Th17 cell-related

gene expressions (93). Cbl-b and Grail have been found to play

crucial roles in tumor immunosurveillance. Their loss inhibits

tumor formation in mice. Cbl-b-/- and Grail-/- CD8+ T cells can

be fully activated in the absence of costimulatory factors in vitro.

They could promote tumor rejection and inhibit tumor
formation when they are transferred into tumor-bearing mice

(94, 95). These studies suggest that Cbl-b and Grail may serve as

therapeutic targets to antitumor immunity.

TGFb, a well-known immunosuppressor factor, plays an

important role in immune tolerance (96). It not only promotes

thymic Treg cell development by repressing T cell clonal deletion
but also regulates peripheral Treg cell differentiation andmaintains

Treg cell function by inducing Foxp3 expression (96). Moreover,

TGFb inhibits T cell proliferation by decreasing IL-2 production

andupregulating cell cycle inhibitors (97). It also blocksCD4+Tcell

differentiation by modulating T-bet or GATA expression (97).

Besides, TGFb downregulates the expressions of cytolytic genes in

cytotoxic T lymphocytes (98), costimulatory factors and MHC II
molecules in dendritic cells and macrophages, reducing antigen

resenting ability and regulating T cell function indirectly (99). In

fact, as a versatile cytokine, TGFb exerts pivotal functions in diverse
processes of cancer development, such as proliferation,

differentiation, apoptosis, and migration, depending on the target

cells (100). Thus, TGFb signaling has been regarded as a potential
therapeutic target for the treatment of cancers.

Dynamic ubiquitination/deubiquitination plays a key role in the

regulation of the TGFb signaling pathway (Figure 4) (101). The

TGFb1-induced TGFb pathway activation consists of receptors

(TGF receptor I and II), receptor-SMADs (SMAD2 and SMAD3),

co-SMAD (SMAD4), and inhibitor adaptor SMAD (SMAD7).

TGFb1 binding induces TGFRII to phosphate TGFRI, and then
the activated-TGFRI phosphorylates SMAD2 and SMAD3.

Subsequently, the phosphorylated SMAD2/3 dissociates from the

receptor andoligomerizeswithSMAD4.Following that, SMAD2/3/

4 translocates to the nucleus and recruits other gene regulatory

proteins and transcript specific genes. Many E3s and DUBs are

reported to be involved in turning off the TGFb pathway. For
example, AIP4/Itch brings SMAD7 to TGFbRI and prevents the

activation of SMAD2 (102). SMAD7 also serves as a scaffold to

recruit E3 ligases SMURF1, SMURF2,Tuil1/WWP1andNEDD4-2

to ubiquitinate and degrade the receptor complex (103–106). On

the contrary, USP26 stabilizes SMAD7 via deubiquitination (107).

As for SMADs, SMURF2 and NEDD4-2 target SMAD2 for

degradation (106, 108) whereas SMAD3 is targeted by E3 ligases
CHIP and ROC1-SCFFbw1a (109, 110). SMAD4 is indirectly

regulated by E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and

NEDD4-2 through forming a complex with SMAD7, SMAD6 or

activated SMAD2 (111). SMAD4 has a point mutation in many

cancers. In this case, these protein variants are degraded by E3 ligases

SCF-Skp2 and SCF-b-TrCP1 (112, 113) In addition, the R-SMAD/

SMAD4 complex can be dissociated by SMURF2monoubiquitinates

SMAD3 or Ectodermin/Tif1gmonoubiquitinates SMAD4. Once the

R-SMAD/SMAD4 complex enters the nucleus, the DNA-binding

proteins SnoN and TGIF direct NEDD4-2 and Tiul/WWP1 to

degrade SMAD2 and inhibit the signaling.
On the other hand, lots of E3s and DUBs participate in turning

on the TGFb pathway. At the receptor level, USP4 interacts directly
with TGFbRI to maintain its stability (114). DUBs such as USP11

