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Abstract 
Motivation: For many RNA molecules, the secondary structure is essential for the correct function of the RNA. Predicting 
RNA secondary structure from nucleotide sequences is a long-standing problem in genomics, but the prediction perfor-
mance has reached a plateau over time. Traditional RNA secondary structure prediction algorithms are primarily based 
on thermodynamic models through free energy minimization, which imposes strong prior assumptions and is slow to run.  
Results: Here we propose a deep learning-based method, called UFold, for RNA secondary structure prediction, trained 
directly on annotated data without any thermodynamic assumptions. UFold improves substantially upon previous models, 
with approximately 10~30% improvement over traditional thermodynamic models and 14% improvement over other learn-
ing-based methods. It achieves an F1 score of 0.91 on base pair prediction accuracy on an RNA structure prediction 
benchmark dataset. UFold is also fast with an inference time about 160ms per sequence up to 1600bp length. We provide 
an online web server that implements UFold for RNA structure prediction and is made freely available.  
Availability: An online web server running UFold is available at https://ufold.ics.uci.edu. Code is available at 
https://github.com/uci-cbcl/UFold.  
Contact: xhx@uci.edu  

 
 

1 Introduction  
The biology of RNA is diverse and complex. Aside from its conventional 
role as an intermediate between DNA and protein, cellular RNA consists 
of many other functional classes, including ribosomal RNA (rRNA), 
transfer RNA (tRNA), small nuclear RNA (snRNA), microRNA, and 
other noncoding RNAs (Noller, 1984; Rich and RajBhandary, 1976; All-
mang et al., 1999; Geisler and Coller, 2013).  Some RNAs possess cata-
lytic functionality, playing a role similar to protein enzymes. The spliceo-
some, which performs intron splicing, is assembled from several snRNAs.  
The microRNAs are abundant in many mammalian cell types, targeting 
approximately 60% of genes (Gebert and MacRae, 2019), and are often 
regarded as biomarkers for diverse diseases(Fu and Peng, 2017).  

Cellular RNA is typically single-stranded. RNA folding is in large part 
determined by nucleotide base pairing, including canonical base pairing - 
A-U and C-G, and non-canonical base pairing - primarily G-U pairing 
(Fallmann et al., 2017; Westhof and Fritsch, 2000). The base-paired 

structure is often referred to as the secondary structure of RNA(Fox and 
Woese, 1975). For many RNA molecules, the secondary structure is es-
sential for the correct function of the RNA, in many cases, more than the 
primary sequence itself. As an evidence of this, many homologous RNA 
species demonstrate conserved secondary structures, accompanied by di-
verged sequences characterized by compensatory mutations(Mathews et 
al., 2010). 

RNA secondary structure can be determined from atomic coordinates 
obtained from X-ray crystallography, nuclear magnetic resonance (NMR), 
or cryogenic electron microscopy (Fürtig et al., 2003; Cheong et al., 2004; 
Fica and Nagai, 2017). However, these methods have low throughput. 
Only a tiny fraction of RNAs have experimentally determined structures. 
To address this limitation, experimental methods have been proposed to 
infer base paring by using probes based on enzymes, chemicals, and cross-
linking techniques coupled with high throughput sequencing (Bevilacqua 
et al., 2016; Underwood et al., 2010). Although promising, these methods 
are still at the early stage of development, unable to provide precise base-
pairing at a single nucleotide solution. 
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Computationally predicting the secondary structure of RNA is a long-
standing problem in genomics and bioinformatics. Many methods have 
been proposed over the past two decades. They can be broadly classified 
into two categories: 1) single sequence prediction methods, and 2) com-
parative methods. In the first category, the most common method is to 
search for thermodynamically stable states through free energy minimiza-
tion. If the secondary structure contains only nested base pairing, the en-
ergy minimization can be efficiently solved through dynamic program-
ming, such as those implemented in Vienna RNAfold (Lorenz et al., 
2011), MFold (Zuker, 2003), RNAstructure (Mathews and Turner, 2006), 
and CONTRAfold (Do et al., 2006). Faster implementations that try to 
improve the speed of dynamic programming include Rfold (Kiryu et al., 
2008), Vienna RNAplfold (Bernhart et al., 2006) and LocalFold (Lange 
et al., 2012). Efficient dynamic programming algorithms that sample 
suboptimal secondary structures from the Boltzmann ensembles of struc-
tures have also been proposed, e.g., CentroidFold (Sato et al., 2009). How-
ever, dynamic programming breaks down when base pairs contain non-
nested patterns, called pseudoknots, which includes two stem-loop struc-
tures with half of one stem intercalating between the two halves of another 
stem.  Predicting secondary structures with pseudoknots is hard and has 
shown to be NP-complete under the energy minimization framework. 
Methods in the secondary category utilize covariance methods by aligning 
related RNA sequences and identifying correlated compensatory muta-
tions. Although the list of proposed methods in each of two categories is 
long and diverse (Kings Oluoch et al., 2018), the performance of these 
methods has not been significantly improved over time, reaching a perfor-
mance ceiling of about 80% (Seetin and Mathews, 2012). It is possibly 
because they fail to account for base pairing resulting from tertiary inter-
actions (Nowakowski and Tinoco Jr, 1997), unstacked base pairs, pseu-
doknot, noncanonical base pairing, or other unknown factors (Westhof 
and Fritsch, 2000). 

