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Abstract—Smart sensing and wireless communication tech-
nologies enable the electric power grid system to deliver elec-
tricity more efficiently through the dynamic analysis of the
electricity demand and supply. The current solution is to extend
the traditional static electricity pricing strategy to a time-based
one where peak-time prices are defined to influence electricity
usage behavior of customers. However, the time-based pricing
strategy is not truly dynamic and the electricity resource cannot
be optimally utilized in real time. In this paper, we propose
a usage-based dynamic pricing (UDP) scheme for smart grid
in a community environment, which enables the electricity
price to correspond to the electricity usage in real time. In
the UDP scheme, to simplify price management and reduce
communication overhead, we introduce distributed community
gateways as proxies of the utility company to timely respond
to the price enquiries from the community customers. We
consider both community-wide electricity usage and individual
electricity usage as factors into price management: a customer
gets higher electricity unit price if its own electricity usage
becomes larger under certain conditions of the community-wide
collective electricity usage. Additionally, we protect the privacy
of the customers by restricting the disclosure of the individual
electricity usage to the community gateways. Lastly, we provide
privacy and performance analysis to demonstrate that the UDP
scheme supports real-time dynamic pricing in an efficient and
privacy-preserving manner.

Index Terms—Smart grid; dynamic price; privacy preserva-
tion; community-specific

I. INTRODUCTION

Smart grid has emerged as the next-generation power grid

through the convergence of power system engineering and

communication technology [1]–[3]. It features millions of

intelligent networked electronic equipments, e.g. smart meters,

sensors, automatic control devices, deployed in the power grid.

The use of these equipments coupled with a dynamic pricing

(DP) strategy [4]–[6] enables the power grid to transform from

a traditional load-following operating mode to an advanced

load-shaping mode, where electricity demands are managed

adaptively to meet the electricity generation and distribution

capabilities at any time. Traditionally, the power system is

scheduled only for resource generation because the majority of

power system loads are neither controllable nor measurable at

Manuscript received 31 March 2012; revised 5 September 2012.
X. Liang, R. Lu, and X. Shen are with the Department of Electrical and

Computer Engineering, University of Waterloo, Canada (emails: {x27liang,
rxlu, xshen}@bbcr.uwaterloo.ca).

X. Li is with Huawei Technologies Canada. Part of this work was done
when he was with Inria, France (email: easylix@gmail.com).

X. Lin is with the Faculty of Business and Information Technology, Univer-
sity of Ontario Institute of Technology, Canada (email: xiaodong.lin@uoit.ca).

the required time resolution. In addition, the time-independent

retail electricity price provides little incentive for customers to

schedule their electricity consumption. With the pervasive net-

worked electronic equipments, the smart grid brings customers

with an advanced and efficient communication system which

can instantly deliver the electricity usage from customers to

an electric utility company. Here, an electric utility company

means the company that buys and sells electricity, acting

as a broker in the electricity market [7]. For simplicity, in

the following, we use “utility company” for “electric utility

company”. In the smart grid, the utility company is able to

set dynamic price information for customers corresponding

to their electricity usage. The dynamic price information can

be timely delivered to the customers, and the customers have

more economic incentives to re-schedule their daily electricity

usage. With the help of pervasive networked equipments, the

DP strategy can eventually shift the electricity demands from

peak time to non-peak time, and therefore improve stability

and reduces production costs of the power grid in the long

run.

The success of the DP strategy highly depends on the cus-

tomers’ actual response to the time-varying prices. However, it

is generally inconvenient and impractical for the customers to

manually report the usage and track the prices. To overcome

this difficulty, intelligent smart meters equipped with an auto-

matic price-aware scheduling mechanism must be trusted and

adopted by the customers. Extensive research efforts have been

made to develop these mechanisms by exploiting prediction

model [8], Markov chain model [4], and game theoretic model

[9]. In this paper, we investigate the DP strategy in smart

grid from two novel aspects: distributed price management and

privacy preservation of individual electricity usage. Distributed

price management is a necessity for the future smart grid as

the electricity demands and electricity generation/distribution

capabilities are distinct according to not only time but also

locations. Following the hierarchical network structure of

smart grid, we require price management to be carried out

within community networks. In each community network, there

is a community gateway (CG) to communicate with the local

customers for the electricity usage collection and the price

indication. Such a gateway provides fast response to the price

enquiries from the customers and reduces the communica-

tion overhead of the utility company. Privacy preservation

is another critical component to the success of smart grid

deployment, as recognized by many standardization bodies,

e.g. National Institute of Standards and Technology (NIST)

[10]. Without appropriate and robust privacy policies, the



customers may be reluctant to get involved in the DP strategy

where their electricity usage has to be reported to the CGs all

the time. Thus, the DP strategy may not work well as expected.

It is worth noting that the security issues of the DP strategy

in smart grid are also important, such as device attacks [11]

and access control [12]. In this paper, we mainly focus on

privacy issues, i.e., protecting individual electricity usage of

customers. Our contributions are summarized as follows.

We propose a usage-based dynamic pricing (UDP) scheme

with privacy preservation for smart grid in a community envi-

ronment. The UDP scheme protects the individual customers’

electricity usage from disclosure to the CG while enabling the

CG to generate the price indication for the customers based

on the community-wide electricity usage and the individual

electricity usage. We provide an extensive privacy analysis

to obtain the exact probability that the CG and the com-

promised customers correctly guess the electricity usage of

a target customer. Furthermore, we improve the UDP scheme

to achieve enhanced privacy with reasonable communication

cost and computation overhead. We show that the enhanced

UDP scheme provides the highest privacy level, i.e., the CG

has the smallest probability of having a correct guess on the

electricity usage of the target customer.

