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ABSTRACT:

Context-aware Web services refers to an adaptive process of delivering contextually

matched Web services to meet service requesters’ needs at the moment. We define the
term “context” from two perspectives: one from service requesters, and the other from
Web services. From the former perspective, context is defined as the surrounding

environment affecting requesters’ services discovery and access, such as requesters’
preferences, locations, activities, and accessible network and devices. From the latter

perspective, context is defined as the surrounding environment affecting Web services

delivery and execution, such as networks and protocols for service binding, devices and

platforms required for service execution, and so on. This paper presents an ontology-

based context model that enables formal description and acquisition of contextual

information pertaining to service requesters and services. The context model is supported

by context query and phrased acquisition techniques. We also report two context-aware

Web services built on top of our context model to demonstrate how our context model

can be used to facilitate Web services discovery and Web content adaptation.

Implementation details of the context elicitation system and the evaluation results of

context-aware services provision are also reported.

KEYWORDS:
Context-aware, handheld devices, OWL-S, service oriented architecture, ubiquitous, Web

services

INTRODUCTION

When a Web service is developed, it typically requires its most suitable context (e.g., platforms

and devices) for the best execution performance. For example, a Web service may be developed

oriented to desktop browsers instead of Personal Digital Assistant (PDA) browsers. Meanwhile,

as people are constantly on the move in nowadays heterogeneous working environment, resources

(e.g., computational devices and communication network coverage) are more frequently prone to

change due to physical location changes. Therefore, in the process of a service consumption, a

service may need to smoothly adjust its content delivery adapting to the ever-changing
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environment (i.e., context), especially when a gross mismatch between resource requirements and

supplies occurs (Satyanarayanan, 2004). For example, if a service requester drives into a dark

area, it will be good for the corresponding service to switch to audio content delivery. Providing

context-aware Web services thus refers to an adaptive process of delivering contextually matched

Web services to service requesters. In other words, it aims to provide personalized and adaptive

services based on service requesters’ varying characteristics and situated environments. We
envision that providing context-aware Web services is the first step toward ubiquitous Web

services by finding right services in the right place at the right time.

In our research, context not only emphasizes on people’s mobility and physical location, but also
on people’s abstract situations (e.g., whether they are in a meeting). In this paper, the two terms
“users’ situated environment” and “context” are used interchangeably, both referring to 
surrounding information, from either service requesters or services, which may impact service

execution including computational devices, communication network, lighting, noise level,

location, activity, and time (Schilit, Adams, and Want, 1994; Dey & Abowd, 1999). We

summarize the characteristics of context-aware Web services and their requirements in the

following eight aspects: mobility, location awareness, interoperability, seamlessness, situation

awareness, social awareness, adaptability, and pervasiveness.

(1) Mobility: The continuousness of computing capability while moving from one position

to another. Requirements include mobile computing on portable devices with embedded

software.

(2) Location awareness: The capability of detecting and identifying the locations of persons

and devices. Requirements include outdoor positioning and indoor positioning.

(3) Interoperability: The capability of interoperable operation between various standards of

resource exchange and services composition and integration. Requirements include

standards of content, services, and communication protocols.

(4) Seamlessness: The capability of providing an everlasting service session under any

connection with any device. Requirements include state transition of network roaming

and service migration.

(5) Situation awareness: The capability of detecting and identifying person-situated

scenarios. Requirements include knowing what a person is doing with whom at what

time and where.

(6) Social awareness: The capability of knowing who are socially related? What do they

know? And what are they doing at one moment? Requirements include knowing social

partners’ knowledge competence and social familiarity.
(7) Adaptability: The capability of dynamically adjusting services/contents depending on

users’ needs. Requirements include knowing people’s accessibility and preferences.
(8) Pervasiveness: The capability of providing intuitive and transparent way of

service/content access. Requirements include predicting what users want before their

explicit expressions.

The characteristics of context-aware Web services pose significant challenges. Among others,

such characteristics and constraints should be formalized with requirements specification, so that

they can be precisely defined and captured in order to satisfy the demands of a service requestor

in a ubiquitous environment.

For better explaining why contextual information is necessary for proper services provision and

better explaining our solution, let us consider an example scenario that will be used throughout

this paper. Steve is a manager, who just finished a product presentation in a trade fair and is now

searching for a “Web business meeting” service to remotely discuss some timely issues (e.g., find
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socially related partners). The “availability” of the service must be 99% or above (i.e., to meet
location-aware QoS requirement). During the Web meeting, Steve needs to communicate with his

colleagues using various devices to exchange multimedia-based information (i.e., provide device-

independent content adaptation). In thirty minutes, Steve needs to drive back to his office for a

pre-scheduled face-to-face meeting with another customer. He wants to continue the “Web 
business meeting” seamlessly with his colleagues while he is driving (i.e., provide situation-
aware seamless interoperability). Hence, Steve needs to automatically switch to “PDA-based
Web business meeting.”

Based on Steve’s requirements, a published Web service entitled “Web business meeting” may be
a qualified candidate, which can support both PCs and PDAs via wireless LAN and General

Packet Radio Service (GPRS), respectively, with a guarantee of 99% even when users are

physically moving. However, it should be noted that many other contextual information could

also affect how well Steve is served. For example, who else attend the conference? Who are

Steve’s colleagues and what are they doing during the meeting? What if Steve’s colleagues are 
not available at the time? Could Steve find some other information or people with proper

expertise? What kind of network channels and devices will Steve use to connect to the Web?

How will various situations (e.g., driving) affect Steve’s device usage, network access and 
services delivery? All of these kinds of contextual information need to be considered in order to

provide better services provision according to Steve’s requirements and conditions at the moment.

