
Ubiquitous Computing:
Extending Access To Mobile Data

A Thesis
Presented to

The Academic Faculty

by

Michael David Pinkerton

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

Georgia Institute of Technology
May 1997

ii

Thesis Approval Page

iii

DEDICATIONS

The most important dedication: to Nicole, my wife-to-be, for sticking by me and

being so understanding when I was frustrated and grumpy.

I’d really like to thank my advisor, Gregory Abowd, for giving such a wonderful

opportunity (and a chance to play with cool toys) even though I was only a Masters

student. Gregory never once laughed at my ideas, and stuck up for me when I needed it. Of

course, if it were up to him, this project would have been called “Newton’s A-Go-Go.”

We’ll try to ignore that.

I’d also like to the entire Future Computing Environments group (I can’t name you

all) for providing such a fertile playground in which to develop such new and fascinating

ideas. My work would have been useless without applications to existing projects. I’m glad

I could do my part in furthering their research in ubiquitous computing.

An important, but often forgotten, group are the tireless tech support folks. Without

the help of the Newton DTS group, this project never would have been completed. Thank

you all!

Finally, I must thank Jimi Hendrix, The Black Crowes, and The Who for providing

hours of listening enjoyment as I hacked away into the early morning hours.

iv

TABLE OF CONTENTS

DEDICATIONS iii

LIST OF FIGURES vi

SUMMARY vii

CHAPTER

I. INTRODUCTION 1

1.1 Thesis Statement 1
1.2 Problems With Current Solutions 2
1.3 Contributions 6
1.4 Overview of Remainder of Paper 7

II. RELATED WORK 9

2.1 Connectivity 9
2.2 Platform Assumptions 11
2.3 Application-Specific Effort 12
2.4 Data Integration 13
2.5 Summary 17

III. APPLICATIONS 18

3.1 Integrating Mobile Information into Desktop Applications 18
3.2 Collaboration among mobile devices 32
3.3 Summary 36

IV. ARCHITECTURE 37

4.1 Goals 37
4.2 Overview 39
4.3 Newton Overview 40
4.4 LlamaServer 43
4.5 MobileConnect 49
4.6 DesktopConnect 52
4.7 Intercomponent Communication 56
4.8 Summary 67

V. DESIGN DECISIONS, HURDLES, AND LIMITATIONS 68

5.1 Some information is kept permanently on the mobile device 69

v

5.2 Mobile devices always connected 71
5.3 Centralized server instead of point to point communications 73
5.4 Client applications explicitly written to handle mobile data 74
5.5 Assumes a homogeneous mobile environment 76
5.6 Summary 77

VI. FUTURE WORK 78

6.1 Heterogeneous Platforms and Data 78
6.2 Caching 80
6.3 Security/Privacy 81
6.4 Multiple LlamaServers 83
6.5 Criteria for UI evaluation 84
6.6 Extensions to applications 84
6.7 Conclusion 86

APPENDIX A - TABLE OF COMMANDS 87

REFERENCES 88

vi

LIST OF FIGURES

Figure Page

1 Information flow in synchronization 15

2 RCU and the actual note on the Newton 16

3 A Cyberdog Notebook 21

4 CyberLlama part embedded in OpenDoc container. 22

5 The Llama ConnectTo panel 25

6 A document with CyberButtons. 26

7 Organizing CyberItems on the desktop 27

8 CyberDesk ActOn window 30

9 A CyberDesk viewer for Newton names 31

10 Cyberguide and Cyberguide II 33

11 The server-side components of CyberGuide II 34

12 Overview of LlamaShare infrastructure 39

13 A frame, before and after adding a slot 41

14 Layers of the DILs 43

15 LlamaServer's position in the infrastructure 44

16 Diagram of flattening protocol 46

17 Byte stream produced from flattening 47

18 MobileConnect's position in the infrastructure 49

19 A clientSpec frame for sending frames to a Global Soup 50

20 DesktopConnect's position in the infrastructure 52

21 Desktop representation of a Newton frame 54

22 Java code to access slot f.c.foo in the frame from Figure 21 55

vii

23 DesktopThread/MobileThread registration process 58

24 Handling of response from mobile device 59

25 Message sent from DesktopThread to mobile device 63

26 “Response” message received by LlamaServer 65

27 "Request" message received by LlamaServer 66

viii

SUMMARY

We live in a world where fully featured mobile devices (PDA's, etc.) are gaining

wider acceptance and usage. As more and more information is collected and stored on these

devices, there becomes a greater need for both users and developers to be able to easily

access and work with this information, either from desktop machines or from mobile

devices. Current solutions to this problem are either cumbersome for users or restrictive to

developers.

There are two goals of this work:

1) Provide an infrastructure and real-world applications for integrating mobile

information into a desktop environment. This integration should be seamless,

requiring minimal deviation from how users currently interact with their desktop

machines.

2) Allow the mobile devices themselves to collaborate and share information with

others. Each device will be a first-class client in the system, not just a passive

information repository.

1

CHAPTER I

INTRODUCTION

1.1 Thesis Statement

We live in a world where fully-featured mobile devices (PDA’s, pagers, cell

phones, etc.) are gaining wider acceptance and usage. As more and more information is

collected and stored on these devices, there becomes a greater need for both users and

developers to be able to easily access and work with this information. Current solutions to

this problem are either cumbersome for users or restrictive to developers.

This thesis attempts to solve some of these problems through a combination of

desktop-based applications built upon a new infrastructure which supports easy

information exchange with mobile devices. The specific infrastructure we provide as part of

this thesis is the LlamaShare environment, the goal of which is to enable the rapid

development of desktop-based applications which take advantage of mobile information,

whether to provide new interfaces to users that streamline the complex interaction models

required to utilize mobile information in common tasks, or to extend the ability to existing

applications to mix mobile information with local and remote information.

It does not take hours of expensive user testing to notice the problems that exist

with using information from the more popular PDA’s on a desktop-based computer. The

PDA users in our group (both Newton and Pilot) constantly vocalize their desire to have

access to phone numbers or notes located on their PDA when using their desktop machine.

The most prevalent solution, copying the entire contents of the PDA to the workstation,

greatly restricts a user’s ability to make changes at either location. Furthermore, this

2

method pushes the burden onto the user, who is the least suited to handle such a

complicated process. For mobile devices to gain a wider acceptance, the interface to mobile

information must be seamless, as average users have little patience for intricate steps and

convoluted interactions.

Our own projects in the Future Computing Environments (FCE) group illustrate the

problems inherent in developing applications which utilize mobile information. Most (if not

all) have been severely limited by the difficulties of trying to access and use the information

collected on a variety of mobile platforms. For example, our PDA-based CyberGuide

project [1, 2, 3] allows users to access information about their environment, but the

information is static and there is no way for users to communicate contextual information

such as positioning. Even retrieving the information collected on the devices proved time

consuming and complicated, requiring custom client/server software to be written on both

the desktop and the PDA. As there was no infrastructure available to build upon, each

project made its own attempt with very little success in each case, leaving us with a variety

of custom solutions which could not be applied to existing or future research projects, and

a crowd of frustrated developers.

 LlamaShare provides a general architecture to address both of these problems, but

first its probably best to more closely examine the problems of users and developers in

detail.

1.2 Problems With Current Solutions

From a user’s perspective, the problems with mobile devices go far beyond just

having access to information. While getting the information to a user’s desktop machine

has already been elegantly solved, actually integrating that information into user tasks

(such as inserting mobile information into a document) requires a series of long and

3

complicated steps which have little to do with the task for which the user needs the

information. Serious effort has gone into the "synchronization" approach to accessing

mobile information from the desktop world. When the user wants to access any data on

their mobile device, they must explicitly go to a special "docking" program which

downloads the information from the mobile unit to the computer, hopefully in a format

which desktop applications can understand. This is the approach taken by the

PalmComputing Pilot [4] and the Newton Connection Utilities [5, 6] from Apple

Computer.

Synchronization is perfectly acceptable when the user’s task only requires access to

mobile information, such as synchronizing a desktop calendar with the calendar on the

mobile unit. However, synchronization falls short when the task becomes more

complicated. For example, it does not begin to address how a user would integrate a note

stored on a mobile device into a letter they are writing. Even this simple task requires a

much richer infrastructure which goes beyond simply providing access to mobile

information.

To demonstrate, here is the sequence of steps required to integrate mobile

information into a common task such as writing a letter:

1. The user realizes they want to use some mobile data to aid in creating their document

in application “A”

2. User mentally locates the data, and realizes it is on a mobile device

3. Thinks about what program is needed to access the data (the docking application,

“B”)

4. Searches out and locates that application (this may take several steps by itself)

5. Goes through the steps of synchronizing the mobile device with the desktop (there

could be many)

4

6. Thinks about what application is needed to view the uploaded data on the desktop,

application “C” (almost certainly not the same the original application, “A”).

7. Searches out and locates that application (again, multiple steps)

8. Scans through all of the uploaded data to find the correct entry

9. Thinks about how to integrate this data into the document

10. Integrates it into application “A”, if and only if the data is in a format that “A”

accepts.

This long and complicated process distracts the user from their current task by

leading them on a wild goose chase through three different applications and many more

tedious steps. Moreover, once they reach the final step, they may not even be able to

integrate the data because it is not in a format the target application understands. Finally, the

user now has two copies of their data. If they change either one, they must re-synchronize

or risk encountering out-of-date information on either their desktop computer or the PDA.

This thesis seeks out a user interface which streamlines this interaction model of

integrating mobile information to as few steps as possible:

1. The user realizes they want to use some data to aid in creating their document

2. Identifies the desired piece of data (either by issuing a query or by creating a

physical marker on the desktop)

3. Drags a representation of the information into the document and drops it at the

desired location

5

Developers run into similar roadblocks when trying to write client/server style

applications which access and manipulate mobile information. The three main problem

areas are:

1. Language/platform restrictions

Libraries exist for each mobile device to handle transferring information between

the PDA and the desktop, but they may only be available for certain platforms

(usually Mac and Windows) and certain languages (C or C++). This seriously

restricts writing applications in, say, Java on a UNIX machine.

2. Limited connectivity options

Applications on the desktop are normally limited to communicating with devices

that are either directly cabled to the same machine (serial) or on some private local

network (AppleTalk). This restricts which machines have access to information on

mobile devices to where the physical device is connected, and almost totally rules

out connectivity from the Internet.

3. No infrastructure for mobile groupware apps

PDA’s are fertile ground for groupware applications (sharing positioning

information is just one simple example), but there is almost no infrastructure

available to allow the sharing of information among multiple mobile devices.

Developers are forced to write their own from scratch each time.

When trying to develop an application which manipulates mobile information, these

limitations can range from minor annoyances to show-stoppers. Our own efforts in the

FCE group have been hampered by all three of these at one time or another. The harder it is

6

for developers to write applications for mobile devices, the fewer applications will exist,

which is a shame considering the sheer number of useful ideas which arise after even

simple brainstorming. LlamaShare was developed to address these issues as well.

1.3 Contributions

In light of all of these problems, this thesis provides solutions not present in other

systems. Here are the major points that LlamaShare addresses:

• Develop in any language, on any desktop platform, on any machine on the Internet

Applications on the desktop which access and manipulate mobile information can be

written on any platform in any language. In addition, the use of TCP/IP as the

communication layer opens up much more than the platform. Desktop-based client

applications can now run on any machine on the Internet and be able to access

mobile devices half a world away as if they were on the same local network.

• Access to multiple mobile devices

By using a desktop-based server as a contact point, clients have access to not just a

single mobile device, but to any mobile device connected to that server. Clients can

now query multiple devices for information without the requirement that any of

them are in the same physical location.

• Database for collaborative use by desktop and mobile devices

The LlamaShare architecture provides a database which can be used to collaborate

among multiple mobile devices, as well as with desktop applications. These data

stores, called “Global Soups,” provide a single location where devices can collect

7

and aggregate information collected individually. It also provides a single location

where information intended for all devices in the environment can be deposited,

either by a mobile device or a desktop application.

• Users should work with mobile information the same way they work with other

information.

No one knows yet the “right” way to serve mobile information to a user, so

LlamaShare presents two different approaches which streamline the user interface

for integrating mobile information into user tasks. One leverages Apple’s Cyberdog

[7] technology to allow users to directly organize and manipulate physical

representations of mobile data on the desktop intermixed with their Internet

information. The other leverages CyberDesk [8], a research project from our own

FCE group, which allows users access to a nebulous pool of information

comprised of local, Internet, and mobile data. In both cases, mobile data is directly

manipulated using the same metaphors with which users already are comfortable.

1.4 Overview of Remainder of Paper

Chapter 2 presents related work in the fields of mobile and ubiquitous computing

and demonstrates how each project addresses particular aspects of the mobile computing.

Furthermore, it delineates where LlamaShare differs from past work when concepts

presented by this thesis overlap with prior research.

Chapter 3 discusses several applications which utilize the LlamaShare infrastructure

and begin to address some of the user interface issues presented earlier in this chapter.

There are four different applications which have been developed, two for desktop

workstations, and two collaborative applications based on the Apple MessagePad.

8

 Chapter 4 delves into details about the underlying infrastructure, describing each of

the components, as well as the protocols between them.

Chapter 5 discusses major design decisions and why they were made, as well as

limitations of the infrastructure and applications built on top of it. It also goes into detail

about many of the technical hurdles overcome during the development of the LlamaShare

infrastructure.

Chapter 6 comments on future directions and improvements for both the

LlamaShare infrastructure and applications.

