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Abstract The payload of the UFFO (Ultra-Fast Flash Observatory)-pathfinder now onboard

the Lomonosov spacecraft (hereafter UFFO/Lomonosov) is a dedicated instrument for the

observation of GRBs. Its primary aim is to capture the rise phase of the optical light curve,

one of the least known aspects of GRBs. Fast response measurements of the optical emission

of GRB will be made by a Slewing Mirror Telescope (SMT), a key instrument of the payload,

which will open a new frontier in transient studies by probing the early optical rise of GRBs

with a response time in seconds for the first time. The SMT employs a rapidly slewing
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mirror to redirect the optical axis of the telescope to a GRB position prior determined by the

UFFO Burst Alert Telescope (UBAT), the other onboard instrument, for the observation and

imaging of X-rays. UFFO/Lomonosov was launched successfully from Vostochny, Russia

on April 28, 2016, and will begin GRB observations after completion of functional checks of

the Lomonosov spacecraft. The concept of early GRB photon measurements with UFFO was

reported in 2012. In this article, we will report in detail the first mission, UFFO/Lomonosov,

for the rapid response to GRB observations.

Keywords Gamma ray burst · UFFO · Lomonosov · UBAT · SMT

1 Introduction

Gamma Ray Bursts (GRB) are the most luminous explosions in the universe, emitting the

highest energy photons, and detected at the highest redshift of any discrete source in the

universe (Salvaterra et al. 2009; Tanvir et al. 2009). These properties provide great leverage

in time, wavelength, and information, and thus a unique opportunity to understand not only

the nature of the universe but fundamental physics (Lamb and Reichart 2000; Bromm and

Loeb 2006; Kistler et al. 2009; Amati et al. 2008; Ghirlanda et al. 2006; Panaitescu and

Vestrand 2008; Kocevski 2012; Shahmoradi and Nemiroff 2011; Bernardini et al. 2012;

Zhang et al. 2009; Greiner et al. 2011). GRB emission spans some 9 orders of magnitude in

photon energy, a prime opportunity for synoptic observations.

GRBs are believed to be sources of ultra-high energy cosmic rays (UHECR) (Waxman

2006; Abu-Zayyad et al. 2012; Tokuno et al. 2012; Abraham et al. 2004; Panasyuk et al.

2012; Takahashi 2009; Halzen and Klein 2010; Gorham et al. 2009) and gravitational waves

(GW) whose detection has been reported recently (Cutler and Thorne 2002; Abramovici

et al. 1992; Abbott et al. 2016a), and is a prime example of multi-messenger astronomy.

The rapid-response in the observation of electromagnetic counterparts to GW (Abbott et al.

2016b) is important to obtain the rich information in physical processes of GRBs giving rise

to each messenger and the time delay between them.

In spite of the wide knowledge already acquired about GRBs from space (Klebesadel

et al. 1973; Fishman 1994; Boella et al. 1997; Piro et al. 1998a; MacFadyen and Woosley

1999; Ricker et al. 2002; Winkler et al. 2003; Gehrels et al. 2004; Perna et al. 2003;

Piran 2004; Nakar 2007) and on the ground there are still many open questions about their

progenitors and environment. Deeper understanding of GRBs requires more statistics of

GRBs, particularly of high-z GRBs, measurements of polarization, and a wider range of not

only spectral coverage extending to sub-keV X-ray and infrared (IR) but also temporal cov-

erage through rapid pointing of telescopes at GRBs. These observational capabilities are to
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be incorporated in future missions (Paul et al. 2011; Roming et al. 2012; Produit et al. 2005;

Park et al. 2013). They are expected to enlarge the detection area and/or volume of X-rays

and the aperture of UV/optical/IR telescopes, and improve photometric, temporal and spec-

tral sensitivities as well.

Hundreds of GRB UV/optical light curves have been measured since the discovery of op-

tical afterglows (van Paradijs et al. 1997; Costa et al. 1997) and their distance measurement

with the event on May 8, 1997 (Metzger et al. 1997; Piro et al. 1998). The Swift spacecraft

is currently in operation in space with the fastest high-sensitivity in the UV/optical (Gehrels

et al. 2004). However, after a decade of operation of Swift, the immediate aftermath of the

explosion is scarcely observed in the optical or UV because the Swift instrument typically

responds in ∼100 s or more. Ground-based telescopes do occasionally respond faster, but

only a relatively small number of rapid detections have been produced to date with hetero-

geneous sensitivities and other characteristics. Only a few short duration GRBs have been

detected in the UV/optical/IR within the first minute after the gamma-ray signal.