The main contribution of this paper is the development of a context model and two context-aware

Web services built as proofs-of-concepts. We have developed a context model to formally

describe and acquire contextual information pertaining to both service requesters and services.

Based on the model, we have built two context-aware Web services for demonstrating how to

find right services and right information (i.e., content presentation) using context specifications

and requirements. In this paper, we refer the so-called “right” as “context-aware.” The terms
“information” and “content” are also used interchangeably.

The remainder of this paper is organized as follows. Related research regarding Web services and

context-aware computing is first presented. Then we introduce our context model and the entailed

context acquisition technique. Afterwards, we present two context-aware Web services and

present experiments and discussions. Finally, we conclude the paper.

RELATED RESEARCH

The emerged Web services technology provides a flexible and efficient approach to reuse existing

Web-based applications and services. Web service technology concentrates not only on

interoperability but also on how to describe, publish, locate and invoke Web services. A number

of standards and specifications created from industry and academia have contributed to the

development of Web services, such as WSDL (http://www.w3.org/TR/WSDL) and UDDI

(http://www.uddi.org/). Service providers can describe a service in WSDL to specify what it can

do and how to invoke it. A UDDI registry creates a standard interoperable platform that enables

businesses and applications to quickly, easily, and dynamically publish and locate Web services

over the Internet. However, the above Web service infrastructure can only behave well at the

syntactical level while lacking semantic information to support inferential capability. This

motivates Web services a step further to semantic Web (Berners-Lee, Hendler, & Lassila, 2001).

Semantic Web description languages, such as DAML+OIL (http:// www.daml.org/) and Web

Ontology Language (OWL, http://www.w3.org/TR/owl-features/), provide predicate-like and

description logic-based annotation of Web services to encourage inferential procedures on
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annotated Web services. The combination of semantic Web’s expressive power and the Web
service infrastructure results in the concept of semantic Web services. As the first step toward

semantic Web services, OWL-S (http://www.daml.org/services/owl-s/1.1/overview/) is a specific

application for Web services by applying OWL on a service’s capability representation. It
supports Web service providers with a core set of markup language constructs for describing

properties and capabilities of their Web services in an unambiguous, machine interpretable way.

We choose OWL-S as the implementation language of our context-aware Web services.

Service oriented architecture (SOA) is a conceptual model that inter-relates services through well-

defined interfaces and contracts between the services. An interface is defined in a neutral manner

independent of hardware platforms, operating systems, and programming languages in which the

services are implemented. This allows services to be built on a variety of environments to interact

with each other in a uniform and universal fashion. Three fundamental roles exist in SOA: service

providers, service requesters, and service matchmakers. The service providers publish services to

the matchmakers; the service requesters send requests to the matchmakers on an on-demand basis;

the matchmakers perform service matching to find available services and bind the services from

the providers to the requesters. While Web services are moving toward semantic Web, the

matchmakers in SOA also favor semantic-based service matchmaking.

LARKS is a semantic matchmaker that performs both syntactic and semantic matching (Sycara,

Klusch, & Lu, 2002). It can identify different degrees of partial matching based on five filters:

context matching, profile comparison, similarity matching, signature matching, and constraint

matching. Requesters can select any desired combination of aforementioned filters based on

different concerns, such as efficiency and computation cost. DAML-S/UDDI is another semantic

matchmaker that expands UDDI to provide semantic matching (Sycara et.al., 2003). It can

perform inferences based on sub-assumption hierarchy leading to the recognition of semantic

matches regardless of their syntactical differences. A flexible matching strategy is adopted based

on inputs and outputs to identify similarities between requests and service’s advertisements. 
However, although DAML-S/UDDI matchmaker expands functionality of UDDI registry to

enable capability match, it does not take requesters’ contextual information into account.
Requesters may receive some invalid services, and they need to manually verify all matched

services. In contrast, our context-aware SOA can provide automatic and better contextually

matched services to meet requesters’ context changes in addition to services’ contextual 
requirements.

Context can be interpreted differently from various perspectives. In this research, we will address

context from the aspect of mobile and pervasive computing. Schilit, Adams, and Want (1994)

point out that one of the major challenges of mobile computing is how to exploit the changing

environment with a new class of applications that are aware of context. They believe context

encompasses more than just people’s location; instead, context should also include environment’s 
lighting, noise level, network communication, and even people’s social situation. They also
believe that context-aware applications should be able to adapt to changing environment

according to the location of use, the collection of nearby people, hosts, and accessible devices, as

well as changes to such things over time.

Dey & Abowd (1999) define context as “any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and application themselves.” 
They point out that certain types of context (e.g., identity, location, activity, and time) are, in

practice, more important than others. Given a person’s identity, on can acquire many pieces of 
related information, such as the person’s contact information and preferences. Given a person’s
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location information, one can determine what other resources or people are nearby and what

activities are occurring close to the person. Given a timestamp or a period of time, one can find

out what events are taking place or what activities have occurred at the same time. Based on the

four primary context types, Dey and Abowd (1999) further define a context-aware system as “if it
uses context to provide relevant information and/or services to the user, where relevance depends

on the user’s task.” They also refer context-aware applications as applications that automatically
provide information and take actions according to the user’s present context as detected by 
sensors. In addition, context-aware applications look at who’s, where’s, when’s and what’s (i.e.,
what a person is doing), and use this information to determine why the situation is occurring.

