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BACKGROUND: The impact of thymidylate synthase (TYMS) and UDP-glucoronosyltransferase 1A (UGT1A) germline polymorphisms
on the outcome of colorectal cancer (CRC) patients treated with irinotecan plus 5-fluorouracil (irinotecan/5FU) is still controversial.
Our objective was to define a genetic-based algorithm to select patients to be treated with irinotecan/5FU.
METHODS: Genotyping of TYMS (50TRP and 30UTR), UGT1A1*28, UGT1A9*22 and UGT1A7*3 was performed in 149 metastatic
CRC patients treated with irinotecan/5FU as first-line chemotherapy enrolled in a randomised phase 3 study. Their association with
response, toxicity and survival was investigated by univariate and multivariate statistical analysis.
RESULTS: TYMS 3TRP/3TRP genotype was the only independent predictor of tumour response (OR¼ 5.87, 95% confidence interval
(CI)¼ 1.68–20.45; P¼ 0.005). UGT1A1*28/*28 was predictive for haematologic toxicity (OR¼ 6.27, 95% CI¼ 1.09–36.12;
P¼ 0.04), specifically for neutropenia alone (OR¼ 6.40, 95% CI¼ 1.11–37.03; P¼ 0.038) or together with diarrhoea (OR¼ 18.87,
95% CI¼ 2.14–166.67; P¼ 0.008). UGT1A9*1/*1 was associated with non-haematologic toxicity (OR¼ 2.70, 95% CI¼ 1.07–6.82;
P¼ 0.035). Haplotype VII (all non-favourable alleles) was associated with non-haematologic toxicity (OR¼ 2.11, 95%
CI¼ 1.12–3.98; P¼ 0.02).
CONCLUSION: TYMS and UGT1A polymorphisms influence on tumour response and toxicities derived from irinotecan/5FU treatment
in CRC patients. A genetic-based algorithm to optimise treatment individualisation is proposed.
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Despite the development of novel anticancer agents, such as
bevacizumab, cetuximab or panitumumab, the backbone of
metastatic colorectal cancer (CRC) treatment is based on the
combination of 5-fluorouracil (5FU) (±leucovorin), oxaliplatin
and irinotecan (O’Neil and Goldberg, 2008). For first-line
treatment, oxaliplatinþ 5FU or irinotecanþ 5FU are indistinctly

used. With regard to irinotecan-based schedules, about 50% of
patients respond to therapy but half of them are expected to
experience some kind of severe toxicity, mainly diarrhoea and
neutropenia, resulting either in dose reduction, treatment with-
drawal or dying (Slichenmyer et al, 1994; Douillard et al, 2000).
The significant patient variability in response and toxicity and the
existence of common genetic variants within genes important to
their metabolism and/or activity, highlights the relevance of
pharmacogenetic studies that could help to identify individuals
with a higher probability of developing severe toxicity or an
increased response rate. The efficacy of irinotecan depends on
activation by carboxyesterases to form the active metabolite
SN38 (Kawato et al, 1991; Sanghani et al, 2003). To facilitate
its elimination, SN38 is glucoronidated by UDP-glucoronosyl-
transferase 1A (UGT1A) enzymes, mainly by the hepatic UGT1A1
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but also by UGT1A7 and UGT1A9 (Ciotti et al, 1999; Gagne et al,
2002). Genetic variation in UGT1A1 enzyme was first related to the
Gilbert’s syndrome, in which the homozygous variant geno-
type UGT1A1*28/*28 is responsible for a less efficient bilirrubin
glucoronidation (Monaghan et al, 1996). Later, a series of
publications demonstrated that genotyping of UGT1A1*28 could
also serve to predict irinotecan-associated severe toxicity. Thus, in
2005, the US Food and Drug Administration suggested that
patients homozygous for UGT1A1*28 should receive a reduced
starting dose of irinotecan by at least one level. However, given
that the UGT1A1*28/*28 genotype does not explain many cases of
severe toxicity, other factors, genetic and nongenetic, should be
analysed. Results from several studies have shown that other
genetic variants within the UGT1A1 sequence and also in UGT1A7
and UGT1A9 isoforms have to be taken into account (Carlini et al,
2005; Han et al, 2006; Cecchin et al, 2009). Moreover, Thymidylate
synthase (TYMS) polymorphisms located in 50UTR region are,
probably, of the most broadly studied genetic variants in the field
of pharmacogenetics in CRC (Marsh, 2005). It is quite accepted
that the 3TRP allele is associated with increased levels of the
chemotherapeutic target TYMS (mRNA, protein or activity
depending on the different studies) (Kawakami et al, 2001; Etienne
et al, 2002; Ishida et al, 2002) and this fact has been associated with
poorer outcome in patients treated with 5FU-based regimens both
in the adjuvant and in the metastatic setting (Iacopetta et al, 2001;
Pullarkat et al, 2001). Also, the 6 bp deletion in the 30UTR of TYMS
gene has been correlated with increased message instability and
consequently, lower levels of TYMS mRNA (Mandola et al, 2004).