The remainder of this paper is organized as follows. In

Section II, we present the related work. We introduce the

network architecture of smart grid and propose a new DP

strategy respectively in Sections III and IV. In accordance with

the new strategy, we give the detailed constructions in Sections

V and VI, along with the privacy analysis presented in Section

VII. We further show how to achieve enhanced privacy in

Section VIII. Finally, we conclude the paper in Section IX.

II. RELATED WORK

A. Electricity Pricing

To schedule the electricity load, the utility company adopts

the conventional direct load control (DLC) strategy [13] where

smart switches are installed inside of houses such that the

house appliances can be turned off during a high-demand

period. The DLC enforces the customers to abandon the

control of their appliances at certain conditions. Recently,

in Ontario, Canada, a Time-Of-Use (TOU) pricing strategy

has been widely adopted by utility companies, e.g., Hydro

One [14], Waterloo North Hydro [15]. TOU means that the

electricity unit price changes according to the time of the

day. The Ontario Energy Board (OEB) divides daily and

seasonal TOU periods into three categories: off-peak, mid-

peak, and on-peak. TOU enables the customers to view the

electricity usage online and potentially influences electricity

usage behavior of the customers. Though the period settings of

TOU can be updated, TOU is neither truly dynamic nor related

to the real-time usage. Therefore, TOU may cause some

inappropriate situation. For example, in a pre-defined on-peak

period, when total electricity usage is in fact low, the over-

supplied electricity cannot be economically stored as electrical

energy [16] and the customers should be given more incentive

to consume more electricity. However, the high on-peak price

discourages the electricity consumption of the customers. As a

great benefit of smart grid, the dynamic pricing (DP) strategy

ensures enough flexibility for the customers (i.e., without

setting an upper bound of usage) and is more friendly to meet

their demands. In this paper, we propose a new DP strategy

by relating the price to the electricity usage in real time, and

therefore the high on-peak price issue is avoided.

B. Security and Privacy in Smart Grid

Security and privacy are critical to the development of

real-time DP strategy in smart grid. As the electricity usage

information is frequently exchanged between the customers,

the CGs, and the utility companies, to prevent the security

attacks and the privacy violations is critical. Khurana et al.

[17] and Li et al. [18] summarized security, trust, and privacy

issues in a comprehensive smart grid system. They presented

the security and privacy challenges of smart grid system design

such as transmission substations, policy-based data sharing,

and attestation for constrained smart meters. Lu et al. [19] pro-

posed an efficient and privacy-preserving aggregation scheme

(EPPA) for smart grid communications. The EPPA uses a

super-increasing sequence to construct multi-dimensional data,

and encrypts the structured data by the homomorphic Paillier

cryptosystem technique. For data communications from the

customers to the operation center, data aggregation is per-

formed directly on ciphertexts at gateways without decryption,

and the aggregation result of the original data can be obtained

at the operation center. Acs and Castelluccia [20] exploited the

privacy-preserving aggregation technique of time-series data

in smart meters. The proposed scheme employs a differential

privacy model in which the customers add noise to their

electricity usage and the aggregator can successfully obtain

the sum of the usage with a very large probability. However,

in the smart grid, the sum of the usage of the customers is

very critical since it directly influences the electricity price and

accordingly the electricity usage behavior of the customers.

Thus, the customer electricity usage needs to be frequently

and accurately collected. This requirement imposes a large

amount of communication overhead on the customers and the

utility company. In this paper, we propose a distributed pricing

strategy where the CGs distributedly interact with the local

customers and ensure the dynamic price information to be

delivered in a timely fashion. We regard the CGs as the proxies

of the utility company and explore the privacy issues for this

scenario.

C. Crypto-technique: Homomorphic Encryption

Homomorphic encryption [21] provides the addition and

multiplication operations over ciphertexts; a user is able to

process the plaintext without knowing the secret keys. With

this property, homomorphic encryption is widely used in data

aggregation and computation specifically for privacy-sensitive

content [19]. We review the homomorphic encryption scheme

in [21] which serves a building block of our proposed UDP

scheme.

A central authority runs a generator G which outputs

⟨p, q, R,Rq, Rp, χ⟩ as system public parameters:

• p < q are two primes s.t. q ≡ 1 ( mod p) and p;
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Fig. 1. Network architecture for smart grid

• Rings R := Z/⟨x2+1⟩, Rq := R/qR = Zq[x]/⟨x
2+1⟩;

• Message space Rp := Zp/⟨x
2 + 1⟩;

• A discrete Gaussian error distribution χ = DZn,σ with

standard deviation σ.

Suppose a customer Ui has a public/private key pair (pki, ski)
such that pki = {ai, bi}, with ai = −(bis+ pe), bi ∈ Rq and

s, e ∈ χ, and ski = s. Let bi,1 and bi,2 be two messages

encrypted by Ui.

• Encryption Epki
(bi,1): ci,1 = (c0, c1) = (aiut + pgt +

bi,1, biut + pft), where ut, ft, gt are samples from χ.