Swift BAT broadcasts the coordinates of GRBs detected within 5–7 s over the internet

via the gamma-ray coordinate network (GCN1) which ground telescopes may respond to

and follow their coordinates. Large terrestrial telescopes such as Keck have better sensitiv-

ity than Swift UVOT, but slower slew times which makes them uncompetitive for the sub-

1000 s regime. The response of robotic telescopes on ground (e.g. ROTSE-I-III (Akerlof

et al. 2003), RAPTOR (Vestrand et al. 2002), PAIRITEL (Bloom et al. 2006), Super-LOTIS

(Williams et al. 2004), BOOTES (Jelinek et al. 2010), MASTER (Lipunov et al. 2010)) is

extremely rapid, e.g. 25 s for ROTSE-III, however, the sensitivity is far less than that of

the Swift UVOT (Roming et al. 2005). Due to their small size, and to the limitations of

ground-based observations including daytime and weather, together these instruments have

managed only a handful of rapid detections (Akerlof et al. 1999). An observation of prompt

optical from GRB080319B (Racusin et al. 2008) happened to be made by TORTORA (Be-

skin et al. 2010) on the REM telescope and by ‘Pi of the Sky’ (Burd et al. 2005) when this

GRB took place in their field of view.

Therefore, the Swift limit of a 60 s response is the practical minimum for sensitive

UV/optical GRB studies for the near to mid-term future. This lack of early observations

and the blindness to the rise phase of many GRB optical light curves, along with those of

other rapidly variable transient sources, leaves fertile astrophysical territory. Many important

physical questions arising at the short time scales remain unexplored (Molinari et al. 2007;

Panaitescu and Vestrand 2008; Cline et al. 2011). Rapid data collection is also essential for

tests of fundamental physics such as constraints on Lorentz violations (Ellis et al. 2006) and

CPT (Kostelecky and Mewes 2008) from the time delay between different energy photons,

or between photons and neutrinos. Coincident or successive observations of the explosion

event as an electromagnetic counterpart to a neutrino or gravitational wave observatory sig-

nal would revolutionize astronomy, and greatly improve our understanding of black holes,

neutron stars, and strong field gravity.

The Ultra-Fast Flash Observatory (UFFO) was proposed to measure the UV/optical

counterpart on second time scales (Park et al. 2013) after the gamma ray trigger from

GRBs by introducing very fast pointing of the narrow-FOV UV/optical telescope using

a fast slewing mirror or mirror array (Park et al. 2009). It provides a reliable method

to lower the current response limit by one to two orders of magnitude in order to ob-

tain a large statistically meaningful sample of GRB light curves including the rise phase

for the first time. The instrument idea and fabrication, and its physics potential were

1http://gcn.gsfc.nasa.gov.

http://gcn.gsfc.nasa.gov
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described in previous reports (Park et al. 2013; Jeong et al. 2013; Kim et al. 2013;

Nam et al. 2013).

As the first one of its kind, the UFFO/Lomonosov instrument has been developed as

one of science payloads onboard the Lomonosov satellite that was successfully launched in

April 28, 2016. As its name UFFO-pathfinder (Park et al. 2009) suggests, UFFO/Lomonosov

is a pathfinder of the UFFO, which serves as the observational cornerstone of future

mission development for rapid responses, though small and limited. An overview of the

Lomonosov spacecraft and its payload is presented as a separate paper in the same is-

sue of this journal. Here we describe the details and update of the flight model of

UFFO/Lomonosov together with the status of operation in space, while the X-ray telescope

of UFFO/Lomonosov (UBAT) is detailed in a separate paper in this issue. The concept of

early photon measurements is introduced in Sect. 2. Section 3 summarizes the instrumen-

tation of UFFO/Lomonosov followed by the running efficiency in space. The telescopes for

X-rays and UV/optical are described in Sects. 5 and 6. In Sect. 7, the expected brightness

of GRBs is estimated for UFFO/Lomonosov. Section 8 demonstrates the operation of the

UFFO/Lomonosov in space. The mission summary is given in Sect. 9.

2 The Method of Early Photon Measurements in UFFO/Lomonosov

Swift responds to GRB triggers by rotating the entire spacecraft to point its optical tele-

scopes at the GRB. Swift has a lower limit of around 60 s to the response time for its optical

measurements. Ground-based telescopes do occasionally respond faster, but only a handful

of rapid detections have been produced to date. Our approach to accelerate the slew capabili-

ties is to redirect the optical path at an astronomical telescope by using a lightweight slewing

mirror rather than move the entire payload or telescope (Park et al. 2009). The slewing sys-

tem of UFFO/Lomonosov is a flat mirror mounted on a gimbal platform. This concept of

steering a telescope via steering mirror(s), called Slewing Mirror Telescope (SMT), enables

in practice a large field of view (FOV) to be accessible without aberrations inherent in wide-

field optical systems. The rotating mirror of SMT in UFFO/Lomonosov moves across the

entire field of view wider than 70° × 70°, points, and settles in less than 1 s.

