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ABSTRACT 

 

Despite being thermodynamically less stable, small ferrous colloids (60 nm to 3 µm in diameter) remain 

an important component of the biogeochemical cycle at Earth’s surface, yet their  composition and 

structure, and the reasons for their persistence are still poorly understood. Here we use X-ray based Fe 

L-edge  and carbon K-edge spectromicroscopy to address the speciation and organic-mineral 

associations of ferrous, ferric and Fe-poor particles collected from sampling sites in both marine and 

fresh water environments. We show that Fe(II) rich phases are prevalent throughout the different aquatic 

regimes yet they exhibit a high degree of chemical heterogeneity. Furthermore, we show that Fe-rich 

particles show strong associations with organic carbon, specifically for the association of Fe(II) particles 

with carboxamide functional groups, suggesting a microbial role in the preservation of Fe(II). These 

finding have significant implications for the behaviour of Fe(II) colloids in oxygenated waters, and their 

role in different aquatic biogeochemical processes.    



INTRODUCTION  

 

Iron minerals are common in soils and sediments, where they represent important sources of Fe 

for biological processes and, because of their large and highly reactive surface area, they act as strong 

sorbents for various contaminants and nutrients1,2. In aquatic environments, Fe species can persist as 

colloids in the micron to submicron size range, where their stability is governed by water composition 

and mineral surface chemistry. Photochemical transformations, mineral dissolution, and changes to the 

Fe redox state can further modify the fates of these phases and their associated contaminants and 

nutrients3-5. While the importance of colloidal Fe in various biogeochemical processes is well 

understood, little attention has been paid to the speciation, stability and mineralogical associations of 

Fe phases in the colloidal fraction of oxygenated natural waters.  

 

With the advent of synchrotron based X-ray spectromicroscopy methods, the structures of Fe 

colloids, their chemical and mineralogical characteristics as well as the factors affecting Fe colloid 

stability can now be probed directly6,7. Several researchers have examined the chemistry of natural Fe-

containing particles in the particulate fraction using X-ray imaging and speciation techniques at both 

the K-, and L-edges of Fe8-15. The X-ray spectromicroscopy at the Fe K-absorption edge, which is highly 

sensitive to Fe concentration and has lower spatial resolution (>100-150 nm to a few microns), has been 

utilized to determine the average Fe speciation in heterogeneous samples12,16 and to determine particle 

specific speciation in larger micron-sized particulates14. In comparison, spectromicroscopy at the Fe L-

absorption edge has a much higher spatial resolution (down to a few nanometers) and has successfully 

been applied to study Fe-biomineralization10,11 and the speciation of Fe-colloids from hydrothermal 

vents13 and the open ocean15.     

 

In this study we applied Fe L-edge and C K-edge scanning transmission X-ray microscopy 

(STXM) to identify the common forms of Fe in the colloidal fractions of natural waters and the 

association of different Fe pools with natural organic moieties. This zone-plate based X-ray 

spectromicroscopy is ideal for the study of aquatic colloids as samples can be examined in their native 

hydrated state, down to a spatial resolution of 10-15 nm and without any special sample preparation. 

Furthermore, the Fe L-edge is characterised by a high absorption cross-section (which results in high 

contrast images) and X-ray Absorption Near-edge Structure (XANES) spectra that are rich in chemical 

and structural information15,17,18. Von der Heyden and co-workers15 showed the identification of some 

of the Fe mineral phases using the energy difference between the two L3 peaks (ǻeV value) and the 

quotient of their peak intensities, given as the intensity ratio value (Fig. 1). Because each individual Fe 

mineral has a unique Fe coordination environment, and thus XANES spectral shape, Fe mineral phases 

can be characterised by a unique combination of ǻeV and intensity ratio values (Fig. 2). Here we exploit 



the information contained in these L3-edge spectral parameters to evaluate the speciation of Fe in 

colloids collected from both marine and fresh waters, and show the ubiquitous presence of 

thermodynamically unstable Fe(II) in association with carbon moieties.  

 

MATERIALS AND METHODS 

 

Lacustrine samples were collected from fresh water systems in New Jersey and Puerto Rico 

and the marine samples focused primarily on the Southern Ocean and the western South Pacific Ocean. 

To attain a sufficient number of particles for STXM analysis, a range of site-specific sampling 

techniques was employed and detailed descriptions are documented in the supporting information (SI 

1). Ocean water samples, typically characterised by a low suspended particle load, required pre-

concentration procedures using either McLane pumps or vacuum filtration whereas freshwater samples, 

with high particle loads, could be collected without the need for prior filtration. In all instances, trace-

metal clean techniques were followed and, because of sensitivity to contamination, marine water 

samples were collected following the rigorous guidelines set out in the GEOTRACES protocol19. 

