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Path planning plays an extremely important role in the design of UCAVs to accomplish the air combat task �eetly and reliably. 
e
planned path should ensure thatUCAVs reach the destination along the optimal pathwithminimumprobability of being found and
minimal consumed fuel. Traditional methods tend to �nd local best solutions due to the large search space. In this paper, a Fitness-
scaling Adaptive Chaotic Particle Swarm Optimization (FAC-PSO) approach was proposed as a fast and robust approach for the
task of path planning of UCAVs. 
e FAC-PSO employed the �tness-scaling method, the adaptive parameter mechanism, and the
chaotic theory. Experiments show that the FAC-PSO is more robust and costs less time than elite genetic algorithm with migration,
simulated annealing, and chaotic arti�cial bee colony. Moreover, the FAC-PSO performs well on the application of dynamic path
planning when the threats cruise randomly and on the application of 3D path planning.

1. Introduction

Unmanned combat air vehicle (UCAV) is an experimental
class of the unmanned aerial vehicle (UAV). UCAVs dier
from ordinary UAVs because they are designed to deliver
weapons to attach enemy targets. 
e elimination of the
need for an onboard human crew in a UCAV that may be
shot down over enemy territory has obvious advantages for
personnel safety. In addition, much equipment necessary for
a human pilot (such as the cockpit, �ight controls, oxygen,
and seat/ejection seat) can be omitted from an unmanned
vehicle, resulting in a decrease in weight possibly allowing
greater payloads, range, and maneuverability.


e path planning of UCAV is to generate a space path
between an initial safe location and the desired dangerous
destination that has an optimal or near-optimal performance
under speci�c constraint conditions. It is always a complex
research subject, so it is an imperative technology required in
the design of UCAV. Series of algorithms have been proposed
to solve this complicated multiconstrained optimization
problem. Allaire used a genetic algorithm (GA) to realize the
FPGA implementation for UAV real-time path planning [1].

Duan et al. proposed an improved particle swarm optimiza-
tion to optimize the formation recon�guration control of
multiple UCAVs [2], proposed a hybrid metaheuristic ant
colony optimization (ACO) and dierential evolution (DE)
to solve the UCAV three-dimension path-planning problem
[3], and proposed a max-min adaptive ant colony algorithm
formulti-UCAVs coordinated trajectory replanning [4].Mou
et al. proposed a modi�ed ant colony algorithm as a fast and
e�cient approach for path planning ofUCAV [5]. Zhang et al.
proposed an improved arti�cial bee colony algorithm for
UCAV path-planning problem [6]. However, these methods
can easily be trapped into local minima and cannot solve the
contradiction between the goal optimization and excessive
information.

PSO is well known for its lower computational costs, and
itsmost attractive feature is that it requires less computational
bookkeeping and only a few lines of implementation codes.
In order to improve the performance of a traditional PSO,
three improvements are proposed: (I) a new power-rank
�tness-scalingmethod, bywhich the scaled values are suitable
for following selection; (II) adaptively varied parameters
to search an expansive area at the prophase stage and
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Figure 1: Typical 2D UCAV battle�eld model.

a restricted area at the anaphase stage; and (III) introduction
of chaos to improve the robustness of the basic PSO algorithm
considering its outstanding performance of jumping out of
stagnation.


e remainder of this paper is organized as follows.
Section 2 introduces the encoding strategy for path planning.
Section 3 discusses the performance evaluation function
containing both the threat cost and the fuel cost. Section 4
introduces the basic principles of canonical PSO. Section 5
gives detailed description of our proposed method—Fitness-
scaling Adaptive Chaotic PSO (FAC-PSO). Experiments in
Section 6 compared our proposed method with elite genetic
algorithm with migration, simulated annealing, and chaotic
arti�cial bee colony. 
e statistical results on 100 dierent
runs demonstrate that the FAC-PSO is superior to other
algorithms with respect to success rate and computation
time. Besides, we also applied our approach in the �eld of
dynamic UCAV path planning. Final Section 7 is devoted to
the conclusions.

2. Path Encoding

In this model, the starting point and the target point are
de�ned as �� and ��, respectively. 
ere are threatening
areas in the task region, such as artillery, radar, and missile,
which all are presented in the form of a circle. Inside of the
threatening areas, the UCAV should be vulnerable to the
threat with a certain probability proportional to the distance
away from the threat center, while outside of the threatening
areas, the UCAV should be safe without being attacked. 
e
task of path planning is to design an optimal path between
start point and target point considering all these threatening
areas as shown in Figure 1.