In addition to the aforementioned definitions, there are many comprehensive survey articles and

special issues on journals covering context and context-aware applications. Readers can refer to

the articles such as Dey and Abowd’s (1999) “Toward a Better Understanding of Context and 
Context-awareness,” Korkea-aho’s (2000) “Context-Aware Applications Survey,” and Chen and 
Kotz’s (2000) “A Survey of Context-Aware Mobile Computing Research”. In addition, two 
special issues on journals can be found on “Context-aware computing”: IEEE Pervasive

Computing (Abowd, et. al., 2002) and Human-Computer Interaction (Moran and Dourish, 2001).

There are also many research efforts on the development of toolkits supporting context-aware

services provision, including HP’s Cooltown project (http://www.hpl.hp.com/archive/cooltown/), 
Dey’s Context Toolkit (http://www.cs.cmu.edu/~anind/context.html), Mostefaoui et. al.’s (2003)
CB-SeC framework, and Roman et al.’s (2002) Gaia middleware. These toolkits either provide
functionalities to help service requesters find services based on their contexts, or enable content

adaptations according to requester’s contextual information.

Mostefaoui and Hirsbrunner (2004) propose a formal definition of service contexts to model a

service’s contextual information. Lemlouma and Layaida (2001) propose a framework to assert
metadata information of Web contents. They both use Composite Capabilities/Preferences

Profiles (CC/PP) as interoperable context representation to enable communication and negotiation

of device capabilities and user preferences in terms of a services invocation. Zhang et al. (2005)

further propose extensions to CC/PP to enable transformation descriptions between various

receiving devices. Besides, several OWL-based context models are presented (Broens et. al.,

2004; Khedr and Karmouch, 2004; Khedr, 2005) to provide high-quality results of services

discoveries beyond the expressive limitations of CC/PP. These researchers all utilize ontology to

describe contextual information including location, time, device, preference, and network.

However, the existing context definitions either focus on service requesters or on services alone.

We argue that effective and efficient context-aware service provision needs to consider from both

sides. In contrast to aforementioned related work, our approach stands out from three aspects:

First, we formalize an ontology-based integrated context model considering both service

requesters and services. Second, we provide a rule-based context elicitation technique with

tailored contextual information collection. Third, we employ semantic matchmaking to enhance

the recall and precision of context-aware service provision.

CONTEXT MODEL

In this section, we present our context model that is developed to formally define context

description pertaining to service requesters and services. A context acquisition mechanism is

designed for collecting contextual information at run time.
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The underlying foundation of our context model is to treat a context-aware Web service as a

parameterized abstract machine. An abstract machine is characterized by its static (i.e., state

variables) and dynamic (i.e., state functions) characteristics. Contextual information is

represented as functions that may change the state of the service. All functions are equipped with

formally defined pre-conditions, post-conditions, and invariants based on the ontologies defined

in our context model. The abstract machine structure is defined as follows:

MACHINE M(X,x)

ONTOLOGIES O

DEFAULTS D

SETS S; T={a,b}

PROPERTIES P

VARIABLES V

INVARIANT I

ASSERTIONS J

INITIALIZATION B

REQUIREMENTS

u1 <- O1(w1) = PRE Q1 THEN V1 END

…
un <- On(wn) = PRE Qn THEN Vn END

END

The abstract machine has free dimensions X (set) and x (scalar). ONTOLOGIES describes the

semantic meanings of the machine parameters. SETS contains finite or named sets that the

machine can use. DEFAULTS describes default values. PROPERTIES takes form of conjoined

predicates specifying invariants involving defaults and sets. VARIABLES lists state variables, and

INVARIANT describes static properties of the machine that must be maintained with contextual

settings. ASSERTIONS is deducible from PROPERTIES and INVARIANT, and exists purely to

ease the proving of machine correctness. INITIALIZATION initializes state variables.

REQUIREMENTS lists possible requirements of the abstract machine, with pre-conditions PRE

and post-conditions THEN.

Context Description

We conceive context awareness as an interactive model between service requesters and services;

thus, context description is addressed from both parties. We have developed two types of context

ontology for describing the circumstances of requesters and services, respectively: requester

ontology and service ontology. The separation of concern allows higher flexibility and

extensibility.

The major difference between the requester ontology and service ontology is their profiles. As

follows, the requester ontology contains requester profiles such as personnel profile, accessibility

and preferences, calendar profile, social profile, and location profiles.

Requester_ontology =

{Profiles, Preferences, QoWS, Environment, Devices}

Profiles = {Personnel, Location, Calendar, Social}

Personnel_profile = {name, role, id, email, accessibility}
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Location_profile = {office, building, home}

Calendar_profile = {owner, event , time, attendee*, location}

Social_profile = {owner, partner+}

QoWS = {Functional requirements, non-functional requirements}

Environment = {Network_channel, Situation}

Network_channel = {wired, wireless}

Situation = {normal, meeting, walking, driving}

Devices = {hardware, software}

On the other hand, the service ontology contains service profile such as input, output, pre-

condition, and effect of service execution as follows.

Service_ontology = {Profile, QoWS, Environment, Devices}

Service Profile = {name, id, description, input, output,

pre-condition, effect}

QoWS = {Functional requirement, non-functional requirement}

Environment = {Network channel, Situation}

Network channel = {wired, wireless}

Situation = {normal, meeting, walking, driving}

Devices = {hardware, software}

In addition to profiles, both requester ontology and service ontology contain a cluster of

specifications reflecting surrounding context including Quality of Web Services (QoWS)

specifications, environment specifications, and device capability specifications. QoWS

specifications contain both functional and non-functional constraints. Functional QoWS

constraints can be described using network bandwidth and response time; non-functional QoWS

constraints can be described in reliability, availability, and cost. Environment specifications

contain network channel constraints and situated location constraints. Network channel

constraints can be used to describe the types of channels (e.g., wired or wireless); situated

location constraints can be used to describe requester situated environment (e.g., in a meeting,

reading, walking, or driving). Device capability specifications contain a device’s hardware and 
software constraints. Various devices (e.g., PDAs and mobile phones) are associated with

different hardware and software constraints. Hardware constraints can be used to describe the

hardware requirements of a device such as platform, CPU speed, memory size, screen size, and

resolution. Software constraints can be used to describe the software requirements of a device

such as operating system, browser, playable media type, and resolution.