Apart from SMT for UV/optical measurements, UBAT (UFFO Burst Alert Telescope)

in UFFO/Lomonosov measures X-rays by using a coded mask similar to Swift BAT (Bur-

rows et al. 2005; Barthelmy et al. 2005), but the effective area of X-ray detection in

UFFO/Lomonosov is smaller than Swift by 50 times. Typically bright GRBs have been lo-

calized by Swift BAT with the time of about 20 ms for X-ray acquisition, while 1 s would

be taken for UFFO/Lomonosov. This means that for simple location of a GRB, rather than

a detailed study of the X-ray through gamma-ray spectrum, a small instrument can locate a

large fraction of those detected by much larger instruments. It makes possible very advanced

missions improving on this UFFO-pathfinder with relatively modest size.

It is noted that the trigger latency of GRB localization with X-rays, the calculation time

for alerting a GRB with its position in the sky, takes 5–7 s for Swift, which dominates in

prompt alarm process for optical follow-ups. In UFFO/Lomonosov trigger calculations with

X-rays, including rate trigger and imaging trigger, are performed in a couple of Field Pro-

grammable Gate Arrays (FPGAs), which reduces the latency significantly, e.g. “below 1 s”.

Figure 1 shows the measurement concept of how to achieve the fast response of UV/optical

observation. Figure 2 shows the domain of frequency and time accessible by space and

ground experiments.
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Fig. 1 Latency of X-ray collection, trigger calculation, and slewing of SMT for UFFO/Lomonosov in com-

parison to Swift

Fig. 2 The domain of frequency and time accessible by space and ground experiments. The

UFFO/Lomonosov SMT will explore the fast regimes in optical below 60 s, whereas its UBAT responds

to X-rays with energy down to 5 keV

3 Instrument Configuration

The payload of UFFO/Lomonosov is composed of two telescopes: a wide-FOV trigger tele-

scope for X-ray measurements, UBAT, and a narrow-FOV fast telescope for UV/optical ob-

servations, SMT. Functionally, it is a large-scale version of the tracking mirror telescope for

wide FOV coverage of sky with milliseconds-slewing capability on trigger with coarse loca-

tion (Park 2004; Park et al. 2008; Lee et al. 2012). Apertures of the telescopes are co-aligned

providing multi-wavelengths measurement of GRBs in X-ray and UV/optical ranges.

The SMT is a 10-cm diameter aperture modified Ritchey-Chretien telescope equipped

with a reflector of 15-cm diameter flat mirror that is rotated towards any light source within
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Fig. 3 A rendering of integrated UFFO/Lomonosov (left) and fabricated flight model (right)

the solid angle view of 70° × 70° at the speed of a second after receiving the trigger from

the UBAT. The SMT will be described in Sect. 6.

The signal for burst recognition to trigger UV/optical observations is provided by the

UBAT. Being conceptually a down-sized version of the Swift BAT, it is a coded mask

aperture camera which provides not only localization of a burst but flux and energy mea-

surements. By using advanced FPGA with a lower number of detector channels, however,

we reduce the trigger latency significantly, the required time of trigger decision, includ-

ing computation speed for the trigger processing, less than a second and thus an order of

magnitude faster than that of the Swift. The FOV of UBAT is 90.4 × 90.4 deg2 for partial

coded and 70.4 × 70.4 deg2 for half coded, which overlaps the full coverage of the SMT,

70 × 70 deg2, and the location accuracy, 10 × 10 arcmin2, is comparable to the FOV of the

SMT, 17×17 arcmin2. Less accurate pointing gives higher computation speed of the UBAT.

Due to the limitation in mass for the UFFO-pathfinder, its structure including the SMT

and UBAT was fabricated to be lightweight, whereas meeting structural and functional

requirements in stiffness, strength, dimensional restriction and thermal conduction. The

housing was made of carbon fiber. Mirrors and substructure were manufactured through

finite element analysis and lightweight engineering. The overall mass, power consumption,

and the total volume of the UFFO/Lomonosov including electronics and support structure

are 25 kg, 25 Watts, and 950 × 400 × 365 mm3, respectively. The UBAT has the size of

400 × 400 × 365 mm2, while the size of SMT is very compact. The SMT has a focal length

of 1140 mm for which a small size focal plane detector is used. From the effective FOV and

focal length the optimized size of the SMT was built to be 600 × 320 × 200 mm3.

The readout, data acquisition and control electronics with a bus interface to the satel-

lite, UFFO Data Acquisition system (UDAQ), is located at the bottom of the UFFO. The

UDAQ is in charge of automatic control of the payload not only with the predefined list of

commands but the list uploaded from the ground; interfacing to the satellite; data collection

from the two telescopes, storing in several NOR flash memories and transfer to the satellite.

It is also responsible for monitoring of all housekeeping parameters; calculation of the orbit

and recognition of day and night with in-house photo sensors; power management, etc. All

of these functions are implemented in an ACTEL FPGA for the low power consumption and

fast real-time processing.

Table 1 lists the observation parameters of UFFO/Lomonosov in comparison to termi-

nated and ongoing space missions. Figure 3 shows schematic views of the UFFO-pathfinder
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Fig. 4 Integration of Lomonosov payloads (left, orange) to the spacecraft (right, white). The UBAT is shown

as a white rectangle at the center of the payloads, and the SMT is shown as a white circle at the bottom of the

payloads. (Courtesy of Roscosmos)

optimizing the space and position of each telescope as well as the manufactured flight model.

