
UC Workbench - A Tool for Writing Use Cases
and Generating Mockups

Jerzy Nawrocki and Łukasz Olek

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Jerzy.Nawrocki, Lukasz.Olek}@cs.put.poznan.pl

Abstract. Agile methodologies are based on effective communication
with the customer. The ideal case is XP’s on-site customer. Unfortu-
nately, in practice customer representatives are too busy to work with
the development team all the time. Moreover, frequently there are many
of them and each representative has only partial domain knowledge. To
cope with this we introduced to our projects a proxy-customer role re-
sembling RUP’s Analyst and we equipped him with a tool, called UC
Workbench, that supports the communication with the customer repre-
sentatives and the developers. Analyst collects user stories from customer
representatives and ’translates’ them into use cases. UC Workbench con-
tains among other things a use-case editor and a generator of mockups (a
mockup generated by UC Workbench animates use-cases and illustrates
them with screen designs).

1 Introduction

Many agile methodologies use informal stories for requirements description [3].
Perhaps the most popular are XP’s user stories [2] [5]. An interesting alterna-
tive to them are use cases invented by Ivar Jacobson [7] and incorporated into
Rational Unified Process. They provide "a semiformal framework for structur-
ing the stories" [1]. Although they are more formal than user stories, they are
not contradictory with the agile approach to software development. There are
some agile methodologies that use written requirements or permit them (e.g. the
Crystal methodologies [4], DSDM [14] or Scrum [13]). For people applying those
methodologies, use cases can be very useful. As Craig Larman put it: "when
written functional requirements are needed, consider use cases" [9].

Use-cases engineering comprises editing the use cases (e.g. inserting a step
can require re-numbering all the subsequent steps and extensions associated with
them - that could be done automatically) and generating mockups that would
animate the use cases (that would support customer-developers communication),
and preparing effort calculators based on Use-Case Points [11] and adjusted to
the current set of use cases (that could be a valuable tool supporting XP’s
Planning Game or backlog’s effort estimation in Scrum). Unfortunately, there is
no tool offering that range of functionality. The only thing we have found was a
use-case editor, called CaseComplete, offered by Serlio Software [16].



2 Jerzy Nawrocki and Łukasz Olek

The aim of the paper is to describe our approach to use-case engineering. It
is based on a tool called UC Workbench (Use Case Workbench) developed at the
Poznan University of Technology. It is a use-case editor combined with a mockups
generator and an effort-calculators generator. It is important for an agile team
that after changing some use cases a new mockup and updated effort calculators
are obtained ’at the press of a button’. UCWorkbench has been successfully used
at the university’s Software Development Studio and in a commercial project run
by PB Polsoft, a medium size software company with headquarters in Poznan.
In the paper we focus on the language for use-cases description (Sec. 2.), and
generation of mockups (Sec. 3.). Other functionality provided by the tool includes
automatic inspections and support for effort estimation.

2 FUSE: A Language for Use-Cases Description

Use cases collected by an analyst are edited with the help of UC Editor, a part
of UC Workbench. The editor uses FUSE (Formal USE cases) language. It is a
simple language formalizing structure of use-cases description to allow generating
of mockups and effort calculators (actor descriptions and steps within the use
cases are expressed in a natural language).

FUSE is based on use-case patterns collected by Adolph and his colleagues [1].
Use cases are accompanied with actor descriptions (that is adviced by the Clear-
CastOfCharacters pattern). FUSE allows for two forms of use cases (the Multi-
pleForms pattern): casual and formal. The former has no steps, just plain text
and resembles XP’s user stories. The latter corresponds to the ScenarioPlusFrag-
ments pattern: the description consists of a main scenario split into a number
of steps and extensions (that form is very popular - see e.g. [6]). When applying
the breadth-before-depth strategy and spiral development, first the casual form
is used and at the next cycle some use cases are refined and written down using
the formal form.

To make formal descriptions of use cases more precise and readable we have
decided to introduce the Either-Or construct to FUSE. Moreover, for the sake of
readability FUSE allows nested steps that are especially helpful when combined
with Either-Or.

2.1 Either-Or

Sometimes one needs nondeterministic choice between alternative steps. As-
sume, for instance, that someone has to describe how to buy books in an Internet-
based bookstore. A customer can either add a book to the cart or remove one
from it.

Putting those two steps in a sequence

1. Customer adds a book to the cart.
2. Customer removes a book from the cart.

is not correct, as it suggests that one has always to remove a book adding one
to the cart. A remedy could be to add an extension like the following one



Lecture Notes in Computer Science 3

2a. Customer does not want to remove a book from the cart.
2a1. Customer skips the step.

to each of the above steps. Unfortunately, that would clutter the description and
other really important extensions would be less visible.

To solve the problem we have decided to introduce the Either-Or construct
to the formal form of use cases. Using it one could describe customer’s options
in the following way:
1. Either: Customer adds a book to the cart.
2. Or: Customer removes a book from the cart.

One can argue that the Either-Or construct can be difficult for some end-users
to understand. In the case of UC Workbench it should not be a problem, as
the use cases are accompanied with an automatically generated mockup which
visualizes the control flow by animating of use cases.