9

CHAPTER II

RELATED WORK

The key areas in which the work presented in this thesis stands apart from currently

existing research and products are:

• Connectivity requirements

• Platform assumptions

• Application-specific effort

• Data integration

The following sections describe existing projects in each of these three areas and

how LlamaShare differs.

2.1 Connectivity

Mobile devices are inherently mobile, thus access to information becomes

complicated by the fact that these devices can be disconnected from the environment for

long periods of time. As a result, there has been a large body of research focused on

information access in a disconnected, or loosely connected, environment. This thesis takes

a different approach, assuming that mobile devices will be constantly connected. Judging

10

by the growth of the wireless community, in five years constant connectivity may be the

rule instead of the exception.

Coda [9, 10, 11], from CMU, is a UNIX file system for mobile workstations

based on the Andrew File System (AFS). Assuming that mobile workstations will be

disconnected for periods of time, Coda transparently handles the consistency and

replication issues, hiding them from the applications and the user. Of course, constant

connectivity is desired when it can be achieved, so Coda provides an application-

transparent adaptation model for maintaining continuous connectivity while migrating from

one networking environment to another. For example, a laptop user might move from a

connected environment in their office to a cellular connection on the road without any

interruptions in service. In this way, Coda-based systems can function in both connected

and disconnected environments.

Bayou [12, 13], from Xerox PARC, attempts to address several of the issues in a

disconnected environment as this thesis does in a connected one by providing a mobile

computing environment that includes portable machines with less than ideal connectivity.

Both Bayou and LlamaShare provide an infrastructure for mobile databases on which to

build a collaborative infrastructure. Bayou creates “databases” of information which can be

shared easily and handle the consistency problems inherent with disconnected computing,

using techniques such as replication, propagation of updates, and conflict resolution. The

“database” concept is very similar to LlamaShare’s “Global Soup” and the lightweight

server is analogous to the server which runs on the mobile device to serve its information to

desktop workstations.

Wit II [14, 15], from the University of Washington, also addresses the fragility of

mobile connections by focusing on the two most restrictive resources in the mobile

environment: network bandwidth and local storage. By using techniques such as caching

and prefetching, Wit II trades off increased local storage against reduced bandwidth

11

requirements and user-perceived latency. Uniquely, Wit II provides an application

framework in which applications can supply information such as object relationships and

data types. As a result, the system can increase the effectiveness of its optimization

techniques by prefetching related information to enable further operations after the device

has been disconnected from the environment.

Unlike the previous systems which focused on connectivity limitations of mobile

devices, ParcTab [16, 17, 18] from Xerox PARC ignores many of the problems of

disconnected and unreliable communication by assuming a consistently available IR

network. ParcTab uses custom hardware for both the mobile devices and the IR

transceivers to provide a reliable and uninterrupted service to each tab. Similarly,

LlamaShare uses high frequency RF via Ethernet transceivers and PCMCIA cards to

establish its fully connected environment.

2.2 Platform Assumptions

This thesis presents an infrastructure which lays the groundwork for access to

information on heterogeneous mobile devices that are not based on common desktop

operating systems. Due to hardware constraints, mostly the lack of networking capability in

commercially available devices, LlamaShare currently can only access information from the

Apple MessagePad. However, once devices such as the Pilot can more easily exist on a

network, the infrastructure can be expanded handle other devices. The Future Work chapter

discusses this in detail.

Coda (and Odyssey, described below) are only available for devices running UNIX

[11], which translates directly into laptops. Coda is typical of the research in disconnected

file sharing to come out of the OS community in that it does not address other mobile

devices, such as the entire PDA market, which are more portable and have longer battery

12

life. Other projects such as FACE [19] from Princeton, the work done by Tait and

Duchamp from Columbia [20], and Ficus [21] from UCLA all focus exclusively on laptops

and UNIX-based machines.

Trying bridge the gap to a wider variety of mobile devices, Bayou allows

information to be stored at locations other than the typical UNIX-based server. Any device,

even a PDA, may carry a “lightweight” server which makes information available to any

other device with which it has a connection [12]. While promising, very little of the work

has actually been completed. Some simple client libraries exist, but only for Solaris, and

nothing runs on any commercially available PDA’s [13].

Both ParcTab and Wit II address the domain of non-UNIX mobile devices, but do

so by using proprietary hardware and communications infrastructure built at Xerox PARC.

In contrast, this thesis provides an infrastructure using off-the-shelf devices and

components (such as the Apple MessagePad and NetWave Ethernet Access Points).

Moreover, LlamaShare’s devices perform most of their own computations, in contrast to

the ParcTab infrastructure which emphasizes communication over local processing [18]. As

a result, each tab is driven by applications running on a remote workstation and stores no

information locally.

2.3 Application-Specific Effort

Different systems have different philosophies about the extent to which applications

should be customized to take advantage of the features of the infrastructure. As described

in Chapter 5 (Design Decisions), our infrastructure requires that applications be explicitly

written to access and manipulate mobile information. Most of the burden of accessing

mobile information is hidden from developers within stubs, but the use of such stubs is

13

required. As a result, off-the-shelf applications not written to communicate with our

infrastructure cannot participate.

While Coda makes no explicit demands on a particular application, Odyssey [10]

explores cases where the application is designed to be aware of the loosely connected

nature of the information being accessed. As a result, the application can adapt to rapidly

varying connectivity parameters such as bandwidth and network quality. For example, a

video application can react to dips in bandwidth by displaying a lower fidelity version of

the movie, possibly without color or sound. Furthermore, the application can disclose the

relationships between groups of files to the Odyssey infrastructure. Such a disclosure can

then be utilized to provide strong hints about future accesses which can be exploited for

prefetching.

Wit II uses a very similar technique to improve application performance in a

constantly changing network environment. However, while Odyssey uses a mechanism

based on groups of files, Wit II uses application-provided information such as object

relationships and data types. Given this information, the system can create “object graphs”

which links related objects together (for prefetching), similar to intermediate representations

used in compilers [15]. As a result, the system can increase the effectiveness of its

optimization techniques by utilizing such application information.

Both of these systems demonstrate that application-specific effort can be beneficial

to the overall effectiveness of the system and the usefulness of the applications.

2.4 Data Integration

In the beginning, PDA-style mobile devices could do little more than store calendar

and contact information and had no connectivity options whatsoever. These early devices

were frustrating because users could not share information between their desktop

14

applications and the PDA. As a result, users were forced into entering information twice:

once on their computer, and again on their handheld.

Eventually, these devices gained the ability to connect to heterogeneous devices

(such as desktop computers), allowing users to share information between their two main

information repositories. Devices like the HP OmniGo [22] could only import and export

tab or comma delimited text files and DBase III databases. To accomplish something like

coordinating calendar information on both system required that the desktop calendar

application be able to import and export text files. The user was then forced to manually

perform the extra step of importing or exporting the information.

More recently, mobile devices such as the PalmComputing Pilot, the Psion Series

3c [23], and the Apple MessagePad have alleviated this step by automatically reading from

and writing to the native data formats of many popular desktop applications. The

connection utilities are not much more than automated translators with the ability to merge

data from two sources into one which contains the most up to date information in each (see

Figure 1). This works quite well for a highly specific task such as synchronizing a

calendar, but integrating generic information still requires the user to manually locate, scan,

parse, and integrate tab-delimited data. Furthermore, if information changes on the

desktop, the devices must be manually resynchronized, else the PDA will not contain a

consistent view of the information.

To address this problem, the Revelar Connection Utility (RCU) [24] reads and

writes information directly to and from a connected Newton as it is requested or changed

by the user. As a result, both devices always have a constant view of the information as it

is being examined by the user. However, RCU is a general purpose information tool. It

does not make any assumptions about the meaning of the information it is displaying and

presents a very low-fidelity view of the mobile information by revealing the bare structure

of field names and data types. As a result, it is very difficult for users to use the

15

information retrieved from the Newton as it is in a structure which they are not used to

seeing and can be almost meaningless depending on the format of the information. For

example, an outline on the Newton (which can have multiple levels of indentation) is

presented as a single list of topics (see Figure 2). The only clue to the indentation of any

particular bullet is the field named “level,” which novice users are not going to know to

look for. There is no semantic connection between what the user sees through RCU and

what they created on the Newton.

The applications demonstrated by this thesis take mobile information integration one

step further, by allowing users to integrate information via a user interface which displays

the information in a way that conveys its semantic meaning and does not require a multitude

of complicated steps.

Connection Utility

PDA
Workstation

mobile data desktop data

synchronized data

Figure 1 - Information flow in synchronization

16

Figure 2 - RCU and the actual note on the Newton

17

2.5 Summary

This thesis presents an infrastructure which differs from other systems in several

key ways:

• Assumes fully connected environment

• Works with truly mobile, commercially available devices (MessagePads)

• Provides applications which go beyond just providing access to mobile information

(via synchronization) and address how users will actually use such information.

18

CHAPTER III

APPLICATIONS

This chapter discusses several of the applications which have been built on top of

the LlamaShare infrastructure. The applications can be grouped into two categories:

Desktop-based information clients and PDA-based groupware applications. Despite our

best efforts in the past, these kinds of applications proved far too difficult without an

infrastructure designed to support them. As a consequence, the applications presented in

this chapter demonstrate the enabling power of the infrastructure, but more importantly,

they demonstrate the ease which developers can rapidly produce applications which can

take advantage of mobile information and group collaboration.

One important point should be made before continuing. While this thesis does not

take credit for any of the core ideas present in the systems which we leverage, the extension

and application to mobile information is a driving factor behind the LlamaShare research

effort. Neither system (Cyberdog or CyberDesk) was conceived with applications to

mobile devices in mind, and such applications are purely the work of this thesis.

3.1 Integrating Mobile Information into Desktop Applications

When people use their mobile device as a Personal Information Manager (PIM),

they keep names, addresses, notes and to-do lists on their mobile unit as if it were a pencil

and paper-based organizer like a DayPlanner™. Today’s commercially available mobile

devices (from PDA’s to cell phones) are becoming more and more “thick,” in that they

19

store information in their own right and are not simply temporary repositories for

information destined for desktop workstations. Under this model, users have a wealth of

useful information on their mobile device to which they probably want access while

working at their desktop. One common solution, synchronization, only complicates the

issue by forcing users to explicitly make redundant copies of information just to obtain

access to it. This is not only a hassle for users, but pushes the work onto the candidate least

able to handle the complicated task -- the unsuspecting end user. For this reason,

LlamaShare assumes information is accessed directly from the mobile device and provides

user interfaces which shield the user from the retrieval of the data.

An important question is how users will address and organize their mobile data

once they have access to it. This section presents two desktop applications which take very

different approaches in their solutions, both of which are equally enabled by the

infrastructure. The overriding theme with both approaches is that information on mobile

devices should be integrated into a user’s workspace or task in the same way as other

remote information, such as from the Internet. Users should not have to work any

differently with mobile information than they do with local or remote information.

The first application, called CyberLlama, extends Cyberdog [7] from Apple

Computer. Cyberdog is a collection of OpenDoc [25, 26, 27] components for accessing

remote/Internet data by providing “CyberItems” which visually represent Internet

information. Since Cyberdog is based on OpenDoc, any Cyberdog component can be

embedded in any OpenDoc container, a word processor for example, making the

integration of web content as simple as drag and drop. In addition to Cyberdog’s existing

components to access and organize Internet information, CyberLlama adds components to

integrate information stored on a Newton with local and remote content.

The second application extends CyberDesk [8], a separate FCE research project for

allowing users to access information through simple "agents" which search multiple

20

information spaces (the Internet, local data, etc.) based on context. The CyberDesk

infrastructure simplifies the automatic integration of applications by providing services

(network or local) utilized by applications in the CyberDesk environment without the

application itself having to be explicitly aware of them. We have added several services to

CyberDesk which locate and present mobile information (such as that on a Newton) to the

user, accessible by clicking a single button.

 3.1.1 CyberLlama OpenDoc Part

When it comes to integrating arbitrary content into documents, component

architectures like OpenDoc or OLE almost have an unfair advantage. Components, called

“parts” in OpenDoc, conform to a general API which allows them to be embedded in

special parts called “containers.” Containers make no special assumptions about their

embedded components, beyond the general API, which allows them to literally contain

anything. To developers, this yields the obvious advantage that they do not have to crowd

their application with support for every conceivable content type (sounds, movies, tables,

equations, etc.), but only support generic embedding through which they automatically

gain the ability to contain every content type, even ones not yet invented. To users,

components allow arbitrary mixing and matching of content, without any worries to the

current application supporting the content in question. To integrate mobile information into

desktop tasks, CyberLlama leverages the openness of the component architecture and the

freedom for users to freely mix and match content.

Cyberdog, a collection of OpenDoc parts for accessing and organizing Internet

content, allows users to store and categorize icons representing Internet URLs (called

CyberItems) in notebooks as well as in buttons that load the appropriate content when

clicked on. Additionally, CyberItem organization is left entirely up to the user. There are no

21

rules or restrictions based on protocols (for example, you can have email addresses next to

web pages, which you cannot do in either of the major browsers). Information can be

organized by semantic content, not by the protocol used to access it.

In addition to supporting the standard web content types (HTML, FTP, gopher,

telnet, news, mail, etc.), OpenDoc’s flexible architecture makes it simple to add support for

new types. To this end, we have added support for information not on the Internet, but on

a Newton (notice the "My Xmas List" icon in the notebook in Figure 3). Access to mobile

information is now provided through the same mechanism -- the CyberItem -- as Internet

data.