The UFFO-pathfinder has successfully passed space environments test, including thermal,

vacuum, shock, and vibrations, at the National Space Organization of Taiwan (NSPO) in Au-

gust 2011. The final integration of the flight model to the Lomonosov spacecraft and space

environments test was carried out at VNIIEM in Russia between 2013 and 2015, before

being moved to Vostochny in 2016 (see Fig. 4).

4 Running Efficiency and Observation Time of UFFO/Lomonosov

The Lomonosov satellite has a Sun-synchronous orbit with an inclination angle of 98 degrees

and orbit altitude of 550 km. It turns 15 orbits every day, corresponding to 96 minutes

taken per orbit. UFFO/Lomonosov will be powered off at polar regions for protection of the

instrument against particle radiations. The fraction facing the Sun will be about 20% when

the instrument is powered off. Therefore the power-on fraction per orbit is 55%, which

corresponds to the running time of 13.2 hours per day.

The velocity of the Lomonosov satellite is about 7.6 km/s, and thus the angle of transverse

is 0.0625 deg/s. The time of a point object passing through a SMT pixel is 0.018 s, while the

time passing through the entire SMT is 4.551 s. The UBAT has about 70.4 degrees for half-

coded FOV and about 43.6 degrees for full coded FOV, as shown in Fig. 5. So, the practical

maximum observation time is about 18.8 min per orbit for a given GRB for the half-coded

case.

The UFFO-pathfinder has a limit in the data size for transfer to Earth every day, designed

to be 300 Mbytes/day. The event size including SMT, UBAT and other housekeeping infor-

mation, amounts to 20 Mbytes. Therefore, the maximum number of triggers available every
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Fig. 5 The orbit of the

Lomonosov satellite and the field

of view of the UBAT

day is 15; however, due to the bottleneck in data transfer from the payloads of Lomonosov

to the spacecraft via CAN bus, the speed of data transfer is limited for UFFO to be 4 triggers

every day.

5 X-Ray Observation with UBAT of UFFO/Lomonosov

The UBAT is a coded mask aperture shadow camera. GRBs will be localized by the UBAT

at the confidence level of 7σ to a region 10 arcmin across, thus contained fully within the

FOV of the SMT. From the fact that we make no specific requirements on energy resolution

or flux measurements, the coded mask technique would be the best way to obtain large

FOV for hard X-rays in the energy range of about 10 to 200 keV with an excellent location

accuracy. This is true for the UBAT which has modest detection area, i.e. smaller than Swift

BAT by factor 25, so the UBAT needs 25 times longer collection time to recognize the

same burst, assuming the same detection efficiency. We found that Swift can trigger (rate

trigger) GRBs typically with 50 ms of the collection time of X-rays. That is, 50 ms is the

mean value. It implies that we will have 50% of Swift bursts within 1.25 s collection time.

The trigger window for the UBAT is set to be between 1–64 s. Our estimate is to see 60%

of Swift BAT bursts with about 1.5 s of collection time. Figure 6 shows the calculation

of the UBAT sensitivity in comparison to Swift BAT, SVOM, Fermi GBM, and BATSE

sensitivities. The sensitivity is specified in the form of a graph of detection threshold, i.e.

peak flux sensitivity versus GRB spectral peak energy Epeak (see Band 2003, and α = −1,

β = −2 are chosen). The nominal value of signal-to-noise ratio (SNR) used in UBAT is 8,

while effective detection area of 0.88, solid angle of 1.8, and mask open fraction of 0.45 are

used in the calculation of sensitivity. On the other hand, a larger detection area of Swift BAT

compared to UBAT greatly improves the localization accuracy, i.e. 1–4 arcmin for Swift as

opposed to 10 arcmin for UBAT. We assume the number of BAT/Swift triggers to be about

100/year. Taking into account the duty cycle concerning day and night ration and chances
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Fig. 6 The sensitivity of UBAT

(blue solid line) in comparison to

Swift/BAT (green dashed),

SVOM/ECLAIR (red solid),

Fermi/GBM (cyan solid dot) and

BATSE (purple dot) in terms of

peak flux sensitivity as a function

of GRB spectral peak energy

Epeak (Band (2003), and α = −1

and β = −2 are chosen). The

nominal value of SNR used in

UBAT is 8, while fdet = 0.88,

Ω = 1.8 and fmask = 0.45

of passing through SAA and polar regions,

60(UBAT)

100(Swift BAT)
×

90

75
(SAA Crossing) ×

70

100
(daytime data taking)

×
70

100
(polar crossing) = 0.35.

Assuming 30% degradation by unknown factors, the UBAT foresees about 35% of Swift

(∼90 GRBs/year), that is, 20–30 events every year.