andUSP15, stabilize the receptor complex by being associated with

the scaffold protein SMAD7 (115, 116). SMAD7 can bedegraded by

E3 ligases Arkadia, AIP4/Itch and RNF12 mediated ubiquitination
(117). OTUB1maintains the stability of SMAD2/3 by reversing the

ubiquitination of SMAD2 and USP9X, and also promotes the R-

SMAD/SMAD4 complex formation by preventing ubiquitination

on R-SMAD (118). In the nucleus, transcriptional repressor SnoN

can be degraded by E3s Arkadia, SMURF2 and CDH1-APC

mediated ubiquitination (119, 120). Monoubiquitination of R-
SMADs prevents the R-SMAD/SMAD4 complex binding with

the DNA, while USP15 reverses the modification and promotes

TGFb dependent transcription.

The T-box family transcription factor T-bet regulates the Th1

cell differentiation and induces the production of IFN-g. Recently, it

has been shown that it is expressed in Treg and participates in

relevant immunosuppressive function (121). It has been suggested
that T-bet is required in T cell dysfunction (72). Although the

underlyingmechanism of T-bet ubiquitination is unknown,USP10

has been found to stabilize T-bet via deubiquitination and enhance

the secretion of IFN-g (122).

Furthermore, UPS could regulate TCR activation. For

instance, E3 ligases Cbl, Itch, and Grail degrade the TCR
complex and inhibit T cell activation through proteolysis-

dependent mechanisms (91, 123). In contrast, USP12 has been

found to stabilize the TCR complex and promote TCR signaling

through deubiquitylating TCR adaptor proteins LAT and Trat1

in primary mouse T lymphocytes (124). Naik et al. found that

USP9X regulated TCR signaling and tolerance induction, and

also the USP9X-deficient T cells were hyperproliferative (125).
Therefore, E3 ligases and deubiquitinases keep the delicate

balance between immunity and tolerance.

THE THERAPEUTIC TARGETS OF UPS
AND DUBS

Numerous evidence indicates that every component of UPS can be
regarded as valuable therapeutic targets in the development of

anti-cancer drugs. Several drugs such as bortezomib (a proteasome

inhibitor), have been approved by the FDA in cancer, and many

other inhibitors are in development (Table 3) (138).

Targeting the E1 Enzyme
The E1 enzyme is responsible for activating ubiquitin molecules

in the UPS, and several compounds have been identified to target

E1. For example, adenosine sulfamate analogs, such as MLN7243
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(126) and MLN4924, function as the ubiquitin-activating

enzyme and NEDD8-activating enzyme inhibitors, respectively.

They are currently undergoing Phase I/II and Phase I clinical

trials (127, 139). Recently, TAK-243 was reported to induce

leukemic cell death in preclinical models of acute myeloid

leukemia cells through inhibition of the ubiquitin-like
modifier-activating enzyme 1 (128). Experimental inhibitors of

E1 have also been reported. For example, PYR-41, an irreversible

inhibitor of ubiquitin E1, can inhibit the ubiquitylation of

TRAF6 and decrease nuclear factor-kappa B activation. PYR-

41 can also inhibit the degradation of p53 and activate its

transcriptional activity (140). Due to lacking specificity,

inhibition of E1 would cause remarkable side effects.

Targeting the E2 Enzyme
The E2 enzyme binds to E1, and then the activated ubiquitin is

transferred to a cysteine of the E2 enzyme from the E1 enzyme.

Thus, E2 enzymes mediate the conjugation of ubiquitin to
substrates. Nowadays, several E2 inhibitors have been found to

interfere with the process. For instance, Leucettamol A and

manadosterols A and B, which are isolated from the sea

sponges, inhibit the Ubc13-Uev1A interaction and block the

A

B

FIGURE 4 | Schematic overview of the regulation of TGFb pathway by ubiquitin ligases and DUBs. (A) factors that turn off the TGFb pathway. AIP4/Itch brings

