Ubiquitous One-Time Password Service using the
Generic Authentication Architecture

Chunhua Chen'* Chris J. Mitchell> Shaohua Tang?
1.3 School of Computer Science and Engineering
South China University of Technology
Guangzhou 510641, China
! chen.chunhua@mail.scut.edu.cn, 3 csshtang@scut.edu.cn
2 Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
c.mitchell@rhul.ac.uk

May 7, 2011

Abstract

The Generic Authentication Architecture (GAA) is a standardised
extension to the mobile authentication infrastructure that enables the
provision of security services, such as key establishment, to network
applications. In this paper we first show how Trusted Computing can
be extended in a GAA-like framework to offer new security services.
We then propose a general scheme that converts a simple static pass-
word authentication mechanism into a one-time password (OTP) sys-
tem using the GAA key establishment service. The scheme employs
a GAA-enabled user device and a GAA-aware server. Most impor-
tantly, unlike most OTP systems using a dedicated key-bearing token,
the user device does not need to be user or server specific, and can
be used in the protocol with no registration or configuration (except
for the installation of the necessary application software). We also
give two practical instantiations of the general scheme, building firstly
on the mobile authentication infrastructure and secondly on Trusted
Computing. The practical systems are secure, scalable, fit well to the
multi-institution scenario, and enable the provision of ubiquitous and
on-demand OTP services.

Keywords: One-time password, Generic Authentication Architecture,
mobile security, Trusted Computing

*The author is a PhD student at the South China University of Technology. This
work was performed during a visit to the Information Security Group at Royal Holloway,
University of London, sponsored by the Chinese Scholarship Council and the Natural
Science Foundation of Guangdong Province, China (No. 9351064101000003).

1 Introduction and Motivation

A one-time password (OTP) is a means of proving the identity of a user that
is only valid for a single authentication session or for a short time period.
On-demand OTP systems (e.g. RFC 4226 [16]) typically involve the use
of a server-specific security token that shares a secret key with the server
and that requires an initialisation process. Such a process costs time and
money. Also, if the token is compromised, lost or stolen, then an adversary
might be able to use it to impersonate the user to the server, at least until
it is revoked. This is likely to increase system support costs, including the
possible need to manage a token revocation mechanism. In addition, such
schemes do not fit well to a multi-institution scenario, since a user would be
required to possess a token for each server with which he or she interacts.
Of course, a multi-institution scheme in which a token is equipped with a
separate secret key for each of a number of servers is technically feasible;
however, such a scheme may be difficult to deploy and manage in practice.
These disadvantages increase the management burden and cost, and hence
limit the use of OTP systems to security-critical applications.

A major challenge in the management of authentication in networks such
as the Internet is the need to establish the necessary credentials. Build-
ing an authentication system using a pre-existing security infrastructure is
thus a potentially cost-effective approach. One such security infrastructure
is the widely used static password authentication infrastructure, in which
weak passwords are shared by users and application servers. However, this
security infrastructure is vulnerable to a number of attacks. Another pre-
existing security infrastructure is the mobile authentication infrastructure,
in which a long-term secret subscriber key is shared by a mobile device and
its home mobile network. Widely deployed mobile networks include the
Global System for Mobile Communications (GSM) and Universal Mobile
Telecommunications System (UMTS) networks. The Generic Authentica-
tion Architecture (GAA) [5], standardised by 3GPP! and 3GPP 22 is a
general framework that builds on the mobile authentication infrastructure
to enable the provision of security services, such as key establishment, to
network applications. A third pre-existing security infrastructure of inter-
est here is the Trusted Computing [17] security infrastructure, in which a
Trusted Platform Module in a PC is equipped with a certified RSA key pair.

In this paper we first investigate a possible means of extending the
Trusted Computing security infrastructure via a GAA-like framework to
provide new security services. We then propose a general scheme that con-
verts a simple static password authentication mechanism into a OTP system
using the GAA key establishment service. The user ‘token’ that generates

'The 3rd Generation Partnership Project (3GPP).
2The 3rd Generation Partnership Project 2 (3GPP2).

the OTP is a GAA-enabled device that is not user or server specific, and
can be used in the protocol with no registration or configuration (except
for the installation of the necessary application software). We describe two
practical instantiations of the general scheme, building firstly on the mo-
bile authentication infrastructure and secondly on Trusted Computing. Our
analysis show that the schemes overcome the disadvantages discussed above
and enable the provision of ubiquitous and on-demand OTP services.