 

All Fe L-edge and C K-edge spectromicroscopic analyses were conducted at the Molecular 

Environmental Sciences end-station at the Advanced Light Source8. Samples were prepared on silicon 

nitride (SiN3) membrane windows according to the procedures outlined in the supporting information 

(SI 2). During STXM experimentation, Fe-rich particles were located on the SiN3 sample window using 

coarse 10x10 µm2 or 30x30 µm2 image maps generated by subtracting an edge-region (709-710 eV) X-

ray image from an image of the same area collected at an energy below the Fe L3 absorption edge (700 

eV). Once located, Fe-rich regions were analysed for their XANES spectra using either linescans or 

image stacks (10-50 nm spatial resolution) over the Fe L2,3 edge region. Energy increments of 0.5 eV 

were used above and below the edge (695-703 eV; 715-730 eV) and a step-size of 0.2 eV was used 

close to the Fe L3 edge (703-715 eV).  

 

Once Fe-enriched particles had been identified and analysed, the corresponding regions on SiN3 

window were evaluated at the carbon K-edge for the prevalence of organic phases (Fig. 1) by applying 

the procedures described above. XANES spectra were collected for both Fe-enriched and Fe-poor 

organic particulates by generating either line-scans or image stacks; using energy increments of 0.2 eV 

at the C K-edge edge (283-300 eV) and 0.5 eV above and below the edge (280-283 eV; 300-315 eV). 

All collected C K-edge spectra were calibrated using the characteristic absorption feature at 284.8 eV.  

 

Although this study focused on the Fe L-edge and C K-edge, we also strengthened our data set 

with complementary nitrogen K-edge and Fe K-edge XANES data. For identified Fe enriched particles, 

XANES analyses were conducted at the N K-edge region (385-420 eV) following the analysis protocols 



described for the Fe L-edge and the C K-edge. The collected N K-edge XANES spectra for Fe enriched 

particles however, typically exhibited weak signals due to low N abundances. Because of larger sample 

volumes, bulk Fe K-edge analyses could be conducted on the sediment trap samples collected from 

Lake La Plata, Puerto Rico.  Analyses were conducted at the X-18B beamline, National Synchrotron 

Light Source (Brookhaven National Laboratories, NY) and the analysis protocol and beamline 

specifications are described in the supporting information (SI 3).  

 

RESULTS AND DISCUSSION 

 

The collection of high quality microscopic and spectroscopic data for small colloids on a 

particle-by-particle basis is a time consuming process. The presented dataset represents a significant 

investment (over 20 days) in synchrotron beam-time, as each SiN3 sample window requires 1-3 days 

for complete characterisation (at both Fe- and C- absorption edges). Fe(III) particles commonly 

occurred as the smaller sized colloids (down to 20 nm diameter) whereas Fe(II)-rich particles were 

typically larger (0.06 - 2.6 µm) and were observed in all of the sampling sites considered in this study.  

In the open-ocean domain Fe can be a limiting nutrient and consequently and despite our particle-

concentrating sampling protocol, Fe-enriched particles were sparse and difficult to locate (e.g. only 3-

10 particles or aggregates per SiN3 window for some marine samples). Open-ocean Fe-rich particles, 

and particle aggregates were typically quasi-spherical in shape and tended towards smallest size 

domains (20 nm to ~ 800 nm), with some larger particles collected at depth. In stark contrast, SiN3 

sample plates prepared using freshwater samples were highly enriched in Fe, with much of the Fe 

associated with organic flocs and mineral aggregates of up to several microns in diameter.  

 

Speciation of Iron 

 

Southern Ocean samples 

 

Iron-rich particles in the South Atlantic and Southern Oceans have previously been shown to 

classify into five distinctly different chemical categories according to their ǻeV and intensity ratio 

spectral parameters15. Despite the oxic nature of surface seawater, a remarkable 12% of particles 

analyzed in this study were classed as either purely ferrous, or as Fe(II)-rich mixed valence phases. The 

majority of these particles were mixed valence and their spectral characteristics did not match those of 

any known Fe mixed valence mineral phases (Fig. 2b); likely because of the variability in the chemistry 

and extent of oxidation in natural colloids and structural amorphism. Similarly, the ǻeV versus intensity 

ratio values of purely Fe(II) phases did not agree with any of the plotted points for literature reported 

standard mineral phases (e.g. pyrite). Again, variability in the chemistry of bonded inorganic and 

organic ligands, the presence of structural impurities and the extent of oxidation were invoked to explain 



this mismatch. One likely explanation for the prevalence and persistence of Fe(II) enriched phases at 

these sites is that they are being stabilised by organic-rich surface coatings.  