Recently deep learning techniques have started to emerge as an alterna-
tive approach to the functional structure prediction problems including 
RNA secondary structure prediction problem (Zhang et al., 2019; Wang 
et al., 2019; Chen et al., 2019a; Singh et al., 2019; Wang et al., 2016). 
Compared to the thermodynamic model-based approaches, the learning-
based methods benefits from making few assumptions, allowing pseu-
doknots, and accounting for tertiary interactions, noncanonical base pair-
ing, or other previously unrecognized base pairing constraints.  Existing 
deep learning methods differ in model architectural design and their 
choices of model input and output.  These methods either treat the input 
as a sequence, utilizing LSTM (Hochreiter and Schmidhuber, 1997) or 
transformer encoder (Cer et al., 2018) to capture long-range interactions 
between nucleotides (Sato et al., 2020; Singh et al., 2019; Chen et al., 
2019b). Other methods aim to integrate deep learning techniques with dy-
namic programming or thermodynamic methods to alleviate prediction bi-
ases (Wang et al., 2019; Zhang et al., 2019; Sato et al., 2020). However, 
existing deep learning approaches still face several challenges: First, both 
LSTM and transformer encoder modules involve a huge number of model 
parameters, which lead to high computational cost and low efficiency. 
Second, integrating with thermodynamic optimization methods will push 
the models to assume the assumptions underlying traditional methods, 
which can hinder the model performance. Third, because the performance 
of deep learning models depends heavily on the distribution of training 
data, we need to think about how to improve the performance of these 
models on previously unseen classes of RNA structures (Sato et al., 2020).   

Instead of using the nucleotide sequence itself, the input of our model 
consists of all possible base-pairing maps within the input sequence. Each 
map, first represented by a square matrix of the same dimension as the 
input sequence length, denotes the occurrences of one of the 16 possible 

base pairs between the input nucleotides.  Under this new representation, 
the input is treated as a 2D “image” with 16 channels, allowing the model 
to explicitly consider all long-range interactions and all possible base pair-
ing, including non-canonical ones. We include one additional channel to 
store the pairing probability between input base pairs calculated based on 
three paring rules (Zhang et al., 2019) and concatenate it with the previous 
16 channel representation. So an overall 17 channel 2D map is used as our 
model input. We use an encoder-decoder framework to extract multi-scale 
long- and short-range interaction features of the input sequence, imple-
mented in a U-Net model. For this reason, we will refer to our method as 
UFold (stands for U-Net based on RNA folding).  The output of UFold is 
the predicted contact score map between the bases of the input sequence. 
UFold is fully convolutional, and as such it can readily handle input se-
quences with variable length. 