The rest of this paper is organised as follows. In section 2 we briefly
introduce the standard version of GAA that relies on the mobile authen-
tication infrastructure; we then describe the new GAA scheme that builds
on the Trusted Computing security infrastructure. In section 3 we review
related work. We describe the GAA-based OTP systems in section 4, and
discuss their advantages and limitations in section 5. In section 6 we provide
an informal security analysis, and in section 7 we draw conclusions.

2 Generic Authentication Architecture

We start by describing the GAA architecture, introducing the main roles in
the system and the two main procedures. We follow this by describing two
separate implementations of GAA, i.e. as supported by the mobile authen-
tication infrastructure (the standard version of GAA), and our new version
of GAA as supported by trusted computing.

2.1 Overview of GAA
Within the GAA framework, the following entities play a role:

e the Bootstrapping Server Function (BSF) provides authenticated key
establishment services to GA A-enabled devices and application servers,
using a pre-existing security infrastructure;

e a GAA-enabled user device accesses the security services provided by
the BSF using a pre-existing security context;

o a GAA-aware application server accesses the security services provided
by the BSF, and has the means to establish a mutually authenticated
secure channel (e.g. as provided by SSL/TLS) with the BSF.

GAA involves two procedures, GAA bootstrapping and Use of boot-
strapped keys.

e GAA bootstrapping involves use of an authenticated key agreement
protocol to set up a shared master key MK between a GAA-enabled
user device and the BSF. Also established is a Bootstrapping Trans-
action Identifier B-TID for MK and the lifetime of this key. B-TID
must consist of a (statistically) unique value which can identify an

instance of GAA bootstrapping and the BSF’s network domain name.
The authenticated key agreement protocol builds on an existing secu-
rity infrastructure.

e Use of bootstrapped keys is a procedure which establishes a server-
and application-specific shared secret session key SK between a GAA-
enabled user device and a GAA-aware application server, using the
master key MK shared by the user device and the BSF. The procedure
operates in the following way. The device first derives a session key
SK as follows:

SK = KDF(MK, NAF-Id, other values)

where KDF is a key derivation function, and NAF-Id? is an application-
specific value consisting of the Fully Qualified Domain Name (FQDN)
of an application server and the identifier of the underlying application
protocol. Other values may be included in the key derivation computa-
tion depending on the nature of the underlying security infrastructure.

The device then starts the application protocol by sending a request
containing B-TID to the application server. The application server
submits the received B-TID and its own identifier NAF-Id to the BSF
to request the session key SK. Note that B-TID contains the network
domain name of the BSF, so the application server knows where to
send the request. As stated above, the application server and the BSF
have the means to establish a mutually authenticated secure channel,
and hence the BSF can verify the server against its FQDN. If the server
authentication succeeds, the BSF derives SK from the MK identified
by B-TID, and sends SK, its lifetime, and other relevant information
to the application server via a secure channel. The user device and
the application server now share SK, which they can use to secure
application-specific messages.

2.2 UMTS GAA

The standard versions of GAA [5] build on the mobile authentication infras-
tructures (including the GSM or the UMTS infrastructures). In this paper
we focus on GAA as supported by the UMTS authentication infrastructure,
which we refer to as UMTS GAA.

As shown in Figure 1, the following UMTS-specific entities play a role
in UMTS GAA:

3In the GAA specifications [5], the functionality of a GAA-aware application server is
referred to as the Network Application Function (NAF).

GAA-aware application server

Use of GAA
bootstrapped key

BSF

(GAA
bootstrapping

GAA-enabled user device

Figure 1: UMTS GAA framework

e the Home Subscriber Server (HSS) is provided by a network opera-
tor, and has access to the long-term key for each of the operators’s
subscribers;

e the BSF connects to the HSS and acts as an intermediary between the
HSS and a GAA-enabled mobile device;

e the GAA-enabled user device is a UMTS-enabled mobile device, which
shares a long-term subscriber key with its HSS.

The UMTS Authentication and Key Agreement (UMTS AKA) proto-
col [1] provides authentication and key establishment using a long-term se-
cret subscriber key K shared by a mobile device (strictly its UMTS Sub-
scriber Identity Module (USIM)) and its HSS. As a result of a successful
UMTS AKA procedure, a pair of secret session keys is shared by the mobile
device and its HSS. These keys are CK, used for confidentiality protection,
and [K, used for integrity protection. Note that, in the UMTS AKA proce-
dure, a random challenge (RAND) is sent by the HSS to the mobile device.

