
ARM Research – Software & Large Scale Systems

UCX: An Open Source Framework
for HPC Network APIs and Beyond

Pavel Shamis (Pasha)
Principal Research Engineer

Co-Design Collaboration

Collaborative Effort

Industry, National Laboratories and Academia

The Next Generation

HPC Communication Framework

Challenges

§  Performance Portability (across various interconnects)
§  Collaboration between industry and research institutions

§  …but mostly industry (because they built the hardware)

§  Maintenance
§  Maintaining a network stack is time consuming and expensive

§  Industry have resources and strategic interest for this

§  Extendibility
§  MPI+X+Y ?

§  Exascale programming environment is an ongoing debate

UCX – Unified Communication X Framework

§  Unified
§  Network API for multiple network architectures that target HPC

programing models and libraries

§  Communication
§  How to move data from location in memory A to location in memory B

considering multiple types of memories

§  Framework
§  A collection of libraries and utilities for HPC network programmers

History

MXM
●  Developed by Mellanox Technologies
●  HPC communication library for InfiniBand

devices and shared memory
●  Primary focus: MPI, PGAS

PAMI
●  Developed by IBM on BG/Q, PERCS, IB

VERBS

●  Network devices and shared memory

●  MPI, OpenSHMEM, PGAS, CHARM++, X10

●  C++ components

●  Aggressive multi-threading with contexts
●  Active Messages

●  Non-blocking collectives with hw accleration

support

Decades of community and
industry experience in

development of HPC software

UCCS
●  Developed by ORNL, UH, UTK
●  Originally based on Open MPI BTL and OPAL

layers
●  HPC communication library for InfiniBand,

Cray Gemini/Aries, and shared memory
●  Primary focus: OpenSHMEM, PGAS
●  Also supports: MPI

What we are doing differently…

§  UCX consolidates multiple industry and academic efforts
§  Mellanox MXM, IBM PAMI, ORNL/UTK/UH UCCS, etc.

§  Supported and maintained by industry
§  IBM, Mellanox, NVIDIA, Pathscale, ARM

What we are doing differently…

§  Co-design effort between national laboratories, academia, and
industry

Applications: LAMMPS, NWCHEM, etc.

Programming models: MPI, PGAS/Gasnet, etc.

Middleware:

Driver and Hardware C
o

-d
e
si

g
n

UCX

InfiniBand uGNI
Shared

Memory
GPU Memory

Emerging

Interconnects

MPI GasNet PGAS
Task Based

Runtimes
I/O

Transports

Protocols Services

Applications

A Collaboration Efforts
§  Mellanox co-designs network API and contributes MXM technology

§  Infrastructure, transport, shared memory, protocols, integration with
OpenMPI/SHMEM, MPICH

§  ORNL & LANL co-designs network API and contributes UCCS project

§  InfiniBand optimizations, Cray devices, shared memory

§  ARM co-designs the network API and contributes optimizations for
ARM eco-system

§  NVIDIA co-designs high-quality support for GPU devices

§  GPUDirect, GDR copy, etc.

§  IBM co-designs network API and contributes ideas and concepts from
PAMI

§  UH/UTK focus on integration with their research platforms

Licensing

§  Open Source
§  BSD 3 Clause license

§  Contributor License Agreement – BSD 3 based

UCX Framework Mission
§  Collaboration between industry, laboratories, and academia

§  Create open-source production grade communication framework for HPC applications

§  Enable the highest performance through co-design of software-hardware interfaces

§  Unify industry - national laboratories - academia efforts

Performance oriented

Optimization for low-software

overheads in communication path allows
near native-level performance

Community driven

Collaboration between industry,

laboratories, and academia

Production quality

Developed, maintained, tested, and used

by industry and researcher community

API

Exposes broad semantics that target
data centric and HPC programming

models and applications

Research

The framework concepts and ideas are

driven by research in academia,
laboratories, and industry

Cross platform

Support for Infiniband, Cray, various

shared memory (x86-64 and Power),
GPUs

Co-design of Exascale Network APIs

Architecture

UCX Framework

UC-S for Services

This framework provides
basic infrastructure for
component based

programming, memory
management, and useful
system utilities

Functionality:
Platform abstractions, data

structures, debug facilities.

UC-T for Transport

Low-level API that expose
basic network operations
supported by underlying

hardware. Reliable, out-of-
order delivery.

Functionality:
Setup and instantiation of

communication operations.

UC-P for Protocols

High-level API uses UCT
framework to construct
protocols commonly found

in applications

Functionality:
Multi-rail, device selection,
pending queue, rendezvous,
tag-matching, software-

atomics, etc.

A High-level Overview

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S

(Services)
Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities
Data

stractures

Hardware

MPICH, Open-MPI, etc.
OpenSHMEM, UPC, CAF, X10,

Chapel, etc.
Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications
U

C
X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

UCP API (DRAFT) Snippet
(https://github.com/openucx/ucx/blob/master/src/ucp/api/ucp.h)
§  ucs_status_t ucp_put(ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

 Blocking remote memory put operation.

§  ucs_status_t ucp_put_nbi (ucp_ep_h ep, const void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

 Non-blocking implicit remote memory put operation.

§  ucs_status_t ucp_get (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

 Blocking remote memory get operation.

