
Citation: Zhu, J.; Wang, L.; Xiao, L.;

Qin, G. uDMA: An Efficient

User-Level DMA for NVMe SSDs.

Appl. Sci. 2023, 13, 960. https://

doi.org/10.3390/app13020960

Academic Editor: Paolino Di Felice

Received: 30 November 2022

Revised: 30 December 2022

Accepted: 7 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

uDMA: An Efficient User-Level DMA for NVMe SSDs †

Jinbin Zhu 1,2, Liang Wang 1,2,*, Limin Xiao 1,2,* and Guangjun Qin 3

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
2 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
3 Smart City College, Beijing Union University, Beijing 100101, China
* Correspondence: lwang20@buaa.edu.cn (L.W.); xiaolm@buaa.edu.cn (L.X.)
† This paper is an extended version of our paper published in “UPM-DMA: An Efficient Userspace

DMA-Pinned Memory Management Strategy for NVMe SSDs” published in the 21st International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP 2021), Xiamen, China, 3–5 December 2021.

Abstract: The Non-Volatile Memory Express (NVMe) SSD provides high I/O performance for current
computer systems, and direct memory access (DMA) is the critical enabling mechanism for direct I/O.
However, the lengthy I/O stack becomes a new bottleneck that degrades the potential of NVMe SSD.
This paper reveals that existing user-level DMA introduces additional overhead for pinning memory
used by DMA from the user space. Moreover, it cannot adapt to I/O requests of different data sizes.
This paper proposes an efficient and dynamically adaptive user-level DMA (uDMA) mechanism that
can adapt to I/O requests for different data sizes and lighten the I/O software stack by amortizing
per-request latency. The critical component of uDMA is the pinned memory pool, which avoids
frequently pinning new memory blocks by reusing allocated and pinned memory blocks. In addition,
it effectively connects the discrete pinned memory blocks by the scatter/gather lists, improving the
utilization of the pinned memory pool. Compared with the latest user-level DMA method, uDMA
has an improvement of at least 17% under various data sizes.

Keywords: NVMe SSD; user-level DMA; scatter/gather lists; pinned memory pool

1. Introduction

Today’s popular cloud computing workloads (e.g., Hadoop [1], RocksDB [2]) exert
increasingly intense pressure on the I/O systems, posing higher performance requirements
for new storage devices [3]. The Non-Volatile Memory Express (NVMe) [4] SSD is emerging
and has become a widely used storage solution for modern computer systems [5,6]. For
example, the Intel Optane SSD series provide the capability of reading and writing data
up to 2.5 GB/s and 1.2 GB/s [7]. The NVMe SSD has attracted many researchers to
design SSD-oriented high-performance storage systems [8–10]. Many cloud providers
(Alibaba [11], Amazon, et al. [12]) have configured NVMe SSDs to build high-performance
storage systems.

However, although an NVMe SSD dramatically improves the hardware performance
of storage devices, the lengthy I/O software stack in an operating system (OS) degrades the
potential of the NVMe SSD. The latest research from Intel shows that the Linux kernel takes
up too much execution time on the I/O stack in NVMe SSD-oriented storage system [13–15].
The main reason is that context switching and interrupting waste much time. For example,
context switching must be between the user and the kernel modes when performing DMA
operations. Frequent processing of I/O requests can cause frequent switching, resulting in
a high switching overhead.

Recently, many studies [13,14,16–18] of NVMe SSDs on the I/O software stack have
tended to access NVMe SSDs directly from the user space. User-level methods move a
partial kernel I/O stack in the OS into the user space that can eliminate context switches
between the Linux kernel and the user space. For example, SPDK [13] is a high-performance
user-level storage tool library developed by Intel. It utilizes polling mode, lock-free, and

Appl. Sci. 2023, 13, 960. https://doi.org/10.3390/app13020960 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020960
https://doi.org/10.3390/app13020960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13020960
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020960?type=check_update&version=3

Appl. Sci. 2023, 13, 960 2 of 14

user-level direct memory access (DMA) to provide highly parallel access to NVMe SSDs
from user-space applications. User-level DMA is a lightweight data transfer mode that
can transfer data directly from or to NVMe SSDs without involving the CPU. However,
this paper revealed that the user-level methods did not perform well in data-intensive
workloads. Taking SPDK as an example, the user-level DMA mechanism implemented in
SPDK brings some additional overhead. Specifically, SPDK uses the spd_dma_malloc() [19]
function to allocate and pin memory to transfer data. It needs to perform pin memory
operations, which can incur a considerable overhead under data-intensive workloads.

In this paper, we propose an efficient and dynamically adaptive user-level DMA
(UDMA) mechanism for different I/O sizes for NVMe SSDs, which lightens the I/O soft-
ware stack by amortizing per-request latency. The core of uDMA is an efficient memory
pool, which implements a pinned memory pool for I/O requests without frequently allo-
cating, pinning, and freeing new memory. In addition, uDMA designs a DMA memory
management strategy based on scatter/gather lists, which can integrate discrete memory
blocks for data transmission and improve the efficiency of memory use. Our preliminary
work was presented in [16]. This paper extends the preliminary work by adding a pinned
memory block management strategy based on the scatter/gather list. The new design can
connect discrete pinned memory blocks to form a large, pinned memory region, improving
the efficiency of pinned memory usage.