We conduct experiments on both known family RNA sequences and 
cross family RNA sequences to compare the performance of UFold 
against both the traditional energy minimization-based methods and recent 
learning-based methods. We show that UFold yields substantial perfor-
mance gain over previous methods, highlighting its promising potential in 
solving the RNA secondary structure prediction problem. 

UFold is fast with an inference time of average 160 ms per sequence 
for RNA sequences with lengths of up to 1600bp.  We have developed an 
online web server running UFold RNA secondary structure prediction. 
The server is freely available, allowing users to enter sequences and visu-
alize predicted secondary structures. 

2 Methods 

2.1   Datasets 
Several benchmark datasets are used in this study: a) RNAStralign (Tan 
et al., 2017), which contains 30,451 unique sequences from 8 RNA fami-
lies;  b) ArchiveII (Sloma and Mathews, 2016), which contains 3,975 se-
quences from 10 RNA families and is the most widely used dataset for 
benchmarking RNA structure prediction performance; c) bpRNA-1m 
(Danaee et al., 2018), which contains 102,318 sequences from 2,588 fam-
ilies and is one of the most comprehensive RNA structure datasets availa-
ble; and d) bpRNA-new, derived from Rfam 14.2 (Kalvari et al., 2021), 
containing sequences from 1,500 new RNA families. RNA families oc-
curring in bpRNA-1m or any other dataset are excluded from bpRNA-
new. In this work, bpRNA-new dataset is treated as a cross-family dataset 
to assess cross-family model generalization. 
   The RNAStralign dataset is randomly split into training, validation and 
test sets, with 24,895, 2,702, and 2,854 samples, respectively. Redundant 
sequences between test and training are removed.  For bpRNA-1m dataset, 
we follow the same process procedure used in SPOT-RNA (Singh et al., 
2019) by using CD-HIT program (Li and Godzik, 2006) to remove redun-
dant sequences and randomly split the dataset into three sub-datasets for 
training and testing, called TR0 and TS0, respectively. Redundancy re-
moved ArchiveII and bpRNA-new are used only for testing. 
 

2.2   Input and output representation 
The general problem of the RNA secondary structure prediction is to pre-
dict base pairing patterns given an input sequence. Let 𝒙 = (𝑥 , 𝑥 , ⋯ , 𝑥 ) 
with 𝑥 ∈ {′A′, ′U′, ′C′, ′G′} be an input sequence of length L. The goal is to 
predict the secondary structure of 𝒙, represented by a contact matrix 𝐴 ∈{0,1} ×  with 𝐴 = 1 denoting a base pairing between bases 𝑥  and 𝑥 , 
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and 0 otherwise.  UFold utilizes a deep neural network to predict the con-
tact matrix given the input. Next, we describe several design choices be-
hind UFold (Fig. 1).  
   Most existing learning-based methods treat the input as a sequence and 
use recurrent neural nets (RNNs) to model the interaction between differ-
ent bases. Gated RNNs, such as LSTMs and GRUs, are often the method 
of choice for dealing with sequential data because of their ability to model 
long range dependencies. However, RNN models need to be run sequen-
tially, causing issues in both training and inference. Newer RNA structure 
prediction models based on transformers, which does not require the se-
quential data to be processed in order, have also been proposed.  
   Unlike the previous models, UFold converts the input sequence into an 
“image”.  This is done by first encoding 𝒙 with one-hot representation, 
representing the sequence with an  𝐿 × 4 binary matrix 𝑋 ∈ {0,1} × . 𝒙 is 
then transformed into a 16 × 𝐿 × 𝐿 tensor through a Kronecker product 
between 𝒙 and itself, followed by reshaping dimensions (Fig. 1a), 
 K X X   (1) 

