
UIA: A Global Connectivity Architecture

for Mobile Personal Devices

by

Bryan Alexander Ford

B.Sc. Computer Science

University of Utah, 1998

M.Sc. Computer Science and Engineering

Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© 2008 Massachusetts Institute of Technology. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

August 29, 2008

Certified by .

M. Frans Kaashoek

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by .

Terry P. Orlando

Chair, Department Committee on Graduate Students

2

UIA: A Global Connectivity Architecture

for Mobile Personal Devices

by

Bryan Alexander Ford

Submitted to the Department of Electrical Engineering and Computer Science

on August 29, 2008, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract

The Internet’s architecture, designed in the days of large, stationary computers tended by technically

savvy and accountable administrators, fails to meet the demands of the emerging ubiquitous com-

puting era. Nontechnical users now routinely own multiple personal devices, many of them mobile,

and need to share information securely among them using interactive, delay-sensitive applications.

Unmanaged Internet Architecture (UIA) is a novel, incrementally deployable network archi-

tecture for modern personal devices, which reconsiders three architectural cornerstones: naming,

routing, and transport. UIA augments the Internet’s global name system with a personal name sys-

tem, enabling users to build personal administrative groups easily and intuitively, to establish secure

bindings between his devices and with other users’ devices, and to name his devices and his friends

much like using a cell phone’s address book. To connect personal devices reliably, even while mo-

bile, behind NATs or firewalls, or connected via isolated ad hoc networks, UIA gives each device

a persistent, location-independent identity, and builds an overlay routing service atop IP to resolve

and route among these identities. Finally, to support today’s interactive applications built using

concurrent transactions and delay-sensitive media streams, UIA introduces a new structured stream

transport abstraction, which solves the efficiency and responsiveness problems of TCP streams and

the functionality limitations of UDP datagrams.

Preliminary protocol designs and implementations demonstrate UIA’s features and benefits. A

personal naming prototype supports easy and portable group management, allowing use of personal

names alongside global names in unmodified Internet applications. A prototype overlay router

leverages the naming layer’s social network to provide efficient ad hoc connectivity in restricted but

important common-case scenarios. Simulations of more general routing protocols—one inspired

by distributed hash tables, one based on recent compact routing theory—explore promising gener-

alizations to UIA’s overlay routing. A library-based prototype of UIA’s structured stream transport

enables incremental deployment in either OS infrastructure or applications, and demonstrates the

responsiveness benefits of the new transport abstraction via dynamic prioritization of interactive

web downloads. Finally, an exposition and experimental evaluation of NAT traversal techniques

provides insight into routing optimizations useful in UIA and elsewhere.

Thesis Supervisor: M. Frans Kaashoek

Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

The design and implementation of UIA was a collaborative effort involving essential contributions

from many people.

My MIT colleagues Jacob Strauss, Chris Lesniewski-Laas, and Sean Rhea were responsible

for substantial portions of UIA’s design and implementation, as detailed below. I can’t possibly

thank my advisor Frans Kaashoek enough for his constant guidance and invaluable intellectual

insight, and for giving me just enough rope to satisfy my ambitions to explore a huge, many-faceted

problem space without (quite) managing to hang myself. I also want to thank the other members

of my thesis committee, Robert Morris and Hari Balakrishnan, for additional guidance and many

stimulating technical discussions.

The UIA project greatly benefitted from a close collaboration with MyNet [127], a sister project

at Nokia Research Center Cambridge (NRCC). I particularly wish to thank the MyNet team for

believing in UIA enough to take our early, barely-functional code and dare to try building something

real with it.

The design of UIA’s personal naming system, described in Chapter 2, emerged from extensive

brainstorming among the whole UIA team, and much of its prototype implementation is by Jacob

Strauss. I would also like to thank Martı́n Abadi and Tom Rodeheffer at Microsoft Research, and

the MyNet Team at NRCC, for extremely helpful feedback on early drafts of our OSDI paper on the

naming system [84].

The UIA routing schemes presented in Chapter 3 are similarly collaborative products. Much of

the Social Routing design and implementation was by Sean Rhea. The Compact Routing simula-

tion framework was written mostly by Chris Lesniewski-Laas, and its evaluation largely by Chris

Lesniewski-Laas and Jacob Strauss.

Chapter 4 on Structured Stream Transport (SST) benefitted greatly from the feedback of Craig

Partridge and the anonymous reviewers of my SIGCOMM paper [83].

Chapter 5 on NAT traversal was joint work with Pyda Srisuresh and Dan Kegel. Pyda Srisuresh

particularly deserves my gratitude for continuing to push our work towards standardization in the

IETF BEHAVE working group [16, 101, 227], long after my attention had drifted to other research

topics. I wish to thank Dave Andersen for his crucial support in gathering the results presented

in Section 7.6. I also wish to thank Henrik Nordstrom, Christian Huitema, Justin Uberti, Mema

Roussopoulos, and the anonymous reviewers of the USENIX paper [82]. Finally, I wish to thank

the many volunteers who took the time to run NAT Check on their systems and submit the results.

I would like to thank my wife, Anna Lachowska, and my parents, Robert and Karen Ford, for

their unending support and encouragement during these years. I wish to thank the entire PDOS

group for creating a lively, supportive, and intellectually stimulating environment. And special

thanks to my undergraduate research advisor, Jay Lepreau, for starting me on my current path, and

for continuing to help and encourage me long after I’d become Somebody Else’s Problem—Jay,

you’ll always have my best wishes and deepest gratitude.

5

Funding Attribution

This research was sponsored by the T-Party Project, a joint research program between MIT and

Quanta Computer Inc., Taiwan, and by the National Science Foundation under Cooperative Agree-

ment ANI-0225660 (Project IRIS) and FIND project 0627065 (User Information Architecture).

Prior Publication

Portions of this thesis were previously described in the following publications:

• Bryan Ford, Scalable Internet Routing on Topology-Independent Node Identities, MIT Labo-

ratory for Computer Science Technical Report MIT-LCS-TR-926, October 2003 [80].

• Bryan Ford, Unmanaged Internet Protocol: Taming the Edge Network Management Cri-

sis, 2nd Workshop on Hot Topics in Networks (HotNets-II), Cambridge, MA, November

2003 [81].

• Bryan Ford, Peer-to-Peer Communication Across Network Address Translators, USENIX An-

nual Technical Conference, Anaheim, CA, April 2005 [82].

• Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, and Robert

Morris, User-Relative Names for Globally Connected Personal Devices, 5th International

Workshop on Peer-to-Peer Systems (IPTPS ’06), Santa Barbara, CA, February 2006 [85].

• Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, and Robert

Morris, Persistent Personal Names for Globally Connected Mobile Devices, 7th USENIX

Symposium on Operating Systems Design and Implementation (OSDI ’06), Seattle, WA,

November 2006 [84].

• Bryan Ford, Structured Streams: a New Transport Abstraction, ACM SIGCOMM ’07, Kyoto,

Japan, August 2007 [83].

6

Contents

1 Introduction 17

1.1 An Emphasis on Decentralization . 18

1.2 Naming . 19

1.2.1 Global Names . 20

1.2.2 Personal Names . 21

1.2.3 UIA Personal Names and Personal Groups 22

1.2.4 Centralized Designs for Personal Groups and Personal Naming 24

1.3 Routing . 25

1.3.1 Eroding Any-to-Any Connectivity . 25

1.3.2 Host Mobility and IP Address Instability 26

1.3.3 UIA Routing . 26

1.3.4 Centralized Alternatives to Overlay Routing 29

1.4 Transport . 30

1.4.1 The Demands of Modern Interactive Applications 30

1.4.2 Structured Streams in UIA . 31

1.5 NAT Traversal . 33

1.6 Prototyping UIA . 34

1.6.1 System-level Naming and Routing Prototype 35

1.6.2 Routing Simulation Frameworks . 35

1.6.3 Library-based Structured Stream Transport Prototype 35

1.7 Contributions . 36

1.7.1 Naming . 36

1.7.2 Routing . 37

1.7.3 Transport . 38

1.8 Limitations . 38

1.9 Thesis Organization . 39

2 Naming 41

2.1 Motivation and Purpose of UIA Naming . 41

2.1.1 Global Names and Their Limitations . 41

7

2.1.2 An Alternative Model: “Virtual USB Cables” 42

2.1.3 UIA Personal Names and Personal Groups 42

2.1.4 Cryptographically Secure Naming . 43

2.1.5 Social Networking via Personal Names 44

2.1.6 Goals of UIA Naming . 44

2.2 UIA Naming from the User’s Perspective . 45

2.2.1 Introducing Devices . 45

2.2.2 Device Names and Personal Groups . 46

2.2.3 User Names and Social Networking . 48

2.2.4 Transitive Merging and Gossip . 48

2.2.5 Resolving Conflicts . 48

2.2.6 Shared Groups . 49

2.2.7 Group Ownership . 49

2.2.8 Security and Ownership Revocation . 51

2.2.9 Ownership Disputes . 51

2.3 Personal Naming System Design . 52

2.3.1 Basic Architecture . 52

2.3.2 Device Log Structure . 54

2.3.3 Namespace Operations . 56

2.3.4 Group State Evaluation . 59

2.3.5 Naming State Gossip and Replication . 62

2.3.6 Remote Name Resolution . 63

3 Routing 65

3.1 Motivation and Goals of UIA Routing . 65

3.2 Social Routing . 66

3.2.1 Overlay Construction and Maintenance 67

3.2.2 Token-limited Flooding . 68

3.2.3 Source-Routed Forwarding . 69

3.3 Identity Hash Routing . 69

3.3.1 Routing Protocol Design . 71

3.3.2 Packet Forwarding . 79

3.4 Compact Routing . 84

3.4.1 Introduction to Compact Routing . 85

3.4.2 Routing Protocol Design . 86

3.4.3 Landmark Selection . 89

3.4.4 Routing Tree Construction . 90

3.4.5 Global Addresses . 93

3.4.6 Route Selection . 93

8

4 Transport 97

4.1 Motivation and Goals . 97

4.1.1 The Mismatch of Traditional Transports with Modern Applications 98

4.1.2 A Transport Abstraction for Personal Device Applications 99

4.1.3 Design and Implementation Features . 100

4.2 Structured Streams . 101

4.2.1 Data Transfer Semantics . 101

4.2.2 Creating and Accepting Substreams . 101

4.2.3 Inter-Stream Semantics . 102

4.2.4 Datagrams as Ephemeral Substreams . 102

4.2.5 Other Application-Visible Features . 103

4.3 Using Structured Streams . 104

4.3.1 Application Protocol Modularity . 104

4.3.2 Transactional Protocols . 104

4.3.3 RPC . 105

4.3.4 Out-of-Band Signaling . 105

4.4 Protocol Design . 107

4.4.1 Packets, Channels, and Streams . 107

4.4.2 Channel Protocol . 109

4.4.3 Stream Protocol . 112

4.4.4 The Negotiation Protocol . 119

5 NAT Traversal 121

5.1 Background and NAT Traversal Concepts . 122

5.1.1 Terminology . 124

5.1.2 Relaying . 125

5.1.3 Connection Reversal . 126

5.2 UDP Hole Punching . 127

5.2.1 The Rendezvous Server . 127

5.2.2 Establishing Peer-to-Peer Sessions . 127

5.2.3 Peers Behind a Common NAT . 128

5.2.4 Peers behind different NATs . 129

5.2.5 Peers Behind Multiple Levels of NAT . 131

5.2.6 UDP Idle Timeouts . 132

5.3 TCP Hole Punching . 132

5.3.1 Sockets and TCP Port Reuse . 133

5.3.2 Opening Peer-to-Peer TCP Streams . 133

5.3.3 Behavior Observed by the Application . 135

5.3.4 Simultaneous TCP Open . 136

5.3.5 Sequential Hole Punching . 136

9

5.4 Properties of P2P-Friendly NATs . 137

5.4.1 Consistent Endpoint Translation . 137

5.4.2 Handling Unsolicited TCP Connections 138

5.4.3 Leaving Payloads Alone . 138

5.4.4 Hairpin Translation . 138

6 UIA Implementation 141

6.1 Personal Naming Implementation . 141

6.1.1 Prototype Status . 141

6.1.2 Support for Smaller Devices . 142

6.1.3 Using UIA Names in Legacy Applications 143

6.2 Overlay Routing Implementation . 143

6.2.1 Social Routing . 143

6.2.2 Identity Hash Routing . 145

6.2.3 Compact Routing . 145

6.3 Structured Stream Transport Implementation . 145

7 Evaluation 147

7.1 Experience Using UIA Personal Names . 147

7.1.1 Interaction with Global Names and Legacy Applications 147

7.2 Social Routing Evaluation . 148

7.2.1 Experience with Social Routing . 148

7.2.2 Experimental Setup . 149

7.2.3 Location Success Rate . 149

7.2.4 Messages Sent . 150

7.3 Identity Hash Routing Evaluation . 151

7.3.1 Performance Metrics . 152

7.3.2 Test Network Topology . 152

7.3.3 Source Routing versus Recursive Tunneling 153

7.3.4 Rooted versus Unrooted Networks . 154

7.3.5 Discussion and Future Work . 155

7.4 Compact Routing Evaluation . 156

7.4.1 Simulation Framework and Method . 156

7.4.2 Stretch . 157

7.4.3 Route Congestion . 158

7.4.4 Reliability . 159

7.5 Structured Stream Transport Evaluation . 160

7.5.1 Experience with Applications . 160

7.5.2 Performance Validation . 161

7.5.3 Scalability over Transaction Size . 161

10

7.5.4 Web Traffic Workload . 163

7.5.5 Dynamic Prioritization . 164

7.5.6 Wire Efficiency . 165

7.5.7 Implementation Size . 166

7.6 NAT Traversal Evaluation . 166

7.6.1 Test Method . 167

7.6.2 Test Results . 168

7.6.3 Testing Limitations . 169

7.6.4 Corroboration of Results . 170

7.7 Summary . 170

8 Related Work 171

8.1 Network Architectures . 171

8.2 Naming . 173

8.3 Routing . 174

8.3.1 Social Routing . 174

8.3.2 Identity Hash Routing . 175

8.3.3 Compact Routing . 176

8.4 Transport . 177

8.5 NAT Traversal . 178

9 Conclusion 181

9.1 Decentralization . 181

9.2 Naming . 182

9.3 Routing . 182

9.4 Transport . 183

9.5 NAT Traversal . 184

9.6 Possible Barriers to Adoption . 184

9.6.1 Technical Barriers . 184

9.6.2 Economic Barriers . 185

9.6.3 Political Barriers . 186

9.7 Future Work . 187

9.7.1 Naming . 187

9.7.2 Routing . 189

9.7.3 Transport . 190

9.7.4 Other Features . 191

11

12

List of Figures

1-1 Architectural diagram of UIA and how it fits into the Internet architecture 18