We connect the starting point and target point and then
divide the straight line ���� into (� + 1) equal portions. At
each segment point, draw the vertical line of ����, which can
be labeled with �1, �2, . . . , � �, . . . , ��. Select discrete points�� at each � �. In this way, the path from the starting node to
the target node can be described as follows:

path = {��, �1, �2, . . . , ��, . . . , ��, ��} . (1)


e location of �� and �� is known for UCAV, and the
location of line � � (� = 1, 2, . . . , �) can be easily calculated.

erefore, each point �� (� = 1, 2, . . . , �) can be expressed

0.1 0.3 0.5 0.7 0.9

Pi Pi+1

�reaten k �reaten k + 1

Figure 2: Computation of threat cost.

using only 1 parameter, namely, its distance to the straight line����. In aword, there are total� parameters in (1), so our task
is a �-dimensional optimization problem. In the following
section, we let �0 = �� and ��+1 = �� in order to simplify the
expression.

3. Performance Function


e performance indicators of the planned path mainly
consist of the threat cost �� and the fuel cost ��. 
eir
calculation formulas are expressed as follows:

�� = �∑
�=0

�� (�) ,

�� = �∑
�=0

�� (�) .
(2)

Here, ��(�) and ��(�) denote the threat cost and fuel cost at
the �th subpath from �� to ��+1, respectively. 
e threat cost
of subpath is calculated by an approximation based on �ve
discrete points along the subpath as shown in Figure 2. If the�th subpath (��, ��+1) is within the eect range, the threat cost
is given as [7]

�� (�) = � �5
��∑
�=1


� ( 1
�40.1,�,� + 1

�40.3,�,� + 1
�40.5,�,� + 1

�40.7,�,� + 1
�40.9,�,�) .

(3)

Here, �� denotes the number of threatening areas, � �
denotes the length of �th subpath, 
� denotes the degree of
threatening, and �0.1,�,� denotes the distance from the 1/10
point on the �th subpath to the �th threat area.

Suppose that the velocity of UCAV is constant, the fuel
cost of the �th subpath ��(�) can be considered proportional
to � �. 
erefore, the total cost of the path is proportional to
the total length of the path �.


e total cost for traveling along the trajectory comes
from a weighted sum of the threat and fuel costs, as de�ned
in the following formula

� = ��� + (1 − �) ��, (4)

where � is a variable between 0 and 1, giving the designer
certain �exibility to dispose relations between the threat
exposition degree and the fuel consumption. If � approaches
1, a safer path is needed and less attention is paid to the fuel.
Alternatively, if� approaches 0, a shorter path is needed even
on the cost of sacri�ce the safety. In this study, we determine
it as 0.5 by the suggestion from [8], indicating that the threat
is as important as the fuel.
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Figure 3: Flow chart of the PSO algorithm.

4. Particle Swarm Optimization

PSO is a population-based stochastic optimization technique,
which simulates the social behavior of a swarm of birds,
�ocking bees, and �sh schooling [9]. By randomly initializing
the algorithm with candidate solutions, the PSO successfully
leads to a global optimum.
is is achieved by an iterative pro-
cedure based on the processes of movement and intelligence
in an evolutionary system. Figure 3 shows the �ow chart of a
PSO algorithm.

In PSO, each potential solution is represented as a parti-
cle. Two properties (position � and velocity V) are associated
with each particle. Suppose� and V of the �th particle are given
as

� = (��1, ��2, . . . , ���) ,
V = (V�1, V�2, . . . , V��) , (5)

where � stands for the dimensions of the problem. In each
iteration, a �tness function is evaluated for all the particles in
the swarm.
e velocity of each particle is updated by keeping
track of the two best positions. One is the best position a
particle has traversed so far and called “�Best”. 
e other is
the best position that any neighbor of a particle has traversed
so far. It is a neighborhood best called “�Best”. When a
particle takes the whole population as its neighborhood, the
neighborhood best becomes the global best and is accord-
ingly called “�Best”. Hence, a particle’s velocity and position
are updated as follows:

V = � ⋅ V + �1�1 (�Best − �) + �2�2 (�Best − �) ,
� = � + VΔ�, (6)

where � is called the “inertia weight” that controls the impact
of the previous velocity of the particle on its current one.


e parameters �1 and �2 are positive constants called “accel-
eration coe	cients”. 
e parameters �1 and �2 are random
numbers uniformly distributed in the interval [0, 1]. 
ese
random numbers are updated every time they occur. 
e
parameter Δ� stands for the given time step.


e population of particles is then moved according to
(6) and tends to cluster together from dierent directions.
However, a maximum velocity Vmax should not be exceeded
by any particle to keep the search within a meaningful solu-
tion space. 
e PSO algorithm runs through these processes
iteratively until the termination criterion is satis�ed [10].

5. Principle of FAC-PSO


ePSOhas proven to performbetter thanGA,DE, andACO
[11]. However, we can make further improvements from the
following three aspects.

5.1. Fitness Scaling. Fitness scaling converts the raw �tness
scores that are returned by the �tness function to values in
a range that is suitable for the selection function [12]. 
e
selection function uses the scaled �tness values to select the
particles of the next generation. 
en, the selection function
assigns a higher probability of selection to particles with
higher scaled values.


ere exist bundles of �tness-scalingmethods. One of the
most common scaling techniques is traditional linear scaling,
which remaps the �tness values of each particle using the
following equation:

�linear = � + � × �raw, (7)

where � and � are constants de�ned by users. Another option
is the rank scaling, which is obtained by sorting all the bees
by their raw �tness values

�rank = �, (8)

where � denotes the rank of the individual particle. 
e
third option is the power scaling method which is instead
computed with

�power = ��raw, (9)

where � is a problem-dependent exponent that might require
change during a run to stretch or shrink the range as needed.
Top scaling is the 4th option andprobably the simplest scaling
method. Using this approach, several of the top individuals
have their �tness set to the same value, with all remaining
individuals having their �tness values set to zero.
is simple
concept yields

�top = { �raw ≥ �
0 �raw < �, (10)

where  is the user-de�ned constant, � is the threshold.
Among those �tness-scaling methods, the power scaling

�nds a solution nearly the most quickly due to improvement
of diversity but it suers from instability [13]; meanwhile,
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the rank scaling shows stability on dierent types of tests [14].

erefore, a new power-rank scaling method was proposed
combing both power and rank strategies as follows:

���� = ���
∑��=1 ��� , (11)

where �� is the rank of �th individual bee, � is the number of
population. Our strategy contains a three-step process. First,
all bees are sorted to obtain the corresponding ranks. Second,
powers are computed for exponential values �. 
ird, the
scaled values are normalized by dividing the sumof the scaled
values over the entire population.

5.2. Adaptive Parameters. Another improvement lies in
changing the parameters (�, �1, �2) adaptively. In the search
process of PSO, the search space will gradually reduce as
the generation increases. 
erefore, we hope to search an
expansive area with low precision at the prophase stage while
searching a restricted areawith high precision at the anaphase
stage as listed in Table 1. 
e detailed formulas of those
adaptive parameters are as follows:

� = �� − �� − �	
MaxGeneration

∗ Generation (�� > �	) ,
�1 = �1� − �1� − �1	

MaxGeneration
∗ Generation (�1� > �1	) ,

�2 = �2� − �2� − �2	
MaxGeneration

∗ Generation (�2� < �2	) .
(12)

Here, the indexes � and � denote “initial” and “�nal”, respec-
tively.

5.3. Chaotic Random Number. 
e parameters (�1, �2) were
generated by a pseudorandom number generator (RNG) in
classical PSO. 
e RNG cannot ensure the optimization’s
ergodicity in solution space because it is absolutely random;
therefore, a chaotic operator was employed to generate
parameters (�1, �2) by the following formula:

�� (� + 1) = 4.0 ∗ �� (�) ∗ [1 − �� (�)] , � = 1, 2, (13)

where �0 ∈ (0, 1) and �0 ∉ {0.25, 0.5, 0.75}. A very small
dierence in the initial value of � would give rise to a large
dierence in its long-time behavior as shown in Figure 4.
e
track of chaotic variable �
 can travel ergodically over the
whole space of interest.

