UCX: An Open Source Framework for HPC Network APIs and Beyond

Pavel Shamis (Pasha) Principal Research Engineer

ARM Research – Software & Large Scale Systems The Architecture for the Digital World® **Co-Design Collaboration**

The Next Generation HPC Communication Framework

Collaborative Effort

Industry, National Laboratories and Academia

- Performance Portability (across various interconnects)
 - Collaboration between industry and research institutions
 - ...but mostly industry (because they built the hardware)
- Maintenance
 - Maintaining a network stack is time consuming and expensive
 - Industry have resources and strategic interest for this
- Extendibility
 - MPI+X+Y ?
 - Exascale programming environment is an ongoing debate

UCX – Unified Communication X Framework

Unified

- Network API for multiple network architectures that target HPC programing models and libraries
- Communication
 - How to move data from location in memory A to location in memory B considering multiple types of memories
- Framework
 - A collection of libraries and utilities for HPC network programmers

History

MXM

- Developed by Mellanox Technologies
- HPC communication library for InfiniBand devices and shared memory
- Primary focus: MPI, PGAS

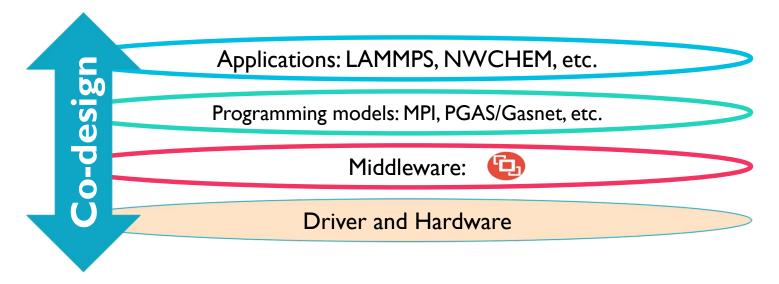
UCCS

- Developed by ORNL, UH, UTK
- Originally based on Open MPI BTL and OPAL layers
- HPC communication library for InfiniBand, Cray Gemini/Aries, and shared memory
- Primary focus: OpenSHMEM, PGAS
- Also supports: MPI

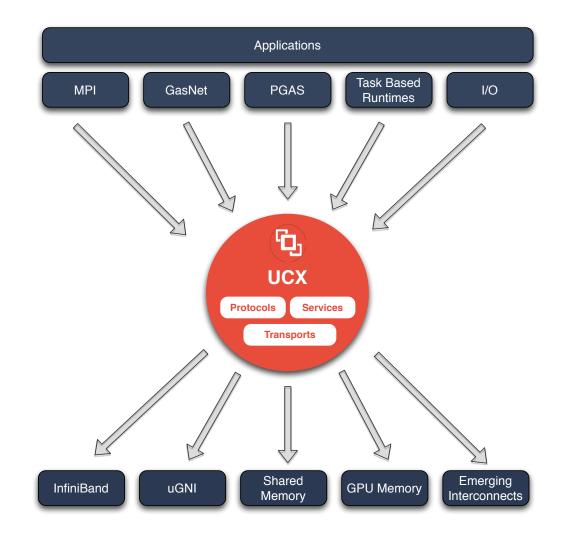
PAMI

- Developed by IBM on BG/Q, PERCS, IB VERBS
- Network devices and shared memory
- MPI, OpenSHMEM, PGAS, CHARM++, X10
- C++ components
- Aggressive multi-threading with contexts
- Active Messages
- Non-blocking collectives with hw accleration support

Decades of community and industry experience in development of HPC software


What we are doing differently...

- UCX <u>consolidates</u> multiple industry and academic efforts
 - Mellanox MXM, IBM PAMI, ORNL/UTK/UH UCCS, etc.
- Supported and maintained by industry
 - IBM, Mellanox, NVIDIA, Pathscale, ARM



What we are doing differently...