1-2 The Internet’s traditional global naming hierarchy 20

1-3 An example UIA personal group containing four devices, each with a personal name 23

1-4 Global connectivity challenges for the UIA overlay routing layer 27

1-5 Example structured stream hierarchy in SST . 32

1-6 Implicit NAT traversal via “hole punching” . 33

2-1 Bob and Alice introduce their devices . 45

2-2 Example personal device scenario . 47

2-3 Groups and ownership . 50

2-4 Basic log record format . 54

2-5 Specific log record types . 55

2-6 Membership and ownership evaluation pseudocode 60

2-7 Example group successorship scenarios . 61

3-1 Forwarding via virtual links . 72

3-2 Pseudocode to build a physical or virtual link . 73

3-3 Neighbor tables, buckets, and node ID space . 74

3-4 Pseudocode to build a path to any node . 75

3-5 Pseudocode to merge a node into a network . 77

3-6 Source routing versus recursive tunneling . 80

3-7 Forwarding by Recursive Tunneling . 81

3-8 Path optimization opportunities on different topologies, when A builds a virtual link

to F via D. 83

3-9 Landmarks in Thorup/Zwick (TZk) scheme . 87

3-10 Routing tree selection . 88

4-1 SST protocol architecture . 106

4-2 SST communication abstractions . 107

4-3 SST packet layout . 109

4-4 Packet acknowledgment example . 112

4-5 Stream data transfer packets . 115

13

4-6 Stream control packets . 118

5-1 Public and private IP address domains . 122

5-2 NAT Traversal by Relaying . 125

5-3 NAT Traversal by Connection Reversal . 126

5-4 UDP hole punching, peers behind a common NAT 128

5-5 UDP hole punching, peers behind different NATs 129

5-6 UDP hole punching, peers behind multiple levels of NAT 131

5-7 Sockets versus ports for TCP hole punching . 134

6-1 Structure of UIA prototype implementation . 142

7-1 Location request success rate . 150

7-2 Mean messages sent per location request . 151

7-3 Network path stretch for source routing versus recursive tunneling 154

7-4 Network path stretch for rooted versus unrooted networks 155

7-5 Maximum stretch relative to shortest-path routes 157

7-6 Average stretch relative to shortest-path routes . 158

7-7 Network congestion relative to shortest-path routes 159

7-8 Resiliency to network failures . 160

7-9 Transactional use of UDP, TCP, and SST over a 216× range of transaction sizes. . . 162

7-10 Web workload comparing single-transaction SST streams against four HTTP flavors

over TCP. 163

7-11 Dynamic request prioritization . 165

7-12 NAT check test method for UDP . 167

14

List of Tables

7.1 Synthetic topologies used for simulation . 157

7.2 Skitter and DIMES simulations, with and without optimizations. 159

7.3 Transport layer header overhead . 165

7.4 Transport code size (semicolon count) . 166

7.5 User reports of NAT support for UDP and TCP hole punching 169

15

16

Chapter 1

Introduction

The original Internet architecture was designed to connect large mainframe computers, which were

tended by trustworthy experts and whose primary communication applications were text-oriented

messaging, remote terminal login, and bulk data transfer. The Internet has fundamentally changed

since then, particularly since its commercialization: not only in scale but in many qualitative re-

spects. Today anyone can own their own computer and connect it to the Internet, so the majority of

Internet devices are now owned and managed by end users with minimal technical knowledge and

limited accountability for their actions. Many devices are portable and move frequently with their

users, such as laptops, personal digital assistants (PDAs), and smart cell phones. The application

profile has changed as well: modern users are just as likely to use the Internet for streaming voice or

video communication, or transaction-oriented web browsing or remote file system access, as for tra-

ditional text-oriented messaging and bulk file transfer. Modern users expect their personal devices

to “just work,” providing reliable and responsive performance across diverse applications, without

their having to understand protocol details such as IP addresses and DNS records, and without nec-

essarily having a clear understanding of how to protect themselves from now-rampant viruses and

other malware. But the protocols underlying the Internet’s original mainframe-oriented design are

not up to this task.

This thesis takes a step toward addressing these problems by rethinking basic elements of the

Internet architecture around the needs of modern users and their ubiquitous personal devices, to

create Unmanaged Internet Architecture (UIA), a novel global connectivity architecture designed

to support these personal devices more effectively. “Unmanaged” refers to the primary goal of

making devices and protocols “just work” reliably and responsively in a wide variety of contexts

and for a wide variety of applications, without requiring configuration or technical knowledge on

behalf of the user. UIA is intended to augment the traditional Internet architecture, not replace

it, thereby providing a practical and incrementally deployable approach to addressing some of the

current architecture’s shortcomings.

While many elements of the Internet’s architecture ultimately need to be reconsidered around

the requirements of personal devices, UIA focuses on three major functional areas: naming, routing,

and transport. UIA introduces new networking abstractions and protocols into each of these major

17

Figure 1-1: Architectural diagram of UIA and how it fits into the Internet architecture

function blocks, as illustrated in Figure 1-1. After first introducing the common theme of decen-

tralization upon which many elements of UIA’s design rests, subsequent sections briefly introduce

UIA’s new architectural components in each of these functional areas. Later thesis chapters will

explore these functional areas in detail.

1.1 An Emphasis on Decentralization

A primary objective of UIA and a common theme throughout its design is the goal of building a fully

decentralized architecture, in which personal devices do not inherently have to rely on the existence

or accessibility of centralized services in order to communicate and function properly. This focus

on decentralization has three primary motivations.

• Management Autonomy: First, a centralized connectivity architecture forces the user to reg-

ister with or subscribe to some service (e.g., allocate a domain name and static IP address),

talk to an expert who can set things up for him, or perhaps even deploy such a service himself

(e.g., set up a Mobile IP [183] home server), before his devices will be able to communicate

with each other properly. UIA’s philosophy is that users should not be forced by the architec-

ture to wade through bureaucratic “red tape” of one kind or another before their own devices

will be able to communicate with each other in natural peer-to-peer fashion. A decentralized

architecture can still allow the user to associate with and make use of centralized services—

18

indeed, for many high-level services such as airline reservations, a centralized architecture

is indeed most natural—but a decentralized connectivity architecture makes such registration

optional and not assumed, enabling the user to communicate among his personal devices even

without having made some or any of them known to central services.

• Availability: Second, global Internet connectivity is not always available from every location

we may need to use our personal devices, or equally fast or inexpensive even when it is avail-

able. UIA’s philosophy is that two users sitting next to each other on a bus or plane without

Internet access should still be able to communicate and work together via their devices over

an ad hoc wireless LAN, without their connectivity or naming regime breaking or substan-

tially changing just because they temporarily lack access to central Internet services. Even if

“always-available” wireless Internet services eventually reach every corner of the planet, an

ability to communicate and operate within a local area independently of central services may

still be important whenever global communication is substantially slower or more expensive

than local-area communication. Further, during times of crisis or natural disaster, a whole

geographic region might be temporarily disconnected from the rest of the Internet, and it is at

such times that personal device users within such a region are most in need of their devices to

continue to function and communicate, to whatever extent is theoretically possible under the

circumstances.

• Privacy: Third, a communication system that relies on centralized services unavoidably

“leaks” information to the operators of those services, which can create security and privacy

concerns for both individual and corporate users. Even a fully decentralized system cannot

necessarily prevent such information leakage entirely, since global communication traffic still

has to flow through untrusted intermediaries such as network providers and ISPs, and even

encrypted traffic may be susceptible to traffic analysis. A fully decentralized design neverthe-

less minimizes the amount of information that needs to be explicitly exposed to third parties

merely in order for the communication system to function.

Some parts of UIA’s design could be made substantially simpler by giving up this emphasis on

decentralization and making personal devices rely on central “authoritative” servers; these potential

simplifications will be pointed out at the appropriate places.

1.2 Naming

In order to connect to remote devices, services, and users over the Internet, users first need to be

able to name those remote entities in order to identify the desired communication target(s). There

are many possible approaches to naming, many involving tradeoffs between different goals such

as ease of use, name conciseness, portability, and implementation complexity. A crucial issue in

any naming system is how names and namespaces are managed; different approaches to naming

often imply different paradigms for name management. The Internet’s traditional naming paradigm

19

Figure 1-2: The Internet’s traditional global naming hierarchy

is built around global names, but UIA enhances the Internet to support a new and complementary

naming paradigm called personal names.

1.2.1 Global Names

The Internet’s existing domain name system (DNS) [256] provides globally unique names based

on a hierarchy of name registration services. The Internet Assigned Numbers Authority (IANA)

delegates each top-level domain such as .com and .edu to a specific organization, each of which

manages the allocation of sub-domains such as meraki.com or mit.edu according to various

administrative policies. These authorities in turn delegate registration authority for sub-domains to

the organizations that own them, and so on. Figure 1-2 illustrates this traditional global naming

hierarchy.

To name a particular device in this scheme, so that the device can be accessed remotely from

anywhere on the Internet, the device’s owner must register the device: i.e., find a unique, not-yet-

allocated name in some domain within this administrative hierarchy, and follow appropriate regis-

tration procedures defined by the owner of that domain. For example, to make my work PC globally

reachable via the name xi.csail.mit.edu, I had to register the name xi with my work or-

20

ganization, CSAIL, which manages the domain .csail.mit.edu, and derives its authority to

manage that domain from MIT (the authority for .mit.edu), which in turn derives from the top-

level registrar for the .edu domain and ultimately from IANA. This naming architecture implies

that names are globally unique, meaning that they can in theory be used from any device on the

Internet and will always refer or resolve to the same target, but it also means that these names must

be administratively registered in order to enforce this global uniqueness: i.e., CSAIL’s registration

process is responsible for ensuring that only one device can be named xi.csail.mit.edu at

once. Ultimately, what this means to ordinary Internet users is that when naming their devices with

DNS, they can use only names that are not already taken (and in these post-Internet-land-rush days

most of the “good” ones are already taken), and users must obtain (often purchase) the use of those

names from some registration authority in the DNS hierarchy.

Global uniqueness of names is a valuable property for certain types of names to have: par-

ticularly names corresponding to global brands or other trademarks such as amazon.com. As

companies have realized since early in the “.com boom,” having a unique, memorable “online brand

name” such as amazon.com, which people can type into any web browser to reach the company’s

web site, is crucial to E-commerce and to “online presence” in general. And companies are willing

to pay far more than the nominal registration fees to obtain “premium” names corresponding to

recognizable words or phrases [236].

1.2.2 Personal Names

But when a user wishes to connect remotely not to a global online brand, but rather to one of his

own personal devices—or to that of a friend—global uniqueness is less important than simplicity

and convenience. For example, a casual tourist may wish to upload photos from his WiFi-enabled

digital camera directly to his home PC or to a family member’s PDA, and a business traveller may

need remote access from her laptop to files on her work PC or a colleague’s. In this situation, it

is common for the device initiating the communication to be owned by or otherwise administra-

tively associated with the user, which means that the initiating device’s own identity can provide

context for naming the remote device to be accessed. For example, if Alice has only one work

PC, and she wishes to access it from her own account on her own laptop or home PC, it would

be more convenient for her to be able to use a shorter, simpler name like work-pc instead of

work-pc.alice.csail.mit.edu. Even though work-pc is probably not globally unique

(there are many people in the world who have work PCs that they may wish to name work-pc),

that may be fine if Alice has only one device named work-pc and the device initiating the connec-

tion knows that it is Alice who is requesting the connection. We refer to such a non-globally-unique

name as a personal name, since its interpretation context is personal to the user.

A useful analogy is the address book on a modern cell phone, which allows the phone’s owner

to use short, convenient names like Bob and Mom instead of cryptic, globally unique phone num-

bers to call people the phone’s owner dials regularly. Indeed, we might consider such an address

book to be a personal naming system. The personal naming system that traditional address books

21

provide are not adequate for personal Internet devices, however. Users increasingly have many

more Internet-connected devices than they have cellular accounts or phone numbers, and separately

managing address books on each of those devices quickly becomes cumbersome and impractical.

Current address book synchronization software typically either operates between only a specific pair

of personal devices—e.g., between one smart phone and one laptop or desktop PC, leaving other

personal devices’ address books unsynchronized—or it operates between one or more personal de-

vices and a central server deployed by a device manufacturer or service provider, in which case this

synchronization and personal naming is unavailable whenever devices are disconnected from the

Internet or from their designated cellular network. To meet the demands of modern Internet users,

personal devices must not only support convenient personal names, but must be able to keep them

synchronized automatically across an arbitrary number of personal devices, and those names must

be usable even in partial connectivity situations: e.g., when Bob and Alice are travelling together

in a bus or plane and need to share information between their devices while they have no Internet

access or cellular coverage.

A basic assumption underlying the idea of personal names is that the devices through which

the user typically works or accesses the network—i.e., the terminals responsible for interpreting

these personal names—are either owned by or somehow affiliated with the user, and thus have some

personal user context in which to interpret these personal names. This assumption fails in the case

of public-access terminals, such as those found in an airport or Internet café: since a public terminal

has no prior affiliation with the user, it typically has no context in which to resolve personal names,

so only global names are directly usable at such terminals. (A user could still use a public terminal

to log into a remote machine or account via a global name, and from there use personal names

to reach his other devices or services.) Given the trends of personal Internet devices becoming

increasing cheap and readily available [151, 202], the ubiquitous availability of WiFi hotspots [1]

and mobile broadband [41] for use with consumer-owned devices, and the well-known security

risks inherent in the use of public-access terminals [216,254], it appears safe to assume that private

devices rather than public terminals will remain the primary means by which most users access the

network, satisfying the main requirement for personal names to be useful.