Figure 5 shows that the series is in the cycle (0.75) when
initial points are 0.25 or 0.75 since 4∗0.25∗ (1−0.25) = 0.75
and 4 ∗ 0.75 ∗ (1 − 0.75) = 0.75. 
e series is in cycle (0)
when initial point is 0.5 since 4 ∗ 0.5 ∗ (1 − 0.5) = 1 and4 ∗ 1 ∗ (1 − 1) = 0. 
erefore, those three points (0.25, 0.5,
and 0.75) will make the series lose chaotic property.

6. Experiments


e experiments were carried out on the platform of P4
IBMwith 3GHz main frequency and 2GBmemory, running
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Figure 4: Chaotic Property of logistic equation: (a) �0 =0.12345678; (b) �0 = 0.12345679.

under Windows XP operating system. 
e algorithm was
developed via the global optimization toolbox of MatLab
2011a.

6.1.�reat Setting. Set the coordinates of the starting point as
(5, 5) and the target point as (100, 100). In the �ight course,
there exist eight threat areas listed in Table 2. Suppose that
the codes of initial path are all zeros, which corresponds to a
straight line from starting point directly to the target point as
shown in Figure 6. Traditional gradient-based methods will
guide the 12th–20th nodes of the path to search the upper-le�
area, and they will �nally be misled into the local minima.
However, the evolutionary algorithms including GA, PSO,
and our proposed FAC-PSO are able to jump from the local
minima and search the bottom-right area, where the global
minimal point locates in.

6.2. Algorithm Comparison. We compared the proposed
FAC-PSO method with elite genetic algorithms with migra-
tion (EGAM) [15], simulated annealing (SA) [16], chaotic
arti�cial bee colony (CABC) [8], and standard PSO. 
e
parameters are obtained through trial-and-error method and
shown in Table 3. Here, NP means the number of popu-
lations/bees/particles corresponding to dierent algorithms,
andMaxEpochmeans the maximum iterative epochs. ��, ��,
and� of EGAMstand for the crossover probability,mutation
probability, and elite probability, respectively. TDF, 
�, and
� of SA denote the temperature decrease function, initial
temperature, and�nal temperature, respectively.�� inCABC
represents the number of foods.

Each algorithm ran 100 times, and the success rate was
calculated and shown inTable 4. It indicates that the proposed
FAC-PSO show slight superiority to other algorithms when
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Table 1: Parameters variation.

Ω �1 �2 Performance

Prophase Larger Larger Smaller
PSO searches for global optima in an expansive area
with low precision

Anaphase Smaller Smaller Larger
PSO searches for local optima in a limited area with
high precision
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Figure 5: Loss of chaotic property at speci�c initial values: (a) �0 = 0.25; (b) �0 = 0.5; and (c) �0 = 0.75.

Table 2: Information of 2D threatening objects.

Index Position Radius

1 (10, 30) 14

2 (10, 50) 10

3 (20, 80) 20

4 (40, 15) 12

5 (40, 50) 15

6 (50, 70) 12

7 (75, 70) 14

8 (80, 40) 12

� = 10. As the � increases, the FAC-PSO shows more
robustness compared to other algorithms. It should be noted
that a larger � makes the search space larger, which leads to
the success rate of all the algorithms decreasing.

We take � = 20 as an example, choose a typical run and
show the convergence plot in Figure 7. It indicates that the
proposed FAC-PSO was trapped into local minima at about
42 epochs but it jump out at about 45th epoch. Conversely,
the EGAM, SA, CABC, and PSO were stagnated in the local
minima over all 100 epochs.


e �nal searched paths of the four algorithms are shown
in Figure 8. It indicates that our proposed FAC-PSO found
the global best path of the algorithm, while the other four
algorithms failed at this run.

6.3. Time Comparison. Computation time is another impor-
tant factor used to evaluate the algorithm. Since a failed
run usually takes little time due to early stagnation, we only
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Figure 6: Local minima and global minima.

consider the success runs. 
e average computation times of
each algorithm of dierent sizes of � are shown in Table 5. It
indicates that the proposed algorithm takes the least time in
spite of the size of�; moreover, the SA takes the second least
time for calculation. 
e most time-consuming algorithm is
the CABC.
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Table 3: Parameters of algorithms.