UMTS GAA bootstrapping, as defined in the Generic Bootstrapping
Architecture (GBA) [5], uses the UMTS AKA protocol to set up a GAA
master session key (MK) between a GAA-enabled mobile device and the
BSF, where MK is the concatenation of IK and CK. The BSF also sends an
identifer B-TID for MK and the MK lifetime to the mobile device. B-T'ID
consists of a combination of the RAND value and the BSF’s network domain
name.

The server- and application-specific session key SK is derived as follows:

SK = KDF(MK , GBA _variant, RAND, IMPI, NAF-Id)

where GBA _variant indicates the bootstrapping variant (such as GBA_ME
or GBA_U), and the IP Multimedia Private Identifier (IMPI) is derived from
the International Mobile Subscriber Identity (IMSI) [4], which is unique to
each mobile device (strictly its USIM).

2.3 TC GAA

A Trusted Platform (TP) compliant with the Trusted Computing Group
(TCG) specifications is a computing platform with a built-in Trusted Plat-
form Module (TPM) [19, 20, 21]. A TPM is a self-contained processing mod-
ule with protected capabilities, including random number generation, asym-
metric key generation, digital signing and encryption. A TPM is equipped
with a unique Endorsement Key (EK) pair, an RSA key pair that is used
only for encryption/decryption. The private decryption EK is known only
to the TPM and never disclosed, while the public encryption EK may be re-
vealed externally. A variety of other categories of keys can be generated and
used by a TPM, and a range of types of public key certificate (and associated
certification authorities) are defined in the trusted computing specifications.
We use the term Trusted Computing (TC) security infrastructure to refer
to the set of deployed TPMs, the associated keys, and the supporting public
key infrastructures.

We next outline a possible means of using this security infrastructure to
support a GAA security framework, which we refer to as TC GAA. Note
that we give only a high level description here; a detailed description of TC
GAA is provided in a separate document [8].

As shown in Figure 2, the following Trusted Computing specific entities
play a role in TC GAA:

e the supporting public key infrastructures;

e the BSF, which is equipped with a certified signature key pair used
for entity authentication;

e the GAA-enabled user device, a TCG complaint TP whose TPM has
been equipped with a certified signature key pair (e.g. an Attestation
Identity Key (AIK) generated by the TPM) for entity authentication.
The TP is also capable of implementing the authenticated key agree-
ment protocol which forms part of the GAA bootstrapping procedure.

The TC GAA scheme operates as follows.

e The TC GAA bootstrapping procedure involves use of an authenti-
cated key agreement protocol employing the signature key pairs pos-
sessed by the BSF and the TP. The protocol conforms to the two-pass

GAA-aware application server

Use of GAA
BSF bootstrapped key

GAA
bootytrapping

GAA-enabled user device

TPM

Figure 2: TC GAA framework

unilateral authentication protocol specified in clause 5.1.2 of ISO/IEC
9798-3:1998 [12]. In every protocol run a new temporary asymmetric
key pair is generated by the TPM. The public key of this pair is cryp-
tographically bound to a TP identity Idrp using the TPM’s private
signing key; the resulting certificate is sent to the BSF. The BSF gen-
erates a secret session key MK, encrypts it using the temporary public
encryption key bound to Idrp, and sends it to the TP together with a
key identifier B-TID and the key lifetime. After successful completion
of the protocol, during which a random challenge R is sent by the BSF
to the TP, the session key MK is shared by the TP and the BSF. Note
that the key identifier B-TID consists of a combination of R and the
BSF network domain name.

e In the TC GAA Use of bootstrapped keys procedure, the TP and
the GA A-aware application server follow the procedure defined in sec-
tion 2.1 to establish a server- and application-specific session key SK
using the master key MK shared by the TP and the BSF. The session
key SK is derived as follows:

SK = KDF(MK, R, Idpp, NAF-Id).

We observe that TC GAA provides a way of exploiting the now very
widespread trusted computing infrastructure for the provision of fundamen-
tally important generic security services. Of course, application-specific se-
curity protocols building on the infrastructure can be devised independently
of any generic service and, indeed, there is a large and growing literature

on such schemes. However, the definition of a standard GAA-based secu-
rity service enables the trusted computing infrastructure to be exploited in
a simple and uniform way, and it also provides an opportunity for trusted
computing aware third parties to provide novel security services. This may
help with providing the business case necessary for the emergence of the wide
range of third party security services necessary to fully realise the goals of
trusted computing.