The UBAT hardware consists of three major components: a coded mask, detectors and

electronics, and shield and hopper structures. The coded mask made of 1-mm thick Tungsten

Alloy has randomized rectangular hole patterns, each area being 5.67 × 5.67 mm2, with a

44.5% open fraction (see red rectangle in Fig. 9). Shielding around the four sides against

diffused X-ray backgrounds is made from passive layers of dense material. All electronics

for analog readout, digital processing, trigger decision logic, high voltage distribution and

interface to UDAQ are located underneath the MAPMT array, forming a compact structure

of the UBAT detector, as shown in Fig. 7 (bottom left). Like SMT and UDAQ, all digi-

tal processing in UBAT are realized with FPGAs which provides great advantages in fast

response, low power consumption and parallel processing and control. Figure 7 (top left)

shows the integrated UBAT system, and major parameters including its mass, volume and

power consumption are listed in Table 2.

The detection of X-rays is made by a 48 × 48 array of pixelated scintillators of YSO

crystal, arranged in a 6 × 6 group of 8 × 8 pixel modules. The area and height of a pixel are

2.68 × 2.68 mm2 and 3.0 mm, respectively. YSO (Y2SiO5) is a Ce-doped (0.04%) crystal

with a peak emission around 400 nm under X-ray excitation and an absorption efficiency

of close to 100% for X-ray energy below 30 keV. It presents an excellent light yield of

∼25 photons/keV similar to LSO (Lu2SiO5), but does not have inherent radiative noise

unlike LSO.

The YSO array is attached on the 6 × 6 array of multi-anode photomultipliers (MAPMT,

Hamamatsu R11265-03-M64, bi-alkali photocathode) each of 8 × 8 pixels. Each MAPMT

is read out by a 64-channel SPACIROC ASIC. The MAPMT is ultimately sensitive by ex-

hibiting a single photon counting with a gain of 106, while having low thermal noise. The
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Fig. 7 The integrated UBAT system (top left plot). It includes the coded mask (top right) and the detector

(bottom left). Assembly of the detector is shown in the bottom right plot

photocathode of MAPMT has a quantum efficiency of 30–35% at its spectral response range

of 185–650 nm, so that UBAT is able to detect X-rays at the level of keV in principle.

When an X-ray hits an YSO pixel, some of the UV generated inside the YSO are re-

fracted onto neighboring MAPMT pixels, which cause optical cross talk. The level of cross

talk at the nearest neighbors is 30% of the signal, but is negligible at the next nearest neigh-

bors. Therefore, any cross talk mostly appears at the nearest neighbors, and the observed hit

patterns are mostly a cross pattern (with the pixel hit by X-ray at the center and with the

remaining four pixels at the nearest neighbors), and some variants with the smaller number

of pixels. We implemented a simple algorithm in a FPGA that finds the hit center from these

distinctive patterns. Therefore the cross talk has no bearing on the instrument background.

On the other hand, X-rays produce such distinctive hit patterns that we can use these patterns

to identify, for example, X-ray events against cosmic backgrounds.

As shown in Fig. 8, we see that the UBAT is able to reproduce an X-ray peak at 8.6 keV

with a spectral resolution of about 2 keV, which implies UBAT to be sensitive at 5 keV and

even below. A detailed study of energy sensitivity will be reported later. Alternatively, the

coded mask loses opacity for high energy x-rays, and YSO efficiency drops significantly

at energies above 200 keV; in practice, the maximum energy detectable from the UBAT is

limited to 200 keV.

Within a second time bin, a typical burst could alert UBAT by tripping a “rate trigger”

which exhibits an excess in the total number of X-rays over the ambient background. The
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Table 2 Parameters of UFFO/Lomonosov UBAT

Parameter or

performance

UFFO/Lomonosov UBAT Swift BAT

Mass/volume/power

consumption

11 kg/400 × 400 × 365 mm3/10 W

Coded mask material/

thickness

W/1 mm

Detector array YSO crystal + MAPMT CdZnTe

UBAT Field of View

(half coded)

70.4 × 70.4 deg2 (1.35 sr) 100 × 60 deg2 (1.4 sr)

Detection area (effective

area)

191.1 cm2 (165.5 cm2) 5240 cm2

Detection element 48 × 48 pixels 256 × 128 pixels

Pixel size 2.8 × 2.8 mm2 4 × 4 mm2

Sensitivity 5–150 keV 15–150 keV

GRB localization

accuracy

10 arcmin for >7σ detection 1–4 arcmin

X-ray collection time 1–64 0.025–64

GRB position calculation

time

0.1 s 5–7 s

Number of GRB

localization per year

20–30 (duty cycle & fluence taken into account) ∼100

Fig. 8 The response of the

UBAT detector to different

energies of X-rays illuminated

from radioactive sources and an

X-ray tube. X and y axes are

ADC counts and number of

entries, respectively

“image trigger” processing which locates a GRB runs in parallel with the same X-rays in

independent logic units of a dedicated FPGA. The algorithm for the localization of a burst,