The aim of this study was to elucidate which UGT1A
polymorphisms or combination of them should be analysed to
better predict severe toxicity in colorectal patients treated with
irinotecan-based first-line chemotherapy. We also studied the
influence of their haplotypes and of TYMS variants.

MATERIALS AND METHODS

Study design and patients

A representative sample (N¼ 149, 43%) of patients from a
multicentre, prospective, randomised phase III study (N¼ 346)
in first-line CRC treatment, carried out by the Spanish Cooperative
Group for the Treatment of Digestive Tumours (TTD Group),
was included in this analysis. Patients were selected based
on availability of blood samples. The study compared weekly
irinotecan (80 mg m�2) plus high-dose 5FU (FUIRI) vs biweekly
irinotecan (180 mg m�2) plus 5FU/LV (FOLFIRI) as first-line
chemotherapy for patients with metastatic CRC. The conclusions
of the trial and details on eligibility criteria, treatment schedules,
guidelines for dose-modifications and all the study details have
already been published. In summary, FUIRI represented a less

complex and equivalent alternative to the standard FOLFIRI
regimen (Aranda et al, 2009). Median follow-up of the study was
17.2 months (95% confidence interval (CI)¼ 15.7–18.5). Toxi-
cities were grouped as haematologic (neutropenia, leucopenia,
thrombocytopenia and anaemia) or non-haematologic (diarrhoea,
nausea, vomiting, asthenia, anorexia, mucositis and non-
neutropenic infection). Grade 3– 4 toxicity was considered as
severe. The pharmacogenetic study protocol was approved by the
local ethics committee, and all subjects gave informed consent
before participating in the study.

Genetic analyses

Genotypes were determined in DNA extracted from peripheral
blood samples using the QiAmp DNA Blood Mini kit (Qiagen,
Valencia, CA, USA) according to manufacturer’s instructions. The
TS promoter region polymorphism (50VNTR) was analysed
through standard PCR method and the 30UTR polymorphism
was analysed by GeneScan, both as previously described
(Martinez-Balibrea et al, 2008). UGT1A1*28 and UGT1A9*22
were analysed by automatic sequencing using forward (50-C
TGAAAGTGAACTCCCTGCTACCT-30 and 50-GCTTCTAAACTTA
ACATTGCAGCACA-30, respectively) and reverse (50-GCAGGAGC
AAAGGCGCCATG-30 and 50-CTGGGAATCTAAGCTCCTATGAT
ACA-30, respectively) nested primers with an ABI Prism 3100
DNA Analyzer (Applied Biosystems, Foster City, CA, USA). To
define UGT1A7*1, UGT1A7*2, UGT1A7*3 and UGT1A7*4 alleles,
we performed an allelic discrimination assay in an ABI Prism 7000
system (Applied Biosystems) for UGT1A7 N129K R131K and W208R
variants (Guillemette et al, 2000). A graphic representation of these
polymorphic sites can be found in Figure 1. As a control, we also
performed an allelic discrimination assay for UGT1A7-57 (T-G),
which is completely linked to UGT1A7 W208R (Lankisch et al, 2005).
We used primers and probes already reported (Lankisch et al, 2005).
All primers and probes were designed and/or validated by using the
Primer Express software v2.0 from Applied Biosystems.