2.2 Nested steps
Sometimes a step can be decomposed into 2 or 3 other steps. Then it can be
convenient to have the "substeps" shown directly in the upper level use case
(according to the LeveledSteps pattern a scenario should contain from 3 to 9
steps). For instance, assume that adding a book to the cart consists of the
following "substeps":
1. Customer selects a book.
2. System shows new value of the cart.

Then buying books could be described in FUSE in the following way (use-case
header and extensions have been omitted):
1. Either: Customer adds a book to the cart.

1.1. Customer selects a book.
1.2. System shows new value of the cart.

2. Or: Customer removes a book from the cart.

Again, end-user will be supported with a mockup helping him to understand the
control flow, but if the analyst thinks it is not enough she can always choose not
to use new constructs.

An example of use case written in FUSE is presented below:
Main scenario:

1. Customer opens main page of a Bookshop.
2. System presents a list of categories and all new positions.
3. Customer is composing his order:

3.1. Either: Customer adds a book to his cart:
3.1.1. Customer chooses a desired book.
3.1.2. System shows the book details.
3.1.3. Customer adds the book to cart.

3.2. Or: Customer removes a book from the cart.
4. Customer finalizes the order.

Extensions:
4.A. The cart is empty.

4.A.1. System shows appropriate message and returns to step 3.



4 Jerzy Nawrocki and Łukasz Olek

3 Generating of Mockups

There are two kinds of prototypes [10]: throwaway prototypes (mockups) and
evolutionary ones. The latter are core of every agile methodology. The former
could be used to support customer-developers communication about require-
ments but their development had to be very cheap and very fast.

The mockups generated by UC Workbench are simple but effective. They
focus on presenting functionality. They combine use cases (i.e. behavioural de-
scription) with screen designs associated with them (that complies with the
Adornments pattern [1]). A generated mockup is based on a web browser and it
consists of two frames (see Fig. 1):

– the scenario window presents the currently animated use cases (it is the left
frame in Fig. 1) and the current step is shown in bold;

– the screen window shows the screen design associated with the current step
(it is the right frame in Fig. 1).

Fig. 1. A Mockup Screen

To generate a mockup the analyst has to associate with use-case steps names
of files containing screen designs. The fidelity levels of screen designs are up to the
analyst (an interesting discussion about fidelity levels can be found in [12], [15],
[8]). The screen design shown in Fig. 1 is at the low fidelity level and it has been
created with a tablet connected to PC. After decorating ’difficult’ use-cases with
screen designs one can generate a mockup "at the press of a button". Using UC
Workbench one can produce a mockup (i.e. re-write use cases and adorn them
with screen designs) within a few hours — that goes well with agile methodologies
and can really support customer-developers communication, especially if there
is a danger that the requirements are ambiguous or contradictory.



Lecture Notes in Computer Science 5

4 Conclusions

UC Workbench presented in the paper supports editing use cases (we were sup-
prized that Rational Requisite Pro much more supports ’traditional’ require-
ments than use cases) and generates mockups that animate use cases. What is
important for agile developers a mockup can be obtained automatically, so it
is always consistent with changing requirements. UC Workbench supports also
automatic inspections, effort estimation based on Use Case Points [11] and gen-
eration of the software requirements document from a set of use cases.

Acknowledgements

We would like to thank Grzegorz Leopold and Piotr Godek from PB Polsoft –
their bravity allowed us to get a feedback from industry and helped us to improve
the tool. This work has been financially supported by the State Committee for
Scientific Research as a research grant 4 T11F 001 23 (years 2002-2005).

References

1. Adolph S., Bramble P., Cockburn A., Pols A.: Patterns for Effective Use Cases.
Addison-Wesley (2002)

2. Beck, K.: Extreme Programming Explained. Embrace Change. Addison-Wesley,
Boston, 2000

3. Boehm, B., Turner, R: Balancing Agility and Discipline. A Guide for the Perplexed.
Addison-Wesley, Boston, 2004

4. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston, 2002.
5. Cohn, M.: User Stories Applied. Addison-Wesley, Boston, 2004.
6. Fowler, M., Scott, K.: UML Distilled. Addison-Wesley, Boston, 2000.
7. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley, Reading MA, 1992.
8. Landay J.A.: SILK: Sketching Interfaces Like Crazy IEEE Computer-Human Inter-

action (April 13-18, 1996)
9. Larman, C.: Agile And Iterative Development. A Manager’s Guide. Addison-Wesley,

Boston, 2004.
10. Pressman, R.: Software Engineering. A Practitioner’s Approach. McGrow-Hill,

New York, 1997.
11. Ribu K.: Estimating Object-Oriented Software Projects with Use Cases Master of

Science Thesis, University of Oslo 2001
12. Rittig M.: Prototyping for Tiny Fingers. Communications of the ACM, April

1994/Vol. 37, No. 4 p. 21-27
13. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond,

2004.
14. Stapleton, J.: DSDM. Business Focused Development. Addison-Wesley, London,

2003.
15. Walker M., Takayama L., Landay J.A.: High-fidelity or Low-fidelity, Paper or Com-

puter? Choosing Attributes When Testing Web Prototypes. Proceedings of the Hu-
man Factors and Ergonomics Society 46th Annual Meeting: HFES2002. pp. 661-665

16. http://www.serliosoft.com/casecomplete/