   In this representation, input 16{0,1} L LK    can be understood as an im-
age of size 𝐿 × 𝐿 with 16 color channels. Each channel specifies one of 
the 16 possible base pairing rules; 𝐾(𝑖, 𝑗, 𝑘) denotes whether bases 𝑥  and 𝑥  are paired according to the i-th base pairing rule (e.g., i=2 for A-C pair-
ing).  
   To overcome the sparsity bringing by converting sequencing into 16 
channels, we also adopt an extra channel used in CDPFold (Zhang et al., 
2019), which reflects the implicit matching between bases. Basically, we 
calculate the paring possibilities between each nucleotide and others from 
one sequence according to three paring rules (Zhang et al., 2019), using 
these rules we could calculate the specific values of each nucleotide posi-
tion with other nucleotides. These non-binary values may help alleviate 
the sparsity of the model and provide more information on paring bases. 
The calculated matrix 1 L LW    is then concatenated with 𝐾 along the 
first dimension to get the final UFold input 𝐼 of dimension 17 × 𝐿 × 𝐿 . 
   UFold takes 𝐼 as input and computes 𝑌 = 𝑓(𝐼; 𝜃) with a deep convolu-
tional neural net (Fig. 1b). The output 𝑌 ∈ [0,1] ×  is an 𝐿 × 𝐿 matrix, 

Fig. 1. The overall architecture of UFold. (a) The input sequence is first converted into one-hot representation. A novel representation of the sequence 
is then introduced by taking outer product of all combinations of base pair channels, resulting in an image-like representation with 16 channels and 
with the same size as the contact map. We calculate a paring possibilities matrix according to three paring rules and concatenate this extra matrix with 
previous feature to obtain the final 17 channel input. (b) Detailed architecture of our framework. The input is a 17 × 𝐿 × 𝐿 tensor representation of 
the original sequence. The U-Net takes the 17 × 𝐿 × 𝐿 tensor as input and outputs an 𝐿 × 𝐿 symmetric score matrix Y. After postprocessing, matrix  𝑌∗ 
is the final prediction of the contact map. 
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with 𝑌  denoting the probability score of nucleotides bases 𝑥  and 𝑥  be-
ing paired.  
   The new input representation taken by UFold has several advantages: 
First, using an image representation allows it to model all possible long-
range interactions explicitly. Base pairing between distant sequence seg-
ments shows up locally in the image representation. Second, it considers 
all possible base pairing patterns, making no distinction between canoni-
cal and non-canonical base pairs. Third, it allows us to implement a fully 
convolutional neural model that can handle variable sequence length, 
eliminating the need of padding the input sequence to a fixed length.  
 

2.3   Input and Scoring network architecture 
UFold uses an encoder-decoder architecture for computing predicted con-
tact score matrix Y (Fig. 1).  The model consists of a sequence of down-
sampling layers (encoder) to derive increasingly complex semantic repre-
sentations of the input, followed by a sequence of up-sampling layers (de-
coder), with lateral connections from the encoder to fill in contextual in-
formation. The overall design follows the U-Net model, widely used in the 
field of image segmentation.   
   All operations in UFold are fully convolutional. Thus, the input se-
quence can be of variable length, with the output matrix changing corre-
spondingly. This feature is especially beneficial for RNA secondary struc-
ture as the range of the input sequence length is very large, from tens of 
nucleotides for small RNAs to thousands of nucleotides for large RNAs.  
Padding input sequences to the same length as done in other methods 
would have significantly impacted the efficiency of the algorithm. 
   UFold is trained by minimizing the cross-entropy between the predicted 
probability contact matrix Y and the true contact matrix A, using stochastic 
gradient descent. A positive weight   of 300 is added to leverage the im-
balanced 0/1 distribution to derive the loss function as below, 
 

,
[ log( ) (1 ) log(1( , ; ) )]ij ij ij ij

i j
L A Y A Yoss Y A       (2) 

2.4   Postprocessing 
After the symmetric contact scoring matrix Y is computed by UFold, we 
use a postprocessing procedure to derive the final secondary structure.  
The postprocessing procedure takes into account four hard constraints in 
the secondary structure: 1) the contact matrix should be symmetric; 2) 
only canonical plus U-G paring rules are allowed (this can be relaxed by 
including other non-canonical base pairs); 3) no sharp loops are allowed, 
for which we set 𝐴 = 0, ∀𝑖, 𝑗 with |𝑖 − 𝑗| < 4; and 4) no overlapping 
pairs are allowed, that is, 𝐴𝟏 ≤ 𝟏. We follow the steps used in E2Efold by 
encoding constraints 2 & 3 into a matrix 𝑀, defined as 𝑀(𝑥) ≔  1 if nu-
cleotides 𝑥  and 𝑥  can be paired under constraints 2 & 3 and equals to 0 
otherwise. 
   To address the first two constraints, we transform Y according to 