called image trigger or correlation imaging, comes from the fact that UBAT detector pixels

will see a subset of the mask pattern that is different depending on where the GRB is located

in the UBAT field of view. Figure 9 shows how hit pattern of the detector (blue colored in the

figure) best fits the mask pattern (red). To find the GRB location, the detector illumination

pattern is placed on top of the mask pattern and moved around until a good fit or best cor-

relation between the detector pattern and the mask hole pattern is found. The offset location
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Fig. 9 Schematic demonstration

of how a detector illumination

pattern in a 58 × 58 pixel matrix

(blue) changes with the GRB

offset location from the UBAT

z-axis—pointing away from the

Earth center—on a 135 × 135

array of possible FOV locations.

The actual detector pixel array is

48 × 48, but a spacing of 2 pixels

between the 8 × 8 modules is

taken into account

(X, Y) of the center point of the detector pattern from the mask center point gives the loca-

tion of the GRB, although in distance units, not angular units. If the mask height above the

detector is H, then the GRB location vector for the SMT instrument is just (X, Y, H) or some

normalized (x, y, h) version. The detailed description of the trigger algorithm which takes

into account the drift of the satellite and different pixel response, as well as the hardware

and the performance, is given in a separate paper in this issue.

After a positive rate trigger, the image trigger processor of UBAT starts to output the

position of a burst candidate every second, and its probability in terms of a SNR. This

image processing will last up to 64 seconds, depending on the brightness of GRBs. If

the SNR becomes greater than a threshold value, currently set to be 7 as the default but

changeable in space by uploading the list of run parameters, then the image trigger will

be fired to start a subsequent slewing of the SMT to target the position followed by ac-

quisition of both UBAT and SMT data. It is noted that the calculation of position and the

decision of image trigger, called trigger latency, takes only less than a second to deter-

mine the position of GRB, thanks to FPGA’s fast parallel processors. Short trigger latency

in UFFO/Lomonosov would be an advanced feature over the previous space missions like

Swift BAT. However, due to the limitation in power consumption which constrained the

memory resource of the UBAT FPGA, the latency for the GRB localization turns out to be

1 s.

The performance of the UBAT, i.e., determination of the position and its accuracy for

a given source, was tested by using an X-ray tube with energies below 50 keV. This

mini-tube was placed 8 m away from the UBAT. The laboratory background rate was

measured to be 0.84 cnts/s/cm2, while the count rates resulting from the X-ray source

on the detector below the mask were 0.73, 1.19, 2.24, and 4.10 cnts/s/cm2. We found

the image trigger with SNR = 7 in ∼12 s, 11 s, 4 s, and 1 s, respectively. That is, the

UBAT is capable of localizing sources with flux similar to the background level within

a few seconds. Figure 10 shows the result of the image as an SNR map for the sig-

nal rate of 4.10 cnts/s/cm2 (left) for which localization is made in a second. The center

and right plots show the SNR map for the source rate of 0.73 cnts/s/cm2 and the SNR
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Fig. 10 The UBAT imaging of the sky as a function of SNR values for the signal rate of 4.10 cnts/s/cm2

(left) right after one second of collection time, and 0.73 cnts/s/cm2 (center) for which the right plot shows

the SNR reaching 7 at 12 seconds of X-rays collection (right). The background rate was 0.84 cnts/s/cm2 , the

same for both tests

values as a function of elapsed time, respectively, i.e. 12 seconds are taken before SNR

reaches 7. It is noted that a reliable localization can be made even with only half of the

detector pixels with a little extension of collection time, which demonstrates the robust-

ness of localization capability against possible aging effects in the detector channels in

space.

6 UV/Optical Observation with SMT of UFFO/Lomonosov

As a key component of UFFO missions, a Slewing Mirror Telescope (SMT) was pro-

posed for rapid response to prompt UV/optical photons from GRBs. The SMT of

UFFO/Lomonosov consists of a fast slewing mirror mounted on a two-axis gimbal stage,

placed in front of a Ritchey-Chrétien telescope (RC telescope), a focal plane detector, and

associated readout and mirror control electronics. The parallel lights from GRB are always

directed on axis to the RC telescope by the slewing mirror. The maximum tilting angle of

the mirror is ±35°, resulting in 70° × 70° of an effective coverage of SMT which covers

the half-coded FOV of UBAT.

The slewing mirror is made of Zerodur and has a diameter of 15-cm and a weight of

0.482 kg. It is driven by two geared stepping motors with sealed bearings that provide sub-

second response over the entire FOV (±90 deg) and a settling time of less than 350 ms.

These electric motors driving the gimbal-mounted mirror are simple, robust, and space qual-

ified. A precise motion control using a micro-stepping technique and a close-loop control

using high resolution rotary encoders enable targeting resolution to be better than 2 arcmin.