3 Related Work

An application of GAA for HTTP digest authentication [9] has been de-
scribed by 3GPP [2, 3]. In this scheme, the username and password in
normal HTTP Digest authentication are replaced by the GAA’s B-TID and
an application-specific key, respectively. At the application server, a user
is identified through the identity of his or her GAA-enabled mobile device.
This requires that the GAA-enabled device involved is user-specific (which
is not true for the scheme we describe below).

Alzomai and Josang [6] proposed a multi-institution OTP scheme using
Trusted Computing, in which a mobile phone equipped with a Mobile Local-
Owner Trusted Module (MLTM) [18, 22] acts as an OTP generator. A
configuration procedure is needed to generate and maintain a user-specific
secret key shared by the MLTM and the application server, which is used by
the MLTM to generate a counter-based OTP sequence. In this scheme, as is
the case for the 3GPP scheme described above, an adversary in possession of
the user-specific device could misuse it to impersonate the legitimate user.

Molva and Tsudik [15] were the first to propose the use of a non-user-
specific security token (card) for user authentication. A token shares a
strong cryptographic key with an authentication server, and is used solely
to provide a secure channel between a human user and the server. Since the
token is not associated with any particular user, the scheme is resistant to
token compromise and avoids the need for a token-specific user registration
procedure. However, it requires every server to securely distribute a key-
bearing token to every user, which is likely to be a significant burden in
practice, as discussed in section 1.

Holtmanns et al. [11] (section 4.2.1) proposed a OTP scheme designed for
use in authenticating users to a corporate network, and which has similarities
to the scheme described in section 4.3. Both schemes generate OTPs from
GAA bootstrapped keys and a long-term user password. However, the OTPs
(actually secret keys) in the Holtmanns et al. scheme are used for mutual
authentication, whereas in the scheme of section 4.3 they are employed solely
for user authentication.

The GAA OTP scheme is designed to be integrated into existing au-
thentication infrastructures in a simple and cost-effective way. It converts

static password authentication into an OTP scheme using the GAA service,
and requires only small changes to the client and the server, as described in
sections 4.3 and 4.4.

4 GAA-based OTP Systems

We first describe a general scheme, GAA OTP, that uses the GAA archi-
tecture described in section 2.1 to convert a static password authentication

system into an OTP system. We then specify two practical instantiations
of this general scheme, building on UMTS GAA and TC GAA.

4.1 The General GAA OTP Scheme

In the general scheme, the following entities play a role:
e a user U with identifier username;

e a GAA-aware application server S, which shares a user-specific secret
password pw with every user U, and whose clock is synchronised with
that of the BSF;

a client application C) used by U to access S;

a BSF that provides the GAA service;

e a GAA-enabled user device T that can access the GAA service pro-
vided by the BSF.

Figure 3 summarises the general GAA OTP protocol. We next give a
full description, referring to the step numbers given in the figure.

When U wishes to access S, U directs its client C to S. U then causes T
to engage in a GAA bootstrapping procedure with the BSF (step 1). After
successful execution of this process, the values B-TID, MK, MK lifetime,
and other relevant values are shared and cached by T and the BSF. T then
derives a session key SK, as described in section 2.1 (step 2). Note that SK
is not specific to U, and cannot be used to authenticate U to S.

After derivation of SK, T computes an authenticator otp as a function
of SK and pw (step 3), i.e.

otp = f(SK, pw).

The function f can be implemented in many ways. One possibility is to
instantiate f using HMAC [14] based on a suitable cryptographic hash func-
tion. That is, otp could be computed as:

otp = HMACSK (pw)

T 4= BSF: bootstrap GAA credentials.
T: derives a session key SK.

T: computes otp = f(SK, pw).

U(C) = S: B-TID, username and otp.

S 4 BSF: § fecthes SK and its lifetime,

S : checks whether or not SK is valid;
if so, § recomputes ofp for authentication;
if not, S discards the request.

Figure 3: General GAA OTP protocol

The user password pw should not be cached by T, and the keys MK and
SK and other related information should be deleted after computation of
otp.

The server authenticates the user U by requiring the values B-TID,
username, and otp to be submitted via the communication channel between
C and S (step 4). To verify the received otp, S engages in the Use of
bootstrapped keys procedure by sending the received B-TID and its own
identifier NAF-Id to the BSF}; it receives in return the same SK as available
to T together with its lifetime and other relevant information (step 5). The
SK lifetime must be set to be the same as that of MK. Before recomputing
otp, S must check whether or not the current system time of S is within
the SK lifetime. If not, SK is invalid and U is rejected; otherwise, S now
uses the received SK to recompute otp. If the recomputed otp and the otp
submitted by U match, U is granted access (step 6).