Figure 3 - A Cyberdog Notebook. “My Xmas List,” “Things to Update,”
and “ToDo For Thesis” are Newton CyberItems

22

From this, we gain two important abilities. First, since all CyberItems, regardless

of their type, can be organized into notebooks, Cyberdog’s notebook metaphor (illustrated

in Figure 3) allows the integration of mobile data into a location where users are already

accustomed to looking for remote data. Second, CyberItems can be dragged into OpenDoc

Figure 4 - CyberLlama part embedded in OpenDoc container. Gray rectangle
shows embedded Newton part.

23

containers to display their content embedded within the document (see Figure 4). This

allows drag and drop integration of mobile content into desktop content without

synchronization or complicated steps.

3.1.1.1 Creating a Mobile CyberItem

When a user decides they want to access remote information (whether mobile or

from the Internet), the first step is to create the CyberItem representing that information on

the desktop. Cyberdog has a panel-based interface for creating CyberItems within a single

dialog, called the “Connect To...” dialog. Each different kind of CyberItem has its own

panel with information particular to identifying that content type. For example, creating a

CyberItem for a web page requires typing in the URL and creating a CyberItem for a file on

an FTP site requires the server, the path to the file, and a username/password for non-

anonymous login.

To create a CyberItem representing mobile information, the user goes to the

“Llama” panel (see Figure 5 below) and enters the appropriate information. But how

should the user tell LlamaShare which piece of information they are interested in?

Answering this question is not quite as easy as it first appears. Most accesses fall into two

situations: 1) the user knows exactly what they want and where it is on the device; 2) the

user knows the information is there somewhere, but not quite where. Unfortunately, each

of these scenarios calls for radically different user interfaces.

The first scenario suggests building a “browser” similar to Microsoft’s Explorer or

the MacOS Finder which allows the user to drill down through multiple levels, navigating

directly to the desired piece of information. But what if they don’t know exactly where it is,

or even if it’s there at all? The second scenario requires a “find” mechanism which returns a

list of all entries which match some specific criteria (such as “contains the word ‘FCE’”).

24

This is great for finding information entered long ago and forgotten about, but cumbersome

when the user knows exactly what they are looking for. For instance, they might know

where the information is, but not the exact text within it that would match a search. Text-

matching queries alone might force the user to try several different search strings before

they find one that matches. Some combination of the two would certainly be the most

desirable.

However, given the time constraints placed on this project, there was no way that

such an interface could have been developed (basically we would be rewriting Explorer or

the Finder from scratch). For this reason, either some subset of functionality needed to be

developed or a choice had to be made on which scenario would be most useful in the short

term. A combination approach was decided upon which provides the ability to perform

both text-matching searches and limited browsing (per device only). The result is illustrated

below in Figure 51.

The user first chooses which mobile device the information is on and then the

“soup” which contains the data. (A soup is similar to a folder which holds pieces of related

information, but usually for a particular application such as the Note Pad or the Calendar.)

The user can then choose to get an overview of an entire soup, or search that soup for

entries matching a text-search. The overview shows a quick summary of each entry in the

soup, such as the title of title of a note and the first line or two of text. This should be

enough context if the user knows exactly what they are looking for. The text-search also

returns an overview of each entry that matches the criteria. When the user finds the desired

entry, they select it and click OK. The CyberItem for that piece of information is then

created.

1 This panel has not been fully implemented. All work has been done with a substitute panel with a more
“developer oriented” interface to allow quick testing of the remaining (and more interesting) functionality.

25

3.1.1.2 Integrated organization

Once a mobile CyberItem is created, it behaves exactly like any of the built-in

CyberItem types in that it can be placed into a notebook, dropped onto a CyberButton, or

dragged to the Finder. All three of these methods provide the user the flexibility to organize

CyberItems any way they choose.

The most common form of organizing CyberItems, placing them in notebooks, is

also the most interesting. CyberItems (and hence mobile CyberItems) can be organized in a

Cyberdog notebook in any way the user wants, illustrated by Figure 3 above. There are no

1. Choose the Newton:

2. Choose the Soup:

3. Enter search text (optional):

5. Select the desired information:

4. Build search list:

LlamaShare

Cool Stuff - Here is what Gregory Abowd ...

LlamaShare notes - Just some notes to myself ...

Testing note - Here is some simple LlamaShare ...

Figure 5 - The Llama ConnectTo panel

26

limitations or restrictions based on protocols, as exist in Netscape Communicator and

Microsoft Internet Explorer. If a user wants to create a notebook with newsgroups, URLs,

email addresses, and notes from a Newton, they are perfectly free. Another difference from

the traditional “bookmark list,” which Cyberdog’s notebooks are traditionally compared to,

is that a user can have multiple notebooks. This allows a single notebook to have all the

items related to a particular topic without being overcrowded with all the URLs from other,

non-related topics (a typical problem with bookmark lists in browsers). For example, a

user can have a notebook containing everything related to a meeting, including the notes

taken on the PDA, the email addresses of everyone in the group, a web page containing the

project being discussed, and a newsgroup for group collaboration after the meeting.

Along the same lines, CyberItems can also be placed into CyberButtons with drag and

drop. These visually programmed buttons open the specified CyberItem when they are

Figure 6 - A document with CyberButtons. This is just an example of what
is possible

27

clicked. CyberButtons allow users to organize single references to mobile information

directly into documents, where an entire notebook would be inappropriate. Figure 6 shows

a document which allows one-click access to calendar information stored on multiple

MessagePads.

Finally, CyberItems can be dragged into the Finder and are saved as files in the

folder in which they are dropped, illustrated in Figure 7. It is important to note that only the

pointer to the information is saved on the disk, not the information itself. This allows users

to organize mobile information as files alongside other files on their desktop, which may fit

Figure 7 - Organizing CyberItems on the desktop

28

more easily into a user’s perception of how their information is distributed. Making no

assumptions as to if that statement is true, the opportunity is certainly presented, allowing

the user to organize information however they choose and not the single way presented by

the system.

3.1.1.3 Integrating Mobile Information into documents

We still have yet to go beyond “accessing” information, which the synchronization

model can handle, even though it does not help with organizing the information. The next

stage in integrating mobile information into the desktop is to physically integrate it into

desktop content, such as a word processing document. Fortunately, since we are working

within an OpenDoc environment, this is simple for users to accomplish.

CyberItems can be embedded directly within OpenDoc containers (such as a word

processor) just by dragging the CyberItem from a notebook or the desktop and dropping it

onto a document. The CyberItem is opened and the content is displayed directly in the

document at the mouse location, and the result is shown in Figure 4. Notice that the user

does not have to worry at all about whether or not the content is in an acceptable format

because the container can accept anything. As long as the appropriate viewer part is

available to display the information, the user does not have to bother with translating the

mobile data to a form which can be understood and manipulated by the application.

In addition, mobile data can be edited in place, and changes are stored directly on

the mobile device. There is no need to repeat the synchronization process to return the

updated information to the mobile device. Along the same lines, since the display part also

keeps track of the CyberItem used to display the information, each time the document is

opened (or when the user explicitly hits “reload”), the document loads the updated

information directly from the mobile device. As a result, the user always interacts with the

29

most up to date version of their information, again without having to synchronize. If the

mobile device is not available (i.e., not connected to the network), a read-only snapshot of

the information is presented to avoid getting out-of-sync, but still allowing the user to view

the most recent information.

Essentially, a user is now free to work with mobile information using the same

interactions as if it is locally stored. Since the information is edited and viewed in-place in

the document, the user may not even be aware that the information resides on a mobile

device. This interface demonstrates that there is no need to force the complicated steps of

synchronization upon users.

3.1.2 The CyberDesk Environment

CyberDesk is a Java-based project developed by Wood, Dey, and Abowd at

Georgia Tech [8]. One of the goals is to provide an architecture for application integration

in which applications can automatically take advantage of the services provided by other

applications in the environment. These services can make use of both local information,

such as a calendar or a contact manager, or Internet information, such as searching for a

phone number with SwitchBoard or finding all web pages containing a text string with

AltaVista.

Unlike Cyberdog, which takes the approach of giving each piece of information a

physical representation on the desktop, CyberDesk allows user to search a nebulous

information pool of local and Internet information in response to queries based on the text

selected in a CyberDesk-aware application, such as an email application. For example,

when the user selects a person’s name, they are provided the option to look up that

person’s phone number on SwitchBoard, find their email address on WhoWhatWhere, or

perform a generic search for their name on AltaVista. The actions which a user may take are

30

dependent on the type of data selected (name, URL, email address, etc.) and appear

unobtrusively in a separate window called the “Act On” window, shown in Figure 8. In

addition to searching the Internet, the user is given the option to display contact

information from the locally-stored contact manager if a CyberDesk aware contact manager

is also present. In this way, CyberDesk blurs the distinction between local and Internet

information services.

Since CyberDesk was such an open architecture, it was simple (an afternoon) to

add a service which additionally searches a mobile device for the selected information. Two

applets, one for displaying notes and another for displaying names, were written to allow

users to browse information residing on a Newton (see Figure 9).

Users now only need to learn one interaction model (select text, click ActOn button)

to access information stored locally, on the Internet, or on a mobile device. This blurring of

the boundaries, emphasized by the lack of physical representations which draw attention to

Figure 8 - CyberDesk ActOn window

31

the actual location of the data, simplifies the number of steps necessary to access

information and makes the actual sources more ubiquitous to the user. Furthermore, since

that information is retrieved based on the user’s context during the completion of a task, it

is seamlessly integrated into the task itself.

In order to completely hide the location of the information from the user, we have

proposed a change to the way CyberDesk creates the ActOn buttons (which is currently

being implemented). In the existing system, CyberDesk creates one button in the ActOn

window for every applicable service, even when different services produce similar results

such as looking up a phone number. As a result, the user must manually choose between

the actions based on where they think the information is located (for example, a local

contact manager, the Internet service SwitchBoard, or the Newton). To achieve the goal of

concealing the information’s true location from the user, we propose to combine all action

buttons which provide a similar service into a single button which, when clicked, searches

all information spaces simultaneously. While the user may get multiple responses (another

issue to be resolved in the future), they no longer need to be consciously aware of the

location of the information in order to access it.

Figure 9 - A CyberDesk viewer for Newton names

32

What do the above applications demonstrate? Most importantly, they demonstrate

how powerful removing the barrier between mobile information and the rest of a user’s

information can be. Once a user’s computing environment is opened up to include all the

information to which they have physical access, they are empowered to use all the tools and

devices available to complete their task, whether it is making a phone call to a colleague or

writing a summary of their last meeting. Nobody doubts the overall gains which integrating

Internet information into our desktops has provided, and mobile devices, which hold

important information not available on the Internet, are no different.

3.2 Collaboration among mobile devices

The previous applications focused solely on the mobile device acting as a passive

server, answering queries for information already stored on it and returning the information

to some client somewhere on the Internet. This is only half the story, as a mobile device

should be able to act a client in its own right, requesting information from the environment

to present to the device’s user. Mobile, multi-user, collaborative applications have not

become prevalent because the infrastructure was never available. Now that there is one, we

can begin to explore the possibilities.

This section provides two such applications which allow users with Apple

MessagePads to collaborate with other MessagePad users as well as one-to-one with

desktop users.

3.2.1 CyberGuide

Our first mobile groupware application is based on CyberGuide, another project

here in FCE which uses PDAs as mobile tour guides in an unconnected environment. The

33

user can use the device to access information on particular items of interest in the

environment, such as demos, exhibits, or the neighborhood pub (see Figure 10). In

addition, each PDA has access to some external positioning system (GPS for outdoor

operation, IR beacons for indoor use) and can report the user’s position in relation to

objects in the environment on a map. Since the device knows where it is and other

information such as the current time, it can answer queries such as “when do I have to

leave for the next scheduled demo?” and “which bars are still open within 1 mile and serve

Guiness on tap?”

Unfortunately, each device is totally isolated and has no way to share information,

You are in front of the CyberDesk demo

Figure 10 - CyberGuide & CyberGuide II

34

such as the user’s location. Enter LlamaShare, which provides an infrastructure which

allows mobile devices to publish and request information. The new version of CyberGuide

(dubbed CyberGuide II) allows each user to see the location of every other user in the

environment. For small locations, such as a single room, this application doesn’t make a lot

of sense, but in a larger environment, such as an entire building or an entire campus,

knowing the position of your children or the tour bus would be very useful.

CyberGuide II works through a combination of desktop-based and Newton clients.

Our positioning system uses several cameras to determine the location of all the IR beacons

in the environment, where a UNIX-based server collects, interprets, and spits the positions

out a socket to the Internet. Another client reads from that socket and writes each of the

positions to a Global Soup (a LlamaShare construct which acts as a globally readable and

writeable database, similar to “soups” on the Newton). These components are illustrated in

Figure 11. Each Newton then, as a client, reads everyone’s positioning information and

displays it to the user via the map on its screen. At the same time, the Newton is

responding to user taps on the map to present information about objects of interest in the

environment.

Positioning System

TCP/IP TCP/IP

“converter”
(Java)

LlamaServer w/ Global Soups

Component of LlamaShare

stub
camera
IR beacons
etc

Figure 11 - The server-side components of CyberGuide II

35

Finally, CyberGuide II demonstrates LlamaShare’s ability to share information

between mobile devices in a collaborative environment. Users can enter their own

comments about each demo which are saved into “Global Soups.” When a user visits a

demo, the comments for that demo are automatically downloaded from the network to that

user’s Newton and displayed. This mechanism provides a very simplistic form of group

communication, and can easily be extended to include more information than just a

comment, such as numerical ratings. Furthermore, the comments can be reviewed from

desktop-based applications either while the demos are in progress or later, after the fact.