The Ritchey-Chrétien type telescope was chosen to have a long focal length (f-number of

11.4) for an aperture of 100 mm diameter and FOV of 17 × 17 arcmin2. The optics system

with the slewing mirror were fabricated not only for light but highly hardened against shock

and vibrations at time of launch, and against degradation in optical performance by thermal

stress in orbit. The primary and secondary mirrors were fabricated with a precision of about

RMS 0.02 waves in wave front error (WFE) and 84.7% in average reflectivity over 200–

650 nm. The entire SMT optics was aligned at an accuracy of RMS 0.05 waves in WFE at

632.8 nm.

The focal plane detector is an Intensified Charge-Coupled Device (ICCD) which consists

of 256 × 256 monochromic pixels with a pixel FOV of 4 × 4 arcsec2. So the FOV of the
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SMT is 17 × 17 arcmin2 which is wide enough to contain a potential source of GRB trig-

gered by UBAT, with a localization accuracy of 10 arcmin at 7 σ . We chose a UV-enhanced

S20 photocathode which is sensitive to photons of 200–650 nm in wavelength with quantum

efficiencies of 40%, 70% and 20% at 200 nm, 400 nm, and 600 nm, respectively. Double

multi-channel plates (MCPs) were adopted as an intensifier of ICCD for the amplification

of photoelectrons at a gain up to 106 so that the focal detector operates in photon counting

mode and thus SMT could observe faint objects up to ∼19 magnitude in B-filter per 100 s,

assuming the same performance as Swift. The gain of the intensifier can be adjusted from

103 to 106 by the control program. These photons are read out at a rate of 50 frames per

second by a Kodak KAI-0340 interline CCD sensor (640 × 480 pixels, with a charge ca-

pacity of 40,000 electrons, and readout noise of 16 electrons) and a CCD signal processor

with a 10-bit Analog-to-Digital Converter. Various control clocks for the CCD readout are

implemented using a Field Programmable Gate Array (FPGA). The SMT records the arrival

time of individual photons and provides positioning of sources with 4.3 arcsec (1σ width)

point spread function (PSF). The angular resolution could be improved by a centroiding

algorithm.

The SMT electronics controls the slewing mirror, reads out the ICCD, adjusts ICCD high

voltage, monitors housekeeping sensors, and communicates with and transfers the ICCD

data to the central data acquisition system of UFFO/Lomonosov (UDAQ). As with other

space experiments, the UFFO/Lomonosov has substantial limitations both in power con-

sumption and real-time processor speed. Additionally, the SMT requires fast algorithms to

slew the mirror in response to the UBAT trigger. These requirements are satisfied by em-

ploying a FPGA in place of a CPU. The FPGA includes a variety of functions required for

the SMT readout and control as well as the interface to the payload system. Apart from min-

imization of power consumption and enhancement of processing time, the best performance

of the ICCD was realized through the customization of the control of CCD clocks and MCPs

high voltages in the FPGA.

The entire system of SMT has been tested and satisfies the conditions of launch and those

of operation in space: those associated with shock and vibration and those associated with

thermal and vacuum, respectively.

Figure 11 shows the integrated SMT, and its major parameters are presented in Table 3.

The details of SMT optics design, manufacture, integration and test including space qualifi-

cation and laboratory scale end-to-end validation tests were reported in Jeong et al. (2013).

The technical details of the focal plane detector and its associated electronics, as well as

precision control of the slewing mirror, are found in Kim et al. (2013).

7 Expected GRB Brightness by UFFO/Lomonosov

The optical brightness of GRBs at their early phase, and their mechanisms, are hardly

understood, so we assume two simple known cases to estimate GRB magnitudes at the

SMT observation, that is, afterglows might dominate by forward shock (α ∼ 1) or reverse

shock (α ∼ 2). The calculation from the data of UVOT shows ∼0.0947 photons from a

17-magnitude GRB. Apparent optical magnitude distribution has a peak at 19.5 magnitude

for 1000 s exposure (Akerlof and Swan 2007). GRB afterglows follow a power law decay

(F = tα , temporal decay index is ∼1 up to 500 s (Oates et al. 2015). Early optical glows

could be contaminated by reverse shock, for which the temporal decay index would be 2.

Figure 12 shows the sensitivity of the UFFO/Lomonosov SMT. The SMT has the frame ex-

posure time of 20 ms, which is short enough to detect a burst as bright as 11.5 magnitude.
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Fig. 11 The integrated SMT system which consists of RC telescope (upper right) wrapped by the baffle

(black cylinder), ICCD and readout (upper left gray), and the slewing mirror (bottom right)

On the other hand, total observation time of SMT is 78 s, which is long enough to observe

a burst of up to 19 magnitude. These values, 20 ms and 78 s, are default and changeable

in orbit. It is noted that the SMT is able to detect very bright GRBs, i.e. 7 magnitude, by

decreasing the gain of ICCD down to 103. As shown in Table 3, this estimate is extracted

from the following.