Context Acquisition

With our ontology models, both service requesters and services could formally define their

contextual information accordingly. We define context acquisition as a process of obtaining the

values of the defined properties using the requester ontology and service ontology. We separate

the context acquisition function from the context aware services, which decoupling enables the

reuse of existing context acquisition functions for various services.

Context acquisition can be conducted in three incremental ways: form-filling, context detection,

and context extraction. In the form-filling approach, contextual information is acquired directly

from requesters’ inputs. In the context detection approach, various sensing, recording, and
positioning systems (e.g., GPS, RFID, and sensor networks) are utilized for location detection. In

the context extraction approach, contextual information is derived from requester ontology and
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service ontology. The first approach form-filled can be used to construct personnel profiles,

preferences, calendar profiles, and social profiles; the term form-filled explains for itself. We thus

will concentrate on the other two approaches: context detection and context extraction.

Context Detection

Context detection aims to detect and analyze contextual information such as location,

environment, and device profiles during the run time. We have designed a context detection

environment that facilitates the process from both service side and service requester side. On the

service requester side, smart devices and sensor networks are used to sense and react to the

requesters’ surrounding environment, as we reported in [14]. On the service side, we have
designed a Web service portal to accept service requests featuring a recording capability [14].

Whenever a requester logs in, our portal catches the request, analyzes what kind of devices the

requester is using to build the device profile, and detects what kind of network channel the

requester is using to connect to the Internet to build the environment profile. Some situations,

such as whether the requester is in a meeting or is driving, remain unknown at this stage. We

defer this analysis to the context extraction phase. Besides detecting the request, our portal also

records and keeps the history of service requests associated with every requester who registers in

the portal. Based on the historical information, we can further conduct analysis about the

requesting behaviours and requesting patterns that are important references for building

requesters’ preferences.

Our environment is equipped with a set of location detection Web services that can match all

possible location tracking functionalities currently available for requesters’ devices, and filter 
them based on requesters’ actual contexts. For example, if a requester is outside of a building, 
then a GPS location detection service will be invoked to return her location in terms of building

name or number. If the requester is inside of a building, then an indoor tracking service provided

by RFID or sensor network will be invoked to return her location in terms of room number. Once

the location is positioned, our location detection services can further decide whether to disclose

the location based on requester’s privacy preference. One thing worth noting is that in our 
environment, we consider privacy preference in a dynamic manner and can be adjusted based on

location and temporal constraints. For example, if a requester is in her office during her office

hours, she is willing to disclose her room number to her students; if she is out of town in a trip,

she may only disclose her position to her colleagues and family members.

Context Extraction

If the context detection services cannot detect current context explicitly, requesters’ profiles will 
be taken into consideration. We define context extraction as a process to derive contextual

information from requesters’ preferences and profiles. Comprehensive contextual information can
be extracted combining static and dynamic approaches. The static context extraction elicits a

requester’s default context from her predefined preferences and personnel profiles. The dynamic
context extraction deduces a requester’s actual context from her calendar profiles and social
profiles.

In the static approach, except for those required properties for which requesters must specify

values (e.g., name, id, role, and email), other properties defined in personnel profiles and

preferences may have predefined default values. As a result, our system fills in the default values

for the requesters if they do not explicitly specify the property values. We refer this process as

context wrapping, which will be addressed in more detail in the next section.
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In the dynamic approach, we analyze a requester’s calendar and social profiles to deduce her 
actual contextual information. Using our example earlier, by checking Steve’s calendar profiles
and social profiles, we can find out at 10:15am on Wednesday, he is in a meeting with his team

members.

As shown below, we formally define a requester’s calendar profile with properties that indicate 
the owner of the calendar, the privacy of using the calendar, the event title and description, the

begin time and end time of the event, as well as the attendee and location of the event. Privacy is

a property containing policy rules to determine whether this calendar is accessible for public or

for private reference only.

Calendar_profile = {owner, event, time, attendee*, location}

owner = {name, id, privacy}

event = {title, description}

time = {begin(yyyy:mm:dd;hh:mm), end(yyyy:mm:dd;hh:mm)}

attendee = {name, contact_info}

location = {place, contact_info}

A social profile is used to find the most related business partners when a requester does not

explicitly specify with whom she is working. Social profiles are also useful when a requester

makes her calendar profiles private but such information is needed to locate her contexts. This

goal can be fulfilled by querying every partner’s calendar profile to find the events associated 
with the target requester. A requester can have various types of business partners such as an

individual or a group of team workers. The formal definition of social profile is shown as follows.

Social_profile = {owner, partner+}

owner = {name, id, privacy}

partner = {type, name, context_info},

type = {individual | working_team | enterprise | community}

CONTEXT-AWARE WEB SERVICES

Based on the definitions of context model and the contextual information entailed from the

context acquisition, we built two context-aware applications for demonstrating how to find right

services, right partners (collaborators), and right information (content presentation) using our

proposed approach. The two applications are: (1) an agent-based context-aware Web services

provision environment, and (2) a context-aware Web content adaptation engine supporting mobile

computing.