This application truly demonstrates LlamaShare’s flexibility to exchange information

between clients from heterogeneous platforms.

3.2.2 CyberTALK chat

The CyberTALK project [28] is an undergraduate project designed to allow users

on a mobile devices, such as a MessagePad, to communicate with other desktop users.

Functionality includes paging, email, and, most interestingly, a “talk” program which

allows mobile users to communicate with desktop users in a real-time conversation.

Information is relayed between the two devices over the network, using “Global Soups” as

message centers.

CyberTALK further demonstrates LlamaShare’s ability to share information

between heterogeneous clients. The desktop side of the chat program is written in Java, and

can be used within any Java-enabled browser. The mobile client is written for a Newton in

NewtonScript. Both clients can freely send and receive information from the other.

36

3.3 Summary

This chapter presented four applications, two on the desktop and two on the

Newton, which demonstrate the power and flexibility of the LlamaShare infrastructure to

share information between heterogeneous systems. The two desktop-based applications

explore alternative user interfaces for incorporating mobile information into existing

desktop or Internet content. The mobile applications demonstrate the ability of the

MessagePad to act as a client in the environment, allowing the mobile user to either

participate in group collaborative applications or communicate with desktop-based users in

real-time. The following chapter, Architecture, describes the infrastructure on which these

applications are built.

37

CHAPTER IV

ARCHITECTURE

This chapter covers the design and implementation of the LlamaShare

infrastructure. First, an overview of the goals is presented, followed by an overall picture

of the components. After that is a discussion of many of the runtime and storage details on

the Newton. Next, this chapter discusses the components of the infrastructure individually,

highlighting the functionality and the role each piece plays. Finally, it describes the

interaction between the different components, including a detailed analysis of the

communication and registration processes involved.

4.1 Goals

In order to provide a sufficient infrastructure able to support the rapid development

of applications which take advantage of the sharing of mobile information, LlamaShare

needed the following characteristics:

• Platform and language independence for desktop-based clients

Most of the research being done in FCE consists of Java-based applets running

through browsers on a variety of platforms. However, libraries for the Newton

only exist for MacOS and Win95/NT. Furthermore, these libraries could only be

called from C or C++, which greatly limited our development choices. The new

38

infrastructure should be language independent and allow clients to run on more

platforms.

• Ability to access more than just the device tethered to a workstation

To facilitate the sharing of information between users and their mobile devices, each

client needed the ability to access more than just the device attached to the user’s

workstation by a serial cable. That way client applications could read and

manipulate information, such as calendar data, from a variety of devices. Without

the ability to access more than the single mobile device at the user’s desk, such

groupware applications would not be able to take advantage of mobile information

like they do with other information.

• Mobile devices are clients which themselves request information

As we developed the LlamaShare infrastructure, it became clear that the mobile

devices should act as more than just passive repositories of information. Desktop-

based groupware applications were interesting, but to really push the paradigm of

ubiquitous computing required an infrastructure which allowed all devices to

participate in the environment. Each mobile device should be able to share

information with other devices as well as request that information for display to the

user holding the device. Having such an infrastructure would allow us to develop a

suite of mobile-based groupware applications with which to do research.

LlamaShare was able to address and solve all three of these goals, as demonstrated

in the following section.

39

 4.2 Overview

The LlamaShare infrastructure is comprised of three components, illustrated in

Figure 12:

• a centralized server called LlamaServer

• an application stub for mobile-based clients called MobileConnect

• an application stub for desktop-based clients called DesktopConnect

The LlamaServer acts as a centralized traffic cop and oversees all communications

between desktop and mobile applications. To the desktop clients, it speaks TCP/IP in order

to provide language and platform independence. Using TCP-based communications also

allows applications on any machine on the Internet to connect to the LlamaServer and

request information from mobile devices. On the mobile side, the LlamaServer speaks

ADSP (the protocol used by AppleTalk), which allows the easy connection of multiple

devices to the server. The LlamaServer also contains several “Global Soups” which act as

Desktop Application LlamaServer Mobile Application

TCP/IP AppleTalk

Shaded regions indicate components of LlamaShare

stub stub

Figure 12 - Overview of LlamaShare infrastructure

40

data stores in which to hold shared information. Information can be read from or written to

Global Soups by both desktop and mobile applications.

Handling the communication with the LlamaServer on the mobile side is a stub

called MobileConnect. This stub can act in one of two modes: server or client. As a server,

this stub can receive requests for information stored on the device from the LlamaServer,

locate the desired information, and then return it over the network. As a client, the stub can

send or receive information between an application running on the mobile device and any of

the Global Soups which reside on the LlamaServer. In both cases, the stub is embedded

within an application which runs entirely on the mobile device. The application decides

whether it wants the stub to operate in client mode or in server mode, but then is isolated

from the details of the connection and communication.

Finally, desktop-based applications use their own stub to communicate with the

LlamaServer. Named DesktopConnect, the stub provides an RPC-style calling convention

to hide from the application the details of accessing information over the network. The

primary job of the DesktopConnect stub is to inflate the streamed data structures read from

the LlamaServer over a TCP socket into “live” data structures.

4.3 Newton Overview

At this point, some explanation about how the Newton and its storage model might

be helpful. The Newton (and its application programming language NewtonScript) has

some interesting features not found in most systems. First is the concept of a “frame,”

which is similar to a structure, record, or class in most programming languages but is

dynamic in that it can grow and shrink at runtime. Frames are stored in “soups” which are

similar to files except they are indexed and searchable via an API.

41

A “frame” is a container, like a struct in C, with typed fields called “slots” that hold

the data. Frames can also be nested. However, unlike structs which have a predefined (at

compile time) structure, a frame is free to gain new slots and change its overall structure

dynamically, demonstrated in Figure 13. Also unlike structs, slots are not accessed by

compiler-determined byte offsets but by name, which is the key factor that allows them to

change structure dynamically. As a result, slots can be added to an existing frame without

disrupting its usage by an application that does not know about the new slots because the

application makes no assumptions about the exact structure of the frame. Finally, all type

checking is done at runtime so each slot is tagged with an appropriate type, even when it is

stored persistently.

Frames are stored in “soups,” named for their ability to hold frames with

heterogeneous structures (think of a soup as the “Great Data Melting Pot”). Soups are more

analogous to miniature databases as each soup holds all of the frames for a particular

application. For example, each note created with the Newton’s NotePad application is a

f = {
a: “hello”,
b: 27,
c: {

foo: “Test”,
bar: “More”

},
d: ‘c’

}

Before

f = {
newSlot: “This is new” ,
a: “hello”,
b: 27,
c: {

foo: “Test”,
bar: “More”

},
d: ‘c’

}

After
f.newSlot := “This is new”;

Figure 13 - A frame, before and after adding a slot

42

single frame and the entire soup, called “Notes,” contains all the notes created by the user.

Contrast this with the typical file system of workstations which would have a separate file

for each note and no common location for data (files can be spread anywhere, making

locating them difficult). Since all information for a particular application is co-located,

indexing and searching are both very easy. Each soup can have indexes on any of the slots

present in the frames of the soup which speeds up searching significantly, just like in a

database. Furthermore, API’s are provided for searching a soup using a variety of criteria

ranging from any frames containing certain text to frames whose slot matches certain

criteria. This functionality is nonexistent in most desktop Operating Systems and makes

serving mobile information from the Newton possible.

LlamaShare extends the idea of soups with “Global Soups” (see Section 4.4 for

more about Global Soups). Like their Newton namesakes, Global Soups store frames, but

instead of residing on a particular device, a Global Soup resides in the LlamaServer. As a

result, the Global Soup is universally accessible to all devices in the environment, both

mobile and desktop.

The libraries used to communicate between the Newton and the LlamaServer are

also worth explaining. The Desktop Integration Libraries (DILs) [29] are C libraries written

for MacOS and Win95/NT which are divided into two layers (shown in Figure 14). At the

lowest layer are the Communication DILs (CDILs) which are analogous to send and receive

calls, used to send messages back and forth between the Newton and a desktop machine.

The LlamaServer uses the CDILs to send small messages to the Newton such as the request

command and to acknowledge the receipt of frames. Built on top of the CDILs are the

High-level Frame DILs (HLFDILs, or just FDILs). As the name suggests, this layer is a

higher level protocol which encapsulates the sending of an entire Newton frame between

the desktop and the Newton. Additionally the FDILs hide the process of flattening the

frame for transmission and reinflating it at the other end.

43

The FDILs use a process called “binding” to establish a one-to-one correspondence

between a C data structure and a slot in the received frame. Before transmission, each slot

in a frame is bound to a pre-allocated buffer space for the slot. This is fine when the

application knows exactly which slots are part of the incoming frame, but frames are

allowed to have additional slots which the application might not be aware of. To handle this

unexpected information, named “unbound data” because it has not been explicitly bound by

the application, the FDILs create a multi-way tree where each branch is an unbound slot.

Whether bound or unbound, the type information associated with each slot as well as the

slot names stay with the frame even after it crosses into the desktop world.

4.4 LlamaServer

The LlamaServer has two main roles in the LlamaShare infrastructure. The first is

to provide a connection between desktop-based applications and a collection of mobile

devices. The second is to act as a storage location, allowing mobile devices and desktop

applications to collaborate through shared information repositories. Both of these roles

enable the development of content-rich applications, hosted on both workstations and

PDA’s, which can leverage a combination of local and mobile information.

AppleTalk layer

CDILs

FDILs

Application

“DILs”

Figure 14 - Layers of the DILs

44

Primarily, the LlamaServer is a bridge. Most desktop-based applications use

TCP/IP for inter-application communication. TCP/IP allows each participant to be written

in different languages and execute on heterogeneous platforms yet still be able to

communicate. If desktop-based applications were given access to information stored on

mobile devices, TCP/IP should continue to be the protocol utilized to access that

information for the sake of ease of programming and consistency. None of the mobile

devices we worked with, however, could handle TCP/IP easily which required that other

protocols be adopted in order to get them on the network. The easiest protocol for our

purposes was ADSP (AppleTalk) since our existing network already supported it, the

MessagePad supported it without any additional hardware, and wireless support was easy

to achieve. Without a bridge between the two protocols, desktop applications would lose

the language and platform neutrality provided by TCP/IP, which was not acceptable.

As a result, the LlamaServer speaks both protocols and manages the

communications between the two separate worlds. When a command comes in from a

desktop client, the LlamaServer checks its internal list of currently connected mobile

devices and then sends the appropriate command to the requested Newton using the CDILs

(see Appendix A for a full listing of commands). The response from the Newton, in most

Desktop Application LlamaServer Mobile Application

TCP/IP AppleTalk

LlamaServer

stub stub

Figure 15 - LlamaServer's position in the infrastructure

45

cases, is a frame which is then read by the FDILs over ADSP. Since the server is reading a

frame of unknown origin and content, it cannot make any assumptions about the slots and

must therefore read the entire frame as unbound data. The LlamaServer then flattens the

unbound frame, turning the recursive tree structure into a byte stream capable of being

transmitted over TCP/IP where the byte stream is read in by the DesktopConnect stub and

reinflated into a proper data structure. This exact interaction will be covered in Section 4.7,

Intercomponent Communication.

The process of flattening the unbound data deserves some explanation. The FDILs

handle the protocol of flattening the frame and subsequently inflating it on the desktop side

internally, which means there is no API to easily do it. Even if there was, the

DesktopConnect client stub would then be dependent on the FDILs to inflate the data at the

desktop application, which would once again limit the language and the platform. As a

result, the LlamaServer uses its own flattening protocol to send the unbound data over the

Internet.

Flattening the unbound data uses a recursive protocol (see Figure 16) which makes

heavy use of tags (character strings) as markers to indicate the structure of the frame within

the byte stream. Each frame begins with the ‘[ENTR]’ tag indicating the beginning of a

new frame and ends with ‘[ENDF]’. In between comes each slot sent in order (though the

ordering is arbitrary) marked by a ‘[SLOT]’ tag and ending with a ‘[ENDS]’ tag. Between

these two tags comes the definition of the slot, consisting of an integer representing the data

type, the name of the slot, and the slot data (if any). If the slot contains only a simple type

(such as an integer or a character), the tag ‘[NCHILD]’ is inserted, indicating the base case

of the recursion to follow, and the next slot is sent in turn. If the slot is a frame, the tag

‘[YCHILD]’ is used to indicate that this slot contains a nested frame. At this point, the

nested frame is sent using the same format as described previously. The nesting continues

until all slots are leaves (which must happen at some point) at which point the final [ENDF]

46

for the nested frame is inserted. The next top-level slot is flattened in similar fashion.

Finally, when all top-level slots are flattened, the top-level [ENDF] is inserted into the byte

stream indicating the end of the definition of the frame. An example of the byte stream

created from flattening a slot is shown in Figure 17.

Just as frames are flattened for transmission to the DesktopConnect stub, frames

intended for the Newton (originating from the desktop application) must be inflated and

bound into a DIL object in order to use the FDILs. The DesktopConnect stub flattens the

frame using the same protocol described above, which makes the byte stream easy to parse.

The difficult task is then building a bound DIL object from the incoming stream. Again, a

recursive process is used. For each slot in the incoming frame, the algorithm adds another

level to the recursion if it is a nested frame, stopping when it reaches a simple data type (the

base case of the recursion). The frame is then bound from the bottom up, one slot at a time.

As each slot (nested or not) is built from the byte stream, it is bound into its parent using

FDIL routines. When all slots at the top level are finished, the DIL object is complete and

ready to be sent to the Newton or stored in a Global Soup.