1.2.3 UIA Personal Names and Personal Groups

The Unmanaged Internet Architecture is not designed to replace DNS, the Internet’s existing global

naming system, but rather to augment it with a personal naming system that can work alongside

DNS. With UIA, the user can still use global names like amazon.com, but can also use personal

names like laptop or pda.alice (meaning “Alice’s PDA”).

A key technical challenge in create such a personal name system is defining the context or scope

in which these personal names are to be resolved: this context should be larger than a single device,

so that the user does not have to administer one address book for each device he owns or operates,

but it should be small enough that the user does not have to worry about his names conflicting

with those assigned by other users. That is, the personal naming context needs to correspond to

22

Figure 1-3: An example UIA personal group containing four devices, each with a personal name

the user’s personal administrative domain: the complete set of personal devices (or accounts on

shared devices or services) that the user manages. For this purpose, UIA introduces the concept of

personal groups, which delineate a symmetric group of devices or accounts in which to scope the

user’s naming activities. Figure 1-3 illustrates a personal group containing four devices, which may

be scattered across the Internet, each having its own personal name that may be used from any other

device in the group.

It is crucial for personal groups to be both secure and easy to set up and manage. Since we

expect users may wish to share sensitive personal information among their devices via UIA personal

names, it is important that attackers not be able to “spoof” a user’s device, causing the user to log

in to or leak information to the wrong device. Similarly, an attacker must not be able to add devices

to a user’s personal group or modify the name bindings in the group without the user’s permission,

and if the user retires, sells, or loses a personal device, the user must be able to revoke that device’s

membership in the group so that its new owner does not obtain private information about or access

to the user’s personal group. But the user needs an easy way to set up and manage his personal

group while satisfying all of these security requirements.

For this purpose UIA builds on the idea of device introduction [65, 231]. Users build their per-

sonal groups by introducing them, typically “in person” over a local-area network; the introduction

process includes a simple random phrase comparison procedure that allows the devices to exchange

cryptographic keys securely while ensuring that the devices involved in the procedure are in fact the

ones the user(s) believe to be involved. One the user has introduced more than one device into a

group, UIA uses optimistic replication [105, 133, 243] to keep the user’s personal namespace syn-

chronized among all the devices in the group. UIA personal groups can name not only devices but

other personal groups: thus, if Bob’s personal group has a name alice referring to Alice’s per-

sonal group, and Alice’s personal group includes a device named pda, then Bob can refer to Alice’s

PDA as pda.alice.

23

Group membership revocation presents a particular challenge in UIA, because there may not be

a clear central point of control, such as a “master device” or an online service, which can always

uniquely determine the set of members of a group at a particular point in time. If one or more of

Alice’s personal devices are stolen, for example, then she needs to revoke the lost devices’ mem-

bership in her group so that the thief will not be able to use those devices to authenticate as her

or remotely access her personal information, and so that Bob’s name alice will henceforth refer

only to Alice’s remaining devices and not to the stolen ones. But whatever revocation mechanism

Alice may invoke on her remaining devices, the thief could also invoke that mechanism on the

stolen devices (assuming the thief breaks whatever local login/account security those devices may

provide), in order to try to steal the identity of Alice’s group and make Bob’s name alice refer

to the thief’s stolen devices instead of Alice’s remaining ones. Although a variety of approaches to

this revocation and identity management problem are possible, the prototype UIA design explores a

highly decentralized approach in which all personal devices in a group are considered “equals” and

irreconcilable “revocation dispute” must in the worst case be resolved by manual re-introduction.

1.2.4 Centralized Designs for Personal Groups and Personal Naming

UIA’s personal group management mechanism could be substantially simplified by de-emphasizing

the goal of full decentralization and making devices reliant on a central service of some kind. Per-

sonal devices could for example connect to a user’s account on Facebook [76] or another Web-based

social networking service, and rely on that service to define the user’s identity and his namespace

of personal devices and other users. The client-side software for such a mechanism would probably

be substantially simpler than UIA’s because it could always rely on the central Facebook servers to

maintain the “authoritative” state about the user’s identity and personal names in one central loca-

tion. The issues of conflicting namespace changes and revocation disputes would disappear since

there would be only one “master” state repository.

As pointed out already in Section 1.1, however, such a design would require the user to register

with Facebook before his devices can communicate with each other at all, it would render the

personal naming system inoperative whenever the central Facebook service is inaccessible, and it

would create security and privacy concerns by forcing users to disclose complete information about

their personal administrative domains to Facebook and anyone else with (legitimate or otherwise)

access to Facebook’s servers. And replacing the risk of revocation disputes in UIA’s decentralized

design, the centralized design would create the danger of the user’s Facebook account being hacked

and the user’s entire personal administrative domain being effectively stolen all at once, leaving

the user powerless to recover or even safely disable his identity until he can successfully navigate

Facebook’s customer support system and somehow “prove” his rightful ownership of the account.

24

1.3 Routing

The Internet’s original routing architecture was designed around the assumption that each Internet

host would be given a unique IP address within a single global address space [91, 120, 199], and

that every host would be able to communicate with every other. A number of evolutionary pressures

have since compromised these assumptions, however.

1.3.1 Eroding Any-to-Any Connectivity

Since all Internet hosts are no longer run by trustworthy (or at least accountable) system adminis-

trators, and security systems built into end hosts are frequently inadequate, users and organizations

have pervasively deployed firewalls [49,88,108,170] to protect private networks from unwanted traf-

fic originating from external sources. While specific firewall policies vary widely, the most common

default policy, which typically applies to all traffic in the absence of application-specific rules, is to

deny “unsolicited” incoming connections originating from the external side of the firewall, while al-

lowing outgoing connections originating from within the private network. While this default policy

has the benefit of protecting the internal network from a wide variety of remote packet-level attacks

while allowing typical client/server applications to operate normally—at least when the client is on

the private network and the server is on the public network—it prevents users from remotely access-

ing even their own devices (e.g., a work PC) located behind such a firewall, without making special

administrative provisions.

Worse, the gradual depletion of the 32-bit address space of IPv4 [120], coupled with the admin-

istrative challenges and costs of allocating and managing IP subnets within the global address space,

have led to pervasive deployment of network address translators (NATs) [70, 112, 226, 228], which

create private IP address spaces [110,196] for corporate or home networks, within which hosts may

be assigned IP addresses independently of the Internet’s “official” hierarchical of IP address alloca-

tion scheme [91,197,199]. NATs typically multiplex many private IP addresses onto one or a small

number of public IP addresses, using the IP addresses and TCP/UDP port numbers of individual

sessions to determine how to translate the addresses in traffic flowing in both directions across the

NAT. Whereas the “deny unsolicited incoming connections” rule for firewalls is an administrative

choice (albeit a particularly common one), for NATs this rule is technically essential: it is a side-

effect of the fact that the NAT simply does not know to what internal host it should route incoming

packets unless a binding for the flow was previously established by earlier packets flowing from the

appropriate internal host to the external network.

IP version 6 [62] may eventually eliminate one motivation for NAT deployment—namely IP

address space depletion—but it does not eliminate other incentives such as the administrative con-

venience of managing private IP address spaces independently of upstream Internet providers, and

in the near term it even creates the additional incentive of providing convenient interoperability be-

tween IPv4 and IPv6 address domains [106, 249]. And firewalls will remain commonplace in the

IPv6 world even if NATs eventually are not.

25

1.3.2 Host Mobility and IP Address Instability

Independently of firewalls and NATs, the fact that an increasing percentage of Internet-attached

hosts are small, mobile devices such as laptops and PDAs creates another complication not ad-

dressed by the Internet’s original design: Internet routing protocols depend on the structure of IP

addresses [199] for efficient routing [91], which means that IP addresses must be assigned according

to the topological network location at which the device is attached at a given time. Unfortunately

this means that whenever the device moves, its address changes: if a DNS record associates a host

name with a particular IP address, that host name will no longer work if the host moves to a different

network attachment point and changes its address.

Further, IP address autoconfiguration mechanisms such as Dynamic Host Configuration Proto-

col (DHCP) [5,68], intended to simplify the administration of IP address spaces, make IP addresses

even less stable, in that a host may change IP addresses merely by virtue of being turned off or

disconnected from the network for some time period even if it hasn’t physically moved. Since trans-

port and application protocols typically rely on IP addresses to define end-to-end communication

endpoints, not only does IP address instability complicate device naming, but already-established

transport connections and application sessions generally fail whenever a host’s IP address changes

for any reason.

Various partial solutions to these problems have been developed. Dynamic DNS [256] enables

a host to change its name record whenever it changes IP addresses, but existing transport sessions

still break at this point, and the host generally remains unreachable whenever it is behind a firewall

or NAT. Mobile IP [183] gives each mobile host a static “home” IP address that can tunnel traffic to

the host’s actual, dynamic location: this solution can traverse firewalls and NATs, and can preserve

transport sessions across location changes. Mobile IP’s approach has several downsides, however:

setting up the host’s “home” IP address and the tunneling association requires considerable manual

setup, permanently stable IP addresses to act as these “home” locations are increasingly scarce and

costly, the tunneling indirection adds communication latency to all traffic and increases load on the

host’s home network whenever the device is roaming, and the host is unreachable from anywhere if

its home network or tunneling server become unavailable. The Host Identity Protocol (HIP) [163]

and shim6 [218] address mobility by introducing a layer between the network and transport layers

that translates between the network layer’s hierarchically structured, location-dependent locators

and flat, location-independent host identities, but neither HIP or shim6 have defined general mech-

anisms to resolve and route on these location-independent identities.

1.3.3 UIA Routing

The Unmanaged Internet Architecture provides an overlay routing layer that operates on top of

the Internet’s existing routing layer to provide robust peer-to-peer connectivity between personal

devices even when those devices are mobile and/or behind firewalls or NATs, as illustrated in Fig-

ure 1-4. UIA’s routing layer generalizes HIP’s notion of location-independent host identities into

26

Figure 1-4: Global connectivity challenges for the UIA overlay routing layer

a notion of location-independent endpoint identities (EIDs) that can refer not only to hosts but to

individual users or user accounts on a particular host, so each user of a shared host can have a sep-

arate EID with independent application endpoint and service namespaces. The UIA routing layer

furthermore includes a self-organizing distributed protocol allowing cooperating hosts to search for

and connect with arbitrary EIDs on demand, even when the target EID is on a mobile and/or NATted

host.

There are many possible approaches to designing a specific routing protocol to serve as UIA’s

overlay routing layer, and the best approach is not yet clear since the design space is large and in-

volves a wide variety of pragmatic constraints and tradeoffs. We therefore explore three different

approaches to UIA routing: a simple but easily deployed routing protocol optimized for the “com-

mon case” of communication within a social network; and two more general routing schemes, based

on distributed hash tables and compact routing theory, respectively.

Social Routing

UIA’s social routing protocol leverages the user’s social network, as defined by the UIA naming

layer, to optimize for the common case in which the user communicates most frequently with

friends and colleagues. Each UIA host tracks and regularly communicates with some number of

other hosts in order to maintain the overlay routing structure, and prioritizes tracked hosts based on

27

social proximity or friendship distance, so that peer-to-peer connections to primary communication

partners will succeed as quickly and reliably as possible. Leveraging the user’s social network in

this way also takes advantage of the implicit trust and incentive structure provided by the social net-

work: users are more likely to want to permit their hosts to serve as rendezvous points or forwarding

intermediaries for their trusted friends than for random strangers.

In the basic, currently deployed version of the UIA routing protocol, a host finds a given target

EID by token-limited flooding. The search initiator first allocates some number of tokens to the

search, which constrains the total amount of network bandwidth (in terms of number of messages)

that can be consumed by the search, and divides these tokens up among the immediate friends

(social neighbors) it can contact. The initiator forwards a search request to each of these friends

with an indicator of the appropriate token count; each of these friends responds directly if has

information about the current location of the target EID, otherwise it further subdivides the tokens

it received among its friends and re-broadcasts the request to those friends, and so on. The original

initiator uses a small token count for the first iteration of the search, but increases the token count

for subsequent search attempts if earlier attempts fail. Thus, successful searches for EIDs close to

the initiator in the social graph tend to complete very quickly and inexpensively, while searches for

EIDs farther away are more expensive but still have a chance of completing.

Identity Hash Routing

A second overlay routing scheme for UIA, identity hash routing, builds on distributed hash table

(DHT) concepts [146,148,156,194,209,234,271]. Each node uses its pseudorandom EID to deter-

mine its logical position within a distributed structure, and registers itself with other nodes having

high identifier affinity with its own EID (i.e., some number of bits of common identifier prefix), so

that searches for a given EID can be guaranteed to succeed in a correct, fully-functioning n-node

network after contacting at most O(log n) identifier lookup stages.

While classic DHTs only provide a scalable lookup service and assume the underlying network

provides full any-to-any connectivity, UIA’s scalable routing protocol makes the more pragmatic

assumption that some pairs of nodes can communicate directly via IP routing and others cannot,

or require NAT traversal techniques [30, 82, 99, 100] involving an intermediary rendezvous node

in order to do so. To handle such asymmetries in connectivity, UIA’s scalable routing protocol

allows DHT routing table entries to contain not just “direct” pointers (i.e., IP addresses) but also

indirect pointers representing either “flat” source routes or virtual links that build hierarchically on

combinations of other routing table entries.