Statistics

In this retrospective analysis within a prospective trial, we
evaluated the association between UGT1A genotypes/haplotypes
and TYMS genotypes and toxicity (severe toxicity at first cycle and
at the end of treatment), response rate, time to progression (TTP)
and overall survival (OS). Each polymorphism was tested to ensure
that it fitted Hardy –Weinberg equilibrium. The associations
between categorical variables were assessed by w2-tests or Fisher’s
exact test whenever required. Also, logistic regression models were
used to estimate the associations of genotypes and toxicity or
response to treatment. Each polymorphism was analysed as
a three-group categorical variable (codominant model), and also
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Figure 1 Graphic representation of three of the polymorphic sites (codons 129, 131 and 208) studied on the human UGT1A7 exon 1 sequence.
The corresponding alleles are shown. Changes in base pairs are shown in bold, whereas changes in amino-acid sequence are shown in italics.
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other restricted inheritance models were used (log-additive,
dominant and recessive). Linkage disequilibrium (LD) between
polymorphisms was calculated and the analysis of inferred
haplotypes was also performed. The web tool SNPstats (Sole
et al, 2006) was used for the genetic analyses and some analyses
were also performed in R (http://www.r-project.org). The Kaplan–
Meyer plots were used to estimate TTP and OS curves. The
association of genetic variants and clinical parameters with TTP
and OS was assessed with the log-rank test, and also hazard ratios
(HR) and their 95% CIs were estimated from univariate and
multivariate Cox proportional hazards regression models. In
general, differences were considered statistically significant when
two-sided P-values were o0.05. However, to account for multiple
comparisons when analysing polymorphisms or haplotypes, a
Bonferroni correction was applied and significant differences were
considered for P-values o0.005. This assumes 10 independent
comparisons and should suffice for a nominal 0.05 type I error
protection for five independent SNPs that were analysed in several
correlated inheritance models and haplotypes.

RESULTS

Allelic, genotypic and haplotypic frequencies and
LD analysis

Allelic and genotypic frequencies were calculated for all genetic
variants and are shown in Table 1. All variants were in Hardy–
Weinberg equilibrium. As previously reported (Lurje et al, 2008),
TS 50TRP and TS 30UTR polymorphism were in LD (D0 ¼ 0.538;
r2¼ 0.1) but no linkage was observed between these and UGT1A
variants (Figure 2). UGT1A7 W208R and UGT1A7-57 variants were

totally linked as described before (Lankisch et al, 2005) (D0 ¼ 1.00;
r2¼ 1.00) and a high LD was observed between them and UGT1A7
N129K variant (D0 ¼ 0.99; r 2¼ 0.427). UGT1A9 and UGT1A7
variants were more linked to each other (0.922oD0o1.00;
0.381or2o0.958) than to UGT1A1*28 (0.661oD0o0.76;
0.167or2o0.494) (Figure 2). UGT1A haplotypes I, II, III and VII
were in a frequency 45% and therefore they were considered in
response, toxicity and survival analysis. Haplotype VII harbours all
UGT1A variants previously associated with severe toxicity
(UGT1A1*28, UGT1A9*1 and UGT1A7*3) (Table 1).