This paper makes the following contributions:

• We find that the original user-level DMA mechanism, which aims to directly access
an NVMe SSD from the user space, does not perform well in data-intensive cases. It
needs to perform pin memory operations, which can incur a huge overhead under
data-intensive workloads.

• We design uDMA, a new user-level DMA mechanism that reduces the I/O software
stack’s overhead. First, it uses a pinned memory pool to reduce the initialization
overhead of DMA memory. Second, the proposed pinned memory pool improves
memory efficiency by scatter/gather lists.

• We implement uDMA as a memory library called uDMA libs and integrate it into
the SPDK framework. The experimental results show that uDMA improves the I/O
performance of NVMe SSDs by at least 17%.

The remainder of this paper is organized as follows. In Section 2, related works are
discussed. In Section 3, the background and motivation are presented. In Section 4, the
proposed uDMA is introduced. In Section 5, the experimental setup and evaluations are
presented. Finally, this work is concluded in Section 6.

2. Related Work

With the continuous improvement of the reading and writing performance of storage
devices (e.g., NVMe SSDs), the I/O software stack in the OS has become unsuitable,
degrading the potential of fast storage devices. According to the latest research results of
Intel, the existing Linux kernel takes up too much execution time on the I/O stack in NVMe
SSD-oriented storage systems [13–15]. The main problem in the OS’s I/O software stack is
to reduce the context switching and data-copying overhead between the user space and
the kernel, the interrupt processing overhead of I/O requests, the competition overhead of
shared resources in the kernel I/O stack, etc.

Several optimization methods have been proposed to reduce the time cost of the I/O
software stack [20–24]. For example, Lee et al. [22] proposed a new I/O scheduler that
allowed garbage collection processing to be preempted while I/O requests were pending.
With the support of NVMe SSD interfaces, Kim et al. [24] streamlined the I/O path to exploit
the performance characteristics of NVMe SSDs. However, traditional methods to solve these
problems mainly include polling, merging I/O, parameter-aware I/O scheduler, etc. These
performance improvements need to be greater for an NVMe SSD, a fast storage device [13].

To fully utilize the performance of NVMe SSDs, the user-mode I/O frameworks have
been proposed in recent years, which significantly reduce the time overhead of the I/O

Appl. Sci. 2023, 13, 960 3 of 14

software stack by avoiding context switching. Researchers in [13,14,17,18] designed SPDK,
NVMeDirect, and UNVMe, all of which were based on user-mode I/O frameworks, where
SPDK was released and continuously maintained by Intel. For example, SPDK eliminates
context switches and interrupts handling overhead by moving kernel drivers into the user
space. NVMeDirect combines SPDK with the traditional I/O stack. Compared with the
kernel-based NVMe driver, SPDK can improve IOPS by 6× to 10×, and NVMeDirect out-
performs others by up to 30% on microbenchmarks and up to 15% on accurate benchmarks.
Although these methods can significantly improve I/O performance, they also introduce
new problems. For example, the virtual and physical addresses’ mapping relationship may
be modified when the user directly accesses the fast storage device. Therefore, pinning the
memory during DMA operation is used to keep the mapping relationship from the virtual
address to the physical address unchanged during DMA operation.

This pinned memory operation has a non-negligible overhead. In the face of I/O-
intensive applications, frequent pinned memory will seriously degrade the execution
efficiency of I/O requests. Currently, the research on DMA buffer operation mainly focuses
on the network. For example, there are many pieces of research on RDMA (remote direct
memory access) buffers [25], but there are few studies on DMA buffers when users directly
access fast storage devices. Although researchers in [26] studied the issue of DMA caching,
they mainly considered it from a security perspective.

Different from the existing methods, this paper proposes an efficient and alternative
UDMA mechanism. It is dynamically adaptive for different I/O sizes for NVMe SSDs and
lightens the I/O software stack by amortizing per-request latency. uDMA implements a
pinned memory pool for I/O requests without frequently allocating, pinning, and freeing
new memory. In addition, uDMA designs a DMA memory management strategy that
integrates discrete memory blocks by scatter/gather lists to improve the efficiency of
memory use.

3. Background and Motivation

In this section, we first introduce the background of DMA-based data transfer and
user-level DMA. Then, we present our motivation to investigate uDMA to reduce the
overhead caused by pinning memory for user-level DMA.

3.1. Background

DMA is an excellent feature of modern computer systems. With the help of DMA,
applications in OS can transfer data between specific PCIe-based devices and the main
memory independently, without involving the CPU. Without DMA, when a process per-
forms I/O operations, it typically fully occupies the CPU for the entire life cycle of the I/O
requests, making the CPU unable to perform other works. With DMA, the CPU only needs
to initialize the data transfer, such as the data’s direction, size, and location. CPU can then
do other work. This feature is critical to improving the performance of asynchronous I/O
requests because the CPU does not need to wait for relatively slow I/O data transfers.

Compared to the DMA in kernel space, user-level DMA is a more lightweight data
transfer mode. It allows users to access data for DMA transfer or control DMA transfer
from the user space. Specifically, NVMe SSDs can be accessed directly through UIO (user
space I/O) or VFIO (virtual function I/O) at the user level. Based on UIO and VFIO,
users can implement user-level DMA, assigning a hardware device to a process that allows
the process to operate and read/write the device. However, UIO and VFIO must solve
a critical problem: ensuring that physical memory is in place during the DMA process.
Currently, the mainstream accepted method is manually pinning the physical memory
pages. Pinning the memory pages makes these pages unable to be modified (e.g., page
swapping). Pinning memory pages can cause a certain degree of I/O performance loss,
especially for I/O-intensive applications.