Compact Routing

The third overlay routing scheme explored here is based on recent theoretical results in the area of

compact routing [2, 15, 56, 245]: schemes that use routing tables provably sublinear in the number

of nodes, while provably maintaining a bound on stretch, or the inefficiency of chosen paths with

respect to a non-compact shortest-path scheme. Compact routing schemes present a promising

28

basis for UIA routing because of their formal scalability and stretch properties, and because they

work between arbitrary nodes on arbitrary topologies. Unfortunately, these formal schemes have

so far been developed only as centralized algorithms to compute a set of routing tables from a

network graph description; converting these algorithms into practical distributed protocols remains

to be done. Also, compactness and stretch—the properties of primary focus in the compact routing

literature—are only two of the many properties of a routing scheme that are important in a practical

system; other properties, such as congestion caused by the route selection mechanism, robustness

to failure, and the messaging cost of maintaining routing tables, have been largely ignored so far.

We therefore explore techniques and challenges for converting one particular compact routing

scheme—Thorup and Zwick’s variable k-level scheme [245]—into an overlay routing protocol for

UIA. One major issue with this Thorup/Zwick scheme is a tendency to “focus” global traffic through

a few central, randomly chosen “landmark” nodes, which can create congestion bottlenecks: we

explore ways to modify the routing scheme to mitigate this bottleneck effect while preserving the

scheme’s formal compactness and stretch bounds. To better understand the scheme’s viability for

use in large-scale UIA overlay networks, we also examine the scheme’s behavior in terms of stretch,

congestion, and robustness to failure, on a variety of simulated network topologies up to 192,000

nodes in size.

1.3.4 Centralized Alternatives to Overlay Routing

As with the naming layer, reliance on centralized services represents a seductively simple but po-

tentially problematic alternative design for overlay routing. Personal devices could simply connect

to a cluster of well-known rendezvous and forwarding servers operated by the device or software

vendor, keeping a communication session open with at least one such server to receive notifica-

tions of incoming connection attempts even when the device is behind a restrictive NAT or firewall,

and forward traffic through the central server whenever direct peer-to-peer connection attempts fail.

Indeed, such a centralized routing/rendezvous service for peer-to-peer communication between per-

sonal devices is the basis of Apple’s MobileMe [13] and Microsoft’s Live Mesh [160] services.

While the reliance of centralized services such as these would indeed simplify the client-side

part of UIA’s routing layer, doing so would bring the usual attendant issues pointed out in Sec-

tion 1.1. First, the user would have to register with the central service before his devices could

communicate at all. Second, devices would be unable to communicate with each other when dis-

connected from the Internet, or while part of a temporarily disconnected fragment of the Internet

such as a disaster zone. Third, since all the user’s personal devices would have to maintain constant

connectivity with the central service in order to maintain global reachability, the central service

would always have to “know” the user’s location (or at least network attachment point) at any given

moment, which may be a significant privacy concern for his users.

29

1.4 Transport

Once devices have been given usable names and a mechanism is available to find and establish con-

tact with named hosts, applications still need a convenient way to exchange both control information

and application data between those hosts, in some fashion appropriate to the specific application.

In the early days of the Internet, the most common applications were remote text-oriented terminal

access via protocols like Telnet [186], Rlogin [128], and eventually the Secure Shell [264–267];

text-oriented messaging systems such as E-mail [58,135,168,201] and USENET [77,114,175]; and

bulk data transfer protocols such as FTP [113,187]. For most of these applications, the reliable byte

stream abstraction provided by TCP [6, 242] generally proved quite suitable, and for applications

like DNS name resolution [162] that needed a lighter-weight transport, UDP [185] was available as

an alternative.

1.4.1 The Demands of Modern Interactive Applications

The evolution of modern personal Internet devices has placed many new demands on applica-

tion protocols, however, with which existing Internet transport protocols have not adequately kept

up. In particular, modern applications are frequently much more delay-sensitive than traditional

text-oriented or bulk transfer applications. In multimedia streaming applications [214, 215], unex-

pected delay translates to user-visible glitches, quality degradation, or temporary interruptions in

audio/video service. Interactive applications such as web browsing and remote file system access

rely on transaction-oriented protocols such as HTTP [78] and NFS [217], in which the delay of a

transaction’s completion is often easily perceptible to the user as an annoying “freeze” in the sys-

tem’s normal operation. Wireless broadband technologies are increasingly used for Internet connec-

tivity and not just voice communication [41], but the high latency and/or lossiness of these networks

exacerbate the challenges faced by modern delay-sensitive applications [7,17,21,23,179,263]. Fur-

thermore, modern interactive applications frequently need to perform many independent transac-

tions concurrently, such as downloading the many individual pictures and other embedded objects

on a web page; the common practice of multiplexing these many transactions onto one TCP stream,

as done in HTTP [78], IMAP [58], or iSCSI [212], for example, causes a delay in processing one

transaction to block all the other transactions queued up behind it in the stream [51, 213, 262], un-

necessarily turning a minor freeze in one transaction into a much more obvious and annoying freeze

affecting many transactions or the whole application.

TCP has seen numerous extensions over the years to improve its performance in various ways,

such as large windows and timestamps [122], rapid connection renewal for transactions [36], se-

lective acknowledgment [154], and duplicate acknowledgment [33, 79], but these partial solutions

do not solve the fundamental limitation of TCP’s byte-stream abstraction: that it unnecessarily im-

poses a total order on all communication even when individual transactions or “application-layer

frames” [51] are naturally order-independent.

30

Other transports, such as UDP [185], RDP [177, 178, 255], SCTP [232, 233], UDP-Lite [142],

and DCCP [136, 137], forsake the convenience, generality, and conceptual simplicity of TCP’s

stream abstraction for a transport abstraction based on limited-size datagrams. All of these trans-

ports force the application into building atop a different and more restrictive abstraction, in which

the application is responsible for breaking up all its logical transactions or application-layer frames

into reasonably small (datagram-size) units, and (in the case of UDP-Lite and DCCP) for handling

any necessary reliability provisions. While SCTP can handle multiple concurrent “streams,” these

are streams of datagrams rather than streams of bytes, and SCTP uses datagrams as its atomic units

for reordering and traffic scheduling purposes: thus, if an application transmits a datagram that

is too large, the transmission of that datagram will “block” the entire SCTP connection until its

entire content is completely transmitted and acknowledged, before datagrams from other (perhaps

higher-priority) streams may be sent on the connection.

1.4.2 Structured Streams in UIA

UIA takes a different approach to supporting the modern applications prevalent on today’s personal

devices. Instead of forsaking or drastically changing TCP’s byte stream abstraction, UIA’s struc-

tured stream transport (SST) merely attempts to make classic byte streams easily and efficiently

usable at finer (but completely application-defined) granularity. Thus, SST enables transaction-

oriented interactive applications like HTTP, IMAP, and NFS to create a brand-new byte stream for

every transaction. Similarly, a media streaming application using SST can place each media frame

in a separate ephemeral stream. Since SST preserves TCP’s byte stream semantics, each of these

streams provides strict data ordering within a transaction or frame, while allowing transactions or

frames to be of any size ranging from a few bytes to long-running bulk transfers of megabytes or

gigabytes of data. Since each transaction or frame is in a separate stream, however, different trans-

actions or frames are ordered and delivered fully independently of each other: thus, a temporary

delay in one transaction (caused for example by a server-side processing delay or a packet loss in

the network) need not prevent other ongoing transactions from completing promptly.

To make it easy for applications to create and manage the many per-transaction or per-frame

streams they will require in order to take advantage of this natural transaction/frame independence,

SST augments the traditional stream API with a “fork” operation, which allows the application to

create a new stream from an existing stream at any time. A new stream created this way is consid-

ered a “child” of the existing stream, and child streams can likewise be forked, giving SST streams

a hereditary structure—hence the name “structured streams.” A child stream is semantically inde-

pendent from its parent, in that its data transmission is unordered with respect to data in its parent

stream, and child streams can even outlive their parent streams. Nevertheless, SST maintains this

hereditary relationship during the process of initiating a new stream, so that the host accepting the

new stream has a suitable context (namely the parent stream) in which to interpret the meaning and

purpose of the new child stream. Structured streams make general “out-of-band” communication

very simple, for example: if two hosts are in the process of transferring data related to one trans-

31

Figure 1-5: Example structured stream hierarchy in SST

action, such as a long HTTP download, they can fork the stream on which that long transaction is

occurring in order to communicate out-of-band messages relating to that transaction, such as status

updates, priority changes, or graceful cancellations. Figure 1-5 illustrates an example structured

stream hierarchy that an application such as a web browser might create.

The SST protocol is itself broken into two layers: a channel layer that provides transport ser-

vices that are shareable among many application streams, such as sequencing, acknowledgments,

congestion control, authentication, and encryption; and a stream layer that implements the struc-

tured stream abstraction itself atop the channel layer’s services. The channel layer’s sequencing and

acknowledgment services enable the the stream layer to create and destroy streams with very little

per-stream state or on-the-wire overhead, avoiding TCP’s 3-way handshake delay on stream cre-

ation and its four-minute TIME-WAIT state retention period after stream close, for example. SST’s

stream protocol also subsumes the functionality of datagram-oriented transports such as UDP [185],

RDP [177,178], and DCCP [136,137] by providing applications the ability to send small ephemeral

streams efficiently with optional “fire-and-forget” (unreliable) delivery semantics.

32

Figure 1-6: Implicit NAT traversal via “hole punching”

1.5 NAT Traversal

Personal mobile devices are often be located behind corporate or home NATs and firewalls, and

although the UIA overlay routing layer inherently supports communication between such devices

by forwarding traffic through some intermediate node on the public network, this UIA-level for-

warding has costs in terms of both network delay and load on these intermediate nodes. The costs

of UIA-level forwarding can sometimes be avoided through NAT traversal techniques, in which an

intermediate node helps to establish a direct IP-layer path between two nodes that may both be lo-

cated behind NATs. Since NAT traversal is useful both as an optimization within the UIA overlay

routing layer, and to standalone non-UIA-based Internet applications, we explore the design space,

behavior, and reliability of NAT traversal independently of a particular routing protocol.

NAT traversal can be implemented using either explicit or implicit communication with NATs

and firewalls on the path. Protocols supporting explicit NAT traversal, such as UPnP [253] and

NAT-PMP [48], provide the greatest flexibility and control, but are supported only on some NATs

and generally do not address increasingly-common scenarios involving multiple levels of NAT.

We therefore focus on implicit NAT traversal techniques, in particular a technique known as hole

punching. With hole punching, illustrated in Figure 1-6, two “client” devices both behind NATs

or firewalls can collaborate using a public rendezvous server on the Internet to open (“punch”) a

pair of forwarding sessions (“holes”) by sending outgoing traffic through their respective NATs, to

33

form an efficient peer-to-peer data path that thereafter requires no further traffic forwarding or other

assistance from the rendezvous server.

Hole punching for UDP-based applications has been informally known and in use for a while,

but hole punching for TCP connections is more challenging and less well-understood, and scant

prior analysis or experimental research has been done on the generality and robustness of hole

punching in the context of either transport. This thesis attempts to address this knowledge gap by

laying out hole punching techniques that are robust and efficient as long as NATs in the path satisfy

certain common and generally reasonable requirements, by exploring and identifying solutions for

the problem of NAT traversal over multiple levels of NAT, and by experimentally evaluating the

applicability of these techniques to the NATs commonly found “in the wild” on the Internet.

1.6 Prototyping UIA

Like any general systems architecture, there are many possible ways to implement UIA, different

approaches necessarily offering different tradeoffs. One particularly important practical tradeoff for

our purposes is driven by the goal of incremental deployment: how can we make UIA useful with

as few changes to existing system and application components as possible, and should we prefer

changes to the operating system or to applications?

UIA could be implemented as part of the operating system, for example, which might facili-

tate deployment by making it immediately usable by existing, unmodified applications running on

that operating system. Such a UIA implementation may be tied to that particular operating system,

however, limiting its portability to other operating systems, and the requirement of installing priv-

ileged operating system extensions can be a pragmatic deterrent to use by more casual (or merely

unprivileged) users. Alternatively, UIA might be implemented as part of specific applications that

wish to use UIA’s communication facilities, in which case the UIA implementation need not re-

quire special privileges or any explicit installation step separate from that of the application itself,

making it easily deployable by casual users. Such an implementation may unfortunately become

application-specific and functionally isolated from similar (or even identical) instances of UIA in

use by other applications running on the same system, however.

Since there is no clear “best” implementation strategy, we explore a combination of strategies in

several working prototypes that demonstrate various elements of UIA both together and separately,

and provide an experimental base on which to develop the architecture further. We use a system-

level approach to implementing the personal naming and social routing protocols, allowing both

new and legacy applications to benefit from UIA’s personal naming and overlay routing facilities.

We use simulation frameworks to explore identity hash routing and compact routing. Finally, since

the transport layer is more closely tied to the application than the naming and routing layers are, we

use an application link library approach to prototype UIA’s structured stream transport.

34

1.6.1 System-level Naming and Routing Prototype

The main UIA prototype is designed to be installed on existing operating systems as a new set

of system-level services implementing the UIA architecture in a modular fashion. This modular

prototype includes a basic social routing layer written in C++ [237], a personal naming layer written

in Python [189], a graphical user interface (GUI) written in C++ using the Qt toolkit [248] for

managing personal groups and personal names, and system daemons to provide compatibility with

unmodified legacy applications. All components of the prototype are designed to run in user space

for relatively easy portability to multiple platforms: the prototype currently runs in Linux, Mac OS

X, and FreeBSD. The primary advantage of this system-level design is that it allows unmodified

legacy applications to use UIA, resolve UIA personal names, and communicate within and between

personal groups. The main disadvantage of this system-level approach is that deployment requires

a somewhat invasive installation of a set of privileged daemons.

1.6.2 Routing Simulation Frameworks

To provide a basis for developing and analyzing more general overlay routing protocols for UIA,

we develop a set of simulation frameworks in C++ and Python. In order to provide insight on the

behavior of a routing scheme when scaled to networks containing large numbers of interconnected

UIA nodes, these simulation frameworks are designed to support simulation of a very large number

of nodes on one physical machine: the C++ framework has been run on simulated topologies up to

192,000 nodes, for example. The downside of this streamlined approach to routing simulation is

detail and hence, possibly, fidelity: our simulators do not emulate all aspects of the routing protocols

or of realistic network environments, leaving uncertainty about the extent to which these simulations

may be relied upon to predict real-world behavior. More accurate (but perhaps necessarily smaller-

scale) simulations and real-world deployments of the more general routing schemes developed here

remain for future work.