Context-aware Web Services Provision

Based on the contextual information collected by the context elicitation system, we present our

context-aware service oriented architecture (CA-SOA) for providing Web services request,

publication, and discovery. As shown in Figure 1, CA-SOA consists of three major components -

an agent platform, a service repository, a context-aware matchmaker.
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Figure 1. Context-aware SOA

To enhance context-aware services provision, we have implemented three categories of agents in

the agent platform - service agents, broker agents, and request agents. Service agents are designed

to help service providers formally describe and wrap Web services with contextual descriptions

obtained from the service ontology. Request agents are designed to help service requesters

formally describe and wrap their service requests with requesters’ contextual information
obtained from the requester ontology. On one hand, broker agents take services’ publishing 
requests from service agents and save service descriptions and contextual descriptions into

service profiles; on the other hand, broker agents take requests from request agents and initiate

context-aware matchmaking, which consists of two phases- capability matchmaking and semantic

matchmaking.

As shown in Figure 1, our service repository is designed to encompass a general UDDI Registry

associated with service profiles. If the required services cannot be found by a capability

matchmaking process in the UDDI Registry, the semantic matchmaker will be invoked. The

semantic matchmaker will decompose service requests into a set of sub-requests, and then

schedule an integrated composite service based on the decomposed requests.

Based on the CA-SOA, we present how to provide context-aware service request, publication,

and discovery in the following sub-sections.

Requests’ Contextual Description and Wrapping

Service requests are generally specified with keywords or descriptions regarding inputs, outputs,

pre-conditions, and effects of the requests. However, it will cause tremendous overhead if

requesters need to manually input much contextual information. Thus, we utilize request agents to
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automatically wrap requests’ contextual information. Follows is a stepwise procedure to describe
and wrap requests’ contextual information and transform it into a request package.

1. A request agent provides a request parser as an interface (shown in Figure 2) for guiding

requesters to input their request descriptions, including service name, service key, service

description, provider name, provider key, TModel name, TModel description, and context

information.

2. The request parser transforms request descriptions to OWL-S.

3. The request agent instantiates the requester ontology to generate instances of requesters’ static
context profiles.

4. The request agent provides a context wrapping service for obtaining requesters’ static 
contextual information by tagging the attributes defined in requester’s instances of static
context profiles.

5. The request agent enacts a context elicitation service for obtaining requesters’ dynamic 
contextual information.

6. The request agent wraps and packages the request along with requesters’ contextual
information.

7. The request agent sends the request package to a broker agent.

Figure 2. Interface of the request parser

A request package in OWL-S as shown below is wrapped to describe a request’s contextual
information. The meeting caller is Steve who is using either NB or PDA to access Web meeting

service via 10Mbps bandwidth. Steve’s service request requires the “availability” of the meeting 
service is 99% or above. Such a meeting requires both audio and video devices. In addition, the
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service is required to support both the meeting mode (with Audio Off) and the driving mode (with

Video off).

<?xml version="1.0"?>

<rdf:RDF>

<owl:DatatypeProperty rdf:ID="Social_Owner_Name">

<rdfs:domain rdf:resource="#Social_Owner"/>

Steve
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Default_Value_of_Device">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

NB, PDA
<rdfs:domain rdf:resource="#Preferences"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Bandwidth">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

10Mbps
<rdfs:domain rdf:resource="#Functional_Constraints"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Availability">

<rdfs:domain rdf:resource="#Non-functional_Constraints"/>

99%
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<Situation rdf:ID="Meeting"/> Audio Off

<Situation rdf:ID="Driving"/> Video Off

</rdf:RDF>

Services’ Contextual Description and Wrapping

To avoid overhead caused by manual inputs of services’ contextual description, we construct
service agents to automatically wrap services’ contextual information. Follows is a stepwise
procedure to wrap services’ contextual information and publish it to broker agents.

1. A service agent provides a service parser as an interface (shown in Figure 3) for guiding

service providers to input services’ descriptions: service name, service description, provider
name, provider email, access point URL, WSDL URL, and contextual description URL.

2. The service parser transforms service description to OWL-S.

3. The service agent instantiates the service ontology to generate instances of services’ static
context profile.

4. The service agent wraps and packages the service along with services’ contextual information
for publication.

5. The service agent sends the published service to a broker agent.
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Figure 3. Interface of the service parser

The following segment of OWL-S code represents one candidate service that satisfies the above

requests. It is entitled “Web business meeting,” which can be used by either NB or PDA devices
via wireless WLAN or GPRS with 99% availability for any requesters who are out of office.

<owl:DatatypeProperty rdf:ID="Service_Name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

Web business meeting
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Availability">

<rdfs:domain rdf:resource="#Non-functional_Constraints"/>

99%
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Network">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

Wireless_LAN, GPRS
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Platform">

<rdfs:domain rdf:resource="#Software"/>

NB, PDA
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="OS">
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<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

Windows NT, Windows XP

<rdfs:domain rdf:resource="#Software"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Browsers">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

Microsoft IE, Mozilla Firefox, Netscape

<rdfs:domain rdf:resource="#Software"/>

</owl:DatatypeProperty>

Context-aware Services Discovery

Services discovery is a process of matchmaking between a service request and published services.

Based on the aforementioned contextual description of requests and services, our context-aware

services discovery utilizes capability matching and semantic matching to perform services

discovery. The capability matching approach is to identify the similarities of inputs and outputs

between requests and published services. Three matching degrees are defined in capability

matching - exact match, plug-in match, and subsumed match. (INReq and OUTReq denote the

inputs and outputs of a request, while INPub and OUTPub denote the inputs and outputs of a

published service.)

