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In decision from experience, the source of probability information affects how probability

is distorted in the decision task. Understanding how and why probability is distorted is a

key issue in understanding the peculiar character of experience-based decision. We con-

sider how probability information is used not just in decision-making but also in a wide

variety of cognitive, perceptual, and motor tasks. Very similar patterns of distortion of prob-

ability/frequency information have been found in visual frequency estimation, frequency

estimation based on memory, signal detection theory, and in the use of probability informa-

tion in decision-making under risk and uncertainty. We show that distortion of probability

in all cases is well captured as linear transformations of the log odds of frequency and/or

probability, a model with a slope parameter, and an intercept parameter. We then consider

how task and experience influence these two parameters and the resulting distortion of

probability. We review how the probability distortions change in systematic ways with task

and report three experiments on frequency distortion where the distortions change sys-

tematically in the same task. We found that the slope of frequency distortions decreases

with the sample size, which is echoed by findings in decision from experience. We review

previous models of the representation of uncertainty and find that none can account for

the empirical findings.

Keywords: log odds, subjective probability, probability distortion, frequency estimation, decision-making,

uncertainty

Estimates of the frequency of events by human observers are typi-

cally distorted. In Figure 1A we re-plot data from one of the earliest

reports of this phenomenon (Attneave, 1953). Attneave asked par-

ticipants to estimate the relative frequency of English letters in

text and Figure 1A is a plot of their frequency estimates versus

actual frequency. Although participants had considerable expe-

rience with English text, the estimates were markedly distorted,

with the relative frequency of rare letters overestimated, that of

common letters, underestimated.

Such S-shaped distortions1 of relative frequency and probabil-

ity are found in many research areas including decision under risk

(for reviews see Gonzalez and Wu, 1999; Luce, 2000), visual per-

ception (Pitz, 1966; Brooke and MacRae, 1977; Varey et al., 1990),

memory (Attneave, 1953; Lichtenstein et al., 1978), and movement

planning under risk (Wu et al., 2009, 2011).

Figure 1B shows an example from decision under risk (Tversky

and Kahneman, 1992). Different participants in the same experi-

ment can have different distortions (Gonzalez and Wu, 1999; Luce,

2000) and a single participant can exhibit different distortion pat-

terns in different tasks (Brooke and MacRae, 1977; Wu et al., 2009)

1We use the term “distortion” to cover transformations in probability or relative

frequency implicit in tasks involving probability or relative frequency. We use “S-

shaped”to refer to both S-shaped and inverted-S-shaped. Precisely,Attneave’s (1953)

case is an inverted-S-shaped distortion.

or in different conditions of a single task (Tversky and Kahneman,

1992). We currently do not know what controls probability distor-

tion or why it varies as it does. Gonzalez and Wu (1999) identified

this issue as central to research on decision under risk.

We use a two-parameter family of transformations to char-

acterize the distortions of frequency/probability. This family of

distortion functions is defined by the implicit equation,
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where p denotes true frequency/probability, π(p) denotes the

corresponding distorted frequency/probability estimate and,

Lo(p) = log
p

1 − p
(2)

is the log odds (Barnard, 1949) or logit function (Berkson, 1944).

The transformation is an S-shaped curve (examples shown in both

panels of Figure 2).

The two parameters of the family are readily interpretable. The

parameter γ in Eq. 1 is the slope of the linear transformation and

the remaining parameter p0 is the “fixed point” of the linear trans-

formation, the value of p which is mapped to itself. To show this,

we need only set p = p0 and simplify to get,
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FIGURE 1 | S-shaped distortions of frequency estimates. (A) Estimated

relative frequencies of occurrence of English letters in text plotted versus

actual relative frequency from Attneave (1953). (B) Subjective probability of

winning a gamble (decision weight) plotted versus objective probability

from Tversky and Kahneman (1992). R2 denotes the proportion of variance

accounted by the fit.

FIGURE 2 | Demonstration of the effects of varying the parameters γ

and p0. The parameter p0 in the LLO function is the “fixed point” of the

transformation, the value of p which is mapped to itself. The parameter γ, is

the slope of the linear transformation on log odds scales, and on linear

scales, is the slope of the curve at the crossover point p0. Left: p0 fixed at

0.4 and γ varied between 0.2 and 1.8. Note that the line at γ = 1 overlaps

with the diagonal line, i.e., no distortion of probability. Right: γ fixed at 0.6

and p0 varied between 0.1 and 0.9.

Since Lo() is invertible, π(p0) = p0. We refer to p0 as the

crossover point.

In Figure 2 we illustrate more generally how the two parame-

ters affect the shape of the distortion function, plotting π against

p on linear scales. The transformation maps 0–0, 1–1, and p0 to

p0. At point (p0, p0), the slope of the curve equals γ. When γ = 1,

π(p) = p, the curve overlaps with the diagonal line, that is, there is

no distortion at all. When γ > 1 and 0 < p0 < 1 we see an S-shaped

curve. When 0 < γ < 1 and 0 < p0 < 1 we see an inverted-S-shaped

curve. When the crossover point p0 is set to either 0 or 1, the curve

is no longer S-shaped but simply concave or convex.

This family of functions, with a slightly different parameteriza-

tion, has been previously used to model frequency distortion (Pitz,

1966). In decision under risk or uncertainty, it has been used to

model probability distortion (Goldstein and Einhorn, 1987; Tver-

sky and Fox, 1995; Gonzalez and Wu, 1999). A one-parameter form

without the intercept term was first used by Karmarkar (1979) to

explain the Allais paradox (Allais, 1953). Following Gonzalez and

Wu (1999) we refer to this family of functions as “LLO.”

The LLO function we use is just one family of the functions that

can capture the S-shaped transformations. Prelec (1998) proposed

another family of functions, which, in most cases, are empirically

indistinguishable from the LLO function (Luce, 2000). We return

to this point below.

The present paper is organized into four sections. In

Section “Ubiquitous Log Odds in Human Judgment and Deci-

sion,” we demonstrate good fits of the LLO function to fre-

quency/probability data in a wide variety of experimental tasks.

We retrieved data for p and π from tables or figures of published

papers and re-plotted them on the log odds scales. The parameters

(γ and p0) and goodness-of-fit (R2) of the LLO fit are shown on

each plot. We see dramatic differences in γ and p0 across tasks

and individuals. We are concerned with two questions: how can

we explain the LLO transformation? What determines the slope

γ and crossover point p0? We address these two questions in the

following sections.

We conducted three experiments to investigate the factors that

influence γ and p0. We report them in Section “What Controls

the Slope and the Crossover Point?” The task we used was to

estimate the relative frequency of a category of symbols in a

visual display. We observed systematic distortions of relative fre-

quency consistent with the LLO function and identified several

factors that influence γ and p0. We discuss the results in the

light of recent findings in decision under risk, especially those

in the name of “decision from experience” (Hertwig et al., 2004;

Hau et al., 2010).