• Decryption Dski
(ci,1): If denoting ci,1 = (c0, · · · , cα),

bi,1 = (
∑α

k=0 cks
k) mod p.

Consider the two pieces of ciphertext ct1 = E(bi,1) =
(c0, · · · , cα1

) and ct2 = E(bi,2) = (c′0, · · · , c
′

α2
).

• Addition: Let α = max(α1, α2). If α1 < α, let cα1+1 =
· · · = cα = 0; If α2 < α, let c′α2+1 = · · · = c′α = 0.

Thus, we have E(bi,1 + bi,2) = (c0 ± c′0, · · · , cα ± c′α).
• Multiplication: Let v be a symbolic variable and com-

pute (
∑α1

k=0 ckv
k) · (

∑α2

k=0 c
′

kv
k) = ĉα1+α2

vα1+α2 +
· · · + ĉ1v + ĉ0. Thus, we have E(bi,1 × bi,2) =
(ĉ0, · · · , ĉα1+α2

).

III. SMART GRID NETWORK ARCHITECTURE

Smart grid requires an efficient communication platform

for monitoring and controlling the grid operations. By gen-

eralizing previous proposals [18], [22], [23], we present a

hierarchical network structure of smart grid including three

layers, i.e. a residential network layer, a community network

layer, and a regional network layer, as illustrated in Fig. 1.

Residential networks are at the bottom layer, each corre-

sponding to a distinct customer. A residential network has a

star-like topology, composed of a smart meter at the center

and a few control switches (if any exits) at peripheral. As the

interface of the network, the smart meter provides real-time

raw metering data to the control center at the top layer, and

detailed energy usage and price information to the customer.

It also accepts control commands from the upper layers to

connect/disconnect particular appliances (through pre-installed

control switches) for load balancing purposes.

Community networks are at the middle layer. A community

network connects to the residential networks, Intelligent Elec-

tric Devices (IEDs) and Remote Terminal Units (RTUs) in a

neighborhood together. Data storage devices may additionally

be included in the network to support networked storage,

local fault diagnosis and distributed decision making. There

is a communication gateway in each community network. It

manages the communication among the network elements,

performs data aggregation, and bridges the bottom and top

layers to allow data exchange. An example of community

network is the network in a smart community [24].

Regional networks are at the top layer. A regional network

connects to the community networks, power plants, renewable

power sources, substations, feeders and other grid devices in

a geographic region. Dedicated hub nodes may be deployed

in the network to build a multiple hop overlay structure for

efficient and reliable data communication. A control center

is implemented in each regional network. It provides SCADA

(supervisory control and data acquisition) functionalities in the

regional grid: collecting electricity usage and grid operation

status, detecting and responding to anomalies, and optimizing

power generation, transmission and distribution.

In the above presented architecture, each network is realized

by high-speed wired or wireless links or the combination

thereof, and runs IP-based communication protocols. Sup-

porting IP allows devices with different physical details to

be straightforward integrated and managed in a unified way.

Further, control centers, CGs and smart meters could be

connected through dedicated networks. With the reliable and

efficient connections, the customers may access their own

electricity usage and cost information, utility companies may

obtain electricity usage information at different granularities,

and control centers may share data and coordinate to make

inter-regional decisions.

IV. A NEW DYNAMIC PRICING STRATEGY

The objective of the DP strategy is to discourage concen-

trated electricity usage and flatten peak load in the power

system. The price is subject to multiple factors such as

location, time, and usage. Current pricing strategy links the



price to time and location only and ignores its usage-dependent

nature. Within a given time period, the strategy provides

indiscriminately treatment to the customers that use electricity

differently (in amount, for example) and may have limited

and even improper effect on load shifting. For instance, even

if only a few customers are consuming electricity during pre-

defined peak time and the total load is far lower than the

power system capacity, the price maybe set to a high value and

possibly cause unnecessarily reduced electricity usage. Here,

we suggest a new DP strategy with consideration of the actual

individual electricity usage and the community-wide electricity

usage. The strategy is applied at the community network layer

of smart grid hierarchy.

Consider a community network composed of n homogenous

customers U1, · · · , Un and one CG [24]. Time is slotted. At

each time slot t, the electricity usage of a customer Ui is

denoted by ei,t, and the community-wide electricity usage is

given as es,t =
∑n

i=1 ei,t. The CG obtains a usage threshold

em from the utility company to differentiate peak time and

regular time. If es,t ≥ em, the time slot t will be regarded

as a peak time and the price will be set to a peak-time

price; otherwise, it will be a regular time and the price is

the regular-time price. Note that, in regular time, the price

p1 will be kept static to all the customers and the customers

have enough incentive to use more electricity. In peak-time,

the CG calculates ea = em/n as a threshold to differentiate

two kinds of customers. For the customers with usage no

larger than ea, the price p2 is higher than that in regular-time.

These customers do not over-consume electricity and their

behavior should not be largely influenced. For the customers

with usage larger than ea, the dynamic price p3 is calculated

by using a polynomial function f() with the individual usage

ei,t as an input. These customers are regarded as the main

contributors of peak time, and the price function f() outputs

a higher price than both p1 and p2. It also varies among

customers. The electricity price setting is shown in Table

I. Specifically, according to the studies of power system in

[25] and [26], the power-cost relation can be represented by

a quadratic polynomial f(x) = a + bx + cx2 where x is

the generated power and f() is the total cost. In practice,

the utility company defines the coefficients (a, b, c) toward

different communities in different regions. The coefficients can

be also related to the usage sum es,t with respect to the given

community and time. It is required that f(ea) = p2 to keep

the function with continuity. The utility company can enforce

a more complicated price policy.