Response to therapy

A total of 147 patients were evaluable for response. The majority of
them (47.7%) attained a partial response or tumour stabilisation
(34.9%), whereas 5.4% had a tumour progression and 10.7%
a complete response. These response rates were similar to those
obtained in the whole study (Aranda et al, 2009). Patients were
grouped as responders (R, 58.4%) if they had a partial or a
complete response, or as no responders (NR, 41.6%) if they had
a tumour stabilisation or progression. Seventy four percent of
patients received more than three cycles of chemotherapy. Among
all clinical variables, poor tumour differentiation and number of
chemotherapy cycles received p3 were negatively associated with
tumour response (P¼ 0.023 and 0.038, respectively). Patients
whose primary tumour was located in the rectum were more likely
to respond to chemotherapy (64.1 vs 49.1% for colon tumours),
although these differences were not statistically significant
(P¼ 0.076). All results for the association of clinical variables
and response to therapy are shown in Table 2. When genetic
variants were taken into account, only TS 50TRP polymorphism

Table 1 (I) Genotype and allele frequencies for all polymorphisms, (II) UGT1A haplotypes

(I) Allele and genotype frequencies

Polymorphism Allele N Freq Genotype N Freq HW

TS 50TRP 3TRP 166 0.56 2TRP/2TRP 29 0.2
2TRP 130 0.44 2TRP/3TRP 72 0.49 0.87

3TRP/3TRP 47 0.32

TS 30UTR Ins 207 0.69 Ins/ins 70 0.47
Del 91 0.31 Ins/del 67 0.45 0.56

Del/del 12 0.08

UGT1A1*28 *1 190 0.64 *1/*1 56 0.38
*28 108 0.36 *1/*28 78 0.52 0.15

*28/*28 15 0.1

UGT1A9*22 *1 178 0.60 *1/*1 57 0.38
*22 120 0.4 *1/*22 64 0.43 0.49

*22/*22 28 0.19

UGT1A7*3

*1 38.5 0.26 *1/*1 25 0.17
*2 71 0.48 *1/*2 20 0.13
*3 39.5 0.27 *1/*3 7 0.05
*4 0 0 *2/*2 47 0.32

*2/*3 28 0.19
*3/*3 22 0.15

(II) Haplotype frequencies

Haplotype UGT1A1*28 UGT1A9*22 UGT1A7 N129K/R131K UGT1A7 W208R Freq

I 6TA 10dT TCG T 0.36
II 6TA 9dT GAA C 0.09
III 6TA 9dT GAA T 0.19
IV 7TA 10dT GAA C 0.01
V 7TA 10dT TCG C 0.00
VI 7TA 10dT TCG T 0.04
VII 7TA 9dT GAA C 0.30
VIII 7TA 9dT GAA T 0.02

Abbreviations: Freq¼ frequencies; HW¼Hardy–Weinberg equilibrium P-value. UGT1A1*1¼ 6TA; UGT1A1*28¼ 7TA; UGT1A9*1¼ 9dT; UGT1A9*22¼ 10dT;
See Figure 1 for UGT1A7 alleles definition.
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was strongly associated with response to therapy. As shown in
Table 3, 79% of patients harbouring the 2TRP/2TRP genotype
responded to therapy, whereas 61 and 40% of patients hetero-
zygous and homozygous for the 3TRP allele, respectively, did so
(P¼ 0.0024). None of the UGT1A variants or haplotypes was
associated with response to therapy. In the multivariate analysis,
TS 50TRP genotype, grade of tumour differentiation and number
of chemotherapy cycles were independent predictive factors of
response (Table 4).

Toxicity

The most frequent severe toxicities were as follows: diarrhoea
(30.2%), neutropenia (20.8%), vomiting (5.37%), mucositis
(4.03%), nausea (2.68%), leucopenia (2.01%), febrile neutropenia
(1.34%) and thrombocytopenia (0.67%). Patients who received
FOLFIRI had greater rates of severe neutropenia (30 vs 11%),
whereas patients who received FUIRI had greater rates of severe
diarrhoea (40 vs 18%). Although in this cohort there were no
treatment-related deaths (there were 6 treatment-related deaths in
the global study), 10 patients (6.7%) experienced severe neutro-
penia and diarrhoea at the same time. To make the genetic
analysis more comprehensive, we analysed those genotypes
previously associated with severe toxicities (i.e., UGT1A1*28/*28,
UGT1A9*1/*1 and UGT1A7*3/*3) vs the rest of the genotypes for
a given polymorphism (e.g., UGT1A1*28/*28 vs UGT1A1*28/*1
and UGT1A1*1/*1). The detailed analysis can be found in the
Supplementary Table S1 (online only). Given that the occurrence
of diarrhoea and neutropenia at the same time is considered as
a life-threatening irinotecan-related toxicity, we also studied its