Although no attempts have been made to explain the various

S-shaped distortions of frequency/probability in one theory, there

are quite a few accounts for the distortion in one specific task

or area. In Section “Previous Accounts of Probability Distortion,”

we review these theories or models and contrast them with the

empirical findings summarized in Sections “Ubiquitous Log Odds

in Human Judgment and Decision” and “What Controls the Slope

and the Crossover Point?”

In Section “LLO as the Human Representation of Uncertainty,”

we argue that log odds is a fundamental representation of fre-

quency/probability used by the human brain. The LLO transfor-

mation in various areas is not coincidence but reflects a common

mechanism to deal with uncertainty.

UBIQUITOUS LOG ODDS IN HUMAN JUDGMENT AND

DECISION

We now demonstrate that the subjective frequency/probability in

a wide variety of tasks can be fitted by the LLO function with two

parameters γ and p0. In the accompanying figures, we plot sub-

jective frequency/probability versus true frequency/probability on

log odds scales. On these scales the LLO function is a straight line

with slope γ and crossover point p0. Black dots denote data points.

The blue line denotes the LLO fit. When you read the plot, note

how different γ and p0 can be for different tasks or individuals.

These plots pose quantitative tests for any theory that is aimed at

accounting for probability distortions.
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FIGURE 3 | Linear in log odds fits: frequency estimates. The two data

sets in Figures 1A,B are re-plotted on log odds scales as (A,B),

respectively. The blue line is the best-fitting LLO fit. R2 denotes the

proportion of variance accounted by the fit. The S-shaped distortions of

frequency/probability on linear scales in Figures 1A,B are well captured by

the LLO fits.

FREQUENCY ESTIMATION

We introduced Attneave (1953) earlier as an example of overesti-

mation of small relative frequency and underestimation of large

relative frequencies. In his experiment, participants estimated the

relative frequency of each letter in written English (Figure 1A).

While a linear fit could only account for 63% of the variance, the

LLO function fitted to the same data transformed in Figure 3A

accounts for 77% of the variance.

Note that the relative frequency of even the most common letter

(“e”) is less than 0.15. Intriguingly, the estimated crossover point

p̂0, 0.044, for Attneave’s (1953) data is not far from 1/26 (=0.039),

the reciprocal of the number of letters in the alphabet. We return

to this point later.

Another impressive example is Lichtenstein et al. (1978). Par-

ticipants were given a list of 41 possible causes of death in the US,

such as flood, homicide, and motor vehicle accidents (MVA). Par-

ticipants were asked to estimate the frequencies of the causes. The

true frequency of one cause was provided to participants as a refer-

ence. One group of participants was provided with the frequency

of Electrocution (1000) as the reference and a second group, the

frequency of MVA (50000). We divided the true frequencies and

estimated frequencies (averaged across participants) by the US

population (2.05 × 108) to obtain the relative frequencies, p and

π. We noticed that although some specific causes were unreason-

ably overestimated relative to others (e.g., floods were estimated

to take more lives than asthma although the latter is nine times

more likely), the overestimation or underestimation of relative

frequency of all causes as a whole can be satisfactorily accounted

by the LLO function. Figure 4A shows the LLO fits for the two

groups.

In the above two examples, participants’ estimation of fre-

quency was based on their memory of events (e.g., reading of

a case of lethal events on the newspaper). To show the LLO trans-

formation is not unique to memory nor to sequential presentation

of events, our third example is Varey et al. (1990), which demon-

strates an LLO transformation in frequency estimation from one

visual stimulus. The task was to estimate the relative frequency of

either black or white dots among an array of black and white dots.

White dots were always less than half of the total number of dots.

Eleven levels of relative frequency were used. Participants reported

the relative frequency immediately after they saw the visual dis-

play. Varey et al. (1990) found considerable distortion of relative

frequency. Figure 4B shows the LLO fits separately for participants

who estimated the relative frequency of white dots and those who

estimated black dots.

CONFIDENCE RATING

Confidence rating refers to the task where participants estimate

the probability of correctness or success of their own action. For

example, in Gigerenzer et al. (1991), participants answered forced-

choice questions like “Who was born first? (a) Buddha or (b)

Aristotle” and then chose for each question how confident they

were to be correct: 50, 51–60, 61–70, 71–80, 81–90, 91–99, or 100%

confident. Participants choosing 51–60% were counted to be 55%

confident about the answer, and so on. Converted to proportion,

the rated confidence is a counterpart of estimated probability, π.

The true probability, p, in the confidence rating task is defined

as the relative frequency to be correct for a specific choice of

confidence level. We re-plot the representative set condition of

Gigerenzer et al. (1991) Figure 6 in Figure 5A. The slope γ of

the LLO fit is greater than one. That is, an underestimation of

small probability (the probability of the harder task) and overes-

timation of large probability (the probability of the easier task). A

qualitative description of this phenomenon is usually referred as

a hard–easy effect. This pattern is the reverse of that of the above

examples of frequency estimation tasks. We discuss this difference

later.

Gigerenzer et al. (1991) is an example of human confidence on

a cognitive task. Similar LLO transformations are found in confi-

dence ratings in motor tasks. McGraw et al. (2004) required par-

ticipants to attempt basketball shots and give a confidence rating

before each attempt. Their results are re-plotted as Figure 5B.

DECISION UNDER RISK OR UNCERTAINTY

A classical task of decision under risk is to choose between two

gambles or between one gamble and one sure payoff. Kahne-

man and Tversky (1979) proposed that the subjective probability

used in decision-making, a.k.a. the decision weight function2, is a

non-linear function of the probability stated in the gamble.

Based on their choices between different gambles and different

sure payoffs, participants’ decision weight (a counterpart of π) for

any specific stated probability (p) can be estimated. In Figures 1B

and 3B, we re-plot the decision weight for gains of Tversky and

Kahneman (1992) against stated probability on linear scales and

log odds scales. The LLO fit explains 97% of the variance, with

γ = 0.60 and p0 = 0.40.