The responsibility of the CG is to notify the customers of the

price information so that the customers are able to adjust their

electricity usage and avoid large bills. The CG can be regarded

as a proxy authorized by the utility company which initializes

the price parameters for the CG. The CG then calculates and

sends price information to the customers per each time slot. In

this setting, the utility company is not necessarily bothered by

the request-and-response process from the customers. At the

meantime, the customers receive authentic price information

from the CG while the individual electricity usage will not

be revealed to the CG. In the UDP scheme, the customers

set price threshold values and implicitly send them to the CG

TABLE I
PRICE DEFINITION

ei,t ≤ ea ei,t > ea

Regular-time p1 p1
Peak-time p2 p3 = f(ei,t)

p1 and p2 are static, while p3 is dynamic; and p1 < p2 < p3.

TABLE II
FREQUENTLY USED NOTATIONS

U A utility company

C Community gateway (CG)

U1, · · · , Un n customers

U ′

1, · · · , U
′

n n customers ranked with (1, · · · , n) by U
t A time slot in time period T

ei,t The electricity usage of Ui during t

es,t =
∑n

i=1 ei,t, the community-wide electricity usage

em The threshold value to determine peak time

ea The threshold value to set electricity price for customers

f() The dynamic price function

p1, p2 Two static prices

p3 Dynamic price

Epki
() A homomorphic encryption function

p̃i The price threshold set by Ui

e[1,··· ,n]/i,t A sum of electricity usage of customers except Ui

which will then reply whether the actual price is larger, equal

or less than the threshold values.

Electricity usage and electricity price are both tightly re-

lated to customer privacy, given that price is determined in

accordance with usage. The utility company is a trusted entity

and has full knowledge about the electricity usage of all the

customers. It sets the electricity price for all the customers

based on the data. The CG indicates the price information

to individual customers. As a local device, the CG is not

necessarily trustworthy, and should not know any customer’s

electricity usage and actual price. Thus, the issue of privacy

preservation is to protect these two types of information from

being disclosed to the CG and the compromised customers. It

must be guaranteed before the strategy is pervasively adopted.

V. USAGE-BASED DYNAMIC PRICING

According to the DP strategy introduced in the previous

section, we propose the UDP scheme with privacy preservation

for smart grid. The operation of the scheme is composed

of four phases as shown in Fig. 2. The utility company U
first initializes the pricing parameters and passes them to

the community gateway C and the customers. Specifically,

it defines the usage threshold em according to the capacity

of the local power grid in the community, and defines the

dynamic price function f() for peak time. Apparently, em may

be different for different communities. For each community,

U selects random secrets for (U1, · · · , Un) and C.

After the system initialization, the customers report their

electricity usage per time slot to C. They mix their electricity

usage with their secrets for privacy preservation. C removes

the random secrets and obtains the community-wide electric-

ity usage at each time slot. It returns a price indicator to

the customer with respect to the community-wide electricity

usage. Meanwhile, it forwards the received electricity usage,
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Fig. 2. Work flow of the UDP scheme

without modification, to U for billing and accounting. Because

U knows the random secret of each customer, it is able to

recover the individual electricity usage and compute the actual

electricity price for each customer. Below, we elaborate on

these phases.

A. System Initialization

The utility company U , the community gateway C and all the

customers (U1, · · · , Un) communicate to configure the system

parameters for a specific time period T .

a) Parameter setup.: U generates system parameters.

It runs an HE generator G and obtains the HE parameters

(p, q, R,Rq, Rp, χ). It then generates a cyclic group G
′ with

order p̄ where p̄ is a large prime and the largest number in G
′

is l ≪ p. It also generates two cyclic groups G and GT with

the same order q̄, where q̄ is a large prime. Suppose G and

GT are equipped with a pairing, i.e., a non-degenerated and

efficiently computable bilinear map e : G × G → GT such

that i)∀g, h ∈ G, ∀a, b ∈ Zq̄, e(g
a, hb) = e(g, h)ab; and ii)

∃g ∈ G, e(g, g) has an order n in GT .

U generates n+1 distinct random numbers gj ∈ G
′ for 0 ≤

j ≤ n (gn+1 = g0) and defines a cryptographic hash function

H : {0, 1}∗ → Zp̄ and a keyed-hash message authentication

code HMAC. Lastly, it publishes the system parameters P =
(p, q, R,Rq, Rp, χ, p̄,G

′, q̄, e,G,GT , H,HMAC).
b) Secret distribution.: U assigns secrets to

(U1, · · · , Un) and C. Specifically, it arranges customers

(U1, · · · , Un) with ranks (1, · · · , n) at random. The customer

with idi at rank k obtains the secrets (gk, gk+1, si = H(idi)
s),

where s is the master key of U . The customers are not

informed about their ranks. U further sends the secrets

(g1, g0, sc = H(idc)
s) to C.

c) Price function.: U defines a price function and passes

it to C, who will use the function to determine dynamic

price information for a given customer. In the proposed price

function, price is determined by several factors, i.e., individual

electricity usage ei,t, the community-wide electricity usage

es,t, threshold values (em, ea), static prices (p1, p2), and the

coefficients (a, b, c). U delivers (em, ea, p1, p2, a, b, c) to C. In

accordance with Table I, we define the price function F (ei,t)
as

F (ei,t) =







p1, if es,t ≤ em
p2, if es,t > em, ei,t ≤ ea
a+ bei,t + ce2i,t, if es,t > em, ei,t > ea

(1)

When ei,t ≤ ea, Ui has static price p1 or p2. When ei,t > ea,

the dynamic price is applied.