Appl. Sci. 2023, 13, 960 4 of 14

3.2. Motivation

To assess the effectiveness of the existing user-level DMA mechanism, we evaluated
the state-of-the-art SPDK and the traditional memory copy method in Linux. We evaluated
the overheads associated with memory page pinning and copying under various data
sizes. First, we used SPDK’s spdk_dma_malloc each time to allocate and pin memory pages
for different data sizes. Then, the pinned memory pages were released immediately. We
performed this operation ten more times and calculated the average time cost. After that,
we copied the data to the pinned memory for the same testing data sizes and calculated the
average overhead caused by data copying. Figure 1 shows the statistical results.

80

800

8000

1 4 16 64 256 1024

L
a
te

n
c
y
 (
μ

s
)

Data Size (KB)

Memory Pinning

Memory Copy

Figure 1. Time consumption of pin memory and memory copy.

We identified two major shortcomings of the latest user-level DMA mechanism: (1) pinning
memory page operation has a specific time overhead, and (2) a single user-level DMA method
cannot be suitable for all I/O requests with various data sizes.

(1) Pinning memory page operation has a specific time overhead. Figure 1 shows the
cost of pinning memory pages. First, pinning one memory page (e.g., 1 KB or 4 KB) takes
about 800 µs. Second, with the increase in memory page size, the time cost of pinning
memory pages increases gradually. In addition, as the number of pinning memory pages
increases, so does the time overhead. Especially for I/O-intensive applications, frequently
pinning memory pages can bring a huge time overhead, increasing the processing time
of the whole I/O software stack in the OS. This can seriously degrade the potential of
NVMe SSDs.

(2) A single user-level DMA method cannot be suitable for all I/O requests with
various data sizes. As shown in Figure 1, when the data size is less than 60 KB, the
overhead of pinning memory pages is more significant than the memory copy. However,
as the data size increases, the time taken to copy memory is gradually greater than the cost
of pinning memory. In addition, the time overhead of the memory copy will continue to
increase. Therefore, there is a tradeoff between pinning memory pages and memory copies.

We make the following conclusions from the observation. First, for small data requests,
copying data from pageable to pinned memory is shorter than pinning memory. Further-
more, because of the small quantity of data, only a few memory blocks need to be pinned
to meet the requirement. It means we can pin a small piece of memory pages during the
initialization phase and keep it pinned throughout the application’s life cycle. Second, we
can build a pinned memory pool for medium data requests to avoid frequent allocating,
pinning, and freeing memory blocks. When a new I/O request arrives, if the available
memory in the pinned memory pool meets the needs of the I/O request, we can directly
fetch the corresponding memory block and assign it to the I/O request without allocating
and pinning the new memory block. Finally, for the I/O requests of big data, the time
consumption of pinning memory pages is less than that of the memory copy. However,
pinning a large piece of memory blocks for a long time can lead to inefficient memory
use and bring the lack of memory to other system applications. Therefore, we can only
dynamically allocate and pin memory blocks for these requests.

Appl. Sci. 2023, 13, 960 5 of 14

4. Design of uDMA

uDMA is an efficient and dynamically adaptive user-level DMA mechanism for dif-
ferent I/O sizes for NVMe SSDs. It can lighten the I/O software stack by amortizing
per-request latency. Different from the latest user-level DMA, uDMA integrates three
different pinned memory management strategies. For small data requests, it provides
a statically pinned memory management method. It builds a pinned memory pool for
medium data requests to alleviate frequently allocating and pinning memory pages. It
adopts the strategy of dynamic allocating and pinning memory pages for big data requests.

4.1. Overview of uDMA

Figure 2 shows the framework of uDMA. We adopted the statically pinning memory
strategy for small I/O requests equal to or less than 4 KB. Thus, we allocate and pin three
memory blocks during the library initialization process. Users can set the size of memory
blocks according to their experience. These memory blocks remain pinned throughout
the life cycle of the application. Because of NVMe SSDs’ fast reading and slow writing
characteristics, we use one piece of memory for reading requests and the remaining two
blocks for writing requests. Our design is because small data I/O requests do not need
to take up too much memory. If we maintain a pinned memory state throughout the
application’s life cycle, we do not waste memory, and we only need to spend one-time
pinning memory.

I/
O

-i
n
te

n
s
iv

e
 w

o
rk

lo
a
d
s

SPDK

N
V

M
e

 S
S

D

uDMA

statically pinned memory

pinned memory pool

alloc and pin free

dynamically pinned memory

alloc /

select

Figure 2. The framework of uDMA.

We designed a pinned memory pool for medium data I/O requests and proposed
allocation and release algorithms. Unlike small I/O requests and big I/O requests, the copy
and pinning memory costs for medium data are relatively high. The typical way to process
these is to pin the memory of the corresponding size for user-level DMA operation for each
I/O request. In the face of I/O-intensive applications, the pinned memory area cannot be
reused, and then the processed I/O requests need to be pinned again, which introduces a
lot of pinned memory overhead.