 1( ) : ( ) ( )
2

TY Y Y M x    (3) 

where ∘ denotes element-wise multiplication. It ensures that the trans-
formed Y is symmetric and satisfies constraints 1, 2 and 3.  
   To address the last constraint, we relax it into a linear programming 
problem, 

   
ˆ

*

1
ˆ ˆ ˆarg max , , 1

L LY

Y Y Y Y subject to Y


  1


  (4) 

which tries to find an optimal scoring matrix  𝑌 that is most similar to 
( )Y while at the same time satisfying the nonoverlapping pair con-

straint. The similarity is measured in terms of the inner product between  𝑌 and ( )Y . 𝜌 is a hyperparameter controlling the sparsity of the final 
output. 

   The final predicted binary contact map is taken to be 𝑌∗ after threshold-
ing it with an offset, which is chosen through a grid search.   
 

2.5   Training and Evaluation 
During training, stratified sampling (Chen et al., 2019a) is applied to the 
training set to balance the number of training samples from each RNA 
family. The hyperparameters of UFold are tuned based on the validation 
set. 
   To improve model transferability on previously unknown RNA families, 
we augment the training set with synthetic data to train UFold. The syn-
thetic data are generated by randomly mutating sequences in the bpRNA-
new dataset (previously unseen RNA families). We then use RNAfold to 
generate predicted structures on the synthetic data and treat them as 
ground-truth. 
   For evaluation, we report three metrics: F1 score, precision and recall. 

Precision is defined as TPPrec
TP FP




, evaluated on all predicted base 

pairs. Recall is defined as TPRecall
TP FN




. And F1 score is the har-

monic mean of precision and recall, defined as 1 2 Prec ReacllF
Prec Recall


 


.  

3 Results 
To benchmark the performance of different models, we conduct two ex-
perimental studies: A) train models on the RNAStralign training set and 
evaluate on the RNStralign test set and ArchiveII; and B) train models on 
the bpRNA-1m training set (TR0) and evaluate on the bpRNA-1m test set 
(TS0) as well as on bpRNA-new. Published deep learning models usually 
report results from either Study A or Study B. To have a fair and direct 
comparison with previous models, we report results from both, following 
the same data splitting, preprocessing, and evaluation protocols.  
   In comparing the results from different models, we treat within- vs 
cross-family results separately. In both studies, the test sets, except 
bpRNA-new, contain mostly within family RNA species, i.e., RNA spe-
cies from a similar family occurring in the training set.  By contrast, the 
bpRNA-new dataset contains only cross-family RNA species, that is, none 
of them shares the same RNA family as those in the training set. Although 
most RNAs are from a known family, it is necessary to consider the 
model’s performance on previously unseen families to assess its model 
transferability. 
 

3.1   Experimental results on within family datasets 
In this section, we report the results of our model on within-family test 
sets. Table 1 summarizes the evaluation results of UFold on the 
ArchieveII test set (from Study A), together with the results of a collection 
of traditional energy-based and recent learning-based methods (Chen et 
al., 2019a). The traditional methods achieve an F1 score in the range of 
0.42 to 0.61. A recent state-of-the-art learning-based method improves the 
F1 score to 0.80 (MXfold2). UFold can further improve the performance, 
achieving an F1 score of 0.91. Compared with MXfold2, UFold achieves 
a 14% increase in F1 score, a 19% increase in recall, and a 7.5% increase 
in precision. 
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Table 1.  Benchmark results on the ArchiveII dataset. 