Nineteenth magnitude was calculated using a 10-cm aperture telescope with the same

performance as Swift UVOT. UVOT can detect a mB = 22.3 point source in 1000 s

(http://heasarc.gsfc.nasa.gov/docs/swift/about_swfit/uvot_desc.html).

A comparable 30-cm ground telescope is limited to 20 magnitude due to sky bright-

ness. The star of 20 magnitude for 1000 s was measured to give 1300 photon counts us-

ing a white filter on ground. 1300 photons are expected in space as well. We assume in a

conservative way that Swift can see a 22.3 magnitude star with 5 sigma. Then, one esti-

mates the background in space to be 1600 in 1000 s for 30-cm aperture telescope. In our

case for UFFO/Lomonosov, we are supposed to see the source of 19 magnitude at 8 sigma,

because a 19-magnitude source gives 13 photons in 100 s for 10-cm aperture while the

background is 1600, so 1300 × 2.5/10/10/
√

(1600/10/10) = 8σ . We have measured the

performance of SMT in the lab by illuminating 4 photons on SMT and by taking into ac-

count the readout noise, which verifies that we are able to observe a source dimmer than 19

magnitude.

http://heasarc.gsfc.nasa.gov/docs/swift/about_swfit/uvot_desc.html
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Table 3 Parameters of UFFO/Lomonosov SMT

Parameter UFFO/Lomonosov SMT Swift UVOT

Telescope type Ritchey-Chrétien + Slewing

mirror

Modified Ritchey-Chrétien

Aperture 10 cm 30 cm

Field of View 17 × 17 arcmin2over 70 ×
70 deg2

17 × 17 arcmin2

Wavelength range 200–650 nm 170–650 nm

Number of pixels 256 × 256 256 × 256

Physical pixel scale 4 arcsec 4 arcsec

Telescope PSF (centroiding) 0.5 arcsec 0.5 arcsec

UV/optical sensitivity B = 19 mag in 100 s with 5 σ B = 24 (22.3) mag in 1000 s with 5 σ

Data taking start time upon

trigger

1 s 40–200 s, typically 80 s

Number of UV/optical

observation per year

10–20 (estimated from the

extrapolation of early light curves)

∼40

Fig. 12 The sensitivity (red colored arrow) in the unit of number of photons (left axis) and magnitude (right

axis) and the primary observation time (black colored arrow) of the UFFO/Lomonosov SMT. The number of

photons are the ones read into a pixel of the SMT for a 20-ms frame time, assuming Vega spectral type

8 On-orbit Operation of UFFO/Lomonosov

Since the launch, UFFO/Lomonosov has been tested and calibrated till the end of Nov. 2016

for which the UFFO instrument was powered on 20 times, each time orbiting once and

running about 25 min. Several sets of parameters designed for X-ray trigger and alignment

of the slewing mirror for a given direction were examined. Figure 13 shows the behavior of

UFFO power consumption in terms of currents measured from 5 current sensors of UFFO.
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Fig. 13 The behavior of the UFFO instrument in terms of currents measured from 5 sensors. The running

sequence was confirmed such that initialization of the instrument took 5 min and 36 s, then data taking of

SMT and UBAT started on trigger, and finally data transfer to the satellite was made

Fig. 14 The sky image of SMT

observed on Sep. 8, 2016 during

the SMT calibration on orbit. The

exposure time was 0.6 s. It has

17.7′ × 17.7′ field of view. The

image center lies at RA =
22:46:46.56,

Dec = −08:14:31.20. Comparing

the USNO B catalogue, we found

the upper limit of SMT to be

about 19 magnitude for 100 s as

expected

The UFFO was found to run as designed, i.e., after initialization of the instrument, trigger

occurred which enabled data taking of SMT and UBAT, followed by data transfer to the

satellite. We tested such a run sequencing several times to find working as designed. In this

calibration, we set the trigger threshold low enough on purpose to generate a false trigger

from backgrounds.



UFFO/Lomonosov Page 19 of 21  14 

Figures 14 shows a sky image obtained by SMT on Sep. 8, 2016 for a calibration run of

the UFFO. The exposure time was 0.6 s. The SMT has 17.7′ ×17.7′ field of view. The image

center lies at RA = 22:46:46.56, Dec = −08:14:31.20. Comparing the USNO B catalogue,

we found the upper limit of SMT to be about 19 magnitude for 100 s, which agrees with the

designed.

9 Summary

The UFFO/Lomonosov has been successfully launched into Earth orbit and is operational

through tests and calibrations for last several months. As a pathfinder, it will be the very

first space instrument to use a fast slewing mirror which shortens the trigger latency signif-

icantly, less than a second, to pioneer the hitherto unexplored time domain nature and the

rise phase of GRBs. It will respond to initial photons within a couple of seconds after GRB

detection, which improves on current response times by a couple of orders of magnitude.

The number of GRBs with rising light curve is expected to be 10–20 per year, depending

on the magnitude of GRBs at their early phase. We foresee not only such outcomes but the

proof-of-principle of this new approach for future GRB missions.
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