SMAD7 to TGFbRI and prevents the activation of SMAD2. SMAD7 recruits E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and NEDD4-2 to ubiquitinate and degrade

the receptor complex. On the contrary, USP26 stabilizes SMAD7 via deubiquitination. As for SMADs, SMURF2, and NEDD4-2 target SMAD2 for degradation

whereas SMAD3 is targeted by E3 ligases CHIP and ROC1-SCFFbw1a. SMAD4 is regulated by E3 ligases SMURF1, SMURF2, Tuil1/WWP1, and NEDD4-2 through

forming a complex with SMAD7, SMAD6 or activated SMAD2. The R-SMAD/SMAD4 complex can be dissociated by SMURF2 monoubiquitinates SMAD3 or

Ectodermin/Tif1g monoubiquitinates SMAD4. Once the R-SMAD/SMAD4 complex enters the nucleus, the DNA-binding proteins SnoN and TGIF direct NEDD4-2 and

Tiul/WWP1 to degrade SMAD2 and inhibit the signaling. (B) factors that turn on the TGFb pathway. At the receptor level, USP4, USP11, and USP15 stabilize the

receptor complex. E3s Arkadia, AIP4/Itch and RNF12 induce SMAD7 degradation. OTUB1 maintains the stability of SMAD2/3 and also promotes the R-SMAD/

SMAD4 complex formation by preventing ubiquitination on R-SMAD. In the nucleus, transcriptional repressor SnoN can be degraded induced by E3s Arkadia,

SMURF2 and CDH1-APC. Monoubiquitination of R-SMADs prevents the R-SMAD/SMAD4 complex binding with the DNA, while USP15 reverses the modification

and promotes TGFb-dependent transcription.
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TABLE 3 | Anti-cancer compounds in clinical trials targeting the ubiquitin-proteasome system and DUBs.

Classification Compound Target Cancer/cancer cell line Status References

E1 inhibitor MLN7243 Ubiquitin-activating enzyme Acute myeloid leukemia Phase I/II (65)

MLN4924 NEDD8-activating enzyme Malignant melanoma Phase I (52)

TAK-243 Ubiquitin-like modifier-activating

enzyme 1

Acute myeloid leukemia PreClinical (42)

PYR-41 Ubiquitin-activating enzyme HCT116 cells, H522 cells PreClinical (71)

E2 inhibitor Leucettamol A Ubc13-Uev1A Research (72)

manadosterols A

and B

Ubc13-Uev1A Research (91)

CC0651 Human Cdc34 PC-3 prostate cancer cells,

HCT116 cells

PreClinical (92)

E3 inhibitor RG7112 MDM2/HDM2 Liposarcoma, acute Leukemia Clinical (43)

RG7388 MDM2 Human osteosarcoma SJSA cells Clinical (44)

SAR405838 MDM2/HDM2 Liposarcoma, gastrointestinal,

Melanoma, non-small cell lung cancer

Phase I (45, 46)

MK-8242 MDM2/HDM2 Acute myeloid leukemia,

Advanced solid tumors

Phase I (93, 94)

NVP-CG097 MDM2 SJSA-1 cells Phase I (95)

HDM201 MDM2 Acute myeloid leukemia Phase I (96)

AMG232 MDM2 Solid tumors and lymphomas Phase I (97)

RITA MDM2 HCT116 cells Research (98)

PRIMA1 MDM2 SW480 tumor, Saos-2 osteosarcoma cells Research (99)

HLI373 HDM2 RPE cells, U2OS cells,

MDA-MB-468 breast cancer cell

Research (100)

HLI98 MDM2 RPE cells, U2OS cells, LOX-IMVI cells,

A549 cells,

HT1080 cells

Research (101)

MEL23/MEL24 MDM2 U2OS cells,

HCT116 cells,

RKO cells,

HT-1080 cells,

H1299 cells,

MCF7 cells

Research (102)

RO8994 MDM2 SJSA-1 cells, RKO cells, HCT116 cells Research (103)

NSC207895 MDMX MCF7 cells Research (105)

ATSP-7041 MDM2 & MDMX SJSA-1 cells, RKO cells, HCT116 cells, MCF7 cell, Research (106)