For a big data’s I/O request, which is greater than or equal to 4 MB, we adopted
the strategy of dynamically pinned memory. This strategy dynamically allocates and
pins memory blocks when the application reads from and writes to NVMe SSDs through
user-level DMA. We unpin and release the pinned memory block immediately after the
user-level DMA operation. We cannot use the static pinned memory strategy for I/O
requests for big data because these requests take up more memory. If we occupy memory
for a long time, it can have a destructive impact on other processes. Another reason is that
the pinned memory time is less than the big data’s copy time.

Appl. Sci. 2023, 13, 960 6 of 14

4.2. Statically Pinned Memory Management

The statically pinned memory management is shown in Figure 3. It contains three
memory block lists, namely (a), (b), and (c). Memory blocks (a) and (b) serve the writing
requests of the NVMe SSD. We designed two memory blocks to serve writing requests
because of the imbalance between the NVMe SSD’s reading and writing. Because the
writing speed is relatively slow, the data in the memory block take a long time to write to
the NVMe SSD. As shown in the figure, when (a) is full, it is out of service, and the data
in it are written to the NVMe SSD in batch. At the same time, (b) begins to serve writing
requests. When (b) is full, (a) becomes free. The (c) list illustrated in Figure 3 is designed for
reading requests. The principle is based on the feature of reading fast and writing slowly of
the NVMe SSD. Assigning one list of memory blocks for reading requests can meet reading
requirements while saving memory resources.

(a)

(b)

(c)

Two lists for writing requests

One list for reading requests

 Figure 3. Two pairs of statically pinned memory block lists.

This design has three points: (1) It can reduce the data transfer time, and we described
the reasons in detail in the motivation section. (2) It takes up less memory space because
the design is oriented toward small data requests. Thus, we only need to fix a few memory
blocks to meet the requirements. (3) It fully considers the characteristics of fast reading
and slow writing of NVMe SSDs, prepares enough memory space for write requests, and
improves the processing efficiency of NVMe SSDs’ write requests.

4.3. Pinned Memory Pool

Figure 4 shows the designed pinned memory pool for medium data I/O requests.
For a newly arrived I/O request, we first try to find out if there is a memory block that
meets the requirements in the pinned memory pool. If it exists, we can directly fetch
the corresponding memory block and assign it to the request. We allocate and pin the
new memory block if it does not exist. When the I/O request is completed, the newly
pinned memory block is saved in the memory pool for use by subsequent I/O requests.
In addition, we designed a pinned memory block management strategy based on the
scatter/gather list. Traditional DMA memory must be contiguous, resulting in low memory
utilization. For example, even if there are enough pinned memory blocks in the memory
pool, they cannot be utilized if they are discontiguous. uDMA uses the scatter/gather
list to string discontiguous memory blocks together to improve the utilization of pinned
memory blocks.

Appl. Sci. 2023, 13, 960 7 of 14

block size: 4KB

block size: 8KB

block size: 64KB

memory block

scatter/gather list

Figure 4. The pinned memory pool design.

4.3.1. Pinned Memory Pool Allocation

We dynamically allocate and pin memory blocks for I/O requests, but we do not
release blocks of memory that have been pinned immediately after the DMA operation.
Instead, we recycle the used and pinned memory blocks into the pinned memory pool
for management. The pseudocode of the algorithm is shown in Algorithm 1. The input
information is the size of the pinned memory area the application needs to allocate. The
output information is the first address information of the memory area found in the pinned
memory pool using the algorithm designed in this section. Algorithm 1 needs to deal with
three possible situations. The first is when the pinned memory pool does not exist or is
empty. The second is when the pinned memory pool is not empty, but the available pinned
memory does not meet the demand. The third is when the pinned memory pool is not
empty, and the available pinned memory can meet the demand.

For the first situation, we create a pinned memory pool when the application initializes
the NVMe SSD’s usage environment, shown in lines 1–6 of Algorithm 1. The pinned
memory pool is empty at this stage, causing the application to initiate the first NVMe
SSD’s access request. When the applicant applies for memory allocation for the first time,
we allocate and pin a memory block according to the memory block size configured by
the user. After that, we put the memory block into the index for the next memory I/O
request (see line 3). We mark the memory area as used, update the memory block’s meta
information, and return the first address of the memory area to the application. When this
pinned memory is used up, we change its state to unused and manage it using a linked list
rather than unpinning and releasing it directly.

For the second and third situations, we do not immediately apply for and pin new
memory blocks because there may be blocks of memory that meet the requirements in the
pool. Alternatively, we first find the pinned memory pool and get the information through
the index of the linked list, shown in lines 8–17 of Algorithm 1. The core idea is to find
out whether there is a pinned memory block that meets the memory pool requirements.
Moreover, we implement a new pinned memory block management method based on
scatter/gather lists in find_memory_region. As shown in Figure 4, benefiting from the
scatter/gather lists, we can connect discrete pinned memory blocks to construct a large
block. If enough blocks can meet the demand, we directly fetch the corresponding memory
from the memory pool instead of allocating and pinning a new memory block. At this time,
the time cost of pinning memory is saved. However, if the difference cannot find pinned
memory that meets the requirements, we allocate and pin a new memory block, shown in
lines 18–22 of Algorithm 1.