B. Electricity Usage Collection

We elaborate the electricity usage collection with respect to

a time slot t ∈ T and a specific customer Ui at rank k. Ui

reports its electricity usage ei,t and a price threshold p̃i to C.

To preserve its privacy, Ui executes the following steps:

1) calculate êi,t = ei,t + g
H(t)
k − g

H(t)
k+1 .

2) use the published system parameter P to generate an

HE public/secret key pair (pki, ski).
3) use the homomorphic encryption to generate a 3-tuple

(pki, Epki
(ei), Epki

(p̃i)).
4) generate di = (êi,t, pki, Epki

(ei,t), Epki
(p̃i)).

5) use the session key κ = e(si, H(idc)) =
e(H(idi), H(idc))

s, and generate the keyed-hash mes-

sage authentication code HMACκ(di).
6) send ri = (idi, di, HMACκ(di)) to C.

C. Price Indication

The community gateway C receives all electricity usage

reports ri for 1 ≤ i ≤ n. It does the following verification and

calculation, and then sends a price indicator to the customer:

1) recover the session key κ = e(H(idi), sc) =
e(H(idi), H(idc))

s, and verify the authenticity of di by

HMACκ(di).
2) retrieve êi,t from di and calculate

n
∑

j=1

êi,t =
n
∑

j=1

(ei,t + g
H(t)
k − g

H(t)
k+1 )

=

n
∑

j=1

ei,t + (g
H(t)
1 − g

H(t)
2 + · · · − g

H(t)
0 )

=

n
∑

j=1

ei,t + (g
H(t)
1 − g

H(t)
0 )

(2)

3) obtain es,t =
∑n

j=1 êi,t − g
H(t)
1 + g

H(t)
0 .

4) compare es,t and em. If es,t < em, set pi = p1, send px
to Ui, and stop; otherwise, compute pi by the function

f() and continue with the following steps.

5) through the homomorphic encryption technique, obtain

the Epki
(α) and Epki

(β), where α = p̃i and β = a +
bei,t + ce2i,t.

6) choose a random value ϕ ∈ Zp such that 1 ≤ ϕ <
⌊p/(2l)⌋ and m|ϕ, m ∈ Z, 1 ≤ m ≤ l, and calculate

indi = Epki
(ϕ(α− β)) from Epki

(α) and Epki
(β).

7) finally return the price indicator indi to Ui.

For customer Ui, if it receives p1, it will know the current

price is the regular-time price. If it otherwise receives a price

indicator indi, it will understand that the current price is a

peak-time price and further decrypt indi to obtain the indicator

resi = ϕ(α − β). If 0 < resi ≤
p−1
2 , Ui concludes α ≥ β

and therefore p̃i > pi; if resi = 0, Ui concludes p̃i = pi; if
p−1
2 < resi < p, Ui obtains p̃i < pi.
Note that, ϕ(α − β) locates in the range [−p/2, p/2). In

this case, the comparison result of α and β implies that of p̃i
and pi. More analysis can be found in Sec. VII-A.



D. Report and Charge

The utility company U knows the secret keys of all the

customers. With di sent from C, U verifies the authenticity of

di and obtains the actual electricity usage ei,t by removing the

secret keys gj for 0 ≤ j ≤ n. Based on the actual electricity

usage and the price function, U computes the electricity prices

for the individual customers and charges them accordingly.

VI. ADAPTATION TO COMMUNITY DYNAMICS

The community network contains n customers initially.

Over time, the number of customers may be changed because

the residents may move in or out of the community. The

proposed UDP scheme can easily adapt to the community

dynamics through the following registration and deregistration.

A. Registration

When a new customer Un+1 registers to U , U randomly

picks a rank value k+ ∈ {2, · · · , n} for Un+1. Then, it

adjusts the ranks of all existing customers in the community

as follows: for any existing a customer in the community, its

rank k∗ remains unchanged if 1 ≤ k∗ < k+, or increased by 1
otherwise. After the adjustment, U generates secrets for Un+1

and updates the secrets of the two customers with new ranks

k+ − 1 and k+ + 1. Other customers and C do not need to

update secrets.

Specifically, U generates two secrets g′k+ and g′k++1 for

Un+1, replaces gk+ with g′k+ for the customer with new rank

k+ − 1, and replaces gk+ with g′k++1 for the customer with

new rank k+ + 1. Note that, if U assigns the new customer

Un+1 with rank 1 or n + 1, C needs to change its secrets

and such modification reveals Un+1’s rank to C. Therefore,

we require U not to assign the new customer with rank 1 or

n+ 1.

However, if C compromises some customers, the secret

change of these compromised customers would also reveal

Un+1’s rank information. One solution to resolve the rank

disclosure problem is to enable simultaneous addition of

multiple new customers. As such, multiple random ranks will

be generated and assigned out, and the simultaneous change

of secrets will make it difficult for C and the compromised

customers to identify the rank of a specific customer.