Method Prec Rec F1 
UFold 0.887 0.928 0.905 
MXfold2 0.825 0.780 0.796 
SPOT-RNA 0.743 0.726 0.711 
E2Efold 0.734 0.660 0.686 
CDPfold 0.557 0.535 0.545 
LinearFold 0.641 0.617 0.621 
MFold 0.428 0.383 0.401 
RNAstructure 0.563 0.615 0.585 
RNAfold 0.565 0.627 0.592 
CONTRAfold 0.607 0.679 0.638 

 
   Table 2 summarizes the evaluation results on the TS0 test set (from 
Study B). Since this dataset was also used in two other deep learning-based 
methods - SPOT-RNA and MXfold2, we compare UFold with these two 
methods along with two energy-based methods.  Again, UFold outper-
forms both the deep learning-based and the energy-based methods. UFold 
achieves an F1 score of 0.654 on this dataset, corresponding to a 5.6% 
improvement over SPOT-RNA, the state-of-the-art method on this dataset, 
and 13.7% improvement over traditional methods. Improvements in recall 
and precision also surpass all other methods.     
   Predicting secondary structures with pseudoknots is especially challeng-
ing for thermodynamic models. We also validate the performance of 
UFold on predicting base pairing in the presence of pseudoknots. For this 
purpose, we pull out all RNA structures with pseudoknots in the RNAS-
tralign test set, on which we then benchmark UFold against two other 
methods that can predict pseudoknots, including SPOT-RNA, E2Efold 

and RNAstructure. As shown in Table 3, all other methods tend to mis-
classify normal structures as pseudoknots. By contrast, UFold still 
achieves much less false positive (FP) predictions (49 v. 591/242/307)  
while maintains high sensitivity (TP 1247 v. 1237/1312/1248), highlight-
ing the robustness of UFold in the presence of pseudoknots.  

Table 2. Benchmark results on the TS0 dataset. 

Method Prec Rec F1 
UFold 0.606 0.741 0.654 
SPOT-RNA 0.594 0.693 0.619 
MXfold2 0.519 0.646 0.558 
ContextFold 0.583 0.597 0.575 
RNAfold 0.446 0.631 0.508 

Table 3.  Evaluation results of RNA structures with pseudoknots on the 
RNAStralign test dataset. 

Method TP FP TN FN 
UFold 1247 49 1491 3 
SPOT-RNA 1237 591 35 959 
E2Efold 1312 242 1271 0 
RNAstructure 1248 307 983 286 

 

3.2   Experimental results on cross family datasets 
In this section, we evaluate the performance of UFold on previously un-
seen RNA families.  We expect learning-based methods do poorly on these 
RNAs since they are not represented in the training set. To address this 

Fig. 2. Visualization of two example UFold RNA secondary structure predictions. From top to bottom: ground truth, UFold prediction, and E2Efold 
prediction. Two RNA sequences are (a) arp_Aspe.fumi._GSP-41122.ct and (b) 16S_rRNA/Alphaproteobacteria/L41814.ct. Major prediction differences 
are highlighted by red boxes. In both cases, UFold produces predictions more aligned with the ground-truth. 
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problem, methods integrating free energy minimization with deep learning 
methods have been proposed, like MXfold2 (Sato et al., 2020).  However, 
these methods inadvertently introduce biases into the prediction model 
and likely lead to reduced performance on within family RNAs.  

UFold does not involve any energy minimization term in its model. In-
stead, it uses data augmentation to improve the performance on cross-fam-
ily RNAs. 10,000 synthetic RNA sequences are generated by randomly 
mutating real RNA sequences. All the synthetic sequences have passed 
CD-HIT 80. Secondary structures predicted from an energy-based method 
(RNAfold was used) are treated as the ground-truth and are merged with 
the TR0 training set for model training.  

Table 4 shows the evaluation results of UFold on the bpRNA-new da-
taset, containing about 1,500 previously unseen RNA families. UFold can 
achieve a similar performance as other methods like MXfold2, all of 
which involve thermodynamic terms or constraints in their objectives. By 
contrast, UFold is a pure learning-based method. Through data augmenta-
tion, it can learn to predict the structures of RNAs not represented in the 
training set.    

Table 4. Benchmark results on the bpRNA-new dataset. 