Table 2 Clinical features, response and toxicity

Response Haematologic toxicity Non-haematologic toxicity

N¼ 149 N (%) OR (95% CI) P* N (%) OR (95% CI) P * N (%) OR (95% CI) P *

Gender
Male 53 (58.9) 1 0.8 19 (21.1) 1 0.85 35 (38.9) 1 0.6
Female 32 (57.1) 1.07 (0.6–2.1) 13 (22.4) 1.08 (0.49–2.4) 20 (34.5) 0.83 (0.42–1.65)

Primary tumour
Colon 26 (49.1) 1 0.076 9 (17) 1 0.4 22 (41.5) 1 0.52
Rectum 59 (64.1) 0.54 (0.27–1.07) 22 (23.4) 1.5 (0.63–0.35) 34 (36.2) 0.8 (0.4–1.6)

ECOG
0 50 (58.8) 1 0.7 20 (23.4) 1 0.81 36 (42.4) 1 0.28
1 32 (57.1) 1.07 (0.54–2.1) 11 (23.5) 0.76 (0.33–1.7) 18 (31) 0.61 (0.3–1.24)
2 2 (40) 2.1 (0.3–13.5) 1 (19) 0.81 (0.09–7.6) 1 (20) 0.34 (0.036–3.2)

Number of cycles
p3 16 (43.2) 1 0.038 7 (17.9) 1 0.53 14 (35.9) 1 0.8
43 69 (62.7) 0.45 (0.2–0.97) 25 (22.7) 1.35 (0.65–0.35) 42 (38.2) 1 (0.52–2.4)

Number of lesions
p3 45 (54.2) 1 0.31 20 (23.5) 1 0.48 36 (42.4) 1 0.17
43 40 (62.5) 0.71 (0.37–1.4) 12 (18.8) 0.75 (0.34–1.7) 20 (31.2) 0.62 (0.3–1.22)

Tumour differentiation
Well 29 (69) 1 0.023 11 (26.2) 1 0.4 16 (38) 1 0.01
Moderate 46 (57) 1.7 (0.77–3.7) 17 (21) 0.75 (0.3–1.8) 37 (45.7) 1.4 (0.64–2.9)
Poor 3 (25) 6.7 (1.6–28.8) 1 (18.3) 0.26 (0.03–2.2) 0 0.62 (0.49–0.79)

Age (years)
p65 44 (33) 1 0.2 16 (19) 1 0.4 22 (26) 1 0.001
465 41 (64) 0.63 (0.32–1.24) 16 (24) 1.4 (0.63–3.04) 34 (52) 3.09 (1.55–6.1)

Abbreviations: CI¼ confidence interval; OR¼ odds ratio. *P-values correspond to w2-test or Fisher’s exact test, when appropriate.

Table 3 Genotypes, haplotypes and response to treatment

Polymorphism Genotype R (%) NR (%) OR (95% CI) Pw

3TRP/3TRP 19 (40) 28 (60) 1.00
TS 50TRP 2TRP/3TRP 43 (61) 27 (39) 0.43 (0.20–0.91) 0.0024

2TRP/2TRP 23 (79) 6 (21) 0.18 (0.06–0.52)
Ins/ins 43 (62) 26 (38) 1.00

TS 30UTR Ins/del 36 (55) 30 (45) 1.38 (0.69–2.74) 0.56
Del/del 6 (50) 6 (50) 1.65 (0.48–5.67)
*1/*1 31 (55) 25 (45) 1.00