B. Deregistration

If a customer Ui at rank k− (1 ≤ k− ≤ n) de-registers to U ,

U adjusts the ranks of other customers in the following way.

For a customer with rank k∗, if 1 ≤ k∗ < k−, its rank remains

unchanged; otherwise, it is decreased by 1. Afterwards, the

secrets of these customers need the corresponding adjustment.

Specifically, if k− = 1, U replaces g1 with g2 for C; if

k− = n, it replaces g0 with gn for C. In case of 2 ≤ k− ≤
n − 1, U replaces gk− with gk−+1 for the customer at new

rank k− − 1. After making these changes, C can still obtain

the community-wide electricity usage e′s,t of n−1 customers.

Note that, C and the customers with old ranks k− − 1 and

k− + 1 may find their rank relations with the deregistered

customer when their secrets are updated. The disclosed rank

information cannot be used to violate the privacy of other

registered customers. Besides, simultaneous deregistration can

further prevent the customers who have their secrets changed

from identifying the relations between their ranks and those

of the deregistered customers.

VII. PRIVACY ANALYSIS

In this section, we validate the privacy preservation property

of the proposed UDP scheme. We assume that U is the only

trusted entity, and we define two types of attackers with

different targets.

A. Targeting on Community-wide Electricity Usage

We use the following theorem to prove the hardness of ob-

taining the community-wide electricity usage by the malicious

customers.

Theorem 1: C does not disclose the community-wide elec-

tricity usage to an individual customer Ui.

Proof: In step 2 of price indication, C obtains the

community-wide electricity usage es,t. Then, in the follow-

ing steps, it generates two ciphertexts respectively for the

plaintexts α and β. If C directly sends Epki
(α) and Epki

(β)
to Ui, Ui can derive the coefficients (a, b, c) and threshold

values em, ea, which is not necessary and insecure. In step

6, C sends ϕ(α − β) to Ui, where ϕ is a random number

added for anonymity. Since m|ϕ for some 1 ≤ m ≤ l, we

have m|(ϕ(α− β)). (α− β) can be multiple possible values

in Ui’s view. Thus, the customers are unable to obtain price

parameters and community-wide usage information es,t.

B. Targeting on Customer Electricity Usage

We discuss the privacy violation attacks which target on

obtaining a given customer Ui’s electricity usage ei,t. We

classify the attacks into four categories according the at-

tackers’ capabilities: i) single-customer launched; ii) multi-

customer launched; iii) CG launched; and iv) customer-and-

CG launched.

1) Single-customer Launched Attack: This attack is per-

formed by a single compromised customer Uj , j ̸= i in the

community. In the UDP scheme, Uj can obtain the customized

price indicator, and knows when es,t > em and ei,t > ea.

However, C will not send back the community-wide usage

es,t. In addition, es,t contains the usage of multiple users.

The electricity usage ek,t of any customer Uk for k ̸= i, j acts

as random numbers to anoymize ei,t. Uj cannot obtain any

related information of ei,t.
2) Multi-customer Launched Attack: In this attack, multiple

compromised customers Uj for j ∈ A attempt to obtain ei,t
through collusion. Likewise, they cannot obtain es,t. However,

as the number of colluded customers increases, the randomness

is reduced and the probability of having a correct guess on

ei,t increases. In an extreme case that n − 1 customers are

colluded, they are able to know the sum of their electricity

usage e[1,··· ,n]/i,t (= es,t − ei,t). Since es,t ≤ em or es,t >
em is publicly known, they can derive whether ei,t ≤ em −
e[1,··· ,n]/i,t or ei,t > em − e[1,··· ,n]/i,t. They can effectively

narrow down the range of ei,t but cannot obtain exact value

of ei,t.



3) CG-launched Attack: This attack is launched by C alone,

without involving any compromised customer. In the UDP

scheme, Ui sends an electricity usage report to C. However,

the UDP scheme provides privacy preservation such that C
is unable to obtain ei,t. Recall that Ui transmits êi,t and

Epki
(ei,t), where êi,t = ei,t + g

H(t)
k − g

H(t)
k+1 and Epki

() is

a homomorphic encryption under public key pki. Epki
(ei,t)

reveals no information about ei,t to C because C does not

have the HE secret key ski. As for êi,t, since C only obtains

the secrets g1 and g0 from U , it cannot get both gk and gk+1.

If gk(gk+1) is known to C, g
H(t)
k+1 (g

H(t)
k ) appears as a random

number to anonymize ei,t. Thus, ei,t cannot be obtained by C.

4) customer-and-CG-launched Attack: This attack is a

combination of the previous two attacks. It involves C and

one or multiple compromised customers. Denote the number

of colluded customers by 1 ≤ θ ≤ n − 2. We do not

consider the case θ = n − 1, where C can easily obtain

ei,t = es,t−e[1,··· ,n]/i,t. Similar to the existed privacy analysis

[27], the privacy of ei,t can be regarded as uncertainty from

attackers’ point of view. The more uncertainty imposed to

the attackers, the more privacy preserved. Below, we analyze

the uncertainty of ei,t from attackers’ perspective, i.e. the

probability of having a correct guess on ei,t. It remains

important to know that nobody but U knows the rank of any

customer in the community.