ALRN-6924 MDM2 & MDMX Solid tumors and lymphomas Phase I (107)

oridonin c-Myc Leukemia and lymphoma cells Research (109)

compound ZL25 SKP2 Prostate cancer cell PC-3 & LNCaP cell,

H3255 cells,

H1299 cells,

Hep3B cells & U2OS cells

Research (106)

compound A SKP2 Hematologic malignancies Research (111)

Erioflorin Pdcd4 RKO cells,

HeLa cells,

MCF7 cells

Research (112)

GS143 b-TrCP1 Research (113)

TAME Cdh1 and Cdc20 HeLa cells Research (114)

apcin Cdc20 RPE1 cells Research (115)

Clomipramine Itch Breast, prostate and bladder cancer cells Approved (118)

Proteasome

inhibitor

Bortezomib Proteasome Multiple meloma,

nonsmall cell lung cancer,

pancreatic cancer, mantle cell lymphoma

Approved (119, 120, 123,

124)

Carfilzomib Proteasome Multiple meloma,

Waldenstrom’s Macroglobulinemia

Approved (7)

Ixazomib Proteasome Multiple meloma Approved (8)

Oprozomib Proteasome Multiple meloma, solid tumors,

Waldenstrom Macroglobulinemia

Phase Ib/

II

(126)

Delanzomib Proteasome Multiple Myeloma, solid tumors,

Lymphoma, Non-Hodgkin

Phase I/II (127)

Marizomib Proteasome Refractory and relapsed multiple myeloma, malignant

glioblastoma

Phase III (126, 128, 129)

DUB inhibitor WP1130 USP9X HCT116 cells Research (129)

(Continued)
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E1-E2 complex formation (141, 142). Another example is

CC0651, a small molecule inhibitor of the E2 enzyme hCdc34

(130). The E2 enzyme hCdc34 can ubiquitylate SCF (Skp2)

substrate p27, and CC0651 decreases tumor cell growth by
inhibiting p27 ubiquitylation and degradation.

Targeting the E3 Enzyme
E3 ligase recognizes substrate proteins and catalyzes the transfer

of ubiquitin from E2 to target protein lysine. Therefore, E3 ligase

has high substrate specificity which makes targeting E3 ligase

become a promising tumor treatment strategy. So far, many

studies have identified some compounds that could target
specific E3 ligases and disturb UPS.

MDM2/p53
Due to the critical roles of p53 in regulating the genome, many

efforts have been made to find the antagonists of E3 ligase MDM2/

HDM2 to restore the function of p53. To date, a large number of

inhibitors have been discovered based on MDM2-p53 interaction.
Some of them are undergoing clinical assessment with different

stages, such as RG7112 (129), RG7388 (131), SAR405838 (132,

143), MK-8242 (144, 145), NVP-CG097 (133), HDM201 (146),

and AMG232 (147). Besides, more MDM2 inhibitors, such as

RITA (134), PRIMA1 (135) HLI373 (148), HLI98 (149), MEL23

and MEL24 (150), and RO8994 (136) have been discovered to

target MDM2 directly, thereby enhancing p53 activity and
exhibiting anti-cancer ability.

MDMX/HDMX (murine/humans double minute X) shares

significant homology with MDM2 and is also a negative

regulator of p53. Though nutlin-3 has been found to inhibit

MDM2-p53 but not MDMX-p53 interaction (151), NSC207895

targets MDMX specifically and acts addictively with nutlin-3a to
activate p53 and induce apoptosis (137). Moreover, ATSP-7041

(152) and ALRN-6924 (153) decrease p53-dependent tumor

growth as dual inhibitors of MDM2 and MDMX.