UGT1A1*28 *1/*28 47 (61) 30 (39) 0.79 (0.39–1.59) 0.67
*28/*28 7 (50) 7 (50) 1.24 (0.38–4.01)
*1/*1 33 (60) 22 (40) 1.00

UGT1A9*22 *1/*22 34 (53) 30 (47) 1.32 (0.64–2.74) 0.56
*22/*22 18 (64) 10 (36) 0.83 (0.32–2.14)
*1/*1 16 (64) 9 (36) 1.00
*1/*2 10 (50) 10 (50) 1.8 (0.5–5.9)

UGT1A7
*1/*3 5 (71.4) 2 (28.6) 0.7 (0.1–4.4)

0.9*2/*2 26 (55.3) 21 (44.7) 1.4 (0.5–3.9)
*2/*3 16 (57.1) 12 (42.9) 1.3 (0.4–4)
*3/*3 12 (60) 8 (40) 1.2 (0.4–4)

UGT1A Haplotypesa OR (95% CI) P

I 1
II 1.65 (0.69–3.95)

0.17III 0.73 (0.37–1.46)
VII 0.88 (0.48–1.64)

Abbreviations: CI¼ confidence interval; NR¼ no response; OR¼ odds ratio;
R¼ response. aOnly haplotypes with a frequency 40.05 were considered. wP-values
correspond to w2-test or Fisher’s exact test, when appropriate.
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relationship with all the UGT1A variants. At the end of the first
cycle of treatment, patients harbouring either the UGT1A1*28/*28,
all or some non-favourable UGT1A genotypes (either UGT1A1*28/*28
or UGT1A7*3/*3 or UGT1A9*1/*1), or the haplotype VII were at a
higher risk of developing non-haematologic toxicity. Patients with
UGT1A1*28/*28 or some unfavourable UGT1A genotype had higher
rates of severe diarrhoea (Table 5). At the end of treatment,
UGT1A1*28/*28 and all non-favourable genotypes were associated
with haematologic and non-haematologic toxicities, severe neutro-
penia and diarrhoea and both. Patients with the UGT1A9*1/*1
genotype were more likely to develop severe non-haematologic
toxicity and diarrhoea, whereas UGT1A7*3/*3 genotype was also
associated with the occurrence of neutropenia and diarrhoea
simultaneously. Patients harbouring some of the unfavourable
genotypes or the haplotype VII were at a higher risk of developing
non haematologic toxicity and severe diarrhoea (Table 5). In a
multivariate logistic regression analysis, UGT1A1*28/*28 genotype
was an independent predictive factor of haematologic toxicity and
severe neutropenia with or without diarrhoea at the end of treatment.
At the end of the first cycle of chemotherapy, this genotype predicted
for severe diarrhoea and non-haematologic toxicity (Table 4).
UGT1A9*1/*1 genotype and age older than 65 years were independent
predictive factors of non-haematologic toxicity at the end of
treatment. UGT1A9*1/*1 and UGT1A7*3/*3 were associated with
higher risk of severe diarrhoea at the end of the first cycle of
chemotherapy (Table 4). It is worth highlighting that those patients
with TS 2TRP/2TRP that harboured some non-favourable UGT1A
genotype were more likely to develop severe toxicity at the end of the
first cycle of chemotherapy and at the end of treatment (46 vs 6%; w2

P¼ 0.018 and 64 vs 28%; w2 P¼ 0.12). We did not observe any
association between TYMS genotypes and toxicity (data not shown).

Survival

Median TTP and OS were 9.2 months (95% CI¼ 8.4–10.0) and 24.3
months (95% CI¼ 21.8–26.8), respectively. There was no statis-
tical association between any of the genotypes, UGT1A haplotypes
or clinical variables and TTP or OS (data not shown). However,
patients homozygous for the 2TRP allele had a median OS of 27.3

months (95% CI¼ 23.9–30.7), whereas patients homozygous
for the 3TRP allele had a median OS of 21.4 months (95%
CI: 19.1–23.7) (HR¼ 1.59; 95% CI: 0.91– 2.76; log-rank P¼ 0.14).
Heterozygous patients had a median OS similar to that of the
whole group (24.3 months; 95% CI¼ 19.5–29.2). Interestingly,
those patients within the group 2TRP/2TRP with some non-
favourable UGT1A genotype had longer OS times (34.5 vs 25.3
months, log-rank P¼ 0.13) (Figure 3).