The data presented in most decision-making studies are aver-

aged across participants. As an exception, Gonzalez and Wu (1999)

elicited decision weights for each individual participants. We

2We use the generic term “probability distortion” to refer to non-linear transfor-

mations of probability in different kinds of task. In decision under risk, the term

“probability weight function” or “decision weight function” would coincide with

what we refer to as probability distortion.
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FIGURE 4 | Linear in log odds fits: frequency estimates from memory

or perception. Estimated relative frequency is plotted against true relative

frequency on log odds scales and fitted by the LLO function. Black dots

denote data. The blue line denotes the LLO fit. R2 denotes the proportion

of variance accounted by the fit. (A) Estimated frequency of lethal events

from Lichtenstein et al. (1978). Participants were asked to estimate the

number of occurrences of different causes of death per year in the US. The

actual frequency of one cause was provided as a reference for participants

to estimate the frequencies of the other causes. The relative estimated

and actual frequencies in the plot were the frequencies divided by the

then US population. Left: when the frequency of Electrocution (1000) was

given as reference. Right: when the frequency of MVA (motor vehicle

accident, 50000) was given as reference. (B) Estimated frequency of

visual stimuli from Varey et al. (1990). The task was to estimate the relative

frequency of black or white dots among a visual array of black and white

dots. The proportion of black dots was larger than the proportion of white

dots. Two groups of participants respectively estimated the relative

frequency of white dots (small p) and black dots (large p). Left: the white

dots group (p ≤ 0.5) was estimated. Right: the black dots group (p ≥ 0.5)

was estimated.

re-plot their results on log odds scales in Figure 6A. Each panel

is for one participant. The large individual differences are impres-

sive. The slope γ ranges from 0.17 to 0.82, with a median of 0.30.

The crossover point p0 ranges from 0.26 to 0.98, with a median of

0.46. The only common point across participants seems to be that

all the slopes are lesser than one.

When the probabilities of possible consequences of a decision

are known, it is decision under risk. When the probabilities are

unknown, it is decision under uncertainty. Tversky and Fox (1995)

compared probability distortions in decision under risk versus

uncertainty. We re-plot their Figures 7–9 on log odds scales in

Figure 6B. In the left panel (decision under risk), the probability

associated with a gamble, p, was explicitly stated. In the middle

and right panels (decision under uncertainty), the probability p

was the probability of a specific event in Super Bowl or Dow-Jones

and came from participants’ own judgments. Similar probability

distortions are revealed in the three panels.

SIGNAL DETECTION THEORY

Signal detection theory (Green and Swets, 1966/1974) is an appli-

cation of statistical decision theory (Blackwell and Girshick, 1954)

to deciding whether a signal is present. In each trial, the observer

makes the decision based on her perception of the stimulus. There

are four possible outcomes: hit (correctly say “yes” at signal pres-

ence), miss (incorrectly say “no” at signal presence), false alarm

(FA, incorrectly say “yes” at signal absence), and correct rejection

(CR, correctly say “no” at signal absence). If each outcome is asso-

ciated with a specific payoff and the prior probability of a signal
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FIGURE 5 | Linear in log odds fits: confidence rating for cognitive and

motor responses. Estimated probability of being correct or successful is

plotted versus the actual probability on log odds scales and fitted by the

LLO function. Black dots denote data. The blue line denotes the LLO fit. R2

denotes the proportion of variance accounted by the fit. (A) Estimated

probability of being correct in general-knowledge questions from

Gigerenzer et al. (1991). Participants first chose an answer for two

alternative general-knowledge questions and then indicated the probability

that the answer was correct. (B) Estimated probability of success in

basketball shooting from McGraw et al. (2004). Participants rated their

probability of success before each basketball shot.

is known, there exists an optimal decision criterion, maximizing

expected gain. This decision criterion is determined by the prior

probability of signal and the specified rewards.

Based on the relative frequencies of hit, miss, FA, and CR, the

actual decision criterion used by the observer can be measured

and the experiment can compare the subject’s decision criterion

with the optimal criterion. Systematic deviations from the opti-

mal decision criterion have been found in many studies (Green

and Swets, 1966/1974; Healy and Kubovy, 1981). It is as if par-

ticipants overestimate the prior probability when it is small and

underestimate the prior probability when it is large.

In Figure 7, we plot Tanner et al.’s (Green and Swets, 1966/1974)

data from an auditory signal detection task for one participant on

log odds scales. Each data point is obtained from a block of 600

trials with a specific probability of signal present. The straight line

is the LLO fit. The slope γ of the probability distortion is 0.36.

In a cognitive signal detection task where participants were

asked to classify a number into two categories with different means

(Healy and Kubovy, 1981), a similar slope, 0.30, was found.

SUMMARY

At this moment, you are probably intrigued by the same two ques-

tions as the authors are: why does probability distortion in so

many tasks conform to an LLO transformation? What determines

the slope γ and crossover point p0?

The plots we present here reflect only part of the empirical

results we have reviewed. To provide a more complete picture, we

clarify the following two points.

First, the slope γof the LLO transformation is not determined

by the type of task. The slope γ of the same task can be less than

one under some conditions and greater than one under others, not

to mention the quantitative differences. For example, the typical

distortion in relative frequency estimation is an overestimation

of small relative frequency and underestimation of large relative

frequency, corresponding to γ < 1. But in a visual task that resem-

bles Varey et al. (1990), Brooke and MacRae (1977) found the

reverse distortion pattern: an underestimation of small relative

frequencies and overestimation of large relative frequencies.

In decision-making under uncertainty, a reversal is reported

in Wu et al. (2009), where the probability of a specific outcome is

determined by the variance of participants’ own motor errors. The

reverse distortion pattern is also implied in a variant of the clas-

sical task of decision under risk called “decision from experience”

(Hertwig et al., 2004; Ungemach et al., 2009), in which partici-

pants acquire the probability of specific outcomes by sampling the

environment themselves. We will go into more details in the next

section.

Second, the crossover point of the LLO transformation is not

determined by the type of task, either. See the difference between

Attneave (1953) and Lichtenstein et al. (1978).

Luce (2000, Section 3.4.1–3.4.2) discusses the form of the prob-

ability weighting function noting that it is not always S-shaped but

can be a simple convex or concave curve. As we noted above, LLO

with the crossover point set to 0 or 1 can generate such shapes.

While the LLO family provides good fits to all of the data we

have obtained, a two-parameter form of Prelec’s model of the

probability weighting function (Prelec, 1998; Luce, 2000, Section

3.4) also provides good fits (not reported here). We concentrate

on LLO primarily because of the ready interpretability of its para-

meters and its links to current work on the neural representation

of uncertainty discussed below. As Luce (2000) notes, it is difficult

to discriminate competing models of the probability weighting

function in decision under risk by their fits to data.

WHAT CONTROLS THE SLOPE AND THE CROSSOVER POINT?

What controls the slope γ and crossover point of the LLO trans-

formation in a specific task? In this section we report three new

experiments on frequency/probability distortions.

Gonzalez and Wu (1999) identified some of the factors that

make decision under risk a less than ideal paradigm for studying

distortions in probability. The most evident is that analysis of data

requires simultaneous consideration of probability distortion and

valuation of outcomes.