SCF E3 Ligases
SCF (Skp1/cullin/F-box) E3 ligases are the largest family of E3

ubiquitin ligases. Their substrates play important roles in regulating

the cell cycle, DNA replication, and signal transduction. Therefore,

the dysregulation of these E3s often leads to cancer (154). Since

FBPs are responsible for the specificity of SCFs, many small

molecules are designed to target them. For instance, the natural

compound oridonin enhances the ubiquitination and degradation

of c-Myc mediated by FBW7, inducing apoptosis in leukemia and

lymphoma cells (155). Furthermore, compound ZL25 inhibits SKP2

directly, resulting in the p53-independent cellular senescence in

cancer cells (156). Another SKP2 inhibitor, compound A, induces
p27-dependent cell cycle arrest and cell death by inhibition of SCF-

SKP2 complexes formation (157). Erioflorin stabilizes the tumor

suppressor Pdcd4 by blocking its interaction with b-TrCP1,
suppresses the activity of AP-1 and NF-kB, and decelerates cancer

cell proliferation (158). Another inhibitor, GS143, was shown to

markedly decrease IkB ubiquitination by targeting b-TrCP1 and
suppress the NF-kB signaling pathway (159).

Since Cdc20 is an oncogenic cofactor in the APC/C complex,

many efforts have been made to find Cdc20 inhibitors to anti-

cancer. TAME (tosyl-L-arginine methyl ester) was reported to

bind to the APC complex. It could inhibit its activation by

targeting both Cdh1 and Cdc20 and arrest cells in metaphase

(160). Moreover, Apcin was found to bind directly to Cdc20,
inhibiting the ubiquitylation of D-box-containing substrates, and

subsequently inducing tumor cell death (161).

E3 ligase Cbl-b has been identified as a negative regulator of

TCR signaling. When Cbl-b is inhibited, the T cell-mediated

antitumor activity will be enhanced. Autologous peripheral

blood mononuclear cells (PBMCs) from patients were collected
and transfected with Cbl-b-siRNA, which were called APN401.

The results of the Phase I clinical trial for APN401 revealed that

its intravenous infusion in patients with refractory solid tumors

was feasible and safe (162). Several small-molecule Cbl-b inhibitors

have been discovered to decrease the ubiquitylation of TAM

receptors and promote the activation of T cells as well as natural

killer cells. They are expected to be utilized in combination with
other approved agents in immunotherapy (163).

Itch, a HECT domain-containing E3 ligase, promotes the

ubiquitylation of several proteins (e.g. p70, p63, c-Jun, JunB, Notch,

and c-FLIP) and shows a potential target for cancer therapy. Rossi

et al. identified that antidepressant drug clomipramine and its

homologs could inhibit Itch auto-ubiquitylation and p73
ubiquitylation to reduce breast, prostate and bladder cancer cell

growth by blocking autophagy (164).

Targeting Proteasome Activity
Among all the UPS components, the proteasome has been

successfully used as a target for cancer treatment. The proteasome

is a largemulti-protein complex containingmulticatalytic proteases

(e.g., chymotrypsin- and caspase-like enzyme) and is responsible

TABLE 3 | Continued

Classification Compound Target Cancer/cancer cell line Status References

WP1130 UCH37 Multiple myeloma MM1.S &

Mantle cell lymphoma Z138 cells

Research (130)

HBX 41,108 USP7 Prostatic adenocarcinoma PC3 cells,

Colon carcinoma HCT116 cells

Research (131)

P5091 USP7 Multiple myeloma cells Research (132)

b-AP15 USP14 & UCHL5 Multiple myeloma cells Research (133)

Protac-1 MetAP-2 Research (134)

ARV-825 BRD4 Multiple myeloma cells Research (135)

ARV-771 pan-BET Castration-resistant prostate cancer Research (136)