[SLOT] <NAME> <DATA> [NCHILD] [ENDS] [ENDF]

[YCHILD]

Start

Figure 16 - Diagram of flattening protocol

47

The other major function of the LlamaServer is to provide a central repository for

shared information to facilitate the creation of collaborative applications between mobile

devices. Just as soups are local repositories for Newton frames, LlamaShare’s “Global

Soups” are globally accessible repositories accessible from both desktop applications and

mobile applications. The server can hold an arbitrary number of Global Soups, but each

must have its own unique name as that is how the soup is referenced. Any device may add

to or read from a Global Soup, which enables applications to share information by

publishing it to a common location. Furthermore, information in a Global Soup persists,

even after a device has disconnected from the environment and its local soups are

inaccessible.

f = {
a: “hello”,
b: 27,
c: {

foo: “Test”,
bar: “More”

},
d: ‘hi’

}

[SLOT]
a hello [NCHILD]

[ENDS]
[SLOT]

b 27 [NCHILD]
[ENDS]
[SLOT]

c nil [YCHILD]
[SLOT]

foo Test [NCHILD]
[ENDS]
[SLOT]

bar More [NCHILD]
[ENDS]

[ENDS]
[SLOT]

d hi [NCHILD]
[ENDS]
[ENDF]

Figure 17 - Byte stream produced from flattening

48

Each Global Soup consists of an unordered collection of frames stored in multiple

representations. In addition to the data, each entry is also tagged with the name of the

Newton from which it came (the tag is empty if the frame originated from the desktop).

This allows queries to return all the frames originating from one particular device, and

might be used as the basis for a simple caching system. Currently, each frame is stored in

two ways due to limitations and bugs within the FDILs: a bound DIL object which can be

transmitted to the Newton using the FDILs, and a recursive data structure which can be

flattened for transmission over TCP/IP to a desktop-based client. However, memory is not

an issue within the server so this is not really a problem.

Supported commands on the Global Soup are currently very limited. Both desktop

and mobile clients can add frames to a Global Soup, clear the entire Global Soup, read the

entire Global Soup, and atomically read and clear the soup. The last command is useful for

making sure a device gets all the contents of a soup before clearing it (indicating that it has

seen everything there) and that no new entries sneak in between the “read” and the “clear”

operations. Currently, there is no way to replace or update individual entries in the soup or

do arbitrary queries such as what is possible with real Newton soups. The next version of

the Global Soups will add introspection capabilities which facilitate indexing and updating

based on information stored within individual frames. Regardless, the currently supported

commands are enough to build simple collaborative applications and allow us to do

research on groupware applications.

A good example of mobile collaboration is extending CyberGuide [3] to allow users

to share their comments about particular exhibits or demos. The comments for each exhibit

would be stored in a Global Soup. When a user decides to request more detail about a

particular exhibit, CyberGuide reads the comments from the Global Soup and displays the

ones relevant to the current exhibit to the user. The user would be free to add their own

comments to the pool for the benefit of others in the group.

49

The LlamaServer is written in C++ using PowerPlant [30], a MacOS-based

application framework which provides not only user interface components but also thread

and networking classes. The server is highly threaded, allowing it to process a substantial

number of requests simultaneously. Every connection, whether to a mobile device or a

desktop application has its own thread which allows request processing to overlap,

improving overall performance when the load gets heavy. However, the limits of the server

have yet to be strained by our simple applications and the server has not been optimized for

speed. Future work will gather statistics on throughput with varying loads and varying

scenarios (wired or wireless) .

4.5 MobileConnect

The Newton can participate in the infrastructure in one of two ways, either as a

client or a server. The software which handles the communications and protocols is a stub

called MobileConnect contained within the currently running application (see Figure 18).

The stub module has a simple external API and implements both client and server behavior,

albeit in mutual exclusion. To add the capability to participate in the LlamaShare

Desktop Application LlamaServer
Mobile Application

TCP/IP AppleTalk

MobileConnect stub

stub stub

Figure 18 - MobileConnect's position in the infrastructure

50

infrastructure to a mobile-based application, a developer simply adds the MobileConnect

module to the application and makes a handful of function calls. Once the stub has been

initialized, the application can then either serve information stored on the mobile device or

read and write information to Global Soups stored on the LlamaServer.

As a client, the application running on the mobile device has access to any of the

Global Soups and the information contained within them. To send information to the

Global Soup, the application calls a function on the MobileConnect stub, passing a frame

consisting of which soup to access, the list of frames to store, and a callback function to be

called when the transfer is complete. This frame is illustrated in Figure 19. The stub then

transparently handles the communication with the LlamaServer, sending the objects to the

specified Global Soup. When all the frames have been transmitted, the mobile application is

notified through the callback function. Retrieving frames from a global soup is roughly

analogous, except that instead of passing an array of frames, the “frames” slot will be the

destination for the incoming frames . In both cases, the application is unaware of exactly

how the frames are transmitted (which is covered below in Section 4.7).

local clientSpec := {
soupName: "Test Soup",
frames: [{a: "a", z:55},

{c: "c", qq:{foo:"hello", zebra:"zzz"}},
{e: "e", ee:"ee", eee:"eee"}],

onCompletion:
func () begin

print ("****Client is finished****");
GetRoot():SysBeep();

end,
};

fFSM:StoreFramesToGlobalSoup (clientSpec);

Figure 19 - A clientSpec frame for sending frames to a Global Soup

51

The application running on the mobile device can also configure the stub to accept

and respond to incoming requests for information stored on the device. After the

application puts the stub into server mode, no more interaction is needed between the

application and the stub, which reads from the network in the background and processes its

own events while the application’s user interface is idle.

When acting as a server, MobileConnect handles several different access methods

for mobile information on the local device. The most flexible is a text-based search, which

searches a given soup for any frame containing the provided text. All frames with the

matching text are returned. The next method, which works well in conjunction with the text

searching, are “overviews” which are one or two line descriptions of all frames in a

specified set. This set can either be an entire soup or the result of the previously mentioned

find query. The overview is quite useful for allowing users to quickly scan a large volume

of information in context, without having to transmit and display all of it over the network.

Once the user decides which frame they are interested in, it can be loaded explicitly using

the final access method. A particular entry on a mobile device can be requested by using its

“Resource Id,” an id unique to each piece of information on a device2.

Resource id’s are assigned to each frame in a soup by the MobileConnect stub at

certain well-defined times, the most common being when the frame is transmitted from the

Newton to the desktop. Resource id’s are also added when frames are received from a

desktop-based application and are to be stored in a soup. Finally, frames are tagged with

their id when an overview is requested in order to allow applications to request an overview

first, then the desired frame after the use has picked the one they are interested in, saving

both time and bandwidth. At the time the frame is tagged, the frame is written back to the

soup and is, as a result, permanently modified.

2 this is different from the Newton’s “_uniqueid” slot in that it is actually unique across all stores, both
internal and card, where the system uniqueid is not.

52

Due to the flexibility of frames and soups, modifying a frame to add the resource id

slot does not affect any other application which uses the frame. Applications are not aware

of any slots which they do not explicitly use in the program, so new slots may be added at

any time without causing a disturbance. Furthermore, since applications written to use

soups don’t rely on byte offsets and fixed-size records when writing and reading a file as

done most traditional desktop-based applications, changing the frame in the soup does not

wreck havoc by disturbing the carefully predetermined alignment of records.

4.6 DesktopConnect

LlamaShare enables the rapid development of desktop-based client applications

which take advantage of mobile information by providing libraries which abstract the

process of requesting and receiving mobile information to a function call. The

DesktopConnect libraries, shown in Figure 20, are written for a particular language or OS

and encapsulate all of the logic required to communicate with the LlamaServer over a

TCP/IP connection and package the resulting mobile information into a structure suitable

for the current development language.

Desktop Application LlamaServer Mobile Application

TCP/IP AppleTalk

DesktopConnect stub

stub stub

Figure 20 - DesktopConnect's position in the infrastructure

53

A single generic library which could be used regardless of the language or platform

is not feasible because there is no consistent networking API which covers all platforms.

Even within a single platform, different languages can vary greatly in their requirements on

the runtime architecture and meeting all of those needs from one code base would be

impossible. However, we have already built stubs to handle several of the more common

languages, including C++ and Java. We certainly get the most mileage out of the Java

library, which allows true cross-platform development and finally allows application

developers interested in taking advantage of mobile information to use UNIX.

Accessing information from any mobile device in the environment is as easy as

making a function call. The API provides a synchronous, RPC-style calling method which

hides the complexities of writing client-server code, such as asynchronous callbacks, from

the application. In the Java case, the function calls return a Java Vector, which is a list of

objects, one for each piece of information retrieved from the mobile device. The application

only has to iterate over this list to access the information.

Internally, the library communicates with the LlamaServer over TCP/IP. It sends

and receives information using the protocol detailed in the next section. The most important

role of the library is to inflate the frames as the come across the network. Recall that when

the LlamaServer sends frames, it flattens them for transmission over TCP/IP using a

recursive protocol which utilizes tags to indicate different attributes of the frame (see

Section 4.5 for a complete description of the format of the outgoing byte stream). The

DesktopConnect library reads the incoming byte stream, interprets the tags, and creates data

structures through a process which is effectively the mirror of the flattening process.

54

The difficulty lies representing the frames, which are hierarchical data structures of

unknown format, size, and content, in a format easily accessible by programmers in more

static languages such as C++ or Java which do not support dynamic structures. In Java, for

example, each Frame class consists of a Vector (Java’s linked list container type) of other

frames, which represent the information stored in the slots of the parent frame, as shown in

Figure 21. In other words, a Frame has a list of children Frames, which themselves can

have their own list of children Frames, ad infinitum. The recursive structure finally

terminates when each frame consists of only leaf data types, such as strings or integers.

These leaves are represented as Frame classes with no children, and instead contain the

actual data. Frame classes which actually represent internal frames contain no actual data

besides the children representing each slot (and thus have a nil data slot).

f = {
a: “hello”,
b: 27,
c: {

foo: “Test”,
bar: “More”

},
d: ‘hi’

}

name: f
data: nil
type: Frame
children: 4

name: a
data: “hello”
type: String
children: 0

name: b
data: 27
type: Int
children: 0

name: c
data: nil
type: Frame
children: 2

name: d
data: “hi”
type: String
children: 0

name: foo
data: “Test”
type: String
children: 0

name: bar
data: “More”
type: String
children: 0

Figure 21 - Desktop representation of a Newton frame

55

As with any information an application expects to interpret, it must know something

about the information before it can proceed. Static languages such as C++ and Java rely on

knowing the structure of the information at compile time in order to use byte offsets to

impose a structure on an arbitrary stream of bytes. Frames on the Newton behave much

differently since their structure can change arbitrarily, without the knowledge of the

application. Consequently, an application interpreting Newton frames on the desktop

cannot rely on byte offsets to access certain attributes within the frame, and must rely on a

different approach: knowing the names of the desired slots. The LlamaShare library

provides routines to inspect Frame objects by locating and returning the Frame class

representing the requested slot (see Figure 22 for an example).

import llama.NewtFrame;
import llama.MobileConnect;

// assume we have the frame in variable f
try {

NewtFrame c = f.GetSlot (“c”);
NewtFrame foo = c.GetSlot (“foo”);
System.out.println (foo.GetData());

}
catch (SlotNotFoundException e) {

System.out.println (“Slot not found”);
}

Figure 22 - Java code to access slot f.c.foo in the frame from Figure 21

56

4.7 Intercomponent Communication

This section covers the protocols between the different components described in the

previous sections. A typical request for mobile information goes like this:

1. A desktop-based application makes a function call in the DesktopConnect library.

The library packages and sends over TCP/IP the appropriate 4-letter command

(detailed in Appendix A) and its parameters to the LlamaServer. The client

application is suspended until all of the results are returned, as with a typical RPC.

2. The LlamaServer reads the information off of the network and figures out which

mobile device is the recipient of the command (this is part of the parameters). Next,

it sends a command over ADSP (AppleTalk) to the appropriate Newton to the

MobileConnect stub, acting as a server, running on that Newton.

3. The MobileConnect stub collects the requested frames and sends them back to the

LlamaServer (flattening is handled transparently by Apple’s FDIL libraries).

4. The LlamaServer then flattens the frames into a byte stream and sends it back to the

DesktopConnect library where it is inflated back into a data structure. The frames are

put into a list (such as a Vector in Java) and returned as part of the normal return

mechanism of the initial function call.

57

4.7.1 The Registration Process

There are several problems which need to be addressed when implementing the

communications protocol between the server and the desktop and mobile components. The

following issues motivated the final design:

• There is only a single logical connection to each mobile device that everyone must

share. Unlike desktop systems, mobile devices do not generally expose OS threads

to user applications. As a result, handling multiple simultaneous connections is

unwieldy.

• Information read from the connection to the mobile device must be shared between

the thread communicating with the desktop client and the thread communicating with

the mobile device.

• The mobile device can be a client in its own right. The server must be able to

differentiate between a response to a query and a request for information originating

from the mobile device over the same connection.

To this end, the LlamaServer implements a registration mechanism in order to

maintain control over the multitude of threads and messages involved during any

transaction.

Inside the server, each connection, whether to a desktop client or to a mobile

device, is represented by a thread. A thread associated with the desktop client, called a

Desktop Thread, is created when a client application connects over a well-known TCP port.

58

Its main duty is to read and write information to and from a mobile device or a global soup

over the TCP connection. A thread associated with a mobile device, called a Mobile

Thread, is created when a mobile device connects to the LlamaServer over ADSP. Unlike

the more general Desktop Thread, its duty is to sit on the CDIL pipe and watch for

incoming data.