The task we consider here is estimation of the relative frequency

of one color of dot among a crowd of two or more colors of dots,

a task used by Varey et al. (1990) and other earlier researchers

(Stevens and Galanter, 1957). The task is illustrated in the two

displays on Figure 8A which consists of 200 (left) or 600 (right)

dots placed at random. In both cases, 20% of the dots are black.

The observer viewed briefly presented arrays like these and judged

the relative frequency of black dots (alternatively, white dots). We

varied the true relative frequencies from trial to trial and fit the

estimated relative frequencies against the true relative frequencies

with the LLO function to obtain γ and p0. We compared γ and p0

across conditions.

EXPERIMENT 1: SLOPE

In earlier studies on frequency estimation, some researchers found

that small relative frequencies are overestimated and large relative

frequencies underestimated (Stevens and Galanter, 1957; Erlick,
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FIGURE 6 | Linear in log odds fits: decision under risk or uncertainty.

Decision weight is plotted versus experimenter-stated probability (in decision

under risk) or self-judged probability (in decision under uncertainty) and fitted

by the LLO function. Black dots denote data. The blue line denotes the LLO

fit. R2 denotes the proportion of variance accounted by the fit. (A) Decision

weights of individual participants from Gonzalez and Wu (1999). Each panel is

for one participant. Participants chose between a two-outcome lottery and a

sure reward. The probability of winning the larger reward of the lottery was

stated as p. Decision weight, the counterpart of subjective probability π, was

inferred from each participant’s choices based on the Cumulative Prospect

Theory. Re-plotted from Figure 6 of Gonzalez and Wu (1999). (B) Decision

weights from Tversky and Fox (1995). Participants chose between a lottery

offering a probability of a reward or otherwise zero and a sure reward. The

probability of winning the larger reward of the lottery p was stated (left panel),

or estimated by participants themselves as the probability of a specific Super

Bowl prospect (middle panel), or as the probability of a specific Dow-Jones

prospect (right panel). Decision weight, the counterpart of subjective

probability π, was inferred from participants’ choices based on the Cumulative

Prospect Theory Re-plotted respectively from Figures 7–9 of Tversky and Fox

(1995).

1964; Varey et al., 1990) while others found no distortion or

even the reverse distortion (Shuford, 1961; Pitz, 1966; Brooke

and MacRae, 1977). Different researchers obtained contradictory

results even when the task they used was almost the same (e.g.,

Erlick, 1964; Pitz, 1966). Expressed in the language of LLO, it is a

controversy about the slope γ. There is clue in the literature that

the numerosity of samples might play a role.

In Experiment 1, participants estimated the relative frequency

of either black or white dots among black and white dots. Each

participant completed eight blocks. We examined the effects of

two factors on γ and p0: experience (block number) and sample

numerosity, N, the total number of dots in a trial, which could be

200, 300, 400, 500, or 600.

Methods

Participants. Eleven participants, seven female and four male,

participated. Six of them estimated the relative frequency of

black dots, the remaining five, white. One additional partici-

pant was excluded from the analysis because of marked inaccu-

racy. All participants gave informed consent and were paid $12/h

for their time. The University Committee on activities involving

human subjects (UCAIHS) at New York University approved the

experiment.

Apparatus and Stimuli. Stimuli were black and white dots dis-

played on a gray background. They were presented on a SONY

GDM-FW900 Trinitron 24′′ CRT monitor controlled by a Dell
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FIGURE 7 | Linear in log odds fit: signal detection theory. Estimated

probability of signal present is plotted against the true probability on log

odds scales for one participant. Black dots denote data. The blue line

denotes the LLO fit. R2 denotes the proportion of variance accounted by

the fit. In Tanner et al. (1956), c.f. Green and Swets (1966/1974), participants

were asked to report whether a sound signal was present or absent.

Estimated probability was inferred from the participant’s decision criterion

based on signal detection theory. Data are from Table 4-1 of Green and

Swets (1966/1974).

Pentium D Optiplex 745 computer using the Psychophysics Tool-

box (Brainard, 1997; Pelli, 1997). A chinrest was used to help

maintain a viewing distance of 40 cm. The dots were randomly

scattered uniformly within a 17˚ × 17˚ area at the center of screen.

Each dot had a nominal diameter of 0.26˚.

Procedure. On each trial the display of black and white dots was

presented for 1.5 s. Participants were asked to estimate the relative

frequency of black or white dots. Their estimates were numbers

between 1 and 999 interpreted as their estimate of relative fre-

quency out of as 1000. Each participant made estimates for only

one color of dots (black or white) and the color assigned to each

participant was randomized. Participants were encouraged to be

as accurate as possible. No feedback was given.

Trials were organized into blocks of 100 trials. In each block all

of the relative frequencies 0.01, 0.02, . . ., 0.99 except 0.50 occurred

once and 0.50 occurred twice. The total number of dots (numeros-

ity, N ) in a display could be 200, 300, 400, 500, or 600, with each

numerosity occurring in 20 trials of each block. Their order within

a block was randomized. Each participant completed two sessions

of four blocks on two different days, completing a total of two ses-

sions × four blocks × 100 trials = 800 trials. Before the first block

of each session there were five trials of practice.

Results

Effect of experience. The experimental blocks were numbered

from 1 to 8 in order. We refer to block index as experience. We

fitted the estimated relative frequency to Eq. 1 separately for each

participant and each block and then averaged the coefficients γ

and p0 across the 11 participants.

Starting from slightly less than one, the slope γ became shal-

lower with experience (Figure 8B), dropping by 16% from Block

1 (0.91) to Block 8 (0.76). A repeated-measures ANOVA showed

a significant effect of experience on γ, F(7,70) = 5.59, p < 0.0001,

η
2
p = 0.36. Post hoc analyses using Tukey’s honestly significant

difference criterion at 0.05 significance level indicated that Block

1 had a significantly larger γ than all the other blocks except

Block 2.

The crossover point p0 fluctuated around 1/2 (0.5) in all

the blocks, ranging from 0.42 to 0.55. According to a repeated-

measures ANOVA, p0 did not vary significantly across blocks,

F(7,70) = 0.69, p = 0.68, η
2
p = 0.06. We concluded that expe-

rience affected the slope parameter γ but not the crossover

point p0.

Effect of sample numerosity. We used a similar procedure to

analyze the effect of sample numerosity as we used in the effect of

experience above.

As sample numerosity increased, the slope γ declined

(Figure 8C). The γ for displays of 600 dots (0.73) was 18% smaller

than that of 200 dots (0.88). A repeated-measures ANOVA showed

a significant effect of sample numerosity on γ, F(4,40) = 17.71,

p < 0.0001, η
2
p = 0.64. Post hoc analyses using Tukey’s honestly

significant difference criterion at 0.05 significance level indicated

significant decline from 200 to all the larger numerosities, and

from 300 to 500 and 600.