If C compromises two rank-adjacent customers, e.g. two

customers respectively with ranks k∗ and k∗+1, it will be able

to find that gk+1 is the common secret of the two customers

and realize that the rank of one customer equals to the rank

of the other minus 1. If C compromises three rank-adjacent

customers, e.g. three customers with rank k∗ − 1, k∗, and

k∗+1, it can correctly sort the ranks of these three customers.

Then, it will not use the secrets of the customer at rank k∗ in

the guessing process because the customer does not share any

common secret with the target customer Ui.

Suppose that Ui has a rank k. We regard C as a compromised

customer U ′

0. U ′

x denotes the customer with rank x. Then,

other customers and C can be sorted in a chain according to

their secret structure as follows:

U ′

k+1, U
′

k+2, · · · , U
′

n, U
′

0(C), U
′

1, · · · , U
′

k−1.

Without knowing the rank information, C is unaware of its

own position and any compromised customer’s position in

this chain. We take a sequence of consecutive compromised

customers as a fragment. The chain may contain multiple

compromised fragments, and there is no overlapping between

any two fragments. We first solve the following problem: if C
compromises 1 < θ < n customers from the chain, how many

fragments will it form? This problem is critical because only

the end customers of a fragment are able to contribute to the

attack effectively.

Denote by δ the number of fragments. We make the follow-

ing notations to represent the number of possibilities:

• φ(n, θ): θ out of n customers are compromised, i.e. (nθ ).

– φr(n, θ, δ): δ fragments are formed.

∗ φ1(n, θ, δ): both U ′

k+1 and U ′

k−1 are compro-

mised.

∗ φ2(n, θ, δ): U
′

k+1 is compromised, while U ′

k−1 is

not.

∗ φ3(n, θ, δ): U
′

k+1 is not compromised, while U ′

k−1

is.

∗ φ4(n, θ, δ): neither U ′

k+1 nor U ′

k−1 is compro-

mised.

We have φ2 = φ3 and the following recursive equations:

φr = φ1 + 2φ2 + φ4;

φ4(n, θ, δ) = φr(n− 2, θ, δ);

φ1(n, θ, δ) = φ1(n− 2, θ − 2, δ) + φ4(n− 2, θ − 2, δ − 2)

+ 2φ2(n− 2, θ − 2, δ − 1);

φ2(n, θ, δ) = φ1(n− 1, θ, δ) + φ2(n− 1, θ, δ).
(3)

These equations are associated with the following facts:

• if δ = 1, then

φr(n, θ, δ) = n− θ + 1,

φ1(n, θ, δ) = 0,

φ2(n, θ, δ) = 1,

φ4(n, θ, δ) = n− θ − 1;

(4)

• if θ = δ, then

φr(n, θ, δ) = (n−θ+1
θ ),

φ1(n, θ, δ) = (n−θ−1
θ−2 ),

φ2(n, θ, δ) = (n−θ−1
θ−1 ),

φ4(n, θ, δ) = (n−θ−1
θ );

(5)

• if n = θ + δ − 1, then

φr(n, θ, δ) = φ1(n, θ, δ) = (θ−1
δ−1),

φ2(n, θ, δ) = φ4(n, θ, δ) = 0;
(6)

• if n < θ + δ − 1 or θ < δ, then

φr(n, θ, δ) = φ1(n, θ, δ) = φ2(n, θ, δ) = φ4(n, θ, δ) = 0.
(7)

We consider only the case of δ > 1 because for δ = 1, C
has to compromise all the n−1 customers including U ′

k+1 and

U ′

k−1 in order to obtain ei,t. In the guessing process, C will

make δ(δ− 1) distinct calculations, each involving the header

of one fragment and the tailer of another fragment. Thus, the

probability of having a correct guess on ei,t is

psucc(n, θ) =
θ

∑

δ=2

1

δ(δ − 1)
·
φ1(n, θ, δ)

(nθ )
(8)

In Fig. 3, we plot psucc(n, θ) where n = {20, 25, · · · , 90}
and θ = {6, 7, · · · , 20}. It can be seen that when C com-

promises 19 customers (totally 20 including itself), the prob-

ability of having a correct guess reaches the upper bound

100% (ln(104) = 9.21). The success probability significantly

decreases as the number of the total customers increases or the

number of the compromised customers decreases. For exam-

ple, psucc(40, 20) = 0.9% and psucc(90, 10) = 0.016%. We

consider the electricity usage normally varies in a fixed range,

and the number of possible values of the electricity usage is

less than 100, the probability of having a correct guess for the
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Fig. 3. Success probability psucc(n, θ)

above two cases can be negligible due to 0.016% < 0.9% <
1%. Therefore, such attack can be effectively prevented by

adopting the privacy-preserving techiniques embedded into the

UDP scheme.

VIII. PRIVACY ENHANCEMENT

In previous sections, we have presented the UDP scheme

where a customer Ui has 2 secrets (thus secret-size 2) and

the secrets are shared with the two customers at adjacent

ranks. We call such secret structure as 1-step secret structure,

shown in Fig. 4(a). In Fig. 4, the black dot represents the CG

and other circles represent the customers. In this section, we

enhance the privacy preservation capability of the UDP scheme

by replacing the 1-step secret structure with w structures for

w ≥ 2, and increasing the secret size from 2 to 2w.