If the lifetime of SK is chosen to be sufficiently short then the scheme has
the one-time property, since otp is only valid for a short time. In practice
the lifetime of MK and SK will depend on the application’s specific security
requirements.

4.2 Possible variants

In the scheme described above, we can arrange for an otp to be usable
only once simply by changing the checking performed by S. This can be
achieved by deeming otp to be valid only if it is computed using a fresh SK.
To ensure this S must check whether or not the received B-TID has been
used previously. Note that this requires S to cache all the B-TID values it
receives until their corresponding SK expires.

Note that the timeliness of an authenticator otp is controlled by the

10

lifetime of SK. To prevent an otp from being accepted at a much later time,
the lifetime of SK must be sufficiently short. However, SK could be used
as a long-term authentication secret key, with the necessary management
mechanisms in the user device. In such a case we could modify the protocol
to achieve the same security objectives by computing ofp as a function of
SK, pw and a time variant parameter var, i.e.

otp = f(SK, pw, var)

where the time variant parameter is either a time stamp or a sequence
number. The system would then work as follows.

The user U submits the values B-TID, username, var, and otp to S. In
addition to verifing the validity of SK, the application server S must verify
the freshness of the time variant parameter, i.e. it must verify the validity
of the timestamp or sequence number. Whilst such a change would reduce
the use of GAA bootstrapping procedure, it would also incur additional
management overheads, namely the requirement for U and S to either have
synchronised clocks or maintain bilateral sequence numbers.

4.3 The UMTS GAA OTP System

We next describe a practical instantiation of GAA OTP building on UMTS
GAA. In this system, referred to as UMTS GAA OTP, C and T have the
following UMT'S-specific properties.

e The client application C' (e.g. a web browser) resides in a personal
computer. We assume that an application supporting the system has
been installed in this PC (e.g. as a Java applet/browser plug-in). The
scheme-specific application must be aware of the FQDN of the GAA-
aware application server S and the identifier of the application proto-
col.

e The GAA-enabled user device T is a UMTS-enabled mobile phone. We
assume that an application supporting the system has been installed
in T. We also require T to possess a means of communication with
the scheme-specific application in the user PC in order to exchange the
necessary information, e.g. as provided by a USB cable or a Bluetooth
link. The application is assumed to be capable of accessing the GAA
session key SK in order to compute the authenticator otp, as described
in section 4.1.

Figure 4 summarises the UMTS GAA OTP protocol. We next give a
more detailed description, referring to the step numbers given in the figure.
When U wishes to access S, U directs the browser C to S. U then causes
T to engage in a UMTS GAA bootstrapping procedure with the BSF (step

11

I
@ | T 4= BSF': bootstrap GAA credentials.

UT: pw.

HSS) | C-T: the FQDN of § and the identifier
- Bt : of the application protocol.

| T: constructs NAF-Id, derives SK
| 6 | and then compute otp = f (SK, pw).

' T 4C: B-TID and otp.
: U(C)S: B-TID and otp.
G) Q I S 4 BSF: § fecthes SK and its lifetime.

2 I . .
§8 S % : 6’ §': checks whether or not SK is valid;
| if s0, § recomputes ofp for authentication;
if not, S discards the request.

Figure 4: UMTS GAA OTP protocol

1). After successful execution of this process, the values B-TID, RAND,
MK, and the MK lifetime are shared and cached by T and the BSF.

T now prompts the user for the password pw (step 2), and requests from
C the FQDN of S and the identifier of the application protocol (step 3).
T next constructs NAF-Id and derives a session key SK, as described in
section 2.2; T now uses SK and pw to compute an authenticator otp (step
4). T then sends to C' the values B-TID and otp (step 5). U submits the
values B-TID, username (which must be input by U at some point), and
otp to S (step 6). The remaining steps of the protocol involve S fetching
GAA credentials (step 7) and S verifying the request (step 8), which are the
same as steps 5 and 6 of the GAA OTP, as described in section 4.1.

4.4 The TC GAA OTP System

Finally, we describe a practical instantiation of GAA OTP building on TC
GAA. In this system, referred to as TC GAA OTP, C and T have the
following TC-specific properties.

e The GAA-enabled user device T is a personal computer with a TCG
compliant TPM.

e The client application C' (e.g. a browser) resides in the GAA-enabled
user device. We assume that an application supporting the system
has been installed in C' (e.g. as a Java applet/browser plug-in). The
scheme-specific application must be aware of the FQDN of the GAA-
aware application server S and the identifier of the application proto-
col. The application is assumed to be capable of accessing the GAA

12

T 4= BSF: bootstrap GAA credentials.
U C: username and pw,

C <4 T interact for a session key SK.
C: computes ofp = [(SK, pw).