Moreover, the relationship of γ to N can be best fitted with a

function with one-parameter C :

γ = log C
/

log N (4)

A least-squares fit of Eq. 4 captured 99% of the variance of γ

(Figure 8D). The estimate for the parameter C was 104.

The crossover point p0 was 0.50, 0.54, 0.51, 0.68, 0.68, respec-

tively for the numerosity of 200, 300, 400, 500, 600. Similar to

experience, the effect of sample numerosity failed to reach signifi-

cance, F(4,40) = 2.17, p = 0.08, η2
p = 0.18. To conclude, we found

that sample numerosity affected the γ but found only a marginally

significant effect of sample numerosity on p0.

EXPERIMENT 2: CROSSOVER POINT

What determines the crossover point p0? In Experiment 1, p0 was

around 0.5 and little affected by experience or sample numeros-

ity. But recall that the estimation of the relative frequency of the

26 English letters (Attneave, 1953) ends up with p0 = 0.044, very

different from 0.5 and coincidently not far from 1/26. Fox and

Rottenstreich, 2003; See et al., 2006) suggested that when there are

m categories, the crossover point should be p0 = 1/m.

Experiment 2 was focused on testing the prediction of

p0 = 1/m. The results of Experiment 1 were consistent with the

prediction where there were two categories of dots, black and

white. In Experiment 2, we set m = 4 (participants were asked

to estimate the relative frequency of a specific color among four

colors of dots).

Methods

Participants. Ten participants, nine female and one male, par-

ticipated. None had participated in Experiment 1. All reported

normal color vision and passed a color counting test. All subjects
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FIGURE 8 | Slope of distortion in relative frequency estimation. The

methods and results of Experiment 1. (A) Examples of the relative frequency

task: what proportion of the dots are black? The left display contains 200 dots

in total, the right, 600. In both displays, 20% of the dots are black. (B) Effect

of experience. The mean slope γ across 11 participants is plotted against block

index, one to four for the first session, five to eight for the second session.

Later blocks are supposed to be associated with more experience. More

experience led to greater distortion (γ further from 1). Error bars denote SEs

of the mean. (C) Effect of sample numerosity. The slope γ across 11

participants is plotted as a function of sample numerosity N (the total number

of dots displayed in a trial). Larger sample numerosity resulted in greater

distortion (γ further from 1). Error bars denote SEs of the mean. (D) The

function of the mean γ to sample numerosity, N. Dots denote data. Solid line

denotes the fit of γ as proportional to the reciprocal of log N.

gave informed consent and were paid $12/h for their time. The

UCAIHS at New York University approved the experiment.

Apparatus and stimuli. The same as Experiment 1, except that

dots could any of four colors, red, green, white, or black.

Procedure. In each trial a display of black, white, red, and green

dots were presented for 3 s. Afterward one of the four colors was

randomly chosen and participants were asked to estimate the rel-

ative frequency of dots of this specific color. As in Experiment 1,

participants input a number between 1 and 999 as the numerator

of 1000 and no feedback was given.

In any trial, the relative frequencies of the four colors were

multinomial-like random distributions centered at (0.1, 0.2, 0.3,

0.4) and each relative frequency was constrained to be no less

than 0.02. The order of relative frequencies for different colors

was randomized. The total number of dots in a display could be

400, 500, or 600, each numerosity occurring in 32 trials of a block.

Each participant completed one session of five blocks. That is, five

blocks × 96 trials = 480 trials in total.

Results

Fox and Rottenstreich, 2003; See et al., 2006) suggested the

crossover point of 1/m but reasoned that it is because people are

using a“guessing 1/m”when they are totally ignorant of the relative

frequency. In our case, because the to-be-estimated color was indi-

cated after the display of dots, there is a good chance participants

might fail to encode the color in question.

In an attempt to further test the “guessing 1/m” heuristic, we

considered an additional measure. The preferred response of a

participant was defined as the value (rounded to the second digit

after the decimal point) that the participant used most often in

estimation. The actual relative frequencies in all trials were close

to uniformly distributed within the range of [0.06, 0.36] and had

a much lower density outside. If on some proportion of trials

observers defaulted to the fixed prior value 0.25, as suggested by the

heuristic, we would expect to find a “spike” in observers’ estimates

of relative frequency at that value.

For each participant, we left out the trials whose estimated rel-

ative frequencies were within preferred response ± 0.04 and fit the

remaining trials to Eq. 1 to get the crossover point.
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FIGURE 9 | Evidence for log odds as an inherent representation of

uncertainty. Participants saw pairs of photos of faces. One group of

participants rated the similarity between the two faces in each pair. A second

group judged whether the two persons on each pair were related or not. (A)

The similarity rating of two children faces is a linear transformation of the log

odds of the two children being judged to be related. Reproduced from

Maloney and Dal Martello (2006). (B) The similarity rating of two adult faces is

a linear transformation of the log odds of the two adults being judged to be

related. Reproduced from DeBruine et al. (2009). R2 denotes the proportion

of variance accounted by the linear fit. See text for implications.

For the 10 participants, we computed the mean and 95% con-

fidence interval separately for crossover point and for preferred

response. The crossover point was 0.22 ± 0.07, indistinguishable

from 1/4 (0.25). Note that it was much lower than 0.5. If this were

the result of the“guessing 1/4”heuristic, we would expect a positive

correlation between crossover point and preferred response. How-

ever, no significant correlation was detected, Pearson’s r = 0.29,

p = 0.42. Moreover, the preferred response was 0.18 ± 0.06, lower

than 1/4 (0.25).

We concluded that the prediction of p0 = 1/m, was supported,

but it was unlikely to be the result of the heuristics discussed above.

EXPERIMENT 3: SLOPE AND DISCRIMINABILITY

Tversky and Kahneman (1992) and Gonzalez and Wu (1999) con-

jecture that the shape of the probability weighting function is

controlled by the “discriminability” of probabilities. In Experi-

ment 3, we tested the “discriminability hypothesis” for relative

visual numerosity judgments. We measured the just noticeable dif-

ference (JND) of relative frequency at 0.5 for the five numerosities

used in Experiment 1. If the shallower slope for a larger sample

numerosity is caused by a lower discriminability (as consistent

with the intuition that a larger numerosity makes the estimation

task more difficult), we would expect that the JND increases with

an increasing numerosity.

Methods

Participants. Ten participants, seven female and three male,

participated. None had participated in Experiment 1 or 2. One

additional participant was excluded for failing to converge in the

adaptive staircase procedures we used to measure JND. All subjects

gave informed consent and were paid $12/h for their time. The

UCAIHS at New York University approved the experiment.

Apparatus and stimuli. Same as Experiment 1.