Method Prec Rec F1 
UFold 0.537 0.724 0.608 
MXfold2 0.585 0.710 0.632 
SPOT-RNA 0.599 0.619 0.596 
ContextFold 0.595 0.539 0.554 
RNAfold 0.552 0.720 0.617 

 

3.3   Visualization 
After quantitively evaluating the prediction performance, we visualize the 
RNA secondary structures predicted by UFold to check the pairing details 
of each nucleotide.  For this purpose, the predicted contact maps were first 
converted to a dot-bracket format according to base pair positions. Raw 
sequences with the corresponding predicted dot-bracket sequences were 
fed into the ViennaRNA web server powered by Forna (Kerpedjiev et al., 
2015) to obtain the visualization result. As a comparison, we also show 
the predicted structures from other three best performed methods, 
MXfold2, SPOT-RNA and E2Efold as well as the ground-truth structures. 
Two examples from arp_Aspe.fumi._GSP-41122.ct and 16S_rRNA/Al-
phaproteobacteria/L41814.ct respectively are drawn and shown in Fig. 2. 
In both cases, UFold generates RNA secondary structures more similar to 
the ground-truth when compared with other state-of-the-art methods like 
MXfold2, SPOT-RNA and E2Efold, showing the closest secondary struc-
ture to the ground truth structure. 
   As a test case, we applied UFold to predict secondary structures of 
SARS-CoV-2 RNA sequences, the coronavirus causing the COVID-19 
pandemic(Huston et al., 2020; Zhou et al., 2020). SARS-CoV-2 is roughly 
30 kilobases long, 97% of which have not been structurally explored. We 
used UFold to predict some of the key structures extracted from its original 
sequence and compared the predicted structures with experimentally de-
termined structures published recently (Wacker et al., 2020). As shown in 
Fig. 3, our predicted structures show high consistencies with the experi-
mentally determined structures. Because SARS-CoV-2 is a new virus not 
contained in any of the training datasets, the good consistencies show the 
effectiveness of UFold. Moreover, we can generate predicted RNA struc-
tures for all regions of the virus. 
 

3.4   Inference time 
The speed of the prediction algorithm is an important factor in RNA sec-
ondary structure prediction, especially for multiple sequences predicting 
simultaneously.  Traditional energy minimization-based methods tend to 
be slow because of the time complexity of the minimization algorithm. 
Deep learning-based methods like MXfold2 and SPOT-RNA utilize 
LSTM structure, which require significantly more parameters than UFold, 
resulting in low efficiency. UFold inference, on the other hand, runs on 
feedforward neural nets only. Specifically, it comprises of fully connected 
convolutional neural network, which greatly reduces the running time 
since all operations are readily parallelizable. It can also handle multiple 
sequences at once, leading to significantly higher throughput. 
  The average inference time per sequence of UFold on the RNAStralign 
test set (containing sequences longer than 1000bp) is reported in Table 5, 
together with the average running times of other methods. UFold is much 
faster than both learning-based and energy-based methods. UFold is 
nearly two-times faster than MXfold2, and orders-of-magnitude faster 
than RNAstruture, a popular energy-based method that can handle pseu-
doknots. The running times of UFold and three other recent deep learning-

Fig. 3 SARS-Cov2 virus RNA secondary structure. Four different re-
gions of the virus are shown (a-d). RNA secondary structures predicted 
by UFold are shown on the left (a, c, d) or top (b) with paired bases 
colored green.  NMR-DMS experimentally determined structures are 
shown on the right (a, c, d) or the bottom (b) with paired bases colored 
blue or red.  It shows a good consistency between UFold predicted and 
experimentally determined secondary structures.  
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based methods are also shown in Table 5. All these methods are imple-
mented in pytorch(Paszke et al., 2019) and thus it allows us to compare 
their model efficiency directly. Our model is still the fastest one among all 
the other deep learning methods, further demonstrating the efficiency of 
UFold. 

Table 5: Inference time on the RNAStralign test set. 