The registration process is helpful when these two varieties of threads must interact.

When a Desktop Thread wants to communicate with a mobile device (to request a set of

frames, for example) it first locates the Mobile Thread associated with that device using a

global lookup table, and then registers its interest by sending a “register” message to that

thread. The Mobile Thread returns a unique identifier (called a “cookie” after identifiers

used in web servers) which acts to correlate incoming responses from the mobile device

idle DesktopThreads idle MobileThreads

1 2

3
app making query

device handling query

1

2

3

Desktop query awakens Desktop Thread

DesktopThread registers with appropriate MobileThread

MobileThread returns cookie

Figure 23 - DesktopThread/MobileThread registration process

59

with the appropriate Desktop Thread. The Desktop Thread next sends this cookie to the

appropriate mobile device along with the command requesting (or sending) the desired

information and then goes to sleep, awaiting the response. This process is illustrated in

Figure 23.

When the mobile device responds, it prefaces the frame with a header block

consisting of a tag and the cookie sent to it by the Desktop Thread who made the request.

The tag, described in more detail below, indicates that this message is a response to a query

from a desktop client and the cookie identifies to which thread this information is intended.

At the server, the Mobile Thread, busy watching the CDIL pipe, notices the incoming

response and reads in the header information (and only the header information). It

determines that the message is a response (by the tag) and scans its internal list of registered

idle DesktopThreads idle MobileThreads

2

3
app making query

device handling query

1

2

3

MobileThread reads header information

DesktopThread reads frame off of pipe

DesktopThread sends flattened frame back to client

1

Figure 24 - Handling of response from mobile device

60

threads to determine which Desktop Thread has this cookie, and signals that Desktop

Thread to wake up.

The two threads are now finished interacting, which greatly simplifies the

programming model. Once active, the Desktop Thread can now directly read the incoming

data off the pipe, freeing the Mobile Thread to return to monitoring the pipe (see Figure

24). The Mobile Thread no longer needs to participate in the process because it does not

require access to the information requested by the Desktop Thread. This simplifies the

programming model because only one thread has access to the data and avoids the necessity

for using complicated and error prone synchronization methods, such as semaphores, to

coordinate access when passing shared information between threads.

The process then repeats itself until the communication is complete. If any more

information needs to be retrieved from the mobile device (such as the next frame in the

requested set), the Desktop Thread then goes back to sleep and the process repeats when

the next message with the same cookie comes along. When the Desktop Thread is done

reading information from the device, it sends an “unregister” message to the same Mobile

Thread where it registered before and then disconnects (or makes a new request). The same

cookie is never reused, thus new requests require reregistration.

The above process handles the case where a desktop client makes a request for

information from a mobile device (i.e., MobileConnect is in server mode), but ignores the

situation where a mobile device wants to be the client. Recall that there is only one

connection to any mobile device so any client requests must go through the same pipe as

responses to queries. Going by the above scenario, when an incoming message arrives at

the LlamaServer, some thread must be awakened to handle the information since this is not

part of the Mobile Thread’s job -- only there is no Desktop Thread to wake up. As a result,

several small enhancements need to be made.

61

As mentioned briefly before, we need a special tag to distinguish a request for

information originating from a mobile device from a response to a query issued by a

Desktop Thread. To accomplish this, the header of every message sent from the mobile

device has, in addition to the cookie, a special 4-letter tag that indicates its function:

‘RSVP’ for a response and ‘RQST’ for a request. When the Mobile Thread sees the

‘RQST’ tag, it must take another course of action. Instead of trying to wake up a registered

Desktop Thread, the Mobile Thread forks a new thread, called a Mobile Client Thread,

which serves a similar function to the Desktop Thread. Once created, this new thread

registers itself with the Mobile Thread who created it and then sends the new cookie back to

the mobile device. Any further communications from the mobile device now use this cookie

to associate themselves with the Mobile Client Thread.

As a result, the infrastructure can utilize the registration process for coordinating the

access to shared information between threads regardless of which side instantiates the

transaction. Not only does it simplify the thread interaction, it promotes code reuse in both

the LlamaServer and the MobileConnect components since the behaviors and

communication protocols are consistent.

One final note. Even though the MobileConnect component on the Newton can only

process a single request at a time, the infrastructure is present to handle multiple,

simultaneous requests over a single connection. This is simply a limitation of the Newton

applications not having access to multiple threads, not of the LlamaShare architecture. In

fact, most commercial mobile devices would also have this problem.

4.7.2 Protocol In Detail: Desktop to LlamaServer

The following is a detailed description of the protocol between the DesktopConnect

library on the desktop side and the LlamaServer when the client requests mobile

62

information. The scenario is very similar when information is being sent to a mobile

device.

1. A client application running on a desktop-based workstation instantiates a

“connection” object defined by the DesktopConnect library. The job of this object is

to handle all communications between the application and the LlamaServer. When

created, the connection object opens a TCP connection to the LlamaServer on port

5000 (a pre-agreed upon port number).

2. The LlamaServer has a thread whose job it is to watch TCP port 5000 and create a

new Desktop Thread when a new connection is requested from this port. The newly

created Desktop Thread is now in charge of handling this connection and the main

thread returns to watching the connection port.

3. The client application makes a method call of the connection object (or just a function

call in a non-object oriented language) to access information on a mobile device. The

client is suspended until the requested information has been totally gathered, just like

an RPC.

4. The DesktopConnect stub sends the appropriate 4-letter command to the server,

followed by any applicable parameters supplied by the client application when

making the function call. The DesktopConnect stub blocks, waiting for a response to

the query.

5. On the server, the Desktop Thread in charge of the connection to the client

application reads the command and the parameters from the network. It then

63

determines which server routine to execute based on the command and executes it.

In most cases, this involves communicating with a mobile device to get or put

information (accessing Global Soups are the exception). If so, one of the parameters

will include the name of the mobile device to access.

6. The server maintains a global list of connected devices which contains, for each

device, a pointer to the Mobile Thread in control of that device and a semaphore

guaranteeing only one request may be processed at a time. The Desktop Thread

scans this list searching for the requested device. When found, it locks the

semaphore and then registers with the appropriate Mobile Thread (the registration

mechanism is described in the previous section). The semaphore is useful because

MobileConnect can only handle one connection at a time due to limitations in the

Newton OS. Once devices provide better support for threading, this restriction can

be lifted and is not an inherent limitation in the server.

7. Once registered, the Desktop Thread continues executing the requested command by

sending the appropriate 4-letter command to the mobile device along with the cookie

using the CDILs. The thread then goes to sleep, awaiting the response (shown in

Figure 25).

 Command Cookie Parameters

... N bytes ...

Figure 25 - Message sent from DesktopThread to mobile
device

64

8. When the response arrives, the Mobile Thread will wake up the Desktop Thread.

The Desktop Thread then reads the data off the pipe using the FDILs. The frame is

read in as unbound data (see Section 4.3 Newton Overview for a description of the

FDILs and unbound data).

9. The Desktop Thread next flattens the frame (see Section 4.4 LlamaServer for a

discussion of flattening) and sends the byte stream to the client.

10. When the client receives the message, the DesktopConnect library inflates the frame

into a data structure and stores it in a list. It then blocks, waiting for the next

message.

11. After sending the frame to the client, the Desktop Thread tells the Newton to send

the next frame, and goes back to sleep, awaiting the next frame from the Newton.

12. The process repeats until all the frames have been read, at which point the Desktop

Thread unregisters itself. On the application side, the DesktopConnect library returns

the list of frames it has been building using the standard return mechanism for

functions.

4.7.3 Protocol In Detail: LlamaServer and MobileConnect (server mode)

The following is a detailed description of the protocol between the LlamaServer and

the MobileConnect stub when acting in server mode. These events are prompted by a

desktop client requesting information from a mobile device, described above.

65

1. MobileConnect, when acting as a server, simply waits for commands over the pipe

between the LlamaServer and the mobile device. When one comes in,

MobileConnect reads the command, the cookie, and the parameters.

2. MobileConnect then executes the particular command, accumulating the resulting

frames into an array. These frames are then sent, one by one, using the following

protocol: if there is a frame to send, send the string ‘OK’ (with the appropriate

header information). Otherwise, send the string ‘NO.’ When this message is

received by the LlamaServer, the Mobile Thread will wake up the appropriate

Desktop Thread to read OK or NO. If NO, the Desktop Thread cleans up and

finishes the command. If OK, the thread goes back to sleep, awaiting the frame

itself.

3. The frame is then transmitted from the Newton to the LlamaServer where the header

information is again read by the Mobile Thread and the appropriate Desktop Thread

is awakened. The Desktop Thread then reads the frame off the network using the

FDILs, then tells the Newton to continue by sending an acknowledgment string via

the CDILs. This message is shown in Figure 26.

Tag Cookie Frame

... N bytes ...R S V P

Figure 26 - “Response” message received by LlamaServer

66

4. MobileConnect then reads the ACK string and continues until there are no more

frames to send. At that point, it goes back to waiting for the next command.

4.7.4 Protocol In Detail: LlamaServer to MobileConnect (client mode)

When the Newton wants to act as a client, things work differently. Since the

implementation of MobileConnect’s internals use a finite state machine based on the

Newton’s event model, control must be returned to the main event loop in order for

anything to happen. For this reason, synchronous RPC-style calling conventions cannot be

used as they are on the desktop side. On other mobile devices, the MobileConnect might be

implemented differently, allowing the implementation of synchronous calls.

The following is a detailed description of the protocol between the LlamaServer and

the MobileConnect stub when acting in client mode.

1. The client application running on the Newton makes a call to the MobileConnect stub

passing a frame, called a client spec, containing the information to send or receive

and a completion routine to be executed when the communication is complete.

Tag <empty> Command

... N bytes ...R Q S T

Parameters

Figure 27 - "Request" message received by LlamaServer

67

2. MobileConnect then sends a message, formatted with a header like all the others, to

the LlamaServer where the header is read by the Mobile Thread associated with that

device. However, in this header, the tag reads ‘RQST’ instead of ‘RSVP’ to indicate

that this is a new request for information, and not a passive response to a query from

the desktop world (see Figure 27). The Mobile Thread forks a new Mobile Client

Thread to handle the interaction with the Newton and participate in the registration

process.

3. The first order of business of the Mobile Client Thread is to send the cookie

(obtained by registering above) to the Newton so that any subsequent messages

from the Newton will be handled by waking up this thread.

4. The process of receiving frames is the same as above, except with the server

prefixing each frame with “OK” or “NO” to indicate if there are any more frames to

follow. In fact, the same code can is used.

5. When the request is complete, MobileConnect stores the requested frames in a slot

provided within the client spec parameter calls the completion routine.

4.8 Summary

This chapter went into detail about the major components of the LlamaShare

infrastructure (server, mobile stub, and desktop stub) and how they interoperate. The next

chapter discusses why we made certain design decisions regarding the architecture and

many of our assumptions about how it will be used.

68

CHAPTER V

DESIGN DECISIONS, HURDLES, AND LIMITATIONS

This chapter explains the rationale behind many of the design decisions and shows

how the devices themselves contributed to many of the problems encountered. Some of our

decisions might seem narrow in the overall picture, but considering the limitations of the

devices we were dealing with, they make more sense. Many of the decisions were made

because of rather strict time constraints, which forced a single course of action. Better

solutions to these issues will be discussed in the “Future Work” chapter. This discussion

will also expose many limitations of the LlamaShare infrastructure. Again, proposed

solutions will be addressed in the “Future Work” chapter.

There are 5 major design decisions, each introducing its own hurdles:

• Some information is kept permanently on the mobile device

• Mobile devices always connected

• A centralized server (LlamaServer) instead of point to point communications

• Client applications explicitly written to handle mobile data

• Assumes a homogeneous mobile environment

69

5.1 Some information is kept permanently on the mobile device

There are two ends of the spectrum in terms of how mobile devices store

information: thick clients and thin clients. A thick client, equivalent to a non-networked

desktop machine, holds all of its information permanently and doesn’t rely on any outside

source to constantly feed it data or keep it up to date. Thick clients are totally self-contained

units. A thin client, on the other hand, can be likened to a Network Computer (NC) which

relies on some other source for its programs and data. A thin client is little more than a

window onto information stored remotely.

Instead of trying to go with either extreme, LlamaShare assumes that some

information will be stored on the mobile device, but other information is required from the

environment in order to augment its view of the world. Thick clients, which have no need

to share and accept new information, are of limited usefulness in a world where people

work with multiple devices. In a fully connected world, thin mobile devices such as

ParcTab [18] would be the best solution, but retail hardware (mostly PDAs) are not

designed to be used as such. Achieving such a system with Newtons or Pilots would

require substantial development on top of the existing systems, and ignores the built-in

capabilities which already exist in these devices.

With the assumption that some data will permanently reside on the mobile device

comes the requirement to be able to uniquely address information on these devices from the

desktop. This prompted the “Resource Id” solution described in Chapter 4, which assigned

to each piece of information on the Newton a tag uniquely identifying it on the device. It is

apparent that the NewtonOS engineers did not have remote information addressing in mind

when they developed the Newton’s storage system. While the Newton does have a

“uniqueId” slot in each frame stored in a soup, it is unique only within the physical store

(internal or card) in which the frame resides. The result is that two pieces of information

70

can actually have the same unique id on the same device, one residing internally the other

on a card. This was unacceptable for our purposes, as MobileConnect would be unable to

determine which piece of information the user wanted.