Procedure. On each trial two displays of black and white dots were

presented, each for 1.5 s, separated by a blank screen of 1 s. Half of

the participants judged which display had a higher proportion of

black dots, and the other half, white dots.

As in Experiment 1, the total number of dots (numerosity, N ) in

a display could be 200, 300, 400, 500, or 600. The two displays in a

trial always had the same numerosity. To avoid participants com-

paring the number of black or white dots of the two displays rather

than judging the proportion, we jittered the actual numerosity of

each display randomly within the range of ±4%.

The proportion of black or white dots of one display was fixed

at 0.5. The proportion of the other was adjusted by adaptive stair-

case procedures. For each of the five numerosity conditions, there

was one 1-up/2-down staircase of 100 trials, resulting in 500 trials

in total Each staircase had multiplicative step sizes of 0.175, 0.1125,

0.0625, 0.05 log unit, respectively for the first, second, third, and

the remaining reversals. The five staircases were interleaved. Five

practice trials preceded the formal experiment.

Results

The 1-up/2-down staircase procedure converges to the 70.7% JND

threshold. For each participant and numerosity condition,we aver-

aged all the trials after the first two reversals to compute the thresh-

old. The mean threshold across participants was 0.57, 0.57, 0.56,

0.56, 0.55, respectively for the numerosity of 200, 300, 400, 500,
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600. According to a repeated-measures ANOVA, there was no sig-

nificant difference in the JND threshold for different numerosities,

F(4,36) = 2.05, p = 0.11, η2
p = 0.18. Differences in discriminabil-

ity are not responsible for the differences in probability distortion

observed in Experiment 1.

DISCUSSION

As demonstrated in Section “Ubiquitous Log Odds in Human

Judgment and Decision,” the distortions of relative frequency

and/or probability in a variety of judgment and decision tasks are

closely approximated by a linear transformation of the log odds

with two parameters, the slope γ and crossover point p0 (LLO,

the Eq. 1). We investigated in three experiments what determines

these two parameters of the distortion of relative visual frequency.

In Experiment 1 we found that slope γ decreased with increas-

ing experience or larger sample numerosity. Intuitively, these

trends are surprising, because an accumulation of experience or

a larger sample size should reduce “noise” and thus lead to more

accurate estimation. Interesting, the slope γ was proportional to

the reciprocal of log N. We cannot find a satisfactory explanation

for these effects in the literature. However, there is a parallel sam-

ple numerosity effect emerging in an area of decision under risk.

We explore the implications under the subtitles below.

In both Experiment 1 and 2 we found that the crossover point

p0 agrees with a prediction of p0 = 1/m. Our results are consistent

with the category effect found in Fox and Rottenstreich, 2003; See

et al., 2006), but we also showed that this is unlikely to be due to

the “guessing 1/m” heuristic they suggested.

Decisions from experience

Recently, research on decision-making has begun to focus on how

the source of probability/frequency information affects probabil-

ity distortion. This new research area contrasts “decision from

experience” (Barron and Erev, 2003; Hertwig et al., 2004; Hadar

and Fox, 2009; Ungemach et al., 2009; for review, see Rakow and

Newell, 2010), to traditional “decision from description.”

What are the implications of our results for decision from

experience? A typical finding in decision from experience is an

underweighting of small probabilities (e.g., Hertwig et al., 2004),

as opposed to the overweighting of small probabilities in decision

from description (Luce, 2000). Several authors (Hertwig et al.,

2004; Hadar and Fox, 2009) conjectured that this reversal is due

to probability estimates based on small samples. Consistent with

their conjecture, Hau et al. (2010) found that the magnitude of

underweighting of small probabilities decreased as sample size

increased. With a very large sample size, Glaser et al. (in press)

even obtained the classical pattern of an overweighting of small

probabilities.

In the language of LLO, the larger the numerosity (sample size),

the shallower the slope of the probability distortion (underweight-

ing small probabilities corresponds to a slope of over one). Note

that this effect of sampling size on the probability distortion in

decision from experience qualitatively parallels to what is found in

Experiment 1. And according to Eq. 4, the empirical fit we found

for γ, when N = C, there would be no probability distortion. We

conjecture that for decision from experience, there exists a specific

sample size at which there is no distortion of probability.

There is another hint in the literature that the highly ordered

changes in probability distortion that we observe in visual

numerosity tasks would also show up in decision-making tasks

where probability information is presented as visual numeros-

ity. Denes-Raj and Epstein (1994) asked participants to choose

between two bowls filled with jelly beans, one large (100 jelly

beans) and one small (10 jelly beans). Participants were explic-

itly told the proportion of winning jellybeans in both bowls by

the experimenters but they still showed a strong preference for

the large bowl with 60% of participants choosing a large bowl

with 9/100 winning jellybeans over a small bowl with 1/10 win-

ning jellybeans. This outcome suggests an effect of numerosity

qualitatively consistent with our results.

We have also shown that we can systematically manipulate

the crossover point p0 in a relative visual numerosity task. The

crossover point is often assumed not to vary in decision-making

under risk (Tversky and Kahneman, 1992; Tversky and Fox, 1995;

Prelec, 1998). Our results lead to the conjecture that, in decisions

with relative frequency signaled by displays with m > 2 categories,

the crossover point will vary systematically.

Confidence ratings

Gigerenzer (Gigerenzer et al., 1991; Gigerenzer, 1994) distin-

guished between human reasoning about single-event probability

and frequency. When asked to rate their confidence about one

event, people’s default response was to treat the event as a special

one that never occurred before and will never occur after, rather

than to group the event into a category of events whose frequency

is observable.

Probability distortion in confidence rating typically has a slope

of γ > 1 (see Figure 5), as reversed to the typical pattern in fre-

quency estimation and decision-making. We conjecture this to be

a special case of the sample numerosity effect. That is, γ > 1 when

the sample numerosity is very small. It was as if people treat the

to-be-rated action as a single-event and sampled very few previous

events to making the confidence rating.

PREVIOUS ACCOUNTS OF PROBABILITY DISTORTION

Why do humans distort frequency/probability in the ways that

they do? The subjective probability may deviate from the true

probability for many reasons, but no simple reason can explain

the S-shaped patterns we have observed.

For example, people might overestimate the frequencies of

the events that attract more media exposure (Lichtenstein et al.,

1978) or are just more accessible to memory retrieval (Tversky

and Kahneman, 1974). But this would not cause a patterned

distortion of all events. People might be risk-averse in order to

maximize biological utility (Real, 1991), or just be irrationally risk-

seeking, but neither risk-averse nor risk-seeking tendencies could

explain the coexistence of overestimation and underestimation of

probabilities.