QCA570 BET Human acute leukemia cells Research (137)
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for the degradation or processing of intracellular proteins. As such,

it regulates the levels of some important mediators for cell-cycle

progression and apoptosis in normal and malignant cells, such as

cyclins, caspases, BCL2 and nuclear factor of kB (165). Bortezomib

is the first proteasome inhibitor approved for recurrent refractory

multiplemeloma (MM) in 2003 (166, 167). It reversibly inhibits the
activities of chymotrypsin- and caspase-like enzymes, leads to the

apoptosis of MM cells, and suppresses the activation of NF-kB,
production of cytokines (e.g., IL-6, IGF-1, and VEGF) in the tumor

microenvironment, and adherence of myeloma cells to bone

marrow stromal cells (165, 168). Later, it was extended to patients

with non-small cell lung cancer, pancreatic cancer, and mantle cell
lymphoma (169, 170).Althoughbortezomibhas antitumoractivity,

it can cause side effects such as neuropathy and autophagy in some

cases (171, 172). Besides, bortezomib resistance often occurred in

about one year (173, 174). Carfilzomib, a second-in-class

proteasome inhibitor drug, was approved in 2012 for MM by the

USFDA(11). It irreversibly inhibits the chymotrypsin-like activities
and shows improved safety inmaintaining its cytotoxic potential in

the bortezomib resistant cell lines (12). Carfilzomib treatment also

causes adverse effects such as cardiovascular complications,

hypertension, and heart failure, but they are reversible and

manageable with careful monitoring. Both bortezomib and

carfilzomib are not suitable for oral administration. Ixazomib is

thefirst oral bioavailable proteasome inhibitor andwas approvedby
the FDA in 2015. It reversibly inhibits the chymotrypsin-like

activities and shows improved safety profiles over bortezomib,

but its therapeutic advantages still need further investigation by

randomized clinical trials (12).

The clinical successes of existing proteasome inhibitors

encourage great efforts to discover more proteasome inhibitors
with improved efficacy and safety. Thus, a lot of proteasome

inhibitors have been identified including oprozomib, delanzomib

and marizomib. Oprozomib is an orally available inhibitor with a

homologous structure to carfilzomib. It is currently being studied

in several clinical trials including a multicenter phase Ib/II trial

for MM patients. Oprozomib can effectively decrease the viability

of MM cells both in vitro and in vivo (175). Delanzomib, a
reversible oral bioavailability of bortezomib analog, overcomes

bortezomib’s resistance to peripheral neuropathy. But it causes

severe skin toxicity to many patients (176). Marizomib, a novel

proteasome inhibitor with a better therapeutic ratio, overcomes

bortezomib resistance and exhibits broader anti-cancer activities

(177). Moreover, marizomib has synergistic effects on refractory
and recurrent MM patients with BTZ, linedoxamine,

bormadoxamine and low dose dexamethasone (175, 178). In

addition, marizomib can penetrate the blood-brain barrier and

induces apoptosis in glioma cells with low toxicity on normal

cells (179). Marizomib is currently being assessed in a phase III

trial for the treatment of malignant glioblastoma in combination

with temozolomide and radiotherapy.

Targeting DUBs Activity
Ubiquitination is a dynamic and reversible process and DUBs

catalyze the removal of ubiquitin or polyubiquitin chains from

the target protein. DUBs are actively involved in regulating

tumorigenesis. Thus, DUB inhibitors are regarded as potential

anti-cancer agents (180) To date, a number of DUB inhibitors

have been identified to inhibit tumorigenesis (4, 10, 181).

WP1130, an inhibitor of DUBs, can suppress the activities of

USP9X, USP5, USP14 and UCH37, deregulate anti-apoptotic

protein MCL-1 and upregulate pro-apoptotic protein p53. It

exhibits high anti-tumor activity (182). For example, the
transcription factor E-twenty-six related gene (ERG) is

overexpressed and promotes prostate carcinogenesis. Inhibition

ofUSP9XbyWP1130 leads toERGdegradation and inhibits tumor

growth (183).

Recently, HBX 41,108, a small-molecule inhibitor of USP7,

was reported to inhibit USP7-mediated p53 deubiquitination,
stabilizing p53 and inducing p53-dependent apoptosis in cancer

cells (184). Besides, P5091, a selective USP7 inhibitor, was found

to induce apoptosis and overcome bortezomib resistance in MM

cells. What’s more, it can inhibit tumor growth and exhibit

synergistic anti-MM activity in combination with lenalidomide,

HDAC inhibitor SAHA, or dexamethasone (185). A class of dual
small molecule inhibitors of USP7 and USP47 has been identified

to promote p53 activity and apoptosis in MM and B-cell

leukemia cells in vitro and xenograft models (186).