1. Exact match: A published service exactly fulfills a request’s requirements. Both the inputs and
outputs of the published service match the request’s requirements, i.e., INPub= INReq and
OUTPub = OUTReq.

2. Plug-in match: A published service sufficiently fulfills a request’s requirements. The outputs
of the published service provides more detailed information than the request’s requirements, or
the inputs of the published service require less specific information than the request’s
requirements, i.e., OUTReqOUTPub or INPub INReq.

3. Subsumed match: A published service only partially fulfills a request’s requirements. The
outputs of the published service provide less information than the request’s requirements, or
the inputs of the published service require more detailed information than the request’s
requirements, i.e., OUTPubOUTReq or INReq INPub.

For semantic matchmaking, we have utilized broker agents, as show in Figure 1, to handle the

context-aware services discovery. Broker agents help service repositories to maintain references

of service profiles published by service agents. They only keep references while the service

agents keep the original service ontology. Thus, service agents need to inform broker agents

whenever service profiles are updated. Broker agents also provide caching mechanisms to

enhance search performance if the same service is requested by multiple requesters. Based on

Figure 1, the procedure of broker agents-enabled context-aware semantic matchmaking is

addressed as follows.

1. A request agent sends a request wrapped with requester’s contextual information to a broker
agent.

2. The broker agent forwards the request to the capability matchmaker and performs capability

matching.

3. If no matched service can be found, the semantic matchmaker will decompose the request into

sub-requests based on requester’s contextual information, and repeat capability matchmaking
in Step 2 for each sub-request.

4. The semantic matchmaker returns matched services to the broker agent.
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5. The broker agent replies the matched services to the request agent.

Context-Aware Content Adaptation for Finding Right Content Presentation

In ubiquitous environments, people mostly work with portable devices along with limited

computing powers, small-size screens and changing conditions. Portable devices have distinct

capabilities compared with desktop computers, which divergence increases the difficulty of

presenting user-friendly contents for all kinds of devices universally. Besides, the condition of

people’s content access is more complicated in ubiquitous environments. For example, people
may need to access content while they stay outside or on a move. In addition, most current Web

contents are designed for desktop computers only. The default settings and style-sheets, such as

image size, font size, and layout structure, are not suitable to be presented on portable devices. As

a result, a technique is needed to compose and deliver adaptive content from any platform in any

format to any device through any network at anytime and at anywhere. To achieve this ultimate

goal, one needs to know people’s computing context (environment) and provides content
adaptation based on such context.

Using the motivation example presented in Introduction section, content need to be adapted

before it can be delivered and presented to the users when a Web meeting switches from PC-

based to PDA-based due to the contextual changes of device and network. Content adaptation is a

technique to provide the most suitable content presentation according to corresponding

computing context. Our context-aware content adaptation is designed to automatically adapt Web

content to various formats and to enhance Web accessibility based on users’ surrounding context,
especially when requesters are using portable devices in a ubiquitous environment. For example,

if a requester is accessing a film while she is in a meeting, then the context-aware content

adaptation service should automatically turn off the sound to avoid from making noise because it

is important to remain quiet in a public situation. For another example, if the requester is

accessing a film while driving, then the context-aware content adaptation service should

automatically turn off the video, and leave audio only for the reason of safety. In this paper, we

focus on the design of content adaptation by providing rules for transforming objects’ modality 
and fidelity to fit users’ situated environment.

A Web page comprises a set of medium objects or simply objects, which are characterized with

modality indicating their types such as text, video, audio, and image. Each modality is associated

with fidelity indicating objects’ quality such as image resolution, color depth, and video bit-rate.
In order to render the same object in various devices, content adaptation needs to perform

transcoding and changing object’s modality and fidelity. For example, if a mobile phone can only
play image with low resolution, the fidelity of an image needs to be turned to low.

We introduce a concept of Unit of Display (UOD) to define the smallest unit that has to be

displayed and adapted in a Web page in a whole. An environment specification contains the facts

described by user’s current contextual constraints, and the adaptation rule base contains the 
patterns of rules for context-oriented content adaptation. For example, if the context indicating

user’s situation is in a public situation, UOD with audio and video modality should be adapted by 
changing its fidelity to mute to remain quiet. If the context indicating user’s situation is driving, 
then the UOD with image modality should be adapted by changing its fidelity to blank for the

reason of safety.

Content adaptation rules thus can be derived from the environment specifications defined in our

context model. The rules are designed as patterns for transforming objects’ modality and fidelity.
Table 1, 2, and 3 show three categories of adaptation rules we have derived based on users’
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situated environment. For ease of representation, we present these rules in a lookup table format.

Rows in each table are numbered by C, N, and D, which represent Situation, Network, and

Device, respectively. As appeared on column head, the original object describes object’s modality
and fidelity before adaptation, while the adapted object describes object’s modality and fidelity
after adaptation. Object’s fidelity before adaptation is defined to be original depending on how
the objects are originally designed.

The results of context-aware content adaptation are shown in Figure 4. The left-hand side is Web

content shown in a mobile phone without adaptation, where the requesters can only see a part of

the content. In contrast, the picture shown at the right-hand side is the adapted version through

context-aware content adaptation service, which provides better readability and loses no

information compared with normal Web browsing.

Figure 4. A comparison of Web content access and adaptation.

Please be noted that the assumed information listed in Table 1, 2, and 3 are selected for ease of

illustration. The contextual information could be much more complicated in a real world.