The S-shaped distortion has received much attention in quite

a few areas. Theories and models have been developed to account

for the S-shaped distortion in a specific area, although little efforts

have been made to build a unified theory for all the areas. In

this section, we briefly describe the representative theories and

models, organizing them by area. Their predictions, quantitative
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or qualitative, on slope, and crossover point of the distortion are

compared with the empirical results we summarized in Sections

“Ubiquitous Log Odds in Human Judgment and Decision” and

“What Controls the Slope and the Crossover Point?”

FREQUENCY ESTIMATION

Power models

Spence’s (1990) power model and Hollands and Dyre’s (2000)

extension of it, the cyclical power model, are intended to explain

the S-shaped patterned distortion in proportion judgment. Pro-

portion here refers to the ratio of the magnitude of a smaller

stimulus to the magnitude of a larger one on a specific physi-

cal scale, such as length, weight, time, and numerosity. Relative

frequency can be regarded as the proportion of numerosity.

The basic assumption is Stevens’ power law: the perceived mag-

nitude of a physical magnitude, such as the number of black dots

in a visual array of different colors of dots, is a power function

of the physical magnitude with a specific exponential. We apply

the power assumption to the estimation of relative frequency as

below. Suppose among N dots, there are n1 black dots and n2

other colors of dots. The perceived numerosity would be nα

1 and

nα

2 , respectively. Accordingly, the estimated relative frequency of

black dots is:

π =
nα

1

nα

1 + nα

2

(5)

Dividing both the numerator and denominator of the right side

by N α, we get the perceived relative frequency as a function of the

true relative frequencies:

π
(

p
)

=
pα

pα +
(

1 − p
)α

(6)

It is easy to see this is a variant of LLO (substitute Eq. 6 into Eq. 1)

which predicts γ = α and p0 = 0.5. Thus an S-shaped distortion

follows the assumption of Stevens’ power law.

Hollands and Dyre (2000) assumed that the slope of the distor-

tion of the proportion of a specific physical magnitude depends

on the Stevens exponent of the physical magnitude. For instance,

length, area, and volume have different Stevens exponential but

the exponent of each of them is fixed. This prediction has some

difficulties in applying to the estimation of relative frequency. The

experiment we reported in Section “What Controls the Slope and

the Crossover Point?” would imply that the exponent is not fixed

and changes systematically with the total numerosity.

As to the crossover point, Hollands and Dyre (2000) treated it

as an arbitrary value, depending on the reference point available

to the observer at the time of judgment. This is not consistent

with our observation that p0 = 1/m, where m is the number of

categories.

Support theory

Tversky et al.’s support theory (Tversky and Koehler, 1994; Rot-

tenstreich and Tversky, 1997) concerns how humans estimate

the probability of specific events. The term degree of support

refers to the strength of evidence for a hypothesis. The estimated

probability of an event is the degree of support for the presence

of the event divided by the sum of the degrees of support for the

presence and absence of the event.

To explain the inverted-S-shaped distortion of relative fre-

quency, Fox and Rottenstreich, 2003; See et al., 2006) added two

assumptions to support theory. First, they assumed that the orig-

inal degree of support for both the presence and absence of an

event are proportional to the corresponding frequencies. Second,

before transforming the degree of support into probability, the log

odds of degree of support is linearly combined with a prior log

odds and the coefficients of the two add up to 1. Following these

two assumptions, the resulting estimated probability has the same

form as the LLO function.

The value of the prior probability was the crossover point. Fox

and Rottenstreich, 2003; See et al., 2006) called this prior the

ignorance prior, echoing the human tendency for equal division

when in total ignorance of probability information. It follows that

p0 = 1/m.

However, the weighted addition of a true log odds and a prior

log odds would lead to a γ never greater than 1, unless the prior log

odds has a negative weight. Therefore, it cannot explain the γ > 1

cases (Shuford, 1961; Pitz, 1966; Brooke and MacRae, 1977).

The slope of the distortion equals the weight assigned to the

true log odds in the combination. Fox and Rottenstreich, 2003;

See et al., 2006) suggested that it is positively correlated with the

confidence level of the individual who makes the estimation. We

consider next model of the distortion of confidence ratings.

CONFIDENCE RATINGS

Calibration model

The calibration model of Smith and Ferrell (1983) attributes the

probability distortion in confidence rating to a misperception of

one’s ability to discriminate between correct and incorrect answers,

or between successful and unsuccessful actions.

The calibration model borrows the framework of signal detec-

tion theory. Correctness and wrongness of an answer, or success

and failure of an action, are considered as two alternative states, i.e.,

signal present and absent. The observer’s confidence, is assumed

to be have a constant mapping to the perceived likelihood ratio

of the two states. If the discriminability between the two states

is perceived to be larger than the true value, small probabilities

would be underestimated and large probabilities overestimated,

amounting to γ > 1 (as in Figure 5). If the discriminability were

underestimated, the reverse pattern would show up.

The calibration model does not necessarily lead to an LLO

transformation and does not have any specific predictions for the

selection of slope and crossover point.

Stochastic model

Erev et al., 1994; Wallsten et al., 1997) propose that the over-

and under-confidence observed in confidence ratings are caused

by stochastic error in response. They assume that at a specific

time for a specific event, the participant experiences a degree of

confidence and translates this experience into an overt report of

confidence level by a response rule. The experienced degree of

confidence is the log odds of the true judgment plus a random

error drawn from a Gaussian distribution. The larger the variance
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of the random error, the greater the slope of probability distortion

deviates from one.

With some specific response rules, the S-shaped distortion can

be produced. The predictions of the stochastic model are not

intuitive and are illustrated in their computational simulation.

One of the predictions states that the underestimation of small

probability and overestimation of large probability (i.e., the γ > 1

pattern) widely identified in confidence rating tasks, a seemingly

reverse pattern of regression-to-the-mean, is actually a kind of

regression-to-the-mean phenomenon disguised by the way how

the true probability is defined. The true probability in the confi-

dence rating task is usually defined as the actual success rate of

a specific confidence level. That is, successful and unsuccessful

actions are grouped by participants’ confidence rating. Wallsten

et al. (1997) re-analyzed previous empirical studies and show that

if, instead, the true probability of success is computed for each

action as an average across participants, the γ > 1 pattern would

be obtained.

However, we doubt this effect of true probability definition can

apply to the confidence rating data of McGraw et al. (2004), in

which the γ > 1 pattern holds even when the success rate of bas-

ketball shot is grouped by the distance to the basket rather than by

participants’ confidence rating (not shown in Figure 5B).

DECISION UNDER RISK OR UNCERTAINTY

Adaptive probability theory

Martins (2006) proposed an adaptive probability theory model to

explain the inverted-S-shaped distortion of probability in deci-

sion under risk. The observed distortions, under this account,

reflect a misuse of Bayesian reference. In everyday life, people

observe the frequency of a specific event in finite samples of events.