Moreover, USP14 can inhibit the degradation of ubiquitin-

protein conjugates in vitro and in vivo (187). The inhibitors of

USP14 have been found to stimulate the proteasomal degradation

of oxidized proteins, causing resistance to oxidative stress (188).
Consistently, b-AP15 was shown to inhibit cell growth and

overcome bortezomib resistance in MM cells by selectively

blocking the deubiquitylating activity of USP14 and UCHL5

(189). These studies indicate that inhibiting specific oncogenic

DUBs may be an effective anti-cancer approach.

PROTACs TECHNOLOGY

Recently, emerging technologies based on PROTACs attract
increasing attention in the pharmaceutical industry (190).

PROTACs are heterobifunctional molecules that simultaneously

bind a target protein and an E3 ubiquitin ligase, enabling

ubiquitination and degradation of the target by the UPS in the

cell (Figure 5) (13). PROTACs link the target protein to an E3

ubiquitin ligase by a designed hybridmolecule, providing a path for
ubiquitinating undruggable proteins such as transcription factors,

scaffolding proteins and nonenzymatic proteins. The first

PROTACs were reported in 2001 by the Crews group and Ray

Deshaies (191). They artificially synthesized a chimeric compound

named Protac-1. Protac-1 has two domains: one domain contains

the IkBa phosphopeptide that could recruit the F-box protein b-
TrCP, and the other domain contains ovalicin which could bind to

the target protein methionine aminopeptidase-2 (MetAP-2). As a

result, MetAP-2 was ubiquitinated and degraded in a Protac-1-

induced proteolysis manner.

Due to the excellent permeability and low working

concentrations, small molecule-based PROTACs, which utilize

small molecules to recruit E3 ubiquitin ligases, have more
potential to be developed into drugs than peptide-based

PROTACs (13). The PROTAC technology broadens the range

of target proteins degraded by the UPS.
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Recently, some transcriptional regulators (such as BRD4,

TRIM24 and Smad3) have been reported to be targeted by

PROTAC technologies (13). BRD4, a bromodomain and

extraterminal domain (BET) family member, usually resides
upstream of important oncogenes such as c-Myc, BCL-xL and

BCL-6, and regulates their expressions. Therefore, BRD4 has

become a promising therapeutic target in multiple cancer types.

Preclinical studies of BRD4 inhibitors, JQ1 and OTX015,

demonstrate their value in suppressing c-Myc expression and BL

cell proliferation. However, owing to the reversible binding of
inhibitors, the suppression is incomplete and requires high drug

concentrations. Crews groups developed a bifunctional molecule,

ARV-825, connecting the BRD4 inhibitor OTX015 to an E3 ligase

cereblon binding moiety (pomalidomide) using PROTAC

technology. As a result, ARV-825 actively recruits BRD4 to

cereblon, leading to BRD4 efficient degradation via the
proteasome in Burkitt’s Lymphoma cells. Moreover, ARV-825

treatment produces a more pronounced effect on the inhibition of

c-Myc than that of the BRD4 inhibitors in five MM cell lines

[SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and an MM

patient-derived CD138+ MM cells (192). In addition, Zengerle

et al. designed another PROTAC, connecting JQ1 for BET family

proteins and a ligand for VHL. Interestingly, the PROTAC not
only triggered the degradation of BET family proteins particularly

BRD4, but also regulated the transcription of BRD4 downstream

genes such as Myc, p21 and AREG (193). In this way, it can also

dampen the pro-inflammatory response inmicroglia, because BET

proteins control the transcription of NF-kB-depended genes

(194). These findings demonstrate that BRD4 PROTACs is a
promising novel strategy to efficiently target BRD4 (195).