Appl. Sci. 2023, 13, 960 8 of 14

Algorithm 1 Pinned memory pool allocation

Input: memory_size
Output: memory_address

1: if memory_pool is null then
2: memory_chunk← alloc_and_pin(pin_size)
3: add_memory_pool(memory_pool, memory_chunk)
4: memory_address← find_memory_region(memory_chunk)
5: update(memory_chunk)
6: return memory_address
7: else
8: for memory_chunk in memory_pool do
9: if mem_free_size(memory_chunk) > memory_size then

10: memory_address← find_memory_region(memory_chunk)
11: update(memory_chunk)
12: return memory_address
13: end if
14: end for
15: if total_memory_size + pin_size > total_pin_size then
16: return null
17: end if
18: memory_chunk← alloc_and_pin(pin_size)
19: memory_address← find_memory_region(memory_chunk)
20: add_memory_pool(memory_pool, memory_chunk)
21: update(memory_chunk)
22: return memory_address
23: end if

The memory blocks used by traditional DMA must be contiguous, so if the free
memory blocks in the pinned memory pool are large enough but not contiguous, we cannot
use the free memory. Instead, we must allocate and pin new blocks of memory. This reduces
the utilization of memory blocks and increases the I/O latency by allocating and pinning
new memory blocks. We implemented a pinned memory management method based on
the scatter/gather lists to solve this problem. The scatter/gather lists concatenated the
discontiguous memory blocks in the pinned memory pool. Thus, we could assign them to
serve user-level DMA transfers.

4.3.2. Pinned Memory Pool Release

We designed a pinned memory block release algorithm, and the pseudocode is shown
in Algorithm 2. The input is the first address of the pinned memory area to be released by
the application. The output is the memory block’s status, representing the status of the
execution result of the release process so that the upper application can judge the execution
result. The upper-layer application may mistakenly pass in a memory address that does
not exist in the pinned memory pool, shown in lines 2–4 of Algorithm 2.

We traverse the linked list of pinned memory blocks, finding out if there are contiguous,
mergeable memory blocks, shown in lines 9–20 of Algorithm 2. The accessible memory
areas before and after merging prevent fragmented memory space when releasing the
memory area. If we find blocks that can be merged, we first merge them to get a larger
contiguous pinned memory space and then mark it as free. If such memory blocks are
not found, we directly mark them as free. After completing the marking of the memory
blocks that can be released, as shown in lines 21–24 of Algorithm 2, we detect whether the
new time of these memory blocks exceeds the threshold set by the user. Only the memory
blocks that exceed the new time set by the user are released.

Appl. Sci. 2023, 13, 960 9 of 14

Algorithm 2 Pinned memory pool release

Input: memory_address
Output: status

1: memory_chunk← find_memory_chunk(memory_pool, memory_address)
2: if memory_chunk is null then
3: return status::error
4: end if
5: pin_memory_free(memory_chunk, memory_address)
6: update(memory_chunk)
7: mem_pre_region← chunk_pre_region(memory_chunk, memory_address)
8: mem_cur_region←memory_address
9: while memory_pre_region is free do

10: merge_free(memory_chunk, mem_pre_region, mem_cur_region)
11: mem_cur_region←mem_pre_region
12: mem_pre_region← chunk_pre_region(memory_chunk, mem_cur_region)
13: end while
14: mem_next_region← chunk_pre_region(memory_chunk, memory_address)
15: mem_cur_region←memory_address
16: while memory_next_region is free do
17: merge_free(memory_chunk, mem_next_region, mem_cur_region)
18: mem_cur_region←mem_next_region
19: mem_next_region← chunk_next_region(memory_chunk, mem_cur_region)
20: end while
21: if memory_chunk is free and memory_chunk_time_interval > time then
22: delete_memory_chunk(memory_pool, memory_chunk)
23: free_and_unpin(memory_chunk)
24: end if
25: return status::ok

4.4. Parameters Setting

In uDMA, there are some parameters to set. They are: (1) m, that is, the size of the
pinned memory block for each application, (2) M, the total size of the memory cache area,
and (3) t, the time threshold when the memory block is not accessed.

m can be set according to the application load characteristics or empirical values. The
default value of m is 4 MB. We can adjust the pinned memory block size according to the
memory block usage of the application during a period. After the application is executed
for some time, we judge the memory usage of the current application and then adjust the
memory block size appropriately to improve the performance.

There is no specific policy for setting M, because the more significant the value is
set at, the better the concurrency of I/O request processing. However, it needs to be set
reasonably according to different situations. For example, there is no other application to
run on a server that only does disk I/O. Users can set a considerable value to improve the
processing efficiency of I/O requests. The setting principle is to set a significant threshold
without affecting the operation of other applications.

The primary consideration of the parameter of t is to release some completely free
memory blocks and reduce the occupation of memory space when I/O processing is less in
a period. The value of t is also a practical value, which is closely related to the application
environment. If the value of t is too large, some of the memory may be pinned for a long
time and not in use, resulting in a waste of memory resources. If the value of t is too small,
it may result in frequent allocating and pinning memory.

5. Experiments and Results

In this section, we evaluate the efficiency of the proposed uDMA. First, we introduce
the experimental setup including the experimental environment and benchmarks. Then,

Appl. Sci. 2023, 13, 960 10 of 14

we conduct several evaluation schemes to test the I/O performance. Finally, we analyze
the performance of uDMA.

5.1. Experimental Setup

Table 1 shows the hardware and software environment of the experiment. We con-
ducted a comparative experiment on a physical server with an Intel Xeon (R) Gold 5115
CPU. The CentOS 7.4 operating system and 20.01 SPDK were installed on the server. All
performance evaluations were conducted on a commercial Intel Optane 900P Series NVMe
SSD with a 280 GB capacity.