DISCUSSION

The usefulness of genetic testing to predict irinotecan-related
toxicities has been widely discussed, but still not clearly convincing
as indicated from recent works by Cecchin et al (2009) and Braun
et al (2009). This study helps in identifying those CRC patients
with a high risk of developing life-threatening toxicities (i.e., severe
neutropenia and diarrhoea) when treated with irinotecan plus 5FU
regimens. Our data confirm the role of UGT1A1*28 variant as the
most important in taking a decision and, for the first time, reveals
TYMS 50TRP polymorphism to be strongly related with tumour
response in these patients. Furthermore, this is the third of the
largest studies evaluating different UGT1A polymorphisms in
Caucasians (Cote et al, 2007; Cecchin et al, 2009). Owing to the
retrospective nature of the study, pharmacokinetic analysis could
not be performed, being this fact a weak point of this study.

Among all UGT1A variants studied, UGT1A1*28 was the most
widely correlated with severe toxicity in the multivariate analysis
(see Table 4). It is noteworthy that 33.3% of patients homozygous
for the UGT1A1*28 allele developed severe neutropenia and
diarrhoea at the same time, whereas only 1.8% of UGT1A1*1/*1
and 5.2% of UGT1A1*1/*28 patients did so (OR¼ 12.38, 95%
CI¼ 2.38–54.18, Po0.0001, Supplementary Table S1). Taking into
account the high risk of dying of these patients, it has to be
considered either not to treat them with irinotecan-containing
regimens or to give them a reduced starting dose of irinotecan.
UGT1A1*28 was specifically associated with neutropenia at the end
of treatment and with diarrhoea after first cycle of chemotherapy.
Patients homozygous for the UGT1A1*28 allele were at a higher
risk of developing any kind of severe toxicity at the end of
treatment and severe non-haematologic toxicity (specifically
diarrhoea) at the end of the first cycle of chemotherapy (Table 5).
Our results are somehow in agreement with the majority of
the published studies (Marcuello et al, 2004; Cote et al, 2007;
Ruzzo et al, 2008; Cecchin et al, 2009).

We chose to study UGT1A1*28, UGT1A7*3 and UGT1A9*22
variants based on their functional significance (Iyer et al, 1998,
1999; Guillemette et al, 2000; Gagne et al, 2002; Lankisch et al,
2005). It has been suggested that the UGT1A1*93 variant might be
a better predictor of the UGT1A1 status than the UGT1A1*28
(Innocenti et al, 2004), but based on two recent studies from the
same group (Cecchin et al, 2009; Innocenti et al, 2009) this
possibility remains to be proven. Also it is worth highlighting
that the functional significance of this variant is still unknown.

It has been suggested that the effect of UGT1A1*28 on
haematologic irinotecan-related toxicity is weaker when the drug
is administered at intermediate doses (o250 mg m�2) (Hoskins
et al, 2007). Our results do not support this observation given
that patients in our study received either 80 mg m�2 weekly or
180 mg m�2 biweekly of irinotecan and the association with
toxicity was strong. Thus, our data should be taken into account
together with those from other authors (Marcuello et al, 2004;
Rouits et al, 2004).