Raina and his colleagues reported that ARV-771 (another pan-

BET inhibitor)-based PROTAC, dramatically suppressed

androgen receptor (AR) protein level and AR signaling. It could

lead to tumor regression in castration-resistant prostate cancer

(CRPC) mouse xenograft model with more efficiency than BET

inhibitors. This study provides evidence that small molecule-based

PROTAC functions in a solid-tumor malignancy of CRPC (196).

The results of BET-PROTACs ARV-825 and ARV-771 in the
treatment of MCL cells demonstrate that they induce more

apoptosis than BET inhibitors. Also, the results show that they

can overcome the resistance of ibrutinib and exert a synergistic

effect on apoptosis induction in the combination of other drugs

such as ibrutinib, venetoclax (a BCL2-antagonist) and palbociclib

(a CDK4/6 inhibitor) (197).
Recently, more BET-PROTACs have been designed. For

instance, Qin et al. synthesized a BET-PROTAC called QCA570,

utilizing a new class of BET inhibitors Oxazepines to recruit BET

proteins. It could inhibit human acute leukemia cell proliferation

at low picomolar concentrations, and abolish tumor growth in

leukemia xenograft models in mice (198). Zhang and his
colleagues demonstrated that BET-specific PROTACs were

active against preclinical models of MM (199). Interestingly, the

activity of BRD4-specific PROTACs can be improved over 100-

fold through modification of hydroxylation of proline (200). In

addition to the BET family, a functional PROTAC against

TRIM24, another bromodomain-containing transcriptional

regulator, has been designed and provides a path to find new
undruggable targets (201). Wang et al. designed new PROTACs to

prevent renal fibrosis by targeting SMAD3. They used hypoxia-

inducible factor-1a to recruit VHL and screened compounds to

bind SMAD3 from the Enamine library using the GLIDE

molecular docking program. SMAD3 was degraded by PROTAC

mediated ubiquitination (202). Thus, transcription factors can be
targeted via PROTAC technology.

In addition, the undruggable transcription factors also can be

degraded via alteration of the activity of an E3 ubiquitin ligase.

For instance, Thalidomide and its derivatives Lenalidomide and

Pomalidomide are effective drugs for the treatment of multiple

FIGURE 5 | Schematic diagram of the PROTAC technology. The PROTC is a chimeric molecule that consists of two ligands, one is to interact with E3 ligase and the other is

to bind the target protein. The target protein is polyubiquitinated and degraded by the proteasome and the PROTC molecule can be recycled.
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myeloma and other B cell lymphomas. Thalidomide analogs

bind Cereblon (CRBN), the substrate receptor of the CUL4-

RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and alter

its substrate selectivity to recruit, ubiquitinate and degrade

unrelated transcription factors, such as Ikaros (IKZF1), Aiolos

(IKZF3) and Casein kinase 1 alpha (CK1a) (203, 204). These
findings provide a novel way to selective degrade specific targets

through modulating the activity of an E3 ubiquitin ligase.

CONCLUSIONS

Ubiquitination of nonhistone proteins plays an important role in

many cellular processes, including cell cycle, cell proliferation, DNA

repair, apoptosis, inflammation, immune response, etc.
Dysregulation of nonhistone lysine ubiquitylation is closely

associated with the development of various human cancers.

Therefore, UPS has been evolved as promising therapeutic targets

for novel anti-cancer drugs. Nowadays, many proteasome inhibitors

and E3 ligase modulators have been approved for anticancer

treatment, whereas small-molecule inhibitor therapeutic strategies
usually need high drug exposures and potentially increase the risk of

off-target adverse effects. Fortunately, PROTACtechnologies provide

a path to target many undruggable proteins with UPS such as

transcription factors.

To date, it remains an obstacle for the discovery of small

molecule moiety to different targets. Another obstacle is

specificity, how to get tissue-specific or disease-specific induced

protein degradation? How to realize conditional triggered

induced protein degradation? A deeper understanding of the

tissue expression of E3 ligase and tumor microenvironment may
provide a larger therapeutic window for appropriate PROTAC.
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