U(C) 4 S: B-TID, username and otp.

S 4= BSF: S fecthes SK and its lifetime.

S : checks whether or not SK is valid;
if so, § recomputes otp for authentication;
if not, S discards the request.

Figure 5: TC GAA OTP protocol

session key SK in order to compute the authenticator otp, as described
in section 4.1.

Figure 5 summarises the TC GAA OTP protocol. We next give a more
detailed description, referring to the step numbers given in the figure.

When U wishes to access S, U directs the browser C' to S. C (as
instructed by U) now causes T to engage in a TC GAA bootstrapping
procedure with the BSF (step 1). After successful execution of this process,
the values B-TID, R, MK, and the MK lifetime are shared and cached by
T and the BSF.

C now prompts the user for the username and the password pw (step
2). C asks T for a session key SK by providing the FQDN of S and the
identifier of the application protocol; in response T constructs NAF-Id and
derives a SK, as described in section 2.3. C' receives back from 7T the SK and
the corresponding B-TID (step 3). C' now uses the SK and pw to compute
an authenticator otp (step 4). U (or C acting on behalf of U) submits the
values B-TID, username, and otp to S (step 5). The remaining steps of
the protocol involve S fetching GAA credentials (step 6) and S verifying
the request (step 7), which are the same as steps 5 and 6 in the GAA OTP
scheme, as described in section 4.1.

5 Advantages and Limitations

Unlike most OTP systems using a dedicated key-bearing token, the system
does not require an initialisation process. That is, the GAA-enabled device
(i.e. the TP or the mobile device) is neither user nor server specific, and can

13

be used in the protocol with no registration or configuration (except for the
installation of the necessary application software). This approach fits well to
the multi-institution scenario. The system enables server and application-
specific session keys to be generated using a GAA-enabled device, where
each such key can be used to help authenticate a user to the appropriate
GAA-aware server. The GA A-enabled device thus acts as a multi-institution
OTP token. Moreover, since a GAA bootstrapped session key is used in the
computation of the authenticator, there is no need to generate and securely
distribute a key-bearing token to every user, which is a potentially major
management overhead for dedicated OTP token schemes.

To employ UMTS GAA OTP, a user needs only a GAA-enabled mo-
bile phone with a valid subscription, and there are a very large number
of subscription holders across the world. In the case of TC GAA OTP, a
GAA-enabled TCG compliant TP is needed. According to a report pub-
lished by TCG [10], in 2008 over 200 million TPMs were shipped in original
equipment manufacturer (OEM) platforms. The TCG further report that it
is expected that, by the end of 2011, TPM penetration in OEM platforms
will be more than 80 percent. Both systems thus have good scalability. We
observe that the use of a third party server (the BSF server) might give rise
to scalability issues, and could act as a single point of failure. In practice,
the BSF service could be deployed in a distributed manner; that is, a set
of BSF servers (with distinct network domain names) could be used to pro-
vide the GAA service. This commonly used approach gives a degree of fault
tolerance and removes the single point of failure.

The most commonly employed user authentication mechanism for browser
access to a website is almost certainly the static password, possibly sent via
an SSL/TLS-protected channel. The two systems we have described can be
deployed to seamlessly convert a static password scheme into a OTP system
with only small changes required to the server and client.

The UMTS GAA OTP scheme requires a connection (e.g. as provided by
a USB cable or Bluetooth link) between the browser and the mobile phone.
This poses a challenge to the scheme’s usability and portability. We are
currently working on prototyping the UMTS GAA OTP scheme and certain
variants of it. One such variant is a so-called multi-channel scheme, which
has been developed specifically to address this usability challenge. This issue
is discussed further in section 7.

We observe that the server and user must both trust the party which op-
erates the BSF not to compromise long-term user passwords by intercepting
client-server communications and performing a brute force search (see also
section 6). Such a trust relationship could be supported by a contractual
agreement.

Finally, use of the scheme will incur the cost of using the GAA service.
However, the variant schemes described in section 4.2 could be employed to
reduce use of the GAA bootstrapping process, and hence reduce the cost

14

overhead.