Method Time per seq 
UFold (Pytorch) 0.16s (GPU) 
MXfold2(Pytorch) 0.31s (GPU) 
E2Efold (Pytorch) 0.40s (GPU) 
SPOT-RNA(Pytorch) 77.80s (GPU) 
CDPfold (tensorflow) 300.107s 
LinearFold (C) 0.43s 
Mfold (C) 7.65s 
RNAstructure (C) 142.02s 
RNAfold (C) 0.55s 
CONTRAfold (C) 30.58s 

 

3.5   Web server 
To facilitate the accessibility of UFold, we developed a web server run-
ning UFold on the backend and made it freely available. Users can type in 
or upload RNA sequences in FASTA format. Our server predicts RNA 
secondary structures using the pre-trained UFold model and stores pre-
dicted structures in a dot-bracket file for end-users to download. The 
server also provides an interface connection to the ViennaRNA web ser-
vice powered by forna tool (Kerpedjiev et al., 2015) for visualizing pre-
dicted structures.  Most existing RNA prediction servers only permit pre-
dicting one RNA sequence at a time, such as RNAfold, MXfold2, and 
SPOT-RNA, and restrict the length of the input sequence. Our server does 
not have such limitations. Its main functionality differences compared to 
other servers are highlighted in Table 6.  

Table 6.  Functionality comparison of different RNA structure predic-
tion web servers. 

Supported Functions 
Servers 

UFold SPOT
-RNA 

RNAfold MXfold2 

Sequence type-in Yes Yes Yes Yes 
Fasta file Yes No Yes No 
Length > 600 bp Yes Yes No No 
Support multi-samples Yes No No No 

4 Discussion 
 
In this study, we present UFold, a new deep learning-based model for 
RNA secondary structure prediction. We show that UFold outperforms 
previous methods by a large margin, achieving 10～30% performance im-
provement over traditional thermodynamic methods and 14% improve-
ment in F1 score over the state-of-the-art learning-based method on stand-
ard dataset. UFold achieves a F1 score of 0.905 on the ArchiveII dataset 

and recall score of over 0.70 on bpRNA dataset, bringing in substantial 
gains in RNA secondary prediction accuracy.  In addition, UFold is fast, 
being able to generate predictions at roughly 160ms per sequence.    
   A key difference between UFold and previous learning-based methods 
is its architectural design. Instead of using raw sequences as input, UFold 
converts sequences into “images”, explicitly modeling all possible base 
pairing between the nucleotides of the input sequence.  This choice of in-
put representation has several important implications: First, base pairing 
patterns between distant sequence segments show up locally in the image 
representation, making the detection and learning of these distant base 
pairing patterns easier. Second, all base pairing patterns are explicitly rep-
resented in the input, allowing the model to pick up all potential base pair-
ing rules that might contribute to the formation of the secondary structure. 
Lastly, but perhaps most importantly, the image representation allows us 
to implement a fully convolutional model to pick up base pairing features 
across multiple scales through an encoder-decoder architecture. This im-
plementation is not only efficient, with operations highly parallelable and 
allowing for variable input sequence length, but also highly effective in 
combining both local and global features for the final prediction.  
    Although UFold demonstrates a great potential in solving the RNA sec-
ondary structure prediction problem, as a learning-based method, its per-
formance is inevitably closely attached to the quality of training data. Un-
fortunately, the number of experimentally resolved RNA secondary struc-
tures through X-ray crystallography or NMR remains small. Many sec-
ondary structures in the RNAStralign dataset are computationally gener-
ated by aligning homologous sequences. Fortunately, high-throughput 
methods for determining or constraining the secondary structures of RNAs 
are starting to emerge (Strobel et al., 2018; Lusvarghi et al., 2013). Be-
cause UFold uses a flexible network architecture, we expect it to be able 
to incorporate the high-throughput data to improve model training and in-
ference.   
   We should note that the method presented here can potentially be ap-
plied for protein structure prediction as well. The number of amino acids 
is much higher than the number of bases. It is worth exploring whether all 
amino acid pairs, which is 400, or a subset of them should be considered 
in the input representation.  
   In summary, we show the promising potential of deep learning in solv-
ing the long-standing RNA secondary structure problem. The new frame-
work presented here brings in a significant performance gain. We expect 
the prediction accuracy to be further improved as more and higher quality 
training data are becoming available.    
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