Co-design effort between national laboratories, academia, and industry

A Collaboration Efforts

Mellanox TECHNOLOBIES
Connect. Accelerate. Outperform.

- Mellanox co-designs network API and contributes MXM technology
 - Infrastructure, transport, shared memory, protocols, integration with OpenMPI/SHMEM, MPICH
- ORNL & LANL co-designs network API and contributes UCCS project
 - InfiniBand optimizations, Cray devices, shared memory
- ARM co-designs the network API and contributes optimizations for ARM eco-system
- NVIDIA co-designs high-quality support for GPU devices
 - GPUDirect, GDR copy, etc.
- IBM co-designs network API and contributes ideas and concepts from PAMI

UH/UTK focus on integration with their research platforms

Licensing

Open Source

- BSD 3 Clause license
- Contributor License Agreement BSD 3 based

UCX Framework Mission

- Collaboration between industry, laboratories, and academia
- Create open-source production grade communication framework for HPC applications
- Enable the highest performance through co-design of software-hardware interfaces
- Unify industry national laboratories academia efforts

<u>API</u>

Exposes broad semantics that target data centric and HPC programming models and applications

Community driven

Collaboration between industry, laboratories, and academia

Performance oriented

Optimization for low-software overheads in communication path allows near native-level performance

<u>Research</u>

The framework concepts and ideas are driven by research in academia, laboratories, and industry

Production quality

Developed, maintained, tested, and used by industry and researcher community

Cross platform

Support for Infiniband, Cray, various shared memory (x86-64 and Power), GPUs

Co-design of Exascale Network APIs

Architecture

UCX Framework

UC-P for Protocols

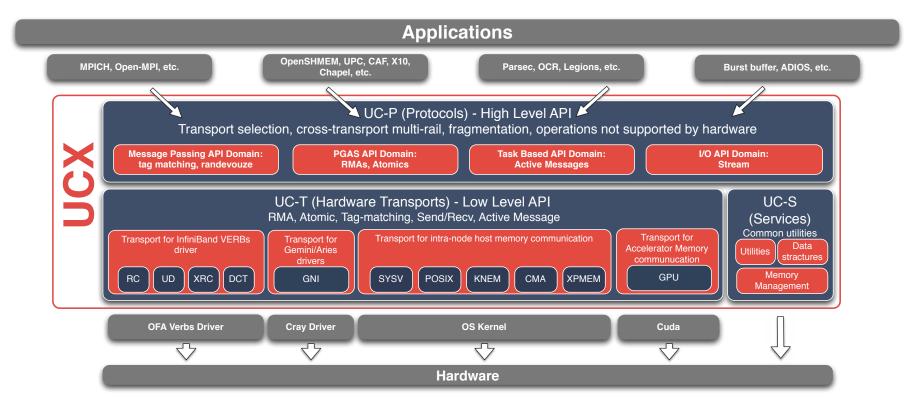
High-level API uses UCT framework to construct protocols commonly found in applications

<u>Functionality</u>: Multi-rail, device selection, pending queue, rendezvous, tag-matching, softwareatomics, etc.

UC-T for Transport

Low-level API that expose basic network operations supported by underlying hardware. Reliable, out-oforder delivery.

<u>Functionality</u>: Setup and instantiation of communication operations.


UC-S for Services

This framework provides basic infrastructure for component based programming, memory management, and useful system utilities

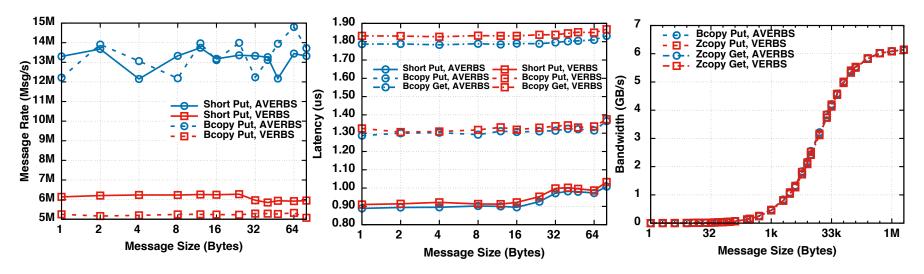
<u>Functionality</u>: Platform abstractions, data structures, debug facilities.