Our solution of using resource id’s is not trouble free. Since the id’s are added

without the knowledge of the NewtonOS, they cannot be totally relied upon. One major

problem is that the resource id for any given frame is only unique with respect to other

frames on a single device. Just beaming a frame from one MessagePad to another will

cause major problems if the beamed frame already has a resource id that exists on the

destination device. Not having access into the internals of the OS, there is no way to

guarantee uniqueness when the user transfers information using a mechanism other than

LlamaShare.

Solving this problem requires one of two solutions. The first would be to tag each

piece of information with more than just an id number, such as appending the name of the

unit to the id. This would allow the information to travel from device to device, while still

retaining its uniqueness. However, this situation breaks down quickly when two people

have the same name (the name of the user is the name of the unit). Instead, we could

append a serial number (unique to each MessagePad), but only the newest MessagePads

have such a feature and this would not be an adequate solution for any other devices such

as the Pilot. The second solution would be to patch the storage system of each device,

which is neither portable nor simple. Lobbying for PDA designers to support this kind of

tagging might be the best long-term solution.

Finally, frames need to be given a resource id before they can be accessed

individually. This “chicken before the egg” situation is caused, again, by the fact that our

assignment of resource id’s are based on using LlamaConnect, not the OS. One way

around this shortcoming is to request the entire soup (or an overview) beforehand which

will assign id’s to those frames which do not already have them. However, this requires

71

sending everything once, which takes time. An alternative solution would be to have an

application on the MessagePad which scans every soup and updates the resource id’s, but

this would require user intervention. Again, obtaining OS support for the data identification

infrastructure LlamaShare needs is a must.

5.2 Mobile devices always connected

Obviously, a mobile infrastructure which assumes that the devices will always be

connected has inherent limitations -- today. As we look towards the future, connectivity is

getting cheaper and easier. Wireless communication is booming. Take laptops for example.

With digital cellular modems, users can go out into a field and still be on their company’s

Ethernet. Instead of spending time on research where communication is fragile and

transient, LlamaShare looks shortly into the future where these concerns are not a problem

in order to address other issues regarding mobile computing. To simulate this, LlamaShare

makes use of wireless technologies which allow devices to freely roam within a limited area

(50 meter radius).

The decision to assume that mobile devices are always connected to a shared

network was made for several reasons. Primarily, it assures that programmers writing

applications to take advantage of mobile data have immediate and uninterrupted access to

this information, which simplifies programming and facilitates the rapid development of

these kinds of applications. Before developers can get a feel for what applications are

possible, they need an infrastructure which makes using mobile information as simple as

possible. Otherwise, they too easily get bogged down in the details and never get to the

interesting part -- the application.

Unlike tethering devices to desktop workstations with a serial cable, getting the

devices on the network proved a much greater challenge than anticipated. Hooking up

72

tablet-sized devices to the network was no problem, since many of them were Windows-

based and could take advantage of the same drivers/cards available for their laptop cousins.

However, getting the smaller PDA’s on the network was more difficult and was one factor

as to why the MessagePad was chosen over the Pilot. Neither device could be placed on

our Ethernet, even with add-on cards, and neither the MessagePad nor the Pilot could

easily handle TCP/IP (at most only via a PPP connection). The MessagePad, however,

could do AppleTalk which allowed us to quickly connect multiple devices to the

LlamaServer over our existing network. Unfortunately, this ties LlamaShare almost

exclusively to the MessagePad, as no other devices use AppleTalk. Finally, the DILs do

not yet work with TCP/IP (while they do with AppleTalk), allowing us to take advantage

of existing communication libraries to get the communication layer of the LlamaServer

completed quickly.

Using AppleTalk also allowed LlamaShare to quickly move from wired to wireless

solutions. The connectivity was initially developed using wired connections over our local

EtherTalk (AppleTalk over Ethernet) network, but we recently purchased NetWave

wireless access points [31] and Dayna PCMCIA cards [32] for the Newtons. The access

points broadcast Ethernet over a very high frequency RF signal which the wireless

PCMCIA cards can access. The card’s driver reads the AppleTalk bundled inside the

Ethernet and provides the Newton with the illusion that it is connected. While we would

prefer that the Newton did plain Ethernet, using AppleTalk gave us the opportunity to work

in a wireless mode much more easily than serial solutions. Once the Newtons were

untethered, the restriction to being fully connected didn’t seem so impractical, as users

could move around within a 50m radius inside the building and still be connected. Chaining

multiple access points together would yield an even larger roaming range.

Two recently announced developments make us more hopeful about being able to

move away from AppleTalk. Apple is adding Ethernet support in it’s 2.0 release of the

73

Newton Internet Enabler (NIE) [33]. This will allow the MessagePad to speak TCP/IP over

an existing Ethernet network without having to resort to a dial-in PPP connection as per the

current solution. Also, PalmComputing has announced that its next version of the Pilot will

also allow synchronization over TCP/IP. Exactly how the Pilot gets on the network has yet

to be disclosed. In any respect, as mobile devices get more and more network-savvy, the

problem of being restricted to the MessagePad and AppleTalk vanishes.

5.3 Centralized server instead of point to point communications

LlamaShare utilizes a centralized server as the contact point between desktop

systems and mobile devices, mainly to bridge the gap between the different networking

protocols used by the desktop and mobile environments. TCP/IP has almost become a

ubiquitous standard for inter-application communication over both inter- and intranets.

Most developers with experience in writing client/server applications for accessing remote

information are familiar with TCP/IP. Even Java has included TCP/IP-based networking

classes along with the core classes that comprise the language.

However, the LlamaShare server does much more than act as a simple TCP to

AppleTalk router, which is important as the infrastructure moves away from AppleTalk.

The LlamaServer is responsible for maintaining the Global Soups which allow multiple

devices to share information in a collaborative environment. Without a central contact point,

this would not be possible. Additionally, the LlamaServer provides a single contact point

for multiple mobile devices which may move around, appear, and disappear from the

environment. Having a fixed IP address for desktop clients to connect to frees the client

from having to worry about where the mobile device is when making requests for mobile

information. The next phase of development (discussed in the next chapter), allows linking

multiple LlamaShare servers together over the Internet, providing seamless access to

74

mobile devices across the world by only having to connect to a single, relatively static, IP

address. With direct point to point communication, achieving this would be difficult.

The problem with any centralized system is that the point of convergence becomes a

bottleneck. In the current architecture, the LlamaServer is an obvious bottleneck since every

request and acknowledgment must pass through it. Despite the performance penalties, we

believe the extra functionality that a centralized server provides outweighs any performance

problems. Furthermore, the proposed extensions to link multiple servers over the network

relieves the burden of each individual server while maintaining the illusion of a centralized

server to applications.

5.4 Client applications explicitly written to handle mobile data

Unlike the synchronization model, which provides built-in translators from the

mobile device’s native data format to those used by popular applications, no such

translation scheme is part of LlamaShare. That means that users cannot just hook up

LlamaShare and expect to be able to read their calendar using Now UpToDate. Applications

must be specifically written to know to request the information from the LlamaServer and

then understand the data format used by the individual mobile devices. We believe that

having direct access, without forcing the user to pre-download all mobile information prior

to using it, allows developers to write much more flexible and powerful applications which

take advantage of mobile information (CyberDesk [8] is one example).

There are two options for presenting such information to users: a generic interface

which can handle all possible information formats, or a custom application built to

specifically handle each different data format. The generic approach, taken by programs

such as Revelar Connection Utility [24], allows access to all Newton information in one

application, with a consistent interface. However, this interface gives no semantic meaning

75

to the information and just displays it in its purest form - a skeleton of frames and slot

names. While all the information may be on the user’s screen, making any sense of it is a

totally different story. Being so generic, it cannot present the information in a meaningful

form. Custom applications, while more difficult to build and more costly in terms of

development time, can present information to users in a rich form which users can

understand.

The two desktop applications presented by this thesis (see Chapter 3) are both

explicitly written to understand Newton information and to access this information through

stubs which speak to a LlamaServer. While most (if not all) of the communication with the

infrastructure is handled via stubs, developers are still aware that they are connecting to a

LlamaServer and that the data the stub returns is Newton information which requires

special processing. We feel that this allows developers to write applications which makes

manipulating mobile information easier for users by hiding the burdens associated with

using such information within the application. Both CyberLlama and our extensions to

CyberDesk illustrate how clients written to understand mobile information provide a more

streamlined user experience than RCU and synchronization.

Finally, having an understanding of the mobile information allows the application to

provide more input to the infrastructure about information that goes together. Systems like

Wit II [15] and Odyssey [10] are investigating application-side extensions which allow the

underlying infrastructure to make better decisions about caching and prefetching. Such

optimizations would be impossible to do well (if at all) for applications which were not

specifically written to understand the nature of the mobile information they were

manipulating.

76

5.5 Assumes a homogeneous mobile environment

Several of the previous design decisions pointed LlamaShare to using the

MessagePad as the primary mobile device accessible by the infrastructure. A combination

of easy networking (via AppleTalk) and dynamic data storage (via the soups) made the

MessagePad a perfect choice to prove the feasibility of the infrastructure and the usefulness

of the applications.

One of the key features which made the MessagePad so attractive was the flexibility

of the soups. Frames, being dynamic in nature, can be modified by adding slots without

affecting the application to which the frame actually belongs. Adding resource id’s to each

frame in a soup takes full advantage of this capability, and the applications on the

MessagePad which use this information are none the wiser because they can simply ignore

slots which they do not understand. Additionally, soups are easily searchable

programmatically, and much more flexible than a plain text-based search. Implementing the

“find” command from the desktop was as simple as opening a soup and calling its find

routine with varying parameters (such as only look in the “title” slot or the “last name”

slot). Finally, since frames carry with them the types and slot names of the data,

introspection once on the desktop is much easier, especially when the desktop doesn’t

know the exact format of the information it is receiving. If a client only received a chunk of

binary data, it would need to be hard-coded to that data format. Any changes to the exact

pattern of bits would break the application. Not so with frames, which allow the ordering

of slots to change (or even go away entirely) without necessarily affecting applications.

However, we realize that there are more mobile devices out there than just

MessagePads. Currently, applications have to be written assuming that the information they

receive from the LlamaServer are Newton frames. This assumption completely breaks

down when the mobile device is something other than a MessagePad, such as a Pilot or a

77

cell phone. Furthermore, the internals of the LlamaServer currently understand only

Newton frames. Support for any other device would have to be written, and then grafted

onto the “flattening” protocol used to exchange frames between the server and the desktop

client. The Future Work chapter describes some ideas we have to circumvent this problem

and extend into a heterogeneous mobile environment.

5.6 Summary

This chapter presented the key design decisions which drove the development of the

LlamaShare infrastructure and applications. Several of the decisions, such as the choice to

use the MessagePad exclusively and the use of AppleTalk over TCP, were based on

limitations of existing hardware which should disappear as these devices mature. Other

decisions, such as a centralized server and custom client applications, were motivated by

our desire to build a rich set of easy to use applications which would leverage our

infrastructure to allow users to collaborate in mobile and desktop environments with mobile

information.

The following chapter, Future Work, details how we plan to expand the

infrastructure so that it can better support more platforms, more devices, and important

issues such as privacy.

78

CHAPTER VI

FUTURE WORK

6.1 Heterogeneous Platforms and Data

As discussed in the previous chapter, the current LlamaShare infrastructure is tied

very heavily to the Newton because of the flexibility provided by the soups and ability to

easily inspect the contents of arbitrary frames. Provisions must be made, however, to allow

for other kinds of mobile devices to connect to the LlamaServer and share information with

desktop systems, or with other mobile platforms through Global Soups. Unfortunately, the

communication protocols and data formats of the more popular mobile devices (Newton,

Pilot, WinCE) are all different to the extent that makes data interchange very difficult.

At minimum, specific sections of the LlamaServer must be rewritten to

communicate with each new platform. Currently, the thread within the server which speaks

to the Newton, called a MobileThread, relies on the DILs from Apple which are Newton

specific. In order to accommodate other devices, the functionality which the DILs provide

(communication and data transfer protocols) must be duplicated. A generic solution, such

as developing our own protocol, has the benefit that we do not need to rely on vendors for

libraries, allowing us to integrate devices (such as pagers and mobile phones) which may

not have such communication libraries. On the contrary, using custom libraries for each

platform would allow us to take full advantage of the communication abilities of a given

device as we would not be restricted to the lowest common denominator at the time the

protocol was developed. In either respect, the rest of the server does not require

79

modification. Each connected device has its own thread (similar to a MobileThread)

running code to communicate directly with that device. When requests arrive at the server,

these threads will take part in the registration mechanism just like the MobileThreads do

now for the Newton.

While the infrastructure adapts easily to communicate with other devices, the

different data formats used by each device pose a greater problem. One solution might rely

on a “meta-format” which describes the internal structure of each piece of information. A

possible first step would use meta-content description languages like MCF [34] from Apple

Computer, the underlying layer to their HotSauce technology, to provide to desktop

applications a description of the semantic content of the information transmitted. For

example, a desktop application would receive a piece of data with a MCF description that

tagged it as a “name” or a “note.” The next step, once the content is identified, is to add a

“format description” to each piece of information. This description, similar to a legend on a

road map, details how to interpret and inspect the information if the format is unknown to

the application. The intelligence to parse the format description would be built into the stub

which already must be used to communicate with the LlamaShare infrastructure, making it

as transparent to the application as possible.

An alternative solution would store the mobile information in a common format in

an object-oriented database, which provides the typing features of a meta-content language

for free. Incoming information would pass through translators for the appropriate platform

to translate it into a format generic to all platforms. This database would replace the Global

Soup, as it would be accessible to all devices on the network (like an ordinary database).