UGT1A7*3 and UGT1A9*22 variants had a minor impact on
toxicity and cannot be excluded that the apparent effect could be
due to LD with UGT1A1*28. Nevertheless, in the multivariate
analysis, patients with UGT1A7*3/*3 and UGT1A9*1/*1 genotypes
were more likely to develop diarrhoea after first cycle of

Table 4 Logistic regression analysis

Outcome OR (95% CI) P

Response rate
TS 3TRP/3TRP (ref. 2TRP/2TRP) 5.87 (1.68–20.45) 0.005
Poor differentiation (ref. well) 8.84 (1.79–43.56) 0.007
Number of cycles p3 2.44 (1.02–5.88) 0.046

Severe haematologic toxicity
UGT1A1*28/*28 (ref. *1/*28 and *1/*1) 6.27 (1.09–36.12) 0.040

Severe non-hematologic toxicity
UGT1A9*1/*1 (ref. *1/*22 and *22/*22) 2.70 (1.07–6.82) 0.035
Older than 65 3.23 (1.44–7.14) 0.004

Neutropenia
UGT1A1*28/*28 (ref. *1/*28 and *1/*1) 6.40 (1.11–37.03) 0.038

Neutropenia and diarrhoea
UGT1A1*28/*28 (ref. *1/*28 and *1/*1) 18.87 (2.14–166.67) 0.008

Diarrhea first cycle
UGT1A1*28/*28 (ref. *1/*28 and *1/*1) 23.80 (2.05–250) 0.011
UGT1A9*1/*1 (ref. *1/*22 and *22/*22) 3.24 (0.99–10.63) 0.053
UGT1A7*3/*3 (ref. other) 27.64 (1.58–482.86) 0.023

Abbreviations: CI¼ confidence interval; OR¼ odds ratio; ref¼ reference
category/categories.
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chemotherapy (Table 4). Our results are in agreement with those of
Han et al (2006). These authors reported an association between
these variants and lower area under the time-concentration curve
SN-38G to SN-38 ratio. UGT1A9*1/*1 showed a trend for high
incidence of severe diarrhoea (Han et al, 2006). In another study,
these variants were associated with haematologic toxicity (Cecchin
et al, 2009).

We hypothesised that harbouring one of these variants would
increase the risk of developing treatment-related toxicities. Our
hypothesis was confirmed by haplotype and combined genotype
analysis. Thus, 7% of patients had all unfavourable genotypes and
they experienced higher rates of all severe toxicities at the end of
treatment and non-haematologic (specifically diarrhoea) toxicity
at the end of the first cycle of chemotherapy (Table 5). Haplotype
VII that contains all toxicity-related alleles (UGT1A1*28,
UGT1A7*3 and UGT1A9*1) was associated with non-haematologic
toxicity both at the end of first cycle and at the end of treatment
(Table 5).

Unlike Han et al (2006) and Cecchin et al (2009) but in
agreement with Liu et al (2008), we did not find an association of
UGT1A genetic variants with either response, TTP or OS.

Interestingly, a strong correlation between TYMS 50TRP
genotypes and response to treatment was observed in our study,
both in univariate and multivariate analyses. In a previous
study from our group, TYMS genotypes were associated
with TTP only in patients treated with 5FU plus oxaliplatin but
not in those treated with capecitabine plus oxaliplatin (Martinez-
Balibrea et al, 2008). Carlini et al (2005) also evaluated the
relationship between TYMS polymorphisms and response to
capecitabine plus irinotecan in metastatic CRC patients, but no
significant association was noted. On the basis of these data, we
proposed that TYMS genotype might be useful to predict response
to 5FU-based schedules.

Taking into account these results, we propose a possible genetic
algorithm to select first-line treatment in metastatic CRC patients
(Figure 4). First, due to a lack of response, those patients with
TYMS genotypes 2TRP/3TRP or 3TRP/3TRP should not receive
irinotecanþ 5FU; second, patients within TYMS 2TRP/2TRP with
genotype UGT1A1*28/*28 or UGT1A7*3/*3 or UGT1A9*1/*1
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should receive an adjusted dose of irinotecan and be under a
stricter surveillance, as they are prone to a higher risk of severe
toxicity. In contrast, these patients are more likely to respond and
survive longer.

This study is limited by its retrospective design and requires
further confirmation in independent studies. If so, our findings

might be of clinical value and would help clinicians to better select
first-line treatment in advanced CRC patients.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)
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