ARM

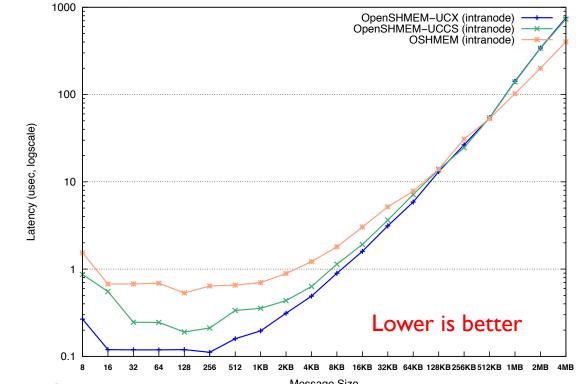
A High-level Overview

ARM

UCP API (DRAFT) Snippet


(https://github.com/openucx/ucx/blob/master/src/ucp/api/ucp.h)

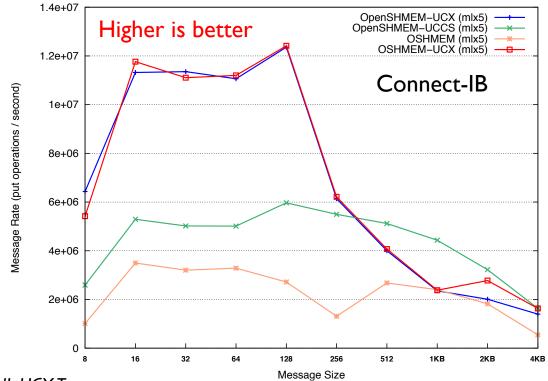
- ucs_status_t ucp_put(ucp_ep_h ep, const void *buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)
 Blocking remote memory put operation.
- ucs_status_t ucp_put_nbi (ucp_ep_h ep, const void *buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)
 Non-blocking implicit remote memory put operation.
- ucs_status_t ucp_get (ucp_ep_h ep, void *buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)
 Blocking remote memory get operation.
- ucs_status_t ucp_get_nbi (ucp_ep_h ep, void *buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)
 Non-blocking implicit remote memory get operation.
- ucs_status_t ucp_atomic_add32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey)
 Blocking atomic add operation for 32 bit integers.
- ucs_status_t ucp_atomic_add64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey)
 Blocking atomic add operation for 64 bit integers.
- ucs_status_t ucp_atomic_fadd32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint32_t *result)
 Blocking atomic fetch and add operation for 32 bit integers.
- ucs_status_t ucp_atomic_fadd64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint64_t *result) Blocking atomic fetch and add operation for 64 bit integers.
- ucs_status_ptr_t ucp_tag_send_nb (ucp_ep_h ep, const void *buffer, size_t count, ucp_datatype_t datatype, ucp_tag_t tag, ucp_send_callback_t cb)
 Non-blocking tagged-send operations.
- ucs_status_ptr_t ucp_tag_recv_nb (ucp_worker_h worker, void *buffer, size_t count, ucp_datatype_t datatype, ucp_tag_t tag, ucp_tag_t tag_mask, ucp_tag_recv_callback_t cb)


Non-blocking tagged-receive operation.