One problem with this approach is that it might not be able to represent all of the data

formats of every available platform and might have to take a least common denominator

approach, causing applications to lose much of the richness of the original data.

Furthermore, translating the information back to the individual native formats for storage

80

on the devices themselves would have the same problem, causing the act of storing

information in the database to be lossy. Finally, unlike the MCF format which can grow

dynamically as new devices add new data formats, the common format might not be able to

handle the requirements of new devices.

6.2 Caching

In a perfect environment, the devices would have infinite battery life and infinite

wireless range. However, especially in the short term, we have neither. Continuous

connectivity drains batteries very quickly and even if an entire building can be covered with

a wireless network, there are times when the user will leave the environment. The

infrastructure should be able to continue to provide information about the departed device to

those who ask long after it goes off-line. The easiest way to solve this is by caching the

device’s contents on the LlamaServer.

While not intended to handle the flexibility that regular soups provide in terms of

access and searching, Global Soups could be extended to support these operations in order

to allow fulfillment of queries even after the device is no longer in the environment. Using

the same mechanism as the Newton’s synchronization tool, the Newton Connection

Utilities [5], information is pulled off the device while the device is idle and synchronized

with the current contents of the Global Soup. When the user removes the device from the

network, all subsequent queries would be handled by the Global Soup without the device

having to be connected.

An interesting side-effect of caching the contents of the device (either in their

entirety or selected portions) would be the ability to remove the “personal-ness” of the

mobile device. Instead of these devices being restricted to a single user, they could be

scattered around an office and any user could pick up any device which was closest to

81

them. A setup similar to ActiveBadges [35] could be used to automatically determine which

user picked up the device. The device would then download the particular user’s

information from the Global Soup and make it available from that mobile device. This goes

more to the side of a “thin client” which acts more as a window into information stored

elsewhere, but introduces the concept of a Group Digital Assistant (GDA).

In some respect, synchronization is the most basic form of caching. What we are

proposing, however, goes beyond synchronization when a device is currently connected.

Our caching mechanism, for example, would be able to detect that requested information

had been previously requested and had not changed on the mobile device. As a result, the

copy of the information cached in the Global Soup would be used instead of going back out

to the device. In the case where the information on the device had changed, the

infrastructure would purge the old information from the cache and request the new

information from the device automatically, unlike synchronization which requires explicit

re-synchronization by the user. In summary, our caching mechanism would be similar to

synchronization when the device was not connected, but would gain the benefit of having

direct access to new information when it was connected.

6.3 Security/Privacy

The privacy model currently in place can be best described as a “participatory”

model. If the user wants access to the information of others, they must provide access to

their own information as well. For the most part, this makes sense, as users who are

interested in group collaboration already do things like share calendars on-line and post

notes as to their location on their door or screen saver [36]. Spreitzer and Theimer [37]

claim such “friendly environments” exist where there is mutual trust between participants.

However, all information should not necessarily be freely accessible, and they go on to

82

define privacy to mean that information about a person remains known only to that person

unless they explicitly hand it out to someone else.

In response to this, the key area of future work should limit what data can be

accessed on the device while it is connected to the environment. There are two granularities

in which this can occur. First, users should be able to specify which soups are either

shareable or off-limits. For example, office co-workers would probably want to share their

“Dates” soup containing their calendar information but not their “Pocket Quicken” soup

which contains how much money they have in their respective accounts. At a finer

granularity, users should also be able to specify which items within a particular soup can be

accessed. This gives users the ability to publish notes taken at meetings, but not notes of a

more personal nature. Either of these methods could be easily implemented at the

MobileConnect stub, customizable with the appropriate user interface. MobileConnect can

be easily extended to reject requests for information in soups designated off limits or even

reject requests for particular resource id’s which are not public. Additionally, the user could

be given this choice, allowing a case-by-case veto as each request is made.

Security and authentication pose more of a problem in the infrastructure. It is easy

to spoof an AppleTalk name on a network so unsuspecting users might connect to the

wrong program, written by a spy. Once connected, the spy could ask the Newton for any

information it wanted (as long as it was not designated as off-limits by the privacy

mechanism). Mechanisms such as Kerberos [38] or public-key cryptography systems

could be employed to help authenticate users who request information.

83

6.4 Multiple LlamaServers

Mobile devices, by nature, move from place to place as users travel. It would be

useful when away from the office to still allow a particular device to be in the environment

and be accessible as if it were connected in a local LlamaServer’s network. Unfortunately,

patching into an AppleTalk network from the outside is difficult at best. A better solution

involves multiple LlamaServers, each running at a different location within their respective

networks. Distributing the devices among multiple servers also has the effect of reducing

the bottlenecks mentioned in the previous chapter.

A separate registration service, similar to the Domain Name Service (DNS), could

be employed to centrally gather the IP address of the LlamaServer to which each device is

connected. The DesktopConnect stub would first contact the name service to find out the IP

address of the current LlamaServer and then once that information is provided, connect to

the appropriate server for the device. This solution would not create much additional work

for the individual servers and would probably even reduce the individual loads since the

servers would no longer be as much of a bottleneck. The only additional work would be to

keep the name service up to date which would require transmitting updates when a device

connected or disconnected. In addition, multiple name servers could be used in order to

reduce the bottleneck at each name server, similar to the way DNS works.

As a result, client applications would have access to any mobile device, regardless

of its physical location, through a single contact point. Each application needs only two

relatively static pieces of information to access information from that device: the IP address

of the closest name server and the name of the Newton. This allows individual mobile

devices to transparently roam from server to server without disrupting applications or

CyberItems which may be hard-coded to talk to a particular name service.

84

6.5 Criteria for UI evaluation

To date, we have not performed any user testing to support the claims we make

about the usefulness of having transparent access to mobile information. Some questions

which we would like to answer by getting real users to use applications built on top of

LlamaShare are:

• Now that information can reside anywhere, where do users store their information?

• How often do users integrate mobile information into desktop tasks?

• What are the most common kinds of mobile information accessed from the desktop?

• Do users organize their mobile information in the same places in which they organize

their desktop or Internet information?

• Do users create information on the desktop and want it on their mobile device for later

access?

• Does sharing mobile information aid in group communication?

6.6 Extensions to applications

The applications presented in Chapter 3 never advanced much beyond the “proof of

concept” stage because of our desire to demonstrate as many different kinds of applications

as possible in the short time frame. As a result, they are functional, but far from polished.

Additionally, there are features which we would like to add to each application to round out

its functionality and make it even more useful.

In both the CyberLlama and CyberDesk applications, the components used to view

the mobile information do only that -- view. The LlamaShare infrastructure supports

85

writing changes back to the mobile device, but the applications themselves do not support

it. We would like to add the following:

• Extending the components to allow modifying mobile information and then storing it

back to the Newton.

• Allow users to generate content from scratch on the desktop side and save it on the

Newton.

Currently, the selection of viewers for mobile information on the desktop is rather

limited. CyberLlama implements only a “Notepad” viewer, and the CyberDesk applets can

only display “Notepad” and “Names” information. The Newton, however, has many more

data formats which users would benefit from being able to access and modify on the

desktop:

• A “Calendar” component which would allow users to view and modify the calendar

information from a given Newton. CyberDesk could be expanded to show the

calendar of the user whose name is selected in an email window by directly

accessing the calendar information off of that Newton.

• An application to read the calendar information off of several Newtons and display an

aggregation of everyone’s calendar info in one place. This would make scheduling

group meetings much easier.

• CyberDesk has many built-in types which we would like to support, such as dates,

phone numbers, and email addresses. Writing services for CyberDesk which pull

86

the appropriate information from the Newton would make the Newton services as

complete as the Internet services.

6.7 Conclusion

This thesis presented an infrastructure which allowed the rapid prototyping and

development of applications which take advantage of mobile information. Additionally, it

presented several applications which streamline the process for users to access their

information off of their mobile devices and seamlessly integrate mobile information into

desktop tasks and applications. Finally, it described an infrastructure which allows group

collaboration applications to be built on mobile devices.

87

APPENDIX A

TABLE OF COMMANDS

Command Name Description
NEWT Get Newton List Returns a list of the connected

MessagePads
LIST Get Soup List Returns a list of all the soups on a

given MessagePad
SOUP Get Soup Returns all frames in the specified

soup on a given MessagePad
OVER Get Soup Overview Returns an overview (2 line

summary) of every frame in the
specified soup on the given
MessagePad

ENTR Get One Entry Returns one frame from a specified
soup on the given MessagePad

FIND Find Text Returns all frames that contain the
specified text on a given MessagePad

FOVR Find Text (overview) Returns an overview of all frames
that contain the specified text.

STOR Store Frames To Newton Stores the incoming frames in a
specified soup on a given
MessagePad

GLOB Store Frames To Global Soup Stores the incoming frames into the
specified Global Soup (does not
handle replacement, only appends to
existing data).

GCLR Clear A Global Soup Clears the specified Global Soup
GDEL Delete A Global Soup Deletes the specified Global Soup
GGET Read From A Global Soup Returns all frames from the specified

Global Soup.
GGCL Read and Clear A Global Soup A combination of GCLR and GGET.

Reads all frames from the specified
Global Soup and then, in one atomic
action, clears the soup.

88

REFERENCES

1 Long, S., Aust, D., Abowd, G., Atkeson, C. Cyberguide: Prototyping Context Aware

Mobile Applications. CHI'96 Short paper. April, 1996.

2 Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson. Rapid
Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study. In the
Proceedings of the 2nd ACM International Conference on Mobile Computing and
Networking (MobiCom'96), November 1996. To appear.

3 Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M. Cyberguide:
A Mobile Context-Aware Tour Guide. To Appear in ACM Wireless Networks, 1997.

4 PalmComputing Pilot web page (http://www.usr.com/palm/index.html)

5 Newton Connection Utilities web page
(http://www.newton.apple.com/product_info/SW/ncu.html)

6 Apple MessagePad web page (http://www.newton.apple.com)

7 Apple Computer. Cyberdog Programmer’s Kit. Addison-Wesley, 1996.

8 Wood, A., Dey, A., Abowd, G. CyberDesk: Automated Integration of Desktop and
Network Services. Technical Note In Proceedings of CHI' 97 (Atlanta, GA, March
1997), ACM Press

9 Kistler, J. Disconnected Operation In a Distributed File System. PhD Thesis, Carnegie
Melon University. May 1993.

10 Satyanarayanan, M. Mobile Information Access. In IEEE Personal Communications
(Feb 1996).

11 Coda web page at CMU (http://www.cs.cmu.edu/afs/cs/project/coda/Web/coda.html(

12 Demers, A., Pertersen, K., Spreitzer, M., Terry, D., Theimer, M., Welch, B. The
Bayou Architecture: Support for Data Sharing Among Mobile Users. Mobile Computing
Workshop (1994).

13 Bayou web page at Xerox PARC
(http://www.cs.cmu.edu/afs/cs/project/coda/Web/coda.html)

14 Watson, T. Wit: An Infrastructure for Wireless Palmtop Computing. Qualifier
Presentation, slides (Oct 1994).

15 Watson, T. Wit II - Overview (from web page,
http://snapple.cs.washington.edu/wit/witII/).

89

16 Schilit, W. A System Architecture For Context-Aware Mobile Computing. PhD Thesis,

Columbia University, 1995.

17 Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J.,
Weiser, M. The ParcTab Ubiquitous Computing Experiment.

18 Schilit, B., Adams, N., Gold, R., Tso, M., Want, R. The ParcTab Mobile Computing
System. In Proceedings Fourth Workshop on Workstation Operating Systems (Oc
1993).

19 Cova, L. Resource Management In Federated Computing Environments. PhD Thesis,
Princeton University, October 1990.

20 Tait, C. A File System For Mobile Computing. PhD Thesis. Columbia University,
1993.

21 Guy, R. Ficus: A Very Large Scale Reliable Distributed File System. PhD Thesis,
University of California, Los Angeles, June 1991.

22 HP Omni-go web page
(http://www.hp.com:80/handheld/communicators/communicators.html)

23 Psion web page (http://www.psion.com/)

24 Revelar Connection Utilities web page (http://www.revelar.com/rcu.html)

25 OpenDoc web page at Apple Computer (http://www.opendoc.apple.com)

26 The OpenDoc Revolution web page (http://opendoc.macintosh.net)

27 Apple Computer. The OpenDoc Programmer’s Guide, Addison Wesley, 1995.

28 CyberTalk web page
(http://www.cc.gatech.edu/classes/cs3302_97_spring/projects/team7/notebook.html)

29 Apple Computer. Newton Desktop Integration Libraries. 1997.

30 Metrowerks, Inc. The PowerPlant Programmer’s Guide.

31 Netwave’s web page (http://www.netwave.com/)

32 Dayna’s web page (http://www.dayna.com/)

33 Newton Internet Enabler web page
(http://www.newton.apple.com/product_info/SW/nie/nie.html)

34 Apple’s HotSauce home page (http://hotsauce.apple.com/)

35 Want, R., Hopper, A. Personal Interactive Computing Objects.

36 Bellotti, V., Sara Bly Consulting. Walking Away From The Desktop Computer:
Distributed Collaboration and Mobility in a Product Design Team. 1996

90

37 Spreitzer, M., Theimer, M. Architectural Considerations for Scalable, Secure, Mobile

Computing With Location Information. In 14th International Conference on Distributed
Computing Systems. June 1994.

38 Steiner, J.G., Newman, C, Schiller, J.I. Kerberos, an authentication service for open
network systems. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles. Dec 1993.