Figures 4(b) and 4(c) show the 2-step and 3-step structures,

respectively. When multiple secret structures are applied, the

secrets are independently generated for each structure. In the 2-

step structure, U assigns Ui with secrets gi and gi+2 (different

from those assigned in the 1-step structure). This makes the

secrets of Ui−2, Ui, Ui+2 dependent on each other. Here, the

index is calculated based on modular n+1. Since the number

of the total customers is n, the w-step structure is identical to

the (n+1−w)-step structure. The number of step structures for

achieving the highest privacy level is w = ⌈n
2 ⌉. The smaller

w, the less privacy preservation. In the following, we focus

on the extended UDP (eUDP) scheme which uses ⌈n
2 ⌉ secret

structures to achieve highest privacy level.

To enable the ⌈n
2 ⌉-step secret structure, U generates secrets

gw,0, gw,1, · · · , gw,n for w = 1, · · · , ⌈n
2 ⌉. It assigns the rank-

k customer Ui with (g1,k, g1,k+1), · · · , (gw,k, gw,k+w). The

index is calculated through modular n + 1 operation. Thus,

Ui obtains 2 ∗ ⌈n
2 ⌉ elements as its secrets. It generates êi,t as

êi,t = ei,t +

w
∑

j=1

(g
H(t)
j,k − g

H(t)
j,k+j) (9)

Clearly, C is able to calculate

es,t =
n
∑

i=1

ei,t =
n
∑

i=1

êi,t −
w
∑

i=1

(g
H(t)
i,0 − g

H(t)
i,i ). (10)

where gi,0 and gi,i for 1 ≤ i ≤ w are the secrets of C.

a) Sub-circle problem: When the largest common factor

of w and n + 1 is not equal to 1, sub-circles are formed

in the w-step secret structure. In this case, C has additional

knowledge about the secret structures among customers; it

knows that the secrets from the customers who are not in a sub-

circle with the target customer are not useful in the guessing

process. Thus, C can increase the probability of having a

correct guess. We provide a simple solution to resolve this

problem as follows: U creates ∆n dummy customers such

that the largest common factor of m and n + ∆n is equal

to 1, and it randomly ranks these dummy customers; then, in

the w-step secret structure, it generates secrets for (n +∆n)
customers, and sends all the secrets of the dummy customers

to C. The secret size of each customer remains the same, but

C needs extra storage for the secrets of the dummy customers.

By using the dummy customers, the w-step secret structure

does not contain any sub-circle.

b) Privacy analysis: The following theorem implies that

the enhanced scheme with ⌈n
2 ⌉ secret structures achieves the

highest privacy level, i.e. C has the lowest probability of having

a correct guess on ei,t.
Theorem 2: In the eUDP scheme, if C compromises less

than n−1 customers, it always has lowest probability of having

a correct guess on ei,t.
Proof: Since C compromises less than n − 1 customers,

there exists a non-compromised customer Uj (j ̸= i). Denote

the ranks of Ui and Uj respectively by k and k′. We consider

k > k′ first. If 0 < k − k′ ≤ ⌈n
2 ⌉, in the (k − k′)-step

structure, Uj has secrets gk′ and gk′+k−k′ = gk while Ui has

secret gk, and the value g
H(t)
k is embedded in êi,t and can be

removed collectively only by Ui and Uj . Without Uj’s help,

C cannot obtain ei,t. If ⌈n
2 ⌉ < k − k′ ≤ n + 1, we have

2 ≤ n+1−k+k′ < n+1−⌈n
2 ⌉ ≤ n−⌈n

2 ⌉ ≤ ⌈n
2 ⌉. Thus, in

the (n+1−k+k′)-step secret structure, Ui has secrets gk and

gk+n+1−k+k′ = gk′ while Uj has secret gk′ . Likewise, without

compromising Uj , g
H(t)
k′ is a random number that cannot be

deleted from êi,t, and thus C is unable to obtain ei,t. In case

of k < k′, the (k′ − k)-step secret structure can protect ei,t
from being obtained by C and the compromised customers.

c) Efficiency analysis: The eUDP scheme employs more

secret structures than the UDP scheme to achieve higher

privacy level. It requires more computation costs of all the

entities and more communication overhead between U and the

customers. It also requires the customers to be equipped with

larger storage device for the secrets. Specifically, since only

extra addition operations are required, the increased compu-

tation costs at the CG are negligible. For the communication

overhead in the eUDP scheme, U needs to send 2∗⌈n
2 ⌉ secrets,

the size of which is ⌈n
2 ⌉ times of that in the UDP scheme. The

registration and deregistration in the eUDP scheme require

more computation and communication effort which is ⌈n
2 ⌉

times of that in the UDP scheme.

IX. CONCLUSION

In this paper, we have proposed a usage-based dynamic

pricing (UDP) scheme for smart grid in a community envi-

ronment. The UDP scheme enables the community gateway to
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send the price indication to the individual customers according

to their individual electricity usage and the community-wide

electricity usage in real time. It also preserves the privacy of

the customers, i.e., to restrict the disclosure of the individual

electricity usage to the community gateway. An extended

version, named eUDP, with multiple secret structures is further

presented to achieve the higher privacy level at the cost of

additional computation and communication overhead. In the

proposed dynamic pricing schemes, the dynamic price function

f() can be composed of addition and multiplication operations

due to the limitation of homomorphic encryption techniques.

For our future work, we will study the price function in

practice and explore an extended construction of the price

function while preserving the privacy of the customers.
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