1.6.3 Library-based Structured Stream Transport Prototype

The working prototype of UIA’s structured stream transport (SST) is not yet integrated into the

system-level UIA system, but instead operates as a Qt-based library intended to be linked directly

into applications. This library implementation can be linked into (and distributed with) applications

for existing unmodified operating systems, making it immediately and incrementally deployable on

a per-application basis. The library provides an API similar to traditional sockets APIs, but uses

names that do not conflict with the system’s, and does not require any special (e.g., administrator-

level) privileges in order to operate.

Although the SST prototype is not yet integrated into the prototype of UIA’s naming and routing

layers, they can still be used together, since an SST-based application will appear to the underlying

OS as a UDP application, and an OS with the UIA naming and routing prototype installed will be

able to forward that “UDP” traffic transparently to the application within the user’s UIA personal

35

group and social network using UIA personal names. This implementation is far from ideal, how-

ever, since the naming and routing prototype’s current use of SSL over TCP for authentication and

communication security defeats many of the responsiveness advantages that SST could otherwise

provide by forcing a total order on all UIA traffic between a given pair of hosts. Integrating SST

properly into the main UIA prototype, so that the UIA routing layer uses SST instead of SSL/TCP

for its transparent tunneling and forwarding functions, remains for future work.

1.7 Contributions

UIA’s primary architectural contribution is a cross-layer redesign of basic network abstractions

and protocols around the requirements of modern personal devices. Since personal devices

have become mainstream commodities in the emerging world of ubiquitous computing, nontechni-

cal users now frequently own several devices, and these devices need to work together to “manage

themselves,” operating efficiently under a wide variety of network conditions and application re-

quirements without constant help from administrative authorities or technical experts. Although

many networking abstractions throughout the entire Internet protocol suite will ultimately need to

be reconsidered around these new usability requirements, UIA takes a few steps in this direction by

identifying and developing new naming, routing, and transport abstractions that are more suited to

modern personal devices than the traditional, “managed” abstractions the Internet evolved with.

UIA demonstrates that rethinking network abstractions across architectural boundaries in this

way makes it possible to address problems that are impossible to solve by tweaking a single layer

alone. UIA’s personal names depend on the personal group abstraction to provide a scope within

which to interpret these names, and depend on the overlay routing layer to provide devices with

location-independent identities that can be securely authenticated to a named device regardless of

how or where on the network the device is attached. UIA’s distributed personal group management

system in turn depends on the overlay routing layer to enable devices to keep their personal groups

synchronized regardless of how or where they are connected. UIA’s transport layer similarly de-

pends on the overlay routing layer to support peer-to-peer communication directly between mobile

devices on public or private networks. UIA’s overlay routing layer in turn can make use of social

network information provided by the personal name and personal group management system in

order to increase its efficiency, security, and reliability, and can leverage advanced NAT traversal

techniques to minimize unnecessary forwarding of traffic through the overlay.

Within each of the main functional areas it addresses, UIA makes additional technical contribu-

tions as summarized below.

1.7.1 Naming

UIA’s primary naming contributions are its personal name and personal group abstractions:

36

• Personal groups provide users with a simple, intuitive model for administering a collection

of devices they own and operate, based on pairwise device introduction and automatic syn-

chronization of group management state across devices.

• Personal names provide a more concise and convenient alternative to traditional global DNS

names for purposes of naming devices or other users from within the scope of a user’s own

administrative domain.

In addition to the basic networking abstractions above, UIA makes the following technical con-

tributions in its design for a prototype protocol suite implementing personal groups and personal

names:

• UIA introduces an always-available namespace consistency model, which ensures that a

user’s personal namespace is always accessible and modifiable on any device regardless of

the device’s connectivity, but that namespace changes always propagate automatically among

devices whenever connectivity permits.

• UIA introduces a decentralized device ownership and revocation algorithm, allowing a

user to remove a device from his group, either gracefully or forcefully, providing assurance

that lost or stolen devices cannot be misused to gain unwarranted access to the user’s personal

group.

1.7.2 Routing

UIA’s primary routing contribution is a development and analysis of several approaches to scal-

able overlay routing among devices with self-configuring, location-independent identities. In

particular, UIA introduces:

• A routing scheme that leverages the user’s social network, to provide secure, robust con-

nectivity among devices in a user’s personal group and social neighborhood with minimal

protocol complexity or maintenance overhead.

• A routing scheme that leverages distributed hash table (DHT) concepts, to build a more

general routing and traffic forwarding mechanism directly on top of UIA’s flat endpoint iden-

tifier (EID) space.

• A routing scheme that builds on compact routing theory, which provides provable bounds

on routing table size and stretch, but also addresses congestion, fault tolerance, and other

practical issues ignored in the theoretical groundwork.

In support of this exploration of specific overlay routing schemes, UIA introduces the first

detailed exposition and experimental analysis of practical NAT traversal techniques. The ex-

position analyzes the previously unaddressed problem of traversal of multiple levels of NAT, and

37

identifies a crucial behavioral property for NATs, dubbed hairpin translation, which enables au-

tomatic and transparent multi-level NAT traversal. UIA’s experimental analysis of NAT traversal

techniques includes data covering a wide variety of NATs deployed in the field, examining NAT

behavioral properties required for both single-level and multi-level NAT traversal via both UDP and

TCP.

1.7.3 Transport

UIA’s primary contribution to the Internet’s transport layer is the structured stream abstraction,

a novel extension to TCP’s traditional byte-stream abstraction that enables modern interactive ap-

plications to create and manage many concurrent streams easily by “forking” new streams from

existing ones. To demonstrate that this transport abstraction can be implemented efficiently, UIA

introduces structured stream transport (SST), a prototype transport protocol based on structured

streams. The SST protocol design makes two additional technical contributions:

• SST introduces a division of the transport layer into two sublayers, where the “bottom

half” or channel layer implements network-oriented services such as sequencing, acknowl-

edgments, congestion control, and security, and the “top half” or stream layer implements

application-oriented services such as logical byte streams and receiver-directed flow control.

• SST’s stream sublayer introduces a datagram optimization that provides either reliable or

unreliable transmission of datagrams as “ephemeral streams,” providing the efficiency bene-

fits of datagram transports without the attendant datagram size limitations or other restrictions.

1.8 Limitations

While UIA explores some promising approaches to rethinking the Internet architecture around the

requirements of personal devices, in terms of a “grand solution” to the Internet’s current difficulties

with personal devices, UIA is still incomplete in many ways—necessarily so due to the breadth of

the topic and the design space. UIA’s naming system explores one particular design for personal

groups and personal names, using a particular introduction mechanism for building groups and

a particular revocation mechanism for pruning them, but it is easy to envision other alternative

naming designs that might be more user friendly or effective in some usage scenarios (and perhaps

less so in others). The three routing schemes explored in this thesis cover some breadth in in design

space but do not yet yield a single obvious “winner”—the deployed social routing scheme is simple

and efficient in most cases but cannot support all types of applications effectively, whereas the

other two schemes have only been evaluated under simulation and have known practical issues that

might deter full implementation and large-scape deployment. UIA’s structured stream transport is

similarly promising for what it does, but there are many ways its design could be evolved further,

such as by supporting multihoming as SCTP [233] already does. Finally, there may be are a variety

38

of potential technical, economic, and political barriers to the widespread adoption of an architecture

like UIA. Chapter 9 will describe these limitations and potential barriers to adoption in more detail.

1.9 Thesis Organization

In terms of overall organization, this thesis first develops and explores each of the main functional

areas in the network stack that UIA addresses—naming, routing, and transport—fairly indepen-

dently of each other in Chapters 2–4, then after a brief diversion into NAT traversal techniques in

support of UIA’s routing functionality, each of the remaining chapters addresses all of the functional

areas together to take a broader perspective in evaluating the architecture. A quick summary of each

chapter follows:

• Chapter 2 introduces UIA’s personal group management and naming paradigm, and de-

scribes protocols and algorithms to implement that naming model.

• Chapter 3 addresses the challenge of overlay routing among UIA’s location-independent

endpoint identifiers, exploring three specific schemes: social routing (Section 3.2), identity

hash routing (Section 3.3), and compact routing (Section 3.4).

• Chapter 4 describes UIA’s structured stream transport abstraction, and presents a protocol

design representing one approach to implementing this transport abstraction efficiently.

• Chapter 5 describes NAT traversal background, hole punching techniques for UDP (Sec-

tion 5.2) and TCP (Section 5.3), and delineates the requirements NATs and firewalls must

satisfy in order to support these techniques (Section 5.4).

• Chapter 6 describes the current prototype implementations of UIA’s personal naming (Sec-

tion 6.1), overlay routing (Section 6.2), and structured stream transport (Section 6.3).

• Chapter 7 evaluates UIA experimentally based on both real-world use and simulation, and

informally through pragmatic experience with its personal naming model.

• Chapter 8 describes in detail the relationship of UIA to other prior work.

• Chapter 9 finally concludes the thesis, discussing limitations and potential barriers to adop-

tion, and avenues for future work.

39

40

Chapter 2

Naming

As network-enabled mobile devices such as laptops, smart phones, media players, personal digital

assistants, gaming consoles, and digital cameras become ubiquitous in the lives of ordinary people,

the proliferation of these devices makes it increasingly important for users to have a convenient

way to name and connect them over the Internet, while preserving users’ security and privacy.

This chapter details UIA’s naming layer, which provides a naming infrastructure enabling users

to connect and communicate conveniently among mobile personal devices. We first explore the

motivation and goals of UIA’s naming system in Section 2.1, then examine UIA naming from the

(nontechnical) user’s perspective in Section 2.2, and finally delve into the technical details of the

naming system in Section 2.3.

2.1 Motivation and Purpose of UIA Naming

The Internet’s current naming infrastructure has evolved to be well-suited to client/server commu-

nication—e.g., a user connecting to an online service like Google or Amazon.com. Networked per-

sonal devices also require peer-to-peer communication, however, in order to be maximally useful.

While on a trip, for example, a user in a cyber cafe may wish to copy photos from his WiFi-enabled

camera to his PC at home for storage and backup. Two users who meet in a park or other off-Internet

location may wish to connect their WiFi devices to exchange photos or other information, and later

re-establish a connection between the same devices over the Internet after returning to their homes.

A Voice-over-IP user would like his WiMax phone to be easily reachable by his friends wherever

he and they are located, but not to be reachable by unknown telemarketers.

2.1.1 Global Names and Their Limitations

Convenient global communication over the Internet, however, currently requires the target device to

have a global name in the Internet’s Domain Name System (DNS) [161, 162]. Users must register

with central naming authorities to obtain these global names, and since DNS names are global in

scope, users can only obtain names that are not already taken by someone else. Ever since the

41

Internet’s commercialization and “.com boom,” short, convenient, memorable global names have

become ever more difficult and more expensive to obtain.

Furthermore, for a DNS name to work, the named host must have a stable IP address [120],

and the user must understand how to obtain and assign that IP address, or at least know it, in order

to enter it into the DNS record for the named host. Protocols such as Dynamic DNS [256], Mo-

bile IP [183], and Virtual Private Networks [95] can provide ways of naming hosts with no stable

IP address, but the additional configuration effort and technical expertise they require makes them

deployable in practice only by organizations with dedicated network administration staff. User

interface refinements alone cannot overcome this deployment roadblock, because the protocols de-

pend on centralized resources—global domain names and static, public “home” IP addresses—that

are not part of most consumer-oriented Internet service packages. Ordinary users require a solution

that “just works.”

2.1.2 An Alternative Model: “Virtual USB Cables”

In contrast with the operation of the global name system, there is one implicit “naming system”

we can take inspiration from that is both straightforward and trivially secure: plugging two devices

together via a USB cable. The cable itself physically indicates which devices should participate in

the transfer (the naming aspect), and the isolated physical medium guarantees that no other devices

can eavesdrop or interfere with the communication (the security aspect). As personal devices begin

to support wireless networking and Internet connectivity, we would like to extend the simplicity

and security of a USB cable to device connectivity on a global scale. We would like to develop

a naming model in which Alice can connect her WiFi-enabled iPod to her home PC via a “virtual

USB cable,” so that she can browse photos or play music stored there from a WiFi-enabled coffee

shop or friend’s house. Setting up this “virtual cable” should not require technical knowledge or

special configuration on Alice’s part, it should not require Alice to obtain any form of scarce global

resources from any central organization, and it should continue working even when the devices it

connects are behind firewalls or NATs.

Extending the “virtual USB cable” model to inter-user communication, if Alice meets Bob in a

coffee shop, she should easily be able to share with him information or services located on any of

her personal devices simply by “plugging” their two devices together. Bob should be able to connect

to Alice’s devices even after he leaves the coffee shop, until she chooses to sever their relationship—

i.e., the virtual USB cable should be able to “stretch” invisibly across arbitrary distances. No one

else should be able to impersonate Bob, however, in order to gain access to Alice’s shared resources.

2.1.3 UIA Personal Names and Personal Groups

The Unmanaged Internet Architecture uses the above “virtual USB cable” analogy to build a peer-

to-peer connectivity architecture that gives nontechnical users a simple and intuitive way to connect

their mobile personal devices, via convenient personal names organized into personal groups. A

42

personal group represents an administrative cluster of devices all owned or controlled by the same

user—but all devices need not be in the same location. A personal name is a name for a device,

user, or other object that is locally scoped to a particular personal group: thus, a personal name only

needs to be unique within the context of a given personal group (administrative domain), and not

within a global namespace like DNS that is potentially shared by everyone in the world.