6 Informal Security Analysis

The security of the schemes we have described relies on the security of the
underlying UMTS GAA and TC GAA procedures. In turn, the security
of UMTS GAA is built on the assumption that learning the subscriber key
and/or MK by attacking UMTS AKA is not possible [11]. Similarly, by
using a secure authenticated key agreement protocol in TC GAA (and there
are a number of provably secure protocols [7]), we can ensure that it is not
possible to learn MK by attacking the operational protocol [8].

A further requirement for use of the scheme is that the application server
and the BSF have the means to set up a mutually authenticated secure
channel, which implies that the BSF has the means to authenticate the
requester against the FQDN. As a result, an adversary can neither obtain
SK by monitoring the link between S and the BSF, nor request the SK
intended for S from the BSF, since the adversary cannot claim ownership
of the FQDN for this SK.

In both schemes, the GAA-enabled device (i.e. the TP or the mobile
device) must be trusted by the user, since it has access to the user’s long-
term password and GAA bootstrapped keys. Similarly, the entity operating
the BSF must be trusted not to use the GAA bootstrapped keys to perform
a dictionary attack on an intercepted otp to recover pw. However, the PC
hosting the client C in the UMTS GAA OTP scheme does not need to
be trusted since it will not have access to the GAA bootstrapped key or
pw; that is, the scheme provides protection of the long-term password even
when used with untrusted or compromised PCs. In this latter case we need
to assume that the UMTS mobile cannot be compromised by communicating
with a malicious PC.

Of course, if an untrustworthy PC is used with UMTS GAA OTP, then
otp will be compromised, as would be the case in the event of a phishing
attack or an attack on the communications link between client and server.
However, given that the GAA bootstrapped key SK remains secure, and
that a secure means is used to compute otp from SK and pw, compromise of
otp will only give an intruder access to the genuine server for a short period
of time.

The only remaining strategy for an attacker trying to learn pw is to
mount an on-line dictionary attack. In such an attack, an adversary guesses
pw and uses a GAA-enabled device to engage in the protocol (masquerading
as the user) to test whether or not this single guess is correct. To defeat
such an attack, S must lock out a user after a fixed number of failed au-
thentication attempts.

Note that, in order to reduce the risk of compromise, the GAA boot-

15

strapping keys and the user’s password should be deleted from the GAA-
enabled device after the computation of otp. Moreover, one-time passwords
are consumed on demand, and thus the only secret that needs to be securely
managed is the user’s long-term password, which is known only by the user
and the server.

7 Conclusions and Future Work

GAA is a general framework that enables pre-existing security infrastruc-
tures to be used to provide general purpose security services, such as key
establishment. We have shown how GAA services can be built on the
Trusted Computing security infrastructure, complementing the previously
standardised GAA schemes built on mobile phone infrastructures. We then
proposed a general scheme that converts a simple static password authenti-
cation mechanism into a one-time password (OTP) system using the GAA
key establishment service. In this scheme the GAA-enabled device (the OTP
token) is neither user nor server specific, and can be used in the protocol
with no registration or configuration. The system also fits well to the multi-
institution scenario. We have also described two practical instantiations of
the general scheme, building firstly on UMTS GAA and secondly on TC
GAA.

In these two instantiations, the GAA-enabled device is either a GAA-
enabled 3G mobile phone or a personal computer with a TCG compliant
TPM, both of which are very widely used. Thus both schemes have good
scalability. Moreover, the systems can be used to enhance the most widely
used authentication mechanism on the Internet with only small changes in
the client and server.

We are currently working on prototype implementations of the UMTS
GAA OTP system and certain variants of it in order to investigate security,
usability, and performance in practice. In the UMTS GAA OTP system
described in section 4.3, the web browser needs to be enhanced to be able to
fetch the credentials from the mobile phone and insert them in the HTML
forms. One way of achieving this is to install a supporting application (e.g. as
a browser plug-in) in the browser. Another approach would become possible
if Javascript was enhanced to support communications with a mobile phone.
If such a facility was in place, a supporting application could be provided
as a Javascript program that is downloaded when required.

As noted above, UMTS GAA OTP requires a connection (e.g. as pro-
vided by a USB cable or Bluetooth link) between the browser and the mobile
phone. This requirement potentially reduces the scheme’s usability. How-
ever, we have developed a multi-channel variant of the UMTS GAA OTP
system designed to address this issue. In this scheme, the mobile device
communicates with a application server directly to generate a counter- or

16

time-based one-time password otp. The user reads the otp displayed on the
mobile device and enters it, along with his or her username, into the PC web
browser. Note that, in this multi-channel system, no supporting application
needs to be installed in the web browser, and the need for a phone-browser
connection is avoided.