 
Pacific Ocean samples 
 

Over sixty particles were analysed from various depths (30-1000 m) at the three sampling sites 

in the South Pacific Ocean (SI 1). The majority of these particles (~80%) had Fe(II) as the dominant 

oxidation state with mostly pure Fe(II) and a few Fe(II)-rich mixed valence phases identified (Fig. 2b). 

Given the proximity of the sampling locations to sites of active tectonism21 (SI 1), a proportion of the 

reduced Fe flux could be from associated hydrothermal sources13,22,23. 

 

Figure 2b shows that the spectral parameters of Fe(II)-rich particles sampled from the Pacific 

Ocean have the largest range in distribution (ǻeV: 1.5-2.8; intensity ratio: 1.0-5.4) and that data points 

did not cluster around any of the standard mineral phases reported in the literature. Particles analysed 

in this study ranged from as small as 60 nm and up to 2.3 µm; with the average particle size tending 

towards larger values (mean = 0.70 µm, N = 50). The smallest sized particles were characterised by the 

smallest intensity ratio and ǻeV values and, as particle size increased, there was a slight positive and 

increasing trend with both of the spectral parameters (SI 4). Although the increase in intensity ratio with 

particle size (or thickness) can partially be explained by STXM saturation effects, the observed variation 

in ǻeV value is a definitive indication of chemical or structural differences between the smallest colloids 

and larger particles. 

 

Lacustrine samples 

 

Of the two lacustrine settings investigated, only the Pine Barrens samples showed appreciable 

Fe(II) abundance when examined using the Fe L-edge XANES spectroscopy. Only three discrete Fe-

rich particles, ranging in size between 500 nm and 1 µm, were investigated in detail at this site and all 

had spectra indicative of Fe(II) (Fig. 2b). The spectral parameters for these Fe(II) particles did not 

precisely match any of the examined standard Fe mineral phases, however one of the particles had 

spectral features similar to that of Fe(II)PO4, whereas the other two had Fe coordination environments 

most similar to that of Fe in biotite (Fig. 2b). 

 

For the freshwater lake, Lake La Plata, large sized samples could be collected because of the 

sediment trap system installed for sampling at different depths. Although these samples showed 2-5% 

Fe, the X-ray diffraction of these samples indicated only the presence of K-mica, kaolinite and quartz, 

suggesting that the Fe phases are either amorphous or nanocrystalline. The L-edge spectromicroscopy 

of particulate samples collected from the top and bottom parts of the water column showed only Fe(III). 



Comparison of the spectral features of these natural ferric phases to those of standard Fe-oxide and –

oxyhydroxides, showed that ~21% of these particles have ǻeV and intensity ratio values characteristic 

of the crystalline standards. The majority (two thirds) of these had spectral features typically of goethite 

(ĮFeOOH), a phase which has previously been shown to be a dominant Fe-mineral phase in lacustrine 

waters24.  

 

 In contrast to the Fe L-edge, the bulk Fe-XANES spectra of particulates at the Fe K-absorption 

edge indicated the presence of a significant fraction of Fe(II).  Linear combination fitting of bulk Fe K-

edge XANES spectra indicated that there was appreciable (16-38%) Fe(II) associated with the lacustrine 

Fe particulates, irrespective of sampling season and sampling depth (SI 3). This disagreement in the L-

edge and K-edge data comes from the sizes of particulates probed; K-edge XANES is carried out at ~ 

7000 eV where the X-ray beams can penetrate deeper into the sample. Since the particulate 

concentration is very high for Lake La Plata samples, the particulates form large aggregates (several 

microns diameter) which can be probed for their bulk chemistry by the K-edge XANES, whereas the 

L-edge XANES could be used to focus on the smaller nanometer-sized fraction away from the large 

aggregates. 