Algorithm Parameter setting

EGAM �� = 20;MaxEpoch= 100; �� = 0.8; �� = 0.1; � = 0.1; andmigration interval = 20.

SA �� = 20;MaxEpoch= 100; TDF = “exponential”; 
� = 100, and 
� = 0.
CABC �� = 20;MaxEpoch= 100; and �� = 10.
PSO �� = 20;MaxEpoch= 100; Vmax = 1; � = 0.6; �1 = 1; and �2 = 1.
FAC-PSO �� = 20;MaxEpoch= 100; Vmax = 1; �� = 0.9; �	 = 0.4; �1� = 2.5; �1	 = 0.5, �2� = 0.5; and �2	 = 2.5.

Table 4: Success rates of dierent algorithms for 2D UCAV.

� EGAM SA CABC PSO FAC-PSO

10 78% 22% 80% 75% 87%

15 66% 12% 67% 71% 85%

20 53% 3% 59% 56% 80%

Table 5: Average computation time (s).

� EGAM SA CABC PSO FAC-PSO

10 12.3 11.6 14.6 13.0 10.2

15 12.9 13.8 15.3 14.7 11.3

20 14.5 13.6 16.8 14.9 13.7

Table 6: Information of 3D threatening objects.

Index Position Radius

1 (10, 30, 30) 14

2 (10, 50, 20) 10

3 (20, 80, 40) 20

4 (40, 15, 70) 12

5 (40, 50, 50) 15

6 (50, 70, 40) 12

7 (75, 70, 35) 14

8 (80, 40, 50) 12

9 (40, 55, 30) 10

10 (30, 40, 40) 15

6.4. Dynamic Path Planning. 
e aforementioned paths are
static ones which are determined by a beforehand-known
map and threat information, but the UCAV usually meets
unforeseen threats in actual �ight course, so they must
possess dynamic path-planning ability. When UCAV detects
instantaneous or moving threat, it must replan the path so as
to avoid the new arisen threat by revising the former path.

Suppose that all the threatening areas can move ran-
domly, then, the �ight path ofUCAVshould change a�er each
move according to the current threat positions. 
e UCAV
paths by the proposed FAC-PSO at steps 0, 5, 10, and 15 are
shown in Figure 9, which imply the feasibility of FAC-PSO
under moving threatening conditions.

6.5. 3D Path Planning. We applied our method to 3D UCAV
path planning. First, we generate a cube (100 × 100 × 100).
Second, we generated 10 threats, and their coordinates and
radii are listed in Table 6.
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Figure 7: A typical convergence plot of dierent algorithms.

Table 7: Success rates of dierent algorithms for 3D UCAV.

� EGAM SA CABC PSO FAC-PSO

15 65% 9% 64% 65% 74%

20 41% 2% 43% 42% 68%

25 16% 0% 21% 20% 53%

We set the coordinates of the starting point as (5, 5, and
5) and the target point as (100, 100, and 100). We compared
the proposed FAC-PSO method with EGAM, SA, CABC,
and PSO. All parameters are the same as Table 3 except that
the maximal epoch is changed to 1000. Each algorithm ran
100 times, and the success rate was calculated and shown in
Table 7.We found that the FAC-PSO performs best among all
algorithms for 3D UCAV path planning.

7. Conclusions

In this study, a novel FAC-PSO approach for UCAV path
planning was proposed. We �rst investigate the path encod-
ing strategy and then construct the cost function which com-
bines the threat cost and fuel cost simultaneously. 
e FAC-
PSO algorithmwas proposed utilizing the �tness-scaling, the
adaptive mechanism, and the ergodicity and irregularity of
the chaos. Compared to standard PSO, the FAC-PSO is more
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Figure 8: Planned path of (a) EGAM; (b) SA; (c) CABC; (d) PSO; and (e) FAC-PSO.
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Figure 9: All threatening obstacles are moving for dynamic path planning: (a) step 0; (b) step 5; (c) step 10; and (d) step 15.

powerful at jumping out of local minima as well as speeding
up the procedures of �nding the global optimal minima.


e simulation results show that the proposed FAC-
PSO excels EGAM, SA, CABC, and PSO algorithms with
respect to success rate and computation time. We extended
our experiment to 2D dynamic path planning and 3D path
planning. All prove the superiority of FAC-PSO.
erefore, it
is a feasible and eective way for UCAV path planning.
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