The way a user defines and builds a personal group in UIA is a generalization of the “virtual

cable” analogy. By introducing devices to each other “in person,” on a local-area network for

example [65, 231]—a process analogous to “plugging in” a cable between the two devices—a user

can merge UIA devices to form a personal group. Unlike the ephemeral names used in rendezvous

schemes such as Apple Bonjour [11], UIA devices once introduced work together to offer secure

remote access to any device in the group from any other, even if some or all the devices move to other

network attachment points. The devices forming the group present the user with a shared personal

namespace, which they optimistically replicate [105, 133, 243] to ensure constant availability on

each device whether on or off the Internet. The devices gossip namespace changes as connectivity

permits [63], and can propagate updates via mobile devices carried by the user [176].

Since UIA interprets personal names relative to personal groups, users can assign concise,

meaningful names like ipod instead of long globally unique names like ipod.alicesm5186.

myisp.com. In this way UIA conforms to the intuitive model with which users already manage

their cell phones’ address books. Users normally create personal names by introducing devices lo-

cally on a common WiFi network, for example, but they can also introduce devices remotely by

“bootstrapping” from DNS or another global name system, if at least one device to be introduced

has a global name. Since UIA names persist and remain securely bound to their targets as devices

migrate, once Alice introduces her iPod to her home PC, her iPod can continue accessing her PC by

the same name from anywhere she finds Internet access.

Personal names are intended to supplement and not replace global DNS names: users can re-

fer to personal names like phone alongside global names like usenix.org in the same appli-

cations. Global names are the right naming abstraction to represent global “brand names” like

amazon.com, for which the basic idea is that the owner of the global name should be able to ad-

vertise it on billboards, on TV, etc., and expect people to be able to remember the global name and

type it into any web browser in the world to reach the named business or organization. So personal

names and global names serve different and complementary roles: in the long term the Internet

needs both.

2.1.4 Cryptographically Secure Naming

Once created, UIA personal names remain persistently bound to their targets as devices move, via

self-certifying cryptographic identities [157, 163, 203] that are fully self-configuring and hidden

from the user. Besides ensuring that a given personal name always securely refers to the same

device, these cryptographic identities permit applications and services running on the user’s personal

devices to authenticate other users wishing to access shared information. For example, Alice can

43

instruct a desktop application to allow remote access to her home PC from any device in her personal

group, but not from other devices, effectively placing a “virtual firewall” around her personal group

that corresponds to her administrative domain rather than to any physical network topology.

In contrast with SDSI [203] and PKI-based secure naming [14, 115], UIA does not use public

keys to represent a user’s identity or require the user to know about and manage his keys directly

across the multiple personal devices he may own. Each UIA device instead maintains its own per-

device keys automatically,

2.1.5 Social Networking via Personal Names

Different users can introduce their devices to name other users and link their respective personal

groups. Bob can refer to his friend Alice as Alice, and if Alice calls her VoIP phone phone then

Bob can call Alice’s phone using the name phone.Alice. In this way, UIA adapts peer-to-peer

social networking ideas previously explored for other purposes [60, 145, 153, 184, 188] to form a

user-friendly peer-to-peer naming infrastructure. UIA replicates a user’s personal namespace across

all devices in the group to ensure constant availability on each device regardless of connectivity,

implementing a relaxed consistency model reminiscent of Bayou [243], but without dependencies

on centralized resources such as Bayou’s primary commit servers. Users can also create and collect

names into ad hoc shared groups to reflect common interests or informal organizations.

The UIA naming system makes the following primary contributions, expanding on previously

proposed ideas [85]. First, UIA introduces a simple and intuitive model for connecting mobile

devices into personal groups, providing ad hoc user identities, personal names, and secure remote

access, without requiring the user to manage keys or certificates explicitly. Second, UIA presents

a novel gossip and replication protocol to manage the naming and group state required by this

user model, adapting optimistic replication principles previously developed for file systems and

databases.

2.1.6 Goals of UIA Naming

The purpose of UIA naming is to provide users with a convenient and intuitive way to communicate

among their own and their friends’ personal devices. To this end, we can briefly summarize the

primary goals of UIA’s naming system as follows:

• Names must be user-relative, so as not to require global uniqueness. If Alice owns only one

laptop and has only one friend named Bob, she should be able to refer to them simply as

laptop and Bob, despite the millions of other laptops and people named Bob in the world.

• Names must have strong bindings to the identities of the objects named, independent of

their current physical location or network attachment point. When Alice refers to her name

laptop, the name should always resolve to her laptop or fail to resolve; no other device

should be able to impersonate it.

44

Figure 2-1: Bob and Alice introduce their devices

• Assigning names must be a simple and intuitive process. If Alice meets Bob at a conference

and their laptops share a common WiFi network, assigning a name to Bob should be as simple

as looking him up in a local network browser and clicking “Introduce”.

• A user should only have to manage one namespace. If Alice already owns several devices,

she should only have to name a newly purchased device once, and should not have to re-enter

or manually copy the new name onto each of her existing devices.

• A user’s personal namespace should be constantly available, remaining accessible on any

of the user’s devices even while that device is disconnected from the others and/or from the

Internet.

• Users should be able to authenticate each other and selectively share information and device

services by referring to each others’ personal namespaces. If Alice gives Bob permission to

access some files on her desktop PC, he should have access to them via a name as simple as

PC.Alice.

• Finally, UIA personal names should coexist cleanly with DNS, allowing users to refer to

personal names like laptop alongside global names like amazon.com seamlessly within

the same application.

2.2 UIA Naming from the User’s Perspective

This section describes UIA’s operating principles from the perspective of a non-technical user; later

sections detail how the system provides this user experience.

2.2.1 Introducing Devices

A UIA device ideally ships from its manufacturer pre-configured with a name for itself such as

laptop or phone, which the user can keep or change as desired. The device learns additional

45

names as its user introduces it to other devices owned by the same user or different users. The in-

troduction process assigns persistent names by which the device can securely refer to other devices.

UIA’s introduction process builds on previously explored ideas for secure associations, such as the

Resurrecting Duckling security model [231] and SPKI/SDSI introduction [65], but UIA is unique

in providing the ability to build symmetric, self-managing, distributed personal groups solely out of

pairwise introductions.

In a typical introduction, the owner(s) of two devices bring the devices together physically and

connect them to a common local-area network. Each user then invokes a local-area rendezvous

tool similar to Bonjour’s [11] on his device, finds the other device on the network, and selects

“Introduce.” Each device displays an introduction key consisting of three words chosen randomly

from a dictionary, as shown in Figure 2-1. Each user then picks the other device’s introduction

key from a list of three random keys. If one of the devices has unintentionally connected to the

wrong endpoint, such as an impersonator on the same network, then the matching key is unlikely

to appear on the list, so the user picks “None of the above” and the introduction procedure aborts.

Unlike other analogous procedures [65], UIA uses short, user-friendly “one-time” keys that only

need to withstand online and not offline attacks, and its multiple-choice design prevents users from

just clicking “OK” without actually comparing the keys.

Users can follow the same procedure to introduce UIA devices remotely across the Internet, as

long as one device has a global DNS name or IP address and the users have a trustworthy channel

through which to exchange introduction keys: e.g., a phone conversation or an authenticated chat

session. We also envision alternative introduction mechanisms adapted to specific rendezvous chan-

nels such as E-mail, web sites, SMS messages, or short-range wireless links; the details of particular

introduction mechanisms are not crucial to the UIA architecture.

A user can introduce UIA devices either to merge his own devices into a personal group shar-

ing a common namespace, or to create named links from his own group to other users’ personal

groups. The following sections describe these two forms of introduction, and other important group

management actions, with the help of an example scenario illustrated in Figure 2-2.

2.2.2 Device Names and Personal Groups

At Time 1 in the scenario, Bob purchases a new laptop and Internet phone, which come pre-

configured with the default names laptop and phone, respectively. At Time 2, Bob uses UIA’s

local rendezvous tool on each device to find the other device on his home WiFi network and selects

“Introduce devices” on each. Bob chooses the “Merge devices” option in the introduction dialogs

(see Figure 2-1) to merge the devices into a personal group.

The devices in Bob’s group gossip both existing names and subsequent changes to the group’s

namespace as physical network connectivity permits. Each device attempts to preserve connectivity

to other named devices as they leave the network and reappear at other locations, without user

intervention whenever possible. Bob now sees his two personal names phone and laptop on both

devices, and can use these names for local and remote access. Working on his laptop at home, he

46

Figure 2-2: Example personal device scenario

47

uses his personal name phone to reach the phone via his home WiFi LAN. When Bob subsequently

takes his laptop on a trip, he can remotely access his home phone from his laptop over the Internet

(e.g., to check his voice messages), still using the name phone. UIA uses cryptography to guarantee

that an adversary cannot impersonate the device Bob calls phone, and cannot eavesdrop on his

communication.

2.2.3 User Names and Social Networking

With the second form of introduction, users link their personal groups together and assign user

names to each other, but retain exclusive control over their respective personal groups. In the ex-

ample scenario, Bob purchases a new WiFi-enabled cell phone at Time 3 and meets Alice at a cafe

before he has merged his cell phone with his other devices. Bob finds Alice’s iPod using his cell

phone’s local rendezvous tool and selects “Introduce as a new contact” (see Figure 2-1), and Alice

does likewise. Bob’s phone suggests Alice’s self-chosen user name Alice, but Bob can override

this default (e.g., to Alice-Smith or Alice-from-OSDI) if he already knows another Alice.

Bob and Alice can now refer to each others’ devices by combining device names with user

names in DNS-like dotted notation. If Alice runs a web server on her home PC, named PC in

Alice’s personal namespace, then Bob can connect to Alice’s server by typing PC.Alice into his

laptop’s web browser, exactly as he would use a global DNS name like usenix.org.

If Alice’s personal web server is UIA-aware, she can use her name Bob in the server’s access

control lists so that only Bob’s personal devices may browse certain private areas. UIA authenticates

clients so that no one else can impersonate Bob’s devices to gain access to these areas.

2.2.4 Transitive Merging and Gossip

Bob now returns home and merges his cell phone with his home phone, as shown at Time 4 in

Figure 2-2. Bob’s home phone in turn gossips the cell phone’s group membership to Bob’s laptop,

so the laptop and cell phone can name each other without him having to merge them explicitly.

Alice’s devices similarly gossip her new link named Bob and learn about Bob’s three devices, after

which she can, for example, refer to Bob’s laptop as laptop.Bob.

Users can access or edit their personal groups from any of their devices while other devices are

unreachable. If Bob and Alice are on a bus together and disconnected from the Internet, Alice can

still reach Bob’s laptop from her iPod via her name laptop.Bob, even if they have left all their

other devices at home. Bob and Alice can continue adding names for contacts they meet on the bus,

and their other devices learn the new names via gossip later when they re-connect.

2.2.5 Resolving Conflicts

Unfortunately, both of Bob’s phones happened to have identical default names of phone, resulting

in their names conflicting in his newly merged namespace. UIA notifies Bob of the conflict, and

he can continue using the non-conflicting name laptop, but must resolve the conflict before the

48

name phone will work again. Bob resolves the conflict on his cell phone at Time 5, by renaming it

cell while leaving the home phone with the name phone. Bob’s other devices learn the resolved

name bindings via gossip, as do Alice’s devices, so Alice now sees Bob’s phones as phone.Bob

and cell.Bob.

If Bob makes conflicting namespace changes on two of his devices while they are partitioned

from each other, UIA detects the conflict once the devices reconnect. Bob can continue using other

non-conflicting names in the same group while conflicts exist, and he can resolve such conflicts at

leisure on any of his devices.

2.2.6 Shared Groups

In addition to personal groups, users can create shared groups to help organize and share their

personal names. Bob and Alice discover at Time 6 that they share an interest in photography, and

decide to start a photo club for themselves and other friends sharing this interest. To enable members

of the club to find each other easily and share photos among their personal devices, Bob uses his

laptop to create a shared group named PhotoClub in his personal namespace. On creation, the

shared group’s only member is Bob himself. To add Alice to the group, Bob drags the name Alice

from his personal group into PhotoClub, copying his name binding for Alice into the shared

group and making her the second member. Bob can similarly add other friends to PhotoClub,

and these names automatically appear in Alice’s view of the group as the devices gossip the changes.

Although Alice can now refer to the new group as PhotoClub.Bob, she might like this group

to appear directly in her own personal group instead of naming it relative to Bob. Alice drags the

PhotoClub name from Bob’s personal group into her own, giving herself a copy of the name

leading to the same shared group. She can now refer to group members using the same names that

Bob uses, such as Charlie.PhotoClub.

2.2.7 Group Ownership

One or more members of a UIA group may be designated as owners, or members allowed to modify

the group. As Figure 2-3 illustrates, Bob’s devices laptop, phone, and cell are owners of his

personal group by default, allowing Bob to edit his personal group using any of his devices. The

names Alice and PhotoClub are not owners, so Alice and members of PhotoClub can only

browse and resolve names in Bob’s namespace.

Groups can own other groups. When Bob creates his shared PhotoClub group, UIA automat-

ically includes a name Bob in the new group that gives Bob’s personal group ownership of the new

group. After adding Alice to the group, Bob can give her co-ownership by clicking the owner flag

by her name in the group listing, enabling her to add or remove other members herself. Ownership

is transitive: Bob can modify PhotoClub using his laptop because Bob’s laptop is an owner of

Bob’s personal group and Bob’s personal group is an owner of PhotoClub.

49

Figure 2-3: Groups and ownership

50

2.2.8 Security and Ownership Revocation

Returning to the scenario in Figure 2-2, Bob loses his cell phone at Time 7, and he is not sure

whether it was stolen or just temporarily misplaced. If the cell phone was stolen and has no local user

authentication such as a password or fingerprint reader, the thief might obtain not only Bob’s data

on the cell phone itself, but also remote access to services authorized to his personal group via UIA

names. UIA devices capable of accessing sensitive information remotely should therefore provide

strong local user authentication, and should encrypt personal data (including UIA state) stored on

the device, as Apple’s FileVault does for example [12]. The details of local user authentication and

encryption are orthogonal to UIA, however.