§  ucs_status_t ucp_get_nbi (ucp_ep_h ep, void ∗buffer, size_t length, uint64_t remote_addr, ucp_rkey_h rkey)

 Non-blocking implicit remote memory get operation.

§  ucs_status_t ucp_atomic_add32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey)

 Blocking atomic add operation for 32 bit integers.

§  ucs_status_t ucp_atomic_add64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey)

 Blocking atomic add operation for 64 bit integers.

§  ucs_status_t ucp_atomic_fadd32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint32_t ∗result)

 Blocking atomic fetch and add operation for 32 bit integers.

§  ucs_status_t ucp_atomic_fadd64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey_h rkey, uint64_t ∗result)

 Blocking atomic fetch and add operation for 64 bit integers.

§  ucs_status_ptr_t ucp_tag_send_nb (ucp_ep_h ep, const void ∗buffer, size_t count, ucp_datatype_t datatype, ucp_tag_t tag, ucp_send_callback_t cb)

 Non-blocking tagged-send operations.

§  ucs_status_ptr_t ucp_tag_recv_nb (ucp_worker_h worker, void ∗buffer, size_t count, ucp_datatype_t datatype, ucp_tag_t tag, ucp_tag_t tag_mask,
ucp_tag_recv_callback_t cb)

 Non-blocking tagged-receive operation.

Preliminary Evaluation (UCT)

§  Pavel Shamis, et al. “UCX: An Open Source Framework for HPC Network APIs and Beyond,” HOT Interconnects 2015 -
Santa Clara, California, US, August 2015

§  Two HP ProLiant DL380p Gen8 servers

§  Mellanox SX6036 switch, Single-port Mellanox Connect-IB FDR (10.10.5056)

§  Mellanox OFED 2.4-1.0.4. (VERBS)

§  Prototype implementation of Accelerated VERBS (AVERBS)

��
��
��
��
��
���
���
���
���
���
���

�� �� �� �� ��� ��� ���

�
��
��
��
��
��
��
��
��
��
�

��������������������

�����������������
����������������
�����������������
����������������

����
����
����
����
����
����
����
����
����
����
����
����

�� �� �� �� ��� ��� ���
��
��
��
��
��
��

��������������������

�����������������
�����������������
�����������������

����������������
����������������
����������������

��

��

��

��

��

��

��

��

�� ��� �� ��� ��

��
��
��
��
��
��
��
��

��������������������

�����������������
����������������
�����������������
����������������

OpenSHMEM and OSHMEM (OpenMPI)
Put Latency (shared memory)

 0.1

 1

 10

 100

 1000

8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB

L
a
te

n
c
y
 (

u
s
e
c
,
lo

g
s
c
a
le

)

Message Size

OpenSHMEM−UCX (intranode)
OpenSHMEM−UCCS (intranode)

OSHMEM (intranode)

Lower is better

Slide courtesy of ORNL UCX Team

OpenSHMEM and OSHMEM (OpenMPI)
Put Injection Rate

Higher is better

Connect-IB

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

8 16 32 64 128 256 512 1KB 2KB 4KB

M
e

s
s
a

g
e

 R
a

te
 (

p
u

t
o

p
e

ra
ti
o

n
s
 /

 s
e

c
o

n
d

)

Message Size

OpenSHMEM−UCX (mlx5)
OpenSHMEM−UCCS (mlx5)

OSHMEM (mlx5)
OSHMEM−UCX (mlx5)

Slide courtesy of ORNL UCX Team

OpenSHMEM and OSHMEM (OpenMPI)
GUPs Benchmark

Higher is better

Connect-IB

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 2 4 6 8 10 12 14 16

G
U

P
S

 (
b

ill
io

n
 u

p
d

a
te

s
 p

e
r

s
e

c
o

n
d

)

Number of PEs (two nodes)

UCX (mlx5)
OSHMEM (mlx5)

Slide courtesy of ORNL UCX Team

MPICH - Message rate
Preliminary Results

0

1

2

3

4

5

6
1

2
 4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
k

2
k

4
k

8
k

1
6
k

3
2
k

6
4
k

1
2
8
k

2
5
6
k

5
1
2
k

1
M

2
M

4
M

M
M

P
S

MPICH/UCX MPICH/MXM

Slide courtesy of Pavan Balaji, ANL - sent to the ucx mailing list

Connect-IB

“non-blocking tag-send”

Where is UCX being used?

§  Upcoming release of Open MPI 2.0 (MPI and OpenSHMEM APIs)

§  Upcoming release of MPICH

§  OpenSHMEM reference implementation by UH and ORNL

§  PARSEC – runtime used on Scientific Linear Libraries

What Next ?

§  UCX Consortium !
§  http://www.csm.ornl.gov/newsite/

§  UCX Specification
§  Early draft is available online:

http://www.openucx.org/early-draft-of-ucx-specification-is-here/

§  Production releases
§  MPICH, Open MPI, Open SHMEM(s), Gasnet, and more…

§  Support for more networks and applications and libraries

§  UCX Hackathon 2016 !
§  Will be announced on the mailing list and website

https://github.com/orgs/openucx

WEB: www.openucx.org
Contact: info@openucx.org

Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group
ucx-group@elist.ornl.gov

Questions ? Unified Communication - X
Framework

WEB: www.openucx.org
Contact: info@openucx.org
WE B: https://github.com/orgs/openucx

Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group
ucx-group@elist.ornl.gov