The schemes we have described, together with certain variants of them
currently under development, provide a simple and cost-effective means of
upgrading static password authentication to a one-time system, addressing
the serious threat posed by phishing [13].

Acknowledgments

The authors would like to thank Liqun Chen, Zheng Gong and Qiang Tang
for their invaluable encouragement and advice.

References

[1] 3rd Generation Partnership Project (3GPP). 3G Security: Access Se-
cure for IP-based Services, Technical Specification TS 35.2083, Version
9.3.0, 20009.

[2] 3rd Generation Partnership Project (3GPP). Bootstrapping interface
(Ub) and network application function interface (Ua); Protocol details,
Technical Specification TS 24.109, Version 9.1.0, 2009.

[3] 3rd Generation Partnership Project (3GPP). Generic Authentica-
tion Architecture (GAA); Access to network application functions using
Hypertext Transfer Protocol over Transport Layer Security (HTTPS),
Technical Specification TS 33.222, Version 9.1.0, 2009.

[4] 3rd Generation Partnership Project (3GPP). Numbering, Addressing
and Identification, Technical Specification TS 23.008, Version 9.2.0,
20009.

[5] 3rd Generation Partnership Project (3GPP). Technical Specification
Group Services and Systems Aspects, Generic Authentication Architec-

ture (GAA), Generic Bootstrapping Architecture, Technical Specifica-
tion TS 83.220, Version 9.2.0, 2009.

[6) M. Alzomai and A. Josang. The mobile phone as a multi OTP de-
vice using Trusted Computing. In Proceedings of the 4th International
Conference on Network and System Security, pages 75—82, Melbourne,
Australia, 2010. IEEE Computer Society.

[7] C. Boyd and A. Mathuria. Protocols for Authentication and Key FEs-
tablishment. Springer, 2003.

17

8]

[10]

[11]

[12]

C. Chen, C. J. Mitchell, and S. Tang. Extending Trusted Computing
as a security service. In preparation. A poster of this paper is available
at http://www.isg.rhul.ac.uk/cjm/Papers/etcaas. pdf.

J. Franks, P. M. Hallam-Baker, J. L. Hostetler, S. D. Lawrence, P. J.
Leach, A. Luotonen, and L. C. Stewart. HTTP authentication: Basic
and digest access authentication. Internet Engineering Task Force, RFC
2617, June 1999.

T. Hardjono and G. Kazmierczak. Overview of the TPM key man-
agement standard. TCG Presentations at the 1st IEEE Key Man-
agement Summit, Baltimore MD, 23-24 September 2008. Available at
http://www.trustedcomputinggroup.org/resources/.

S. Holtmanns, V. Niemi, P. Ginzboorg, P. Laitinen, and N. Asokan.
Cellular Authentication for Mobile and Internet Services. John Wiley
and Sons, December 2008.

International Organization for Standardization, Geneve, Switzerland.
ISO/IEC 9798-3:1998/Amd 1:2010, Information technology—Security
techniques—Entity authentication—Part 3: Mechanisms using Digital
Signature Techniques, 1998.

L. James. Phishing Fxposed. Syngress, January 2006.

H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for
message authentication. Internet Engineering Task Force, RFC 2104
(Informational), February 1997.

R. Molva and G. Tsudik. Authentication method with impersonal token
cards. In Proceedings of the 1993 IEEE Symposium on Security and
Privacy, pages 5665, Oakland, California, USA, 1993. IEEE Computer
Society.

D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen.
HOTP: An HMAC-based one-time password algorithm. Internet Engi-
neering Task Force, RFC 4226 (Informational), December 2005.

S. Pearson. Trusted Computing Platforms, the next se-
curity solution. Technical Report HPL-2002-221, Hewlett-
Packard Laboratories, November 2002. Available at

http://www.hpl.hp.com /techreports/2002/HPL-2002-221.pdf.

Trusted Computing Group. TCG Mobile Reference Architecture, TCG
Specification, Version 1.0, Revision 1, 2007.

Trusted Computing Group. TPM Main, Part 1 Design Principles, TCG
Specification, Version 1.2, Revision 103, 2007.

18

[20] Trusted Computing Group. TPM Main, Part 2 TPM Data Structures,
TCG Specification, Version 1.2, Revision 103, 2007.

[21] Trusted Computing Group. TPM Main, Part 3 Commands, TCG Spec-
ification, Version 1.2, Revision 103, 2007.

[22] Trusted Computing Group. TCG Mobile Trusted Module Specification,
TCG Specification, Version 1.0, Revision 7.02, 2010.

19