Situation information can be further described by when, where, and what activities the person is

involved, as well as location identified by GPS, sensor networks, RFID, and so on. Network

information can be further described by communication protocols such as GPRS, 3G, VoIP, and

WiFi. Device information can be further described with CC/PP, UAProf, and so on. We also

simplified the description of modality and fidelity in this paper. In a real world, modality

information can be further classified into flash and streaming media, for example; fidelity

information can be further described with image types (e.g. BMP, JPEG), image resolution (e.g.

24 bit), color depth (e.g. 32bit), video bit-rate, and so on.

As shown in Table 1, a situation lookup table is based on users’ access situation in terms of
lighting, noise level, visibility, and access situation. The underlying concept of this lookup table

is that removing unnecessary medium can save transmission time. For example, it is obvious that

one cannot read video in a dark situation; nor is allowed to listen to audio in a quiet public

situation. Therefore, object fidelity can be adapted to blank (by removing video and leave audio

only) for darkness, or adapted to mute (by removing audio and leave video only) for quietness, as

shown in S2 and S4 in Table 1, respectively. Similarly, when a user’s access situation is
“meeting,” an object should be adapted by changing its fidelity to mute to remain quiet (as shown
in S21 and S23). If a user’s access situation is “driving,” an object should be adapted by changing



International Journal of Web Services Research , Vol.X, No.X, 200X

17

its fidelity to blank for preventing the driver from browsing content (as shown in S22, S26, and

S28).

Table 1. Situation lookup table

Rule# original object Situation adapted object

S1 Object(video,original) Situation(normal) Object(video,original)
S2 Object(video,original) Situation(dark) Object(video,blank)

S3 Object(video,original) Situation(blurred ) Object(video,bright)

S4 Object(video,original) Situation(quiet) Object(video,mute)

S5 Object(video,original) Situation(noisy) Object(video,loud)

S6 Object(audio,original) Situation(normal) Object(audio,original)

S7 Object(audio,original) Situation(dark) Object(audio,original)

S8 Object(audio,original) Situation(blurred ) Object(audio,original)

S9 Object(audio,original) Situation(quiet) Object(audio,mute)

S10 Object(audio,original) Situation(noisy) Object(audio,loud)

S11 Object(image,original) Situation(normal) Object(image,original)

S12 Object(image,original) Situation(dark) Object(image,blank)

S13 Object(image,original) Situation(blurred ) Object(image,bright)

S14 Object(image,original) Situation(quiet) Object(image,original)

S15 Object(image, original) Situation(noisy) Object(image,original)

S16 Object(text,original) Situation(normal) Object(text,original)

S17 Object(text,original) Situation(dark) Object(audio,original)

S18 Object(text,original) Situation(blurred ) Object(text,bright)

S19 Object(text,original) Situation(quiet) Object(text,original)

S20 Object(text,original) Situation(noisy) Object(text,original)

S21 Object(video,original) Situation(meeting) Object(video,mute)

S22 Object(video,original) Situation(driving) Object(video,blank)

S23 Object(audio,original) Situation(meeting) Object(audio,mute)

S24 Object(audio,original) Situation(driving) Object(audio,original)

S25 Object(image,original) Situation(meeting) Object(image,original)

S26 Object(image,original) Situation(driving) Object(image,blank)

S27 Object(text,original) Situation(meeting) Object(text,original)

S28 Object(text,original) Situation(driving) Object(text,blabk)

As shown in Table 2, a network lookup table is based on network bandwidth and object size. The

idea behind this lookup table is to set up a threshold of network bandwidth and object’s size. The
object’s fidelity will be adapted to lower resolution if the transmission bandwidth is less than 2M
bps and the object’s size is larger than 2M bytes. For a network with downloading bandwidth less
than 2M bps, content adaptation needs to be done before any object over 2M (as shown in rules

N2, N4, N6, and N8 in Table 2) can be downloaded. We use Network(2M-) to denote the network

bandwidth less than 2M bps, and ObjectSize(2M+) to denote object size greater than 2M bytes.

Table 2. Network lookup table

Rule# original object network adapted object

N1 Object(video,original) Network(2M+) Object(video,original)

N2 Object(video,original) Network(2M-) and

ObjectSize(2M+)

Object(video,low_resolution)

N3 Object(audio,original) Network(2M+) Object(audio,original)

N4 Object(audio,original) Network(2M-) and

ObjectSize(2M+)

Object(audio,low_resolution)
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N5 Object(image,original) Network(2M+) Object(image,original)

N6 Object(image,original) Network(2M-) and

ObjectSize(2M+)

Object(image,low_resolution)

N7 Object(text,original) Network(2M+) Object(text,original)

N8 Object(text,original) Network(2M-) and

ObjectSize(2M+)

Object(text,low_ resolution)

As shown in Table 3, a device lookup table is based on the types of users’ devices. The idea
driving this lookup table is that not every handheld device can play all types of rich media; it will

save unnecessary transmission bandwidth by removing rich medium if it is un-playable on certain

devices. For example, for some mobile phones with limited computing powers and rendering

capability, they might not be able to play video clips. Besides, rich media take longer time to be

delivered over wireless communication. As a result, if an object’s modality is video, audio, or
image, its fidelity will be adapted to lower resolution to be played on mobile phones as shown in

rules D3, D6, and D9 in Table 3.