Preliminary Evaluation (UCT)

- Pavel Shamis, et al. "UCX: An Open Source Framework for HPC Network APIs and Beyond," HOT Interconnects 2015 -Santa Clara, California, US, August 2015
 - Two HP ProLiant DL380p Gen8 servers
 - Mellanox SX6036 switch, Single-port Mellanox Connect-IB FDR (10.10.5056)
 - Mellanox OFED 2.4-1.0.4. (VERBS)
 - Prototype implementation of Accelerated VERBS (AVERBS)

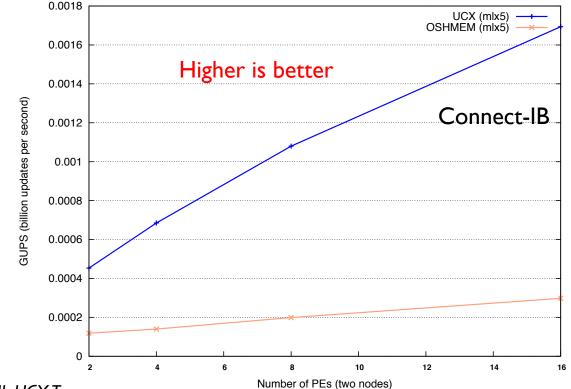
OpenSHMEM and OSHMEM (OpenMPI) Put Latency (shared memory)



ARM

Slide courtesy of ORNL UCX Team

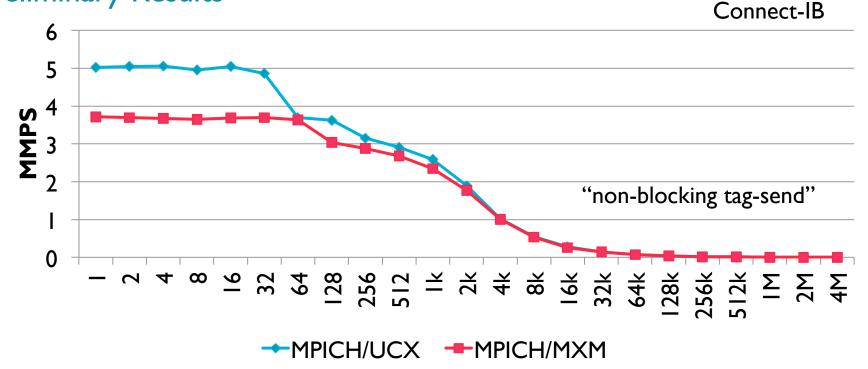
Message Size


OpenSHMEM and OSHMEM (OpenMPI) Put Injection Rate

Slide courtesy of ORNL UCX Team

ARM

OpenSHMEM and OSHMEM (OpenMPI) GUPs Benchmark



Slide courtesy of ORNL UCX Team

ARM

MPICH - Message rate

Preliminary Results

Slide courtesy of Pavan Balaji, ANL - sent to the ucx mailing list

Where is UCX being used?

- Upcoming release of Open MPI 2.0 (MPI and OpenSHMEM APIs)
- Upcoming release of MPICH
- OpenSHMEM reference implementation by UH and ORNL
- PARSEC runtime used on Scientific Linear Libraries

What Next ?

- UCX Consortium !
 - http://www.csm.ornl.gov/newsite/
- UCX Specification
 - Early draft is available online: <u>http://www.openucx.org/early-draft-of-ucx-specification-is-here/</u>
- Production releases
 - MPICH, Open MPI, Open SHMEM(s), Gasnet, and more...
- Support for more networks and applications and libraries
- UCX Hackathon 2016 !
 - Will be announced on the mailing list and website

https://github.com/orgs/openucx

Fort me on Cithur

WEB: <u>www.openucx.org</u> Contact: <u>info@openucx.org</u>

Mailing List: https://elist.ornl.gov/mailman/listinfo/ucx-group ucx-group@elist.ornl.gov

Questions ?

Unified Communication - X Framework

Www.openucx.org
 Contact: info@openucx.org
 WE B: https://github.com/orgs/openucx

Mailing List: https://elist.ornl.gov/mailman/listinfo/ucx-group ucx-group@elist.ornl.gov