To minimize potential damage if a thief does break into Bob’s user account on his cell phone,

Bob can revoke the cell phone’s ownership of his personal group. If the cell phone re-appears and

Bob realizes that he just misplaced it, then he can “undo” the revocation and return the phone to its

normal status. If the cell phone remains missing, however, UIA ensures that no one can remotely

access personal information or services on Bob’s other devices via the lost phone once the revocation

announcement has propagated to those devices. Similarly, the cell phone loses its access to the files

Alice shared with Bob as soon as Alice’s PC, on which the files reside, learns of the revocation from

any of Bob’s remaining devices.

2.2.9 Ownership Disputes

Revocation cuts both ways: a thief might try to “hijack” Bob’s personal group, using the stolen cell

phone to revoke the ownership of Bob’s other devices before Bob finds that the phone is missing.

In UIA’s current ownership scheme in which all owners have full and equal authority over a group,

Bob’s devices cannot distinguish the “real” Bob from an impostor once a stolen device’s local

access control is broken. UIA therefore allows any device to dispute another device’s revocation of

its ownership.

In the example scenario, when Bob next uses his laptop, UIA informs him that his laptop’s

ownership of his personal group has been revoked by the cell phone, which Bob realizes was stolen.

In response, Bob issues a revocation of the cell phone’s ownership from his laptop. The two mutual

revocations effectively split Bob’s original personal group into two new, independent groups: one

containing only the cell phone, the other containing Bob’s remaining devices. All existing UIA

names referring to Bob’s old personal group, and any access authorizations based on those names,

become unusable and must be manually updated to point to the appropriate new group. Alice’s name

Bob for example is now marked “disputed” in Alice’s namespace, and Alice’s PC rejects attempts

by any of Bob’s devices to access the files she shared with Bob earlier using that UIA name. To

update her name for Bob and safely renew his access, Alice can re-introduce her devices directly

to Bob’s the next time they meet, or obtain a fresh link to Bob’s new personal group from a trusted

mutual friend who already has one.

51

Group ownership disputes need not be permanent. Suppose two people who co-own a shared

group get into an argument, and split the group by issuing mutual revocations. If the original co-

owners later settle their differences, they can undo their conflicting revocations or simply merge

their respective “splinter” groups back together via UIA’s normal merge mechanism. Links to the

original group become unusable during the dispute, but function again normally after the dispute is

resolved.

2.3 Personal Naming System Design

This section describes the design of the UIA personal naming system, beginning with the system’s

basic architecture, followed by the details of how UIA devices manage and synchronize the name-

space state comprising their users’ personal and shared groups.

2.3.1 Basic Architecture

The design of the UIA personal naming system is based on three crucial elements: a mechanism

for identifying personal devices uniquely, securely, and persistently; a process for resolving names

within personal groups; and a storage management and gossip mechanism for optimistically repli-

cating namespace state across devices. This section briefly introduces these three architectural

components, for which subsequent sections provide further details.

Personal Endpoint Identities

UIA devices identify each other using cryptographically unique endpoint identifiers or EIDs. Whereas

DNS maps a name to an IP address, UIA maps a personal device name such as Bob’s laptop to

an EID. Unlike IP addresses, EIDs are stable and do not change when devices re-connect or move.

UIA’s routing layer, described in Chapter 3, tracks mobile hosts by their EIDs as they change IP

addresses, and can forward traffic by EID when IP-level communication fails due to NAT or other

Internet routing discontinuities. Thus, EIDs represent the “point of rendezvous” between UIA’s

naming and routing systems.

A UIA device creates each EID it needs automatically by generating a fresh public/private key

pair and then computing a cryptographic hash of the public key. As in SFS [157], EIDs are crypto-

graphically unique, self-configuring, and self-certifying, but not human-readable. As in HIP [163],

UIA-aware network transports and applications use EIDs in place of IP addresses to identify com-

munication endpoints. (UIA can also disguise EIDs as “actual” IP addresses for compatibility with

unmodified legacy applications, as described later in Section 6.1.)

An EID corresponds to a particular user’s presence on a particular device. A user who owns

or has access to several devices has a separate EID for each. A device accessed by only one user

needs only one EID, but a device shared among multiple users via some form of login mechanism

creates a separate EID for each user account. Unlike cryptographic host identifiers in SFS and HIP,

therefore, EIDs are not only stable but personal.

52

Personal EIDs allow multiple users of a shared UIA host to run independent network services on

the device. Since each user’s services bind to the user’s EID rather than to a host-wide IP address,

UIA-aware network applications can run exclusively in the context of the user and rely on UIA to

provide user-granularity authentication and access control. When Bob connects his laptop to the

HTTP port at the EID to which PC.Alice resolves, he knows he is connecting to Alice’s personal

web server and not that of another user with an account on the same PC. Alice’s web server similarly

knows that the connection is coming from Bob and not from someone else using his laptop, because

her name laptop.Bob resolves to an EID specific to Bob’s account on his laptop.

Resolving Names in Personal Groups

Each UIA device acts as an ad hoc name server to support name lookups and synchronize namespace

state across devices. UIA names follow the same formatting rules as DNS names, consisting of a

series of labels separated by dots, and devices resolve UIA names one label at a time from right

to left. To resolve the name PC.Alice, for example, Bob’s laptop first resolves the rightmost

component Alice to find Alice’s personal group, and from there resolves the second component

PC to find the EID for Alice’s PC as named in Alice’s personal group.

Whereas DNS resolution traverses a strictly hierarchical tree of “zones” starting from a centrally-

managed global root zone, each UIA device has a unique root for resolving UIA names, and users

can link UIA groups to form arbitrary graphs. After Bob meets Alice at Time 3 in Figure 2-2,

for example, Bob’s “root” group for UIA name resolution, corresponding to his personal group,

appears to Alice as a “sub-group” named Bob. Conversely, Alice’s “root” group appears to Bob

as a “sub-group” named Alice. Since Bob’s and Alice’s naming relationship forms a cycle in

the graph of UIA groups, Bob could for example refer to his own phone via the redundant name

phone.Bob.Alice.

UIA groups may at times contain label conflicts, or bindings of a single name to multiple distinct

targets. When Bob at Time 4 merges his new cell phone with its default name phone into his

personal group, which already contains another device named phone, the two phone bindings

result in a label conflict. Label conflicts also arise if an ownership dispute splits the target that a

group name refers to, as described in Section 2.2.9. Name resolution fails if it encounters a label

conflict, preventing the user from following ambiguous links before resolving the conflict. A conflict

on one label does not affect the usability of other labels in the same group, however.

State Management

UIA uses optimistic replication [105,133,243] to maintain a user’s personal UIA namespace across

multiple devices, guarding namespace state against device loss or failure and keeping the name-

space available on all devices during periods of disconnection or network partitions. Each device

stores in an append-only log all persistent naming state for its user’s personal group and any other

groups of interest to the user, and uses an epidemic protocol [63] to distribute updates of each

53

Figure 2-4: Basic log record format

group’s state among the devices interested in that group. Devices use rumor mongering to prop-

agate newly-written or newly-learned records aggressively through the network, and they perform

periodic anti-entropy exchanges to ensure that updates reliably reach all interested devices as net-

work connectivity permits.

2.3.2 Device Log Structure

Each UIA device keeps an append-only log holding all persistent UIA naming-related state. The

records comprising the log collectively hold all of the persistent state for the user’s personal group

and any other UIA groups of interest to the user. A device’s log typically holds both records gen-

erated by the device itself and gossiped replicas of relevant records generated by other devices.

Devices sharing a namespace propagate updates via gossip, copying any relevant new records from

other devices’ logs to their own as they appear and as network connectivity permits. Storing all

persistent namespace state in log form facilitates automatic synchronization of namespace changes

across devices, and also provides the ability to undo accidental name deletions or malicious changes

from a compromised device.

UIA organizes the records comprising a device’s log into series, each series representing the

sequence of changes a particular device writes to a particular group. The state defining a group

consists of one or more series, one for each device that has written to the group. All devices partic-

ipating in a group gossip and replicate all records in each of the group’s series, preserving the order

of records in a given series, but do not enforce any order between records in different series. Since

UIA separates the naming state for each group by series, devices can limit gossip to the records

relating to groups they’re interested in, instead of scanning their neighbors’ entire device logs.

As shown in Figure 2-4, each log record contains a series ID, a sequence number, data specific

to the record type, and a signature. The series ID (SID) uniquely identifies the series to which the

record belongs. The sequence number orders records within a series. The device that owns a series

signs each record in that series with its private key, so that other devices can authenticate copies

of records they receive indirectly. A cryptographic hash of the record yields a Record ID, which

uniquely identifies the record for various purposes described later.

UIA currently defines four record types, listed in Figure 2-5 and summarized briefly below:

54

Figure 2-5: Specific log record types

• Create: A create record initiates a new series owned by the device writing the record, as

identified in the record’s owner field. The owner EID fixes the public/private key pair other

devices use to authenticate records in the new series. The record ID of the create record

becomes the new series ID; a random nonce ensures the new SID’s cryptographic uniqueness.

The create record itself is not part of the new series: its own series ID field is usually empty

to indicate that it is not part of any series, but it can be non-empty for revocation purposes as

described later.

• Link: A link record binds a human-readable label such as Alice to an endpoint ID or series

ID denoting the link’s target. Links to devices, such as Bob’s names laptop and phone,

contain the EID of the target device. Links to groups, such as Alice and PhotoClub,

contain the SID of some series in the target group. A link record has an owner flag indicating

whether the link grants ownership to the link’s target, allowing the target to write changes to

the group containing the link record. We refer to a link with its owner flag set as a link-owner

record.

• Merge: A merge record joins two series to form a single UIA group. The union of all link

and cancel records in all merged series determines the set of names that appear in the group,

thereby forming a common distributed namespace. A merge takes effect only if the device

55

that wrote the merge record also owns the target group, or if there is a corresponding merge

record in the target group pointing back to the first group.

• Cancel: A cancel record nullifies the effect of a specific previous record, specified by the

target’s record ID. With certain restrictions described below, link records can be canceled to

delete or rename group members. Create, merge, and cancel records cannot be canceled.

2.3.3 Namespace Operations

This section describes how UIA devices implement the important user-visible namespace control

operations, in terms of the specific records the devices write to their logs at the events in the example

scenario from Figure 2-2. The following section will then explain how devices evaluate the contents

of their logs to determine the effective state of each group at any point in time.

Device Initialization: When Bob and Alice install or first start UIA on a device at Time 1, the

device first writes a create record to its log, forming a new series to represent the user’s personal

“root” group on that device. The device then writes a link record to the new series, giving itself a

suitable default name such as laptop. The device sets the owner flag in this link record to make

itself the sole initial owner of the group.

Merging Device Groups: When Bob introduces and merges his devices at Time 2 to form a

personal group, each device writes to its own root series a merge record pointing to the other device’s

root series. These cross-referencing merge records result in a merge relationship between the two

devices, which begin to gossip the records comprising both series so that each device eventually

holds a complete copy of each. This merging process does not actually create any new link records,

but causes each device to obtain copies of the other device’s existing link records (the laptop’s link

record for its default name laptop and the phone’s record for its name phone) and incorporate

those names into its own root group.

Aside from merging devices’ root series via introduction, a user can use a single device to merge

two arbitrary groups, provided the same device already has ownership of both groups. If Bob creates

two shared sub-groups and later decides they should be combined, for example, he can merge them

on any of his devices. The device writes cross-referencing merge records to the relevant series,

exactly as in the introduction scenario.

If a user accidentally merges the wrong groups, the device that wrote a merge record can “undo”

the merge via a cancel record written to the same series. Once either merge record is canceled

this way, the groups return to their pre-merge state, retaining their original identities as defined

by the disjoint sets of original series IDs. The restriction that a merge can only be undone on the

same device results from the membership and ownership evaluation algorithm described later in

Section 2.3.4, but appears a reasonable constraint for undo purposes. Cross-device “un-merge” can

be approximated via revocation, as described later, but revocation cannot restore the distinctness of

56

the original group identities: two links referring to the two separate groups before the merge refer

to the same group after the revocation.

Meeting Other Users: When Bob and Alice introduce their devices to each other at Time 3, the

devices exchange the series IDs of their respective root series, and each device writes a link record

to its own root series referring to the other device’s root series. Bob’s new link record named Alice

gives Alice a name in his personal group, and Alice’s new link record named Bob likewise gives

Bob a name in her group. The devices do not set the owner flags in these new link records, giving

Alice and Bob only read-only access to each others’ namespaces.

Transitive Merge: Individual merge relationships in UIA are always pairwise, between exactly

two series, but merge relationships combine transitively to determine effective group membership.

When Bob introduces his cell phone to his home phone at Time 4, the two devices form a merge

relationship between their respective root series. Since Bob’s home phone and laptop already have

a merge relationship, Bob’s laptop and cell phone transitively learn about each other via gossiped

records they receive from the home phone, and the union of the records in the three root series

determine the contents of the resulting group. Since the merged group has two link records named

phone with different target EIDs, the devices flag a label conflict on phone and refuse to resolve

this name.

Renaming Labels and Resolving Conflicts: When Bob renames his cell phone to cell at

Time 5 to resolve the conflict, his device writes to its root series a cancel record containing the

record ID of the link record defining the cell phone’s previous name, then writes a new link named

cell that is otherwise identical to the original link. Since one of the two conflicting link records is

now canceled, the label conflict disappears, and the names phone and cell become usable on all

of Bob’s devices once they receive the new records via gossip. Bob can resolve the conflict on any

of his devices, because any group owner can cancel a link written by another device.

The user can also delete a name from a group outright, in which case the device writes a cancel

record without a new link. The ownership granted by a link-owner record, however, can only be

nullified by the revocation process described later in Section 2.3.4.

Because UIA implements renames non-atomically with a cancel record coupled with a new link

record, if Bob renames Alice to Alice1 on his laptop and renames Alice to Alice2 on his

phone while the two devices are temporarily partitioned, on reconnection he will have two names

Alice1 and Alice2 with no conflict detected. This corner-case behavior, while perhaps slightly

surprising, seems acceptable since it “loses” no information and at worst requires Bob to delete one

of the resulting redundant names. At the cost of added complexity, a non-idempotent “Rename”

record type could be added to enable UIA to detect conflicting renames of a single original link

record.