Table 1. The configuration of the experiment.

Environment Configuration

CPU Intel(R) Xeon(R) Gold 5115 CPU @ 2.40 GHz
Memory 128 G

OS CentOS Linux release 7.4.1708 (Core)
SPDK 20.01
GCC 4.8.5

NVMe Storage Intel Optane 900P Series 280 GB NVMe SSD

We compared the performance of uDMA with the latest user-level DMA methods
implemented in SPDK [13]. We tested the effectiveness of uDMA under two benchmarks:
a microbenchmark, perf [27,28], and a real-word benchmark, RocksDB [29]. perf is a
benchmarking tool that can be used for performance tests. It has been widely used to
test I/O performance [13,14]. RocksDB is a key–value and high-performance embedded
database. It implements an LSM-tree storage engine to provide a key–value store and
reading/writing functions. The configuration of perf and RocksDB were consistent with
the official test of SPDK.

5.2. Micro Benchmark Test

We used perf to generate several I/O requests for different data sizes: (1) 50,000
random I/O requests for data less than or equal to 4 KB, (2) 5000 random I/O requests for
medium data with sizes of 4 KB to 128 KB, and (3) 5000 random I/O requests for big data
sizes larger than 128 KB. The memory block size was also set to three cases. The blocks
used for small IO requests were set to 32 MB, the pinned memory block size was 4 MB, and
the memory block size used for data larger than 128 KB was set to 32 MB.

Figure 5 shows the average response time of I/O requests for different data sizes.
The x-axis and the y-axis represent the size of I/O requests and the average response
time in seconds. It can be seen from Figure 5 that the performance of the NVMe SSD
improved under all memory sizes tested, and the performance improvement was more
evident under different data sizes. The main reason was that the algorithm’s key idea
was to allocate the pinned memory overhead to more requests and reduce the overhead
of memory-related operations. It also optimized small data requests and used memory
copy to effectively reduce the pinned memory overhead. The pinned memory pool was
constructed in memory blocks for medium data to allocate the pinned memory overhead to
multiple I/O requests. It could also be seen that under the same data size, with the increase
of the program running time, the longer the memory usage time, the more pronounced the
improvement effect of the algorithm. This was because with the increase of memory usage
time, each memory block was used by more requests, and the pinned memory overhead of
each memory block was allocated to more requests, which reduced the proportion of the
overall memory operation-related overhead.

Figure 6 shows the performance improvement effect of the algorithm under various
test data sizes. It can be seen from the figure that under most data sizes, with the increase of
the program running time, the improvement effect of the algorithm became more prominent.

Appl. Sci. 2023, 13, 960 11 of 14

The main reason was that more requests used the same memory block, and its pinned
memory overhead was allocated to more requests accordingly.

1

2

3

4

5

6

7

8

9

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

R
e

s
p

o
n

s
e
 t

im
e
 (

s
)

Data size

uDMA (3) SPDK (3) uDMA (9) SPDK (9)

Figure 5. I/O response time under different data sizes.

The second experiment verified the algorithm’s efficiency under different program
running times. The maximum sizes of selected memory test data were 64 KB and 128 KB.
The test results are shown in Figure 7. It can be seen from the figure that with the increase in
the running time of the simulation program, the effect of the algorithm was more prominent.
The main reason was that with the increase in the program running time, the memory
library in SPDK applied for and pinned memory every time and released memory after
use, which introduced a significant overhead. The algorithm allocated the pinned memory
overhead to more I/O requests, reducing the total memory operation overhead. The results
showed the effectiveness of the algorithm. Allocating the allocated memory overhead to
more requests could effectively improve performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

I/
O

 l
a
te

n
c

y
 r

e
d

u
c

ti
o

n
 d

e
g

re
e

Data size

Running time (3 minutes) Running time (9 minutes)

Figure 6. Performance improvement under different program running time.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

R
e
s

p
o

n
s

e
 t

im
e

 (
m

s
)

Running time (minutes)

uDMA (64KB) SPDK (64KB) uDMA (128KB) SPDK (128KB)

Figure 7. Influence of running time on Algorithm 1.

Appl. Sci. 2023, 13, 960 12 of 14

5.3. Real-World Benchmark Test

We ran the db_bench implemented in RocksDB to test the effectiveness of uDMA. To
get closer to the natural environment, we used the ReadRandomWriteRandom mode to
test the ops and micros of RocksDB under uDMA and SPDK. We ran RocksDB for 5 min
per test, and the block size gradually increased from 4 KB to 128 KB.

Figure 8 shows the average I/O latency of RocksDB under uDMA and SPDK. Com-
pared with SPDK, uDMA reduced the I/O latency by an average of 11.13%. According
to the results shown in the figure, we can see that when the data size was 4 KB, the per-
formance of uDMA was similar to that of SPDK. However, with the gradual increase of
the data size, the reduced I/O latency of uDMA increased gradually, with a maximum
of 11.39%. The main reason was that uDMA used fixed memory pools to reduce user-
level DMA requests and fixed memory operations. By contrast, SPDK required frequent
allocations and pinned memory blocks.