Table 3. Device lookup table

Rule# original object devices adapted object

D1 Object(video,original) Device(NB) Object(video,original)

D2 Object(video,original) Device(PDA) Object(video,original)

D3 Object(video,original) Device(Phone) Object(video,low_resolution)

D4 Object(audio,original) Device(NB) Object(audio,original)

D5 Object(audio,original) Device(PDA) Object(audio,original)

D6 Object(audio,original) Device(Phone) Object(audio,low_resolution)

D7 Object(image,original) Device(NB) Object(image,original)

D8 Object(image,original) Device(PDA) Object(image,original)

D9 Object(image,original) Device(Phone) Object(image,low_resolution)

D10 Object(text,original) Device(NB) Object(text,original)

D11 Object(text,original) Device(PDA) Object(text,original)

D12 Object(text,original) Device(Phone) Object(text,original)

EXPERIMENTS AND DISCUSSIONS

Performance Evaluation of Context-Aware Services Discovery

We have implemented three approaches of context-aware services discovery – keyword search,
capability matching (CM), and semantic matching (SM). To compare their context-aware search

abilities, we constructed four similar Web-based meeting systems: Web meeting, net meting, tele-

meeting, and wireless-meeting. Each application is formally specified using our context ontology.

Considering the example scenario described in the Introduction section, we used the three

aforementioned approaches to search for qualified Web-based meeting application for Steve. The

search results are summarized in Figure 5.

We use two indexes - Precision and Recall to evaluate the performance of context-aware services

provision (e.g., providing services discovery). Precision is the fraction of the found services that

are considered as relevant; Recall is the fraction of the relevant services that has been found. We

formally define them as follows:
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Precision =
A

Ra
, Recall =

R

Ra

where:

A contains a set of relevant services been found; |A| is the number of services in A.

R contains a set of services been found that are considered relevant; |R| is the number of

services in R.

Ra contains a set of services as the intersection of the sets R and A; |Ra| is the number of

services in Ra.

As shown in Figure 5, over the three services discovery approaches, the Precision and Recall of

semantic matching has better performance than the others. This indicates that the services

discovered by semantic matching are more relevant because these services have similar

contextual descriptions, and they are more likely to be in the same context domain.
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Figure 5. Precision and recalls of three different matching methods (CM: Capability matching,

SM: Semantic matching)

Performance Evaluation of Context-Aware Content Adaptation

When the quality of content is degraded due to content adaptation, such degrade will affect

people’s comprehension of the adapted content. Thus, we have designed three questions to test
requesters’ comprehension.

1. Can people explain the meaning of an image appeared on an adapted page correctly? This

question tests the effects of trans-coding, column-wise, and thumbnails.

2. Can people read and understand the meaning of a text appeared on an adapted page correctly?

This question tests the effects of resizing, replacing, and trans-coding.

3. Can people locate a hyperlink reference appeared on an adapted page correctly? This question

tests the effects of column-wise and resizing.
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We designed a set of Web pages including various types of presentation information, such as text,

still image, and hyperlinks. We implemented a UOD-based content adaptation engine to adapt the

pages onto PDA and wireless screens. Then we hired a class of students to review the adaptation

results on both PDA and wireless devices and answer the designed survey questions.

Based on students’ responses, we summarize the following findings. When students use PDAs,
83% of them can correctly explain the original meaning of an adapted image. When it comes to

text and hyperlink, we found that most of the students have no difficulties in understanding the

meaning of adapted image. When students use mobile phones, they have difficulties in browsing

content due to the smaller screen size and less computing capability, which results in lower

comprehension, especially in understanding the meaning of an adapted image (67%

comprehension of an adapted image).

Content comprehension With PDA (%) With phone (%)

image comprehension 83% 67%

text comprehension 92% 87%

hyperlink comprehension 96% 91%

CONCLUSIONS

In this paper, we have presented an integrated context model to formally define context

description pertaining to service requesters and services. We designed a context acquisition

mechanism with tailored environment for collecting contextual information in three phases: form-

filling, context detection, and context extraction. Based on the context model, we have presented

two context-aware applications for demonstrating how to find right services, right partners

(collaborators), and right information (content presentation).

For finding right services, our CA-SOA differentiates from the current SOA model in several

significant ways. First, ontology is enabled to bridge between service requesters, service brokers,

and services. Second, ontology-based contextual repository extends the current UDDI mechanism

to define services in a more comprehensive manner. Third, context-based semantic matchmaking

enables more precise services discovery and access. The way how we implemented our Context

Acquisition Engine using Web services leads to four major advantages: (1) the engine itself

reflects the SOA concept; (2) parts or whole of the engine can be reused with flexibility and

extensibility; (3) our engine has potential to be published on the Internet to facilitate context-

enabled services discovery and integration; and (4) our engine can be utilized as an extension to

the current UDDI engine for better service matchmaking.

For context-aware content adaptation, we use environment specifications in our context model to

derive content adaptation rules into various content lookup tables, such as situation lookup table,

network lookup table, and device lookup table. From the construction of the context-aware

content adaptation applications, we conclude that when people use PDAs, most of them can

correctly explain the original meaning of an adapted image. When it comes to text and hyperlink,

we found that most of the users have no difficulties in understanding the meaning of adapted

images. When people use mobile phones, they have difficulties in browsing content due to the

smaller screen size and less computing capability, which result in lower comprehension

especially in understanding the meaning of an adapted image.
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We utilize OWL-S as a vehicle to carry contextual information. Although OWL-S is a known tool

from the semantic Web society tailored for Web services descriptions, our context model and

CA-SOA are not limited to OWL-S. For instance, we can use Web Services Agreement

Specification (WS-Agreement) (Andrieux et al., 2006) from Global Grid Forum or Web Service

Level Agreement (WSLA)( Ludwig et al., 2006) from IBM to carry the knowledge.

In our future research, we will continue to enhance our CA-SOA in the categories of rule base

truth maintenance, request decomposition, services planning, and services verification. We also

plan to conduct more experiments to examine performance metrics including efficiency of

services composition, effectiveness of services verification, and reliability of services execution.
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