The observed relative frequency of the event, even in the absence

of observation errors, may deviate from the true probability of

the event due to the random nature of sampling. To reduce the

influence of sampling error, Martin assumes that people intro-

duce a prior sample and combines it with the observed sample by

Bayes’ rule. The resulting estimated probability would be a linear

combination of the observed frequency and the prior probability,

determined by three parameters: the size of the imagined sample

n, the frequency of the event in the prior sample a, the frequency

of the other events in the prior sample b. But Martins (2006) did

not characterize what controls these parameters or motivate the

choice of prior. Martins (2006) further argued that, in the exper-

imental condition, in front of a lottery, e.g., a probability of 0.1

to win $100, participants treat the probability stated by the exper-

imenter not as a true probability, but as an observed frequency

from an imagined sample. The decision weight was the result of

the Bayesian inference for the true probability.

The involvement of a prior could explain why the estimated

probabilities shrink toward a center. However, for any specific n,

instead of a S-shaped transform, the estimated probability would

be a linear function of the observed relative frequency, To over-

come this difficulty, Martins (2006) assumes that sample size n

changes with the observed relative frequency, greater for extreme

probabilities and less for smaller probabilities. Thus, the parame-

ter n is actually not one-parameter and is chosen arbitrarily to

make theory conform to data.

Another difficulty that adaptive probability theory encounters

is the underweighting of small probability observed in studies of

decision from experience (e.g., Hertwig et al., 2004). Although

Martins (2006) did not suggest the theory could be applied to

decisions where the probability information comes from sam-

pling, there is no obvious reason that people would not make

the Bayesian inference with a real sample.

FUTURE DIRECTIONS

In this article we examined probability distortion in human judg-

ment and the factors that affect it. An evident direction for future

research is to develop process-based models of human use of

probability and frequency information. The theories and mod-

els we reviewed above are among those that use specific cognitive

processes to explain the emergency of the S-shaped distortion of

probability (other examples include Stewart et al., 2006; Gayer,

2010, to name a few). While a full treatment of them is beyond

the scope of the current paper, it would be interesting to see

whether any existing process-based models can be modified to

account for the changes in slope and crossover point we have

summarized.

LLO AS THE HUMAN REPRESENTATION OF UNCERTAINTY

We conjecture that log odds to be a fundamental representation

of frequency/probability used by the human brain. Here are a few

pieces of evidence.

PEOPLE ARE LESS BIASED WHEN RESPONDING IN LOG ODDS

Phillips and Edwards (1966) asked participants to estimate the

probability of one hypothesis to be correct among two alternative

hypotheses. There were two types of bags of poker chips, differing

in their proportions of red chips and blue chips. Participants were

informed the proportions. They were given random draws from

one bag and were asked to estimate the probability of each type of

bag the sample came from. Participants responded with devices in

the format of probability, log probability, or log odds. Phillips and

Edwards found that when responding in log odds, participants had

the least deviation from the correct answer.

SIMILARITY RATING AMOUNTS TO READING OUT LOG ODDS

Maloney and Dal Martello (2006) provided evidence of the

involvement of log odds in kinship perception. Participants saw

pairs of photos of children faces. The task of one group of partici-

pants was to judge for each pair whether the children were siblings

or not. The task of the other group was to rate the similarity

between the two faces shown in each pair. The similarity rating of

a pair proved to be proportional to the log likelihood ratio of the

pair to be and not to be sibling (Figure 9A). It is as if participants

were reading out the log likelihood ratio when required to rate the

similarity of two faces. DeBruine et al. (2009) replicated this result

several times using young adult faces (Figure 9B).

A PLAUSIBLE NEURAL REPRESENTATION OF LOG ODDS

Gold and Shadlen (2001, 2002) propose a computational mecha-

nism for neurons to represent the likelihood ratio of one hypothe-

sis against another. Consider the binary decision whether hypoth-

esis h1 or hypothesis h0 is true. Assume there is a pair of sensory
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neurons:“neuron”and“antineuron.”The firing rate of “neuron,”x,

is a random variable whose distribution is conditional on whether

h1 or h0 is true. So does the firing rate of “antineuron,” y. The

random distribution of y conditional on h1 is the same as the

random distribution of x conditional on h0, and vice versa. For

many families of random distributions, such as Gaussian, Poisson,

and exponential distributions, Gold and Shadlen prove that the

log likelihood ratio of h1 to h0, is a linear function of the firing

rate differences between “neuron” and “antineuron,” x − y. While

Gold and Shadlen were concerned with making a decision between

two alternatives, their proposed neural circuit can potentially be

taken as a representation of uncertainty of frequency in log odds

form. That is, the log odds can be encoded by two neurons as the

difference between their firing rates.

CONCLUDING REMARKS

Log odds has been independently developed to fit psychophysical

data in many areas of perception and cognition over the course of

many years. As early as 1884, Peirce and Jastrow (1885) speculated

that the degree of confidence participants gave to their sensation

difference judgments was proportional to the log odds of their

answers being right. Pitz (1966) used the linear log odds function

as a convenient way to fit the data of estimated frequency to true

frequency.

In the decision area, Karmarkar (1978, 1979) used a one-

parameter linear log odds function to model decision weights.

Goldstein and Einhorn (1987) modified Karmarkar’s equation

to include the intercept parameter, which was followed by later

researchers (Tversky and Fox, 1995; Gonzalez and Wu, 1999; Kilka

and Weber, 2001).

For signal detection theory, it is a common practice to plot

the actual decision criterion against the optimal decision criterion

in the log scale (Green and Swets, 1966/1974; Healy and Kubovy,

1981). It amounts to our log odds plot and the observed distortion

of probability is referred to as “conservatism.”

We are seeking for a general explanation for the linear transfor-

mation of log odds in these various areas. No matter how different

these tasks look like, they are connected by the same evolution-

ary aim: using possibly imperfect probabilistic information to

make decisions that lead to the greatest chance of survival. It is

therefore surprising, at first glance, that organisms systematically

distort probability. It is doubly surprising that the same pattern of

distortion (LLO) is found across a wide variety of tasks.

A full explanation of the phenomena just described would

require not only that we account for the form of the distortion but

also for the large differences in the values of the two parameters

across tasks and individuals and the factors that affect parameter

settings. The key question that remains is, then, what determines

the slope and crossover point of the linear log odds transforma-

tion? We found that in one task we could identify experimental

factors that controlled both the slope and crossover point of the

LLO transformation of perceived relative numerosity. We conjec-

ture that there are factors in each of the domains we considered that

are responsible for the particular choice of probability distortion

observed. We need only find out what they are.
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