The IOPS results under SPDK and uDMA are shown in Figure 9. The IOPS of both
SPDK and uDMA decreased as the data size increased. In the initial phase, when the data
size was 4 KB, the IOPS of SPDK and uDMA were similar. However, with the gradual
increase in data size, the decrease of the IOPS of SPDK was significantly higher than
that of uDMA. By contrast, uDMA’s IOPS was up about 9.5%. Because SPDK needed to
allocate and pin memory blocks frequently for I/O requests, its IOPS degradation was
relatively large.

0

100

200

300

400

500

600

700

4 8 16 32 64 128

m
ic

ro
s

/o
p

Data Size (KB)

SPDK uDMA

Figure 8. I/O latency under different data sizes.

108.5

109

109.5

110

110.5

111

4 8 16 32 64 128

o
p

s
/s

e
c
 (

K
)

Data Size (KB)

SPDK uDMA

Figure 9. IOPS under different data sizes.

6. Conclusions

The user-mode I/O frameworks introduce additional overhead, such as pinning mem-
ory, which is a very time-consuming operation for I/O-intensive applications. This paper
proposed an alternative and efficient memory management strategy named uDMA. uDMA
can amortize per-request latency by dynamically selecting the appropriate pinned memory
mode for different sizes of I/O requests. Moreover, uDMA uses the scatter/gather lists
to improve the utilization of pinned memory blocks. The experimental results verified
the effectiveness of the proposed uDMA. Our future research will further focus on im-
proving user-mode I/O frameworks’ performance. Combining the user-mode I/O scheme
with some new characteristics of NVMe SSDs (e.g., open-channel SSDs) is a promising
research direction.

Appl. Sci. 2023, 13, 960 13 of 14

Author Contributions: Conceptualization, L.W. and L.X.; Methodology, J.Z., L.W. and L.X.; Re-
sources, L.X.; Writing—original draft, J.Z.; Supervision, G.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by by the National Natural Science Foundation of China under
grant no. 62104014, the National Natural Science Foundation of China under grant no. 62272026, the
National Laboratory of Software Development Environment under grant no. SKLSDE-2022ZX-07.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kc, K.; Hsu, C.J.; Freeh, V.W. Evaluation of MapReduce in a Large Cluster. In Proceedings of the 8th International Conference on

Cloud Computing, New York, NY, USA, 27 June–2 July 2015.
2. Dong, S.Y.; Kryczka, A.; Jin, Y.Q.; Stumm, M. RocksDB: Evolution of Development Priorities in a Key-value Store Serving

Large-scale Applications. Acm Trans. Storage 2021, 17, 1–32. [CrossRef]
3. Chen, C.L.P.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci.

2014, 275, 314–347. [CrossRef]
4. NVM Express Workgroup. NVM Express Base Specification, Revision 2.0. Available online: https://nvmexpress.org/wp-

content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf[2021] (accessed on 1 September 2022).
5. Li, F.F. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges. Proc. Vldb Endow. 2019, 12, 2263–2272.

[CrossRef]
6. Xu, Q.; Siyamwala, H.; Ghosh, M.; Suri, T.; Awasthi, M.; Guz, Z.; Shayesteh, A.; Balakrishnan, V. Performance Analysis of NVMe

SSDs and their Implication on Real World Databases. In Proceedings of the 8th International Systems and Storage Conference
(SYSTOR), Haifa, Israel, 26–28 May 2015; pp. 1–11.

7. Intel. Intel Solid State Drive 750 Series. Proceedings of the VLDB Endowment. Available online: https://www.intel.com/content/
dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf (accessed on 1 September 2022).

8. Huo, Z.S.; Xiao, L.M.; Guo, M.Y.; Rong, X. Incremental Throughput Allocation of Heterogeneous Storage with No Disruptions in
Dynamic Setting. IEEE Trans. Comput. 2020, 69, 679–698. [CrossRef]

9. Huo, Z.; Guo, M.; Xiao, L.; He, Z.; Rong, X.; Wei, B. TACD: A throughput allocation method based on variant of Cobb–Douglas
for hybrid storage system. J. Parallel Distrib. Comput. 2019, 128, 43–56. [CrossRef]

10. Wang, Y.; Huang, J.F.; Chen, J.; Mao, R. PVSensing: A Process-Variation-Aware Space Allocation Strategy for 3D NAND Flash
Memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2021, 41, 1302–1315. [CrossRef]

11. Alibaba Group. In-Storage Computing SSD Specifications and Applications. Available online: snia.org/sites/default/files/
computational/20190808_COMP302A-1_Qui.pdff[2019] (accessed on 1 September 2022).

12. Amazon Web Services. Maximizing Microsoft SQL Server Performance Using Amazon EC2 NVMe Instance Store. Available
online: https://d1.awsstatic.com/whitepapers/maximizing-microsoft-sql-using-ec2-nvme-instance-store.pdf[2020] (accessed
on 1 September 2022).

13. Yang, Z.; Harris, J.R.; Walker, B.; Verkamp, D.; Liu, C.; Chang, C.; Cao, G.; Stern, J.; Verma, V.; Paul, L.E. SPDK: A Development
Kit to Build High Performance Storage Applications. In Proceedings of the International Conference on Cloud Computing
Technology and Science (CloudCom), Hong Kong, China, 11–14 December 2017.