 

Speciation of colloidal organic carbon and its association with Fe phases 
 

Carbon K-edge XANES spectra were used to identify the predominant functional groups of 

organic molecules associated with Fe in marine and lacustrine particulates (Figs. 1, 3), and were further 

used in comparison against C XANES spectra from organics not associated with Fe (Fig. 3b). All C 

spectral features were classified into the following broad classes because of their common occurrence: 

(1) unsaturated carbon, including both carbon double and triple bonds, is associated with C 1s→π* 

transitions at approximately 285 eV; (2) aryl- and vinyl-keto functional groups at approximately 286.0-

286.4 eV; (3) aliphatic carbon, heterocycles and aldehydes at 286.5- 287.4 eV; (4) amide, ketone, and 

carboxylate at 287.5-288.8 eV; and (5) alcohol, carboxamide, and carbonate at 289.5-290.5 eV (SI 5). 

Although ideal for mapping purposes, the STXM resolution of ~10 nm limits the specificity of the 

chemical probe for detecting a specific organic ligand or functional group binding Fe, and the C K-edge 

spectra derived from each pixel are averaged spectra of many organic molecules present in that region. 

Hence the specific organic moieties associated with the Fe(II) and Fe(III) phases were investigated.  

 

Marine data represent thirty Fe(II) particles, five Fe mixed-valence particles and two Fe(III) 

particles, whereas lacustrine data are averaged from four Fe(III) particles and three Fe(II) particles. In 

each instance, the corresponding number of analyses was conducted on Fe-poor regions of the SiN3 

sample window to generate the data shown in Figure 3b. Irrespective of the particle chemical speciation 

or the aquatic sampling regime, all of the Fe particles evaluated showed significant association with 



organic carbon of heterogeneous functional group chemistry. Relative to Fe-poor regions, Fe-rich 

regions typically show greater variety and prevalence in organic functional group chemistry. Despite a 

host of chemical and biological differences between the two sampling regimes, marine and lacustrine 

Fe(II) particles show similar trends in their association with organic carbon functional groups. However, 

Fe(III) particulates collected from lacustrine settings have an absence of aryl- and vinyl-keto functional 

groups and are associated with less alcohol and carboxamide moieties than their marine Fe(III) 

counterparts. These alcohol and carboxamide moieties are also much more strongly associated with 

particulates containing Fe(II) (including mixed valence phases), relative to Fe(III) particulates. Since 

carboxamide related spectral features are common in microbial mats and biofilms, the presence of these 

spectral features in samples could imply regions of high microbial activity. This is supported by the N 

K-edge data for Fe(II) particulates which exhibit features between 400.8 and 401.8 eV (SI 5), suggesting 

the presence of amide and substituted N-heterocycles which are typically linked to biological activity. 

Alternative explanations for the preferential association of some organic functional groups (e.g. 

carboxamide) for Fe(II) are that these functional groups have a higher binding affinity to Fe(II) or that 

they play a role in stabilizing Fe in its reduced valence state13.  

 

Our X-ray spectroscopy and microscopy analyses have confirmed the ubiquity of Fe(II) colloids 

in a range of oxic aquatic environments, where the kinetics for oxidation to Fe(III) are known to be 

rapid25,26. Our observations of Fe(II) colloidal associations with organic carbon provide a plausible 

explanation for Fe(II) stability in oxygenated waters. The observed associations are also likely to have 

an impact on our understanding of Fe behaviour in the natural systems, where Fe mineral phases are 

known to play important roles in biological growth30, contaminant redox transformation processes5,27-29 

and in nutrient and contaminant transport fluxes1,2,4.  
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FIGURES 

 

 
Figure 1a: Association of Fe, C and N for a small marine particle. Although soft X-ray STXM provides high 

resolution imaging (~12 nm), particles cannot be distinguished from particle aggregates and the former 

terminology is used throughout the text. 1b: Representative C K-edge (top two spectra) and Fe L-edge (bottom 

three spectra) XANES spectra for particles collected from a variety of aquatic sampling sites and with differing 

Fe chemistries. The characteristic L3 peak splitting is parameterized according to its ǻeV value (difference in 

energy between the high energy and the low energy peaks) and its intensity ratio value (peak intensity quotient 

i1/i2). 

 



 

 

Figure 2a: Intensity ratio versus ǻeV characterization plot for Fe-rich standard phases collected from the 
literature (adapted from von der Heyden and co-workers15). Iron phases with different valences can clearly be 
distinguished by their unique fields on the plot. 2b: Distribution of natural Fe(II) and Fe(II)-rich mixed-valence 
phases collected from four different aquatic sampling sites, plotted on the intensity ratio versus ǻeV diagram. 
 

  

Figure 3a: Frequency of each set of organic functional groups as found in association with Fe-rich particulates 

of varying chemistry and sampling location. 3b: Corresponding analyses of organic functional group frequency 

for Fe-poor regions of each particle or sample window. Additional data is presented in SI 5. 
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