14. Yang, Z.; Liu, C.; Zhou, Y.; Liu, X.; Cao, G. SPDK vhost-NVMe: Accelerating IOs in virtual machines on NVMe SSDs via user
space vhost target. In Proceedings of the 8th International Symposium on Cloud and Service Computing (SC2), Paris, France,
18–21 November 2018.

15. Kim, H.J.; Kim, J.S. A user-space storage IO framework for NVMe SSDs in mobile smart devices. IEEE Trans. Consum. Electron.
2017, 63, 28–35. [CrossRef]

16. Zhu, J.; Xiao, L.; Wang, L.; Qin, G.; Zhang, R.; Liu, Y.; Liu, Z. UPM-DMA: An Efficient Userspace DMA-Pinned Memory
Management Strategy for NVMe SSDs. In Proceedings of the International Conference on Algorithms and Architectures for Parallel
Processing; Springer: Cham, Switzerland, 2021; pp. 257–270.

17. Kim, H.J.; Yee, Y.S.; Kim, J.S. NVMeDirect: A User-space IO Framework for Application-specific Optimization on NVMe SSDs. In
Proceedings of the 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage), Denver, CO, USA, 20–21 June
2016.

18. Yang, Z.Y.; Wan, Q.; Cao, G.; Latecki, K. uNVMe-TCP: A User Space Approach to Optimizing NVMe over Fabrics TCP Transport.
In Proceedings of the Internet of Vehicles. Technologies and Services Toward Smart Cities, Kaohsiung, Taiwan, 18—21 November
2019.

19. Available online: https://spdk.io/doc/memory.html (accessed on 1 September 2022).
20. Yu, Y.J.; Shin, D.I.; Shin, W.; Song, N.Y.; Choi, J.W.; Kim, H.S.; Eom, H.; Yeom, H.Y. Optimizing the Block I/O Subsystem for Fast

Storage Devices. Acm Trans. Comput. Syst. 2014, 32, 1–48. [CrossRef]

http://doi.org/10.1145/3483840
http://dx.doi.org/10.1016/j.ins.2014.01.015
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf[2021]
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf[2021]
http://dx.doi.org/10.14778/3352063.3352141
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
http://dx.doi.org/10.1109/TC.2019.2963385
http://dx.doi.org/10.1016/j.jpdc.2019.01.012
http://dx.doi.org/10.1109/TCAD.2021.3091957
snia.org/sites/default/files/computational/20190808_COMP302A-1_Qui.pdff[2019]
snia.org/sites/default/files/computational/20190808_COMP302A-1_Qui.pdff[2019]
https://d1.awsstatic.com/whitepapers/maximizing-microsoft-sql-using-ec2-nvme-instance-store.pdf[2020]
http://dx.doi.org/10.1109/TCE.2017.014709
https://spdk.io/doc/memory.html
http://dx.doi.org/10.1145/2619092

Appl. Sci. 2023, 13, 960 14 of 14

21. Song, N.Y.; Song, Y.S.; Han, H.; Yeom, H.Y. Efficient Memory-Mapped I/O on Fast Storage Device. ACM Trans. Storage 2016, 12,
1–27. [CrossRef]

22. Lee, J.; Kim, Y.; Shipman, G.M.; Oral, S.; Kim, J. Preemptible I/O Scheduling of Garbage Collection for Solid State Drives. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 1–14. [CrossRef]

23. Wang, M.Y.; Hu, Y.M. An I/O scheduler based on fine-grained access patterns to improve SSD performance and lifespan. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Republic of Korea, 24–28 March 2014;
pp. 1511–1516.

24. Kim, J.; Seo, S.; Jung, D.; Kim, J.S.; Huh, J. Parameter-Aware I/O Management for Solid State Disks (SSDs). IEEE Trans. Comput.
2011, 61, 1–15.

25. Guz, Z.; Li, H.; Shayesteh, A.; Balakrishnan, V. Performance Characterization of NVMe-over-Fabrics Storage Disaggregation. Acm
Trans. Storage 2018, 14, 1–18. [CrossRef]

26. Tian, K.; Zhang, Y.; Kang, L.; Zhao, Y.; Dong, Y. coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Tracking for
Efficient Memory Management in Direct IO. In Proceedings of the 2020 USENIX Annual Technical Conference (ATC), Santa Clara,
CA, USA, 15–17 July 2020.

27. Available online: https://spdk.io/ (accessed on 1 September 2022).
28. System Performance Tools: Perf. Available online: http://daslab.seas.harvard.edu/classes/cs165/doc/sections/S8_perf.pdf

(accessed on 1 September 2022).
29. Dong, S.Y.; Kryczka, A.; Jin, Y.Q. Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The

RocksDB Experience. In Proceedings of the 19th USENIX Conference on File and Storage Technologies, Virtual Event, 23–25
February 2021; pp. 33–49.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2846100
http://dx.doi.org/10.1109/TCAD.2012.2227479
http://dx.doi.org/10.1145/3239563
https://spdk.io/
http://daslab.seas.harvard.edu/classes/cs165/doc/sections/S8_perf.pdf

	Introduction
	Related Work
	Background and Motivation
	Background
	Motivation

	Design of uDMA
	Overview of uDMA
	Statically Pinned Memory Management
	Pinned Memory Pool
	Pinned Memory Pool Allocation
	Pinned Memory Pool Release

	Parameters Setting

	Experiments and Results
	Experimental Setup
	Micro Benchmark Test
	Real-World Benchmark Test

	Conclusions
	References