57

Creating Groups: Bob uses his laptop at Time 6 to create his shared PhotoClub group. To

create the group, the laptop first writes a create record to generate a fresh series ID. The laptop then

writes two link records: first, a link named PhotoClub in its root series pointing to the new series,

and second, a link named Bob in the new series pointing back to the root series. The laptop sets the

owner flag in only the latter link record, giving Bob’s personal group ownership of the new group,

without giving PhotoGroup ownership of Bob’s personal group.

Suppose that Bob now uses a different device, his cell phone for example, to add Alice to

PhotoClub. Bob’s cell phone is already an indirect owner of PhotoClub, because the cell phone

is an owner of Bob’s personal group and Bob’s personal group owns PhotoClub. The cell phone

does not yet have a series in PhotoClub, however, to which it can write records: initially only the

laptop, which created the new group, has a series in the group, and only it can sign records into that

series. The cell phone therefore creates its own PhotoClub series, by writing a create record to

form a new series owned by itself, and then writing a merge record to this new series pointing to the

laptop’s PhotoClub series. Although no corresponding merge record in the laptop’s PhotoClub

series points back to the cell phone’s new series (in fact the laptop may be offline and unable to sign

such a record), the cell phone’s merge record takes effect “unilaterally” by virtue of the cell phone’s

indirect ownership of PhotoClub. The cell phone then writes a copy of Bob’s link to Alice into

its new PhotoClub series, and other devices learn of the new series and the new name as they

gossip records for PhotoClub.

Revoking Ownership: When Bob learns at Time 7 that his cell phone is missing, he uses his

laptop to revoke the cell phone’s ownership of his personal group, either by deleting the name cell

from his personal group or by clearing its owner flag. To implement this revocation, however, Bob’s

laptop cannot merely write a cancel record pointing to the link record for cell: the cell phone

would still own a series in Bob’s personal group and thus retain “hidden” control over the group.

To revoke the cell phone’s ownership, therefore, Bob’s laptop creates a new personal group for

Bob and copies the original group’s name content into it. To create the new group, the laptop writes

a create record whose series ID field is not empty as usual, but instead contains the SID of the

laptop’s original root series. The laptop then writes link records to the new series corresponding

to all the active links in the old series, omitting links or ownership flags to be revoked. The create

record written into the old root series indicates to all interested devices that the new series forms a

group that is intended to replace or act as a successor to the original group.

As long as only one such “create successor” record exists in Bob’s old personal group, all

devices treat links to any series in the old group as if they linked to the successor group instead.

Upon receiving via gossip the records describing Bob’s new group, for example, Alice’s devices

subsequently resolve her name Bob to the new group, and use it to calculate which devices should

be given access to resources she has authorized Bob to access, effectively revoking the cell phone’s

access.

58

If the cell phone writes a conflicting “create successor” record to its series in Bob’s original

group, however, then the original group becomes disputed, and other devices refuse to resolve links

to any series in the original group as soon as they learn about the dispute. Alice’s devices thus

refuse to resolve her name Bob and deny access to any resources she authorized using that name.

Once Alice updates her broken link to refer to the correct successor group, either by re-introducing

with Bob or by copying a fresh link from a mutual friend, her device writes a new link referring

to a series in Bob’s new group, the old group becomes irrelevant and Bob can again access Alice’s

resources via the devices in his new personal group.

If link or cancel records exist on Bob’s other devices that his laptop has not yet received at

the time of revocation, the laptop cannot copy these change records into the new group and they

become orphaned. Bob’s devices continue to monitor and gossip records in the old group after the

revocation, however, to detect both orphans and ownership disputes. If a device with ownership

of the new group detects an orphaned record written by itself or another device with ownership of

the new group (not a revokee), it automatically “forwards” the change by writing a corresponding

record to the new group.

Key Compromise and Retirement: Besides handling the issue of retired, lost, or stolen devices,

UIA’s revocation mechanism may also be useful if a device’s public/private key pair is compromised

and the user wishes to re-key the device, or if the public-key cryptography or hash algorithms the

device’s EID is built from become obsolete. In such a situation, the device can simply generate

a new, fresh public/private key pair and EID for itself, merge this new EID into the existing group

with the same device name as that associated with the old EID, and then perform a “self-revocation”

of the device’s old EID using the normal revocation mechanism to ensure that only the new EID and

not the old one is considered a member of the user’s personal group.

In the case of gradual cryptographic key or algorithm retirement (as opposed to a key compro-

mise requiring immediate revocation), it may be useful to allow both the device’s old and new EIDs

to be active at once during some transition period. Allowing a single device name to be assigned

more than one EID at once without this situation being interpreted as a conflict would require a

minor extension to UIA’s current group management mechanism.

2.3.4 Group State Evaluation

This section describes the algorithms UIA devices use to determine the current state of a given

group from the set of log records they have on hand. Devices evaluate group state in three stages:

(1) membership and ownership, (2) group successorship, and (3) name content.

Membership and Ownership

In the first stage, a UIA device collects the series IDs referred to by all records in its log, and

clusters them into sets based on merge relationships to form UIA groups. At the same time, the

device computes the set of device EIDs to be considered owners of each group, either directly or

59

global M : membership table: SID→ SID set

global O: ownership table: SID set→ EID set

function eval membership ownership():

for each known series sid:

M [sid]← {sid}
O[{sid}]← EID of device that owns series sid

do:

for each link-owner record in each series sid:

if link target is a device teid:

O[M [sid]]← O[M [sid]] ∪ teid
else if target is a series tsid:

O[M [sid]]← O[M [sid]] ∪O[M [tsid]]
for each merge record in each series sid:

tsid← target series ID of merge record

O[M [sid]]← O[M [sid]] ∪O[M [tsid]]
if owner EID of series sid ∈ O[M [tsid]]:

O[M [sid] ∪M [tsid]]← O[M [sid]] ∪O[M [tsid]]
for each series ID msid ∈M [sid] ∪M [tsid]:

M [msid]←M [sid] ∪M [tsid]
until M and O stop changing

Figure 2-6: Membership and ownership evaluation pseudocode

transitively. Group membership and ownership must be computed at the same time because they

are mutually dependent: group membership expansion via merge can introduce additional owners,

and owner set expansion can place additional merge records under consideration.

Figure 2-6 shows pseudocode for membership and ownership evaluation. The algorithm uses a

membership table M mapping each known series ID to a set of series IDs sharing a group, and an

ownership table O mapping each group (represented by a set of series IDs) to a set of owner device

EIDs. The algorithm first initializes the entry in M for each series to a singleton set containing only

that series, and initializes the owner set entry in O for each such singleton group to the EID of the

device that owns that series. The algorithm then repeatedly merges groups and expands ownership

sets until it reaches a fixed point. The algorithm terminates because member and owner sets only

grow, and each device knows of a finite number of series IDs at a given time.

The algorithm considers only live merge and link-owner records. A record is live if it is not

targeted by any cancel record in the same series. The same-series restriction prevents cancel records

from decreasing the sets O and M across iterations and violating the algorithm’s monotonicity

assumptions, hence the restrictions mentioned earlier on undo of merge and link-owner records.

In each iteration, the algorithm first follows link-owner records, expanding the ownership set of

the group containing a link-owner record according to the target device EID or the current ownership

set of the target group, as applicable. Across iterations, this step handles transitive propagation of

ownership across multiple groups, such as Bob’s laptop’s ownership of PhotoClubvia the laptop’s

ownership of Bob’s personal group.

60

Figure 2-7: Example group successorship scenarios

Second, for each merge record, the algorithm expands the ownership set of the group containing

the merge record to include the ownership set of the target group, then checks whether the device

that wrote the merge record is authorized by virtue of having ownership of the target group. The

authorization check prevents a device from merging a series into an arbitrary group without permis-

sion. In the symmetric case where two merge records refer to each others’ series IDs, each merge

is authorized by the fact that the other merge grants ownership of its own series to its target. Once

a merge is authorized, the algorithm combines the SID sets of the respective groups to form one

group containing all the merged SIDs, and similarly combines the respective owner sets.

Group Successorship

In the second stage, a device computes the successorship status of each group resulting from the

first stage, in order to handle revocations and ownership disputes. The device first forms a directed

graph reflecting immediate successor relationships: a create record in series A yielding a new series

B makes the group containing B a successor to the group containing A. Next, the device takes the

transitive closure of this graph to form a transitive successorship relation: if B succeeds A and C

succeeds B, then C transitively succeeds A.

The device now assigns to every group G one of three states as follows. If G has no successors,

it is a head group: no revocations have been performed in the group, and links to series IDs in

the group resolve normally. On the other hand, if there is a second group G′ that is a transitive

successor to G and is also a transitive successor to all other transitive successors to G, then G′ is the

undisputed successor to G. In this case, links to series IDs in group G resolve to group G′ instead.

Finally, if G has successors but no undisputed successor, then group G is disputed, and links to

series IDs in G do not resolve at all.

Figure 2-7 illustrates several group successorship scenarios and the corresponding results of

this algorithm. In scenario (1), two conflicting revocations have placed group A under dispute; A’s

successor B also has a successor due a second revocation in B but B is not under dispute. Scenario

61

(2) is like (1) except a revocation has also been performed in group C, forming a new head group E.

Scenario (3) shows the result after the warring owners in (2) settle their differences and merge their

head groups D and E, resolving the original dispute over group A. Scenario (4) shows a pathological

situation that should never arise under normal use but could be obtained artificially by merging A

with D and B with C in (1); in this case the two groups in the cycle both become disputed. Scenario

(5) shows the pathological dispute resolved by a revocation in group A. (Alternatively, the cyclic

groups could simply be merged together.)

Name Content

In the third and final stage, for each head group to be used for name resolution, a device computes

the group’s namespace state as follows. Given the set of all link records in every series in the group,

the device removes all link records targeted by a cancel record in any series of the group to form the

set of active links. Any device that owns a group can cancel a link written by another device, but a

cancel cannot revoke ownership.

The set of active labels in a group, shown in a namespace browser for example, is the set of

labels appearing in any active link record in the group. To be usable, all active links for a given

label must have the same permissions, and must target the same device EID or SIDs in the same

group. Otherwise the label is in conflict, as Bob’s home and cell phone are at Time 4 in the example.

If Bob creates identical links on different devices independently, such as by separately introducing

both his cell phone and his laptop to Alice to yield duplicate Alice links, this action does not

create a label conflict when Bob merges his home and cell phone together because the redundant

links have the same target and permissions.

2.3.5 Naming State Gossip and Replication

The UIA devices participating in a given personal group gossip and proactively replicate new

records pertaining to the group among their respective logs. A UIA device by default considers

itself a “participant” in a group if it owns a series in that group—i.e., if it has ownership permission

and has written any records to the group.

UIA’s epidemic protocol uses a classic two-phase “push/pull” algorithm [63]. In the “push”

phase, when a device creates a new log record or obtains a previously unknown one from another

device, it repeatedly pushes the new record to a randomly-chosen peer until it contacts a peer that

already has the record. This rumor mongering technique works well when few devices have the

record, propagating the “rumor” aggressively until it is no longer “hot.” In the “pull” phase, each

device periodically contacts a randomly-chosen peer to obtain any records it is missing. These anti-

entropy exchanges work best when most devices already have a record, complementing the rumor

mongering phase and ensuring that every device reliably obtains all available records.

To initiate a gossip transaction, each device periodically selects a peer and initiates a query to

that device. The initiator sends a vector of (SID, timestamp) tuples indicating the newest records the

62

initiator holds for each series, and the responder replies with any log records in those series that the

initiator does not yet have. The responder may also include additional records relevant to the group,

such as records from another series newly merged into the group.

When a device writes new records to a given series, it may opt to notify other interested devices

that are reachable at that moment with the new records; otherwise, new records propagate lazily. In

the current design, a device picks a random peer and gossips with it once per minute.

Devices gossip the records comprising a particular series in order, guaranteeing that the set of

records each holds for a given series is complete up to some particular time in the series owner’s

timeline. UIA imposes no gossip ordering constraints among different series, however, so changes

Bob made on his home phone and on his laptop might arrive at his cell phone out of the original

order in which Bob made them. Since UIA must operate during network partitions and periods of

disconnection, the potential for such misordering is unavoidable.

2.3.6 Remote Name Resolution

As outlined earlier in Section 2.3.1, a device resolves a multi-component UIA name by starting

with its own device-specific root group, and resolving the labels comprising the name in right-to-

left order as in DNS. When the name resolution process only traverses groups in which the resolving

device participates directly, and thus for which the device keeps replicas of all the records relevant

to the group in its own log, the group state calculations described above provide all the information

necessary to resolve the name locally.

Resolving a name may however require traversing groups to which the resolving device only

has read access, and whose records the resolving device does not proactively replicate. If Bob refers

to the name PC.Alice on his laptop, for example, Bob’s laptop may have to contact one of Alice’s

devices to obtain the link record required to resolve the label PC with respect to Alice’s personal

group. UIA’s remote resolution protocol serves this purpose, and it operates similarly to traditional

DNS.

UIA’s remote resolution protocol does not use DNS’s timeout-based cache consistency model,

however, since we do not assume that users managing UIA groups understand cache consistency

and know how to configure appropriate timeouts for their groups. UIA instead uses a simple lease-

based protocol. When a device attempting to resolve a UIA name (the “requestor”) contacts a

remote device (the “responder”) to resolve a particular label, the responder can return along with

the lookup result a lease on the lookup result, or a promise to notify the requestor proactively if

the result subsequently changes within a particular time period [97]. The requestor may then safely

cache the result for any subsequent lookups it makes during the lease period, but flushes the result

from the cache if it receives a change notification from the responder in the meantime.

63

64

Chapter 3

Routing

Regardless of whether names are global as in traditional DNS or locally scoped as in UIA’s per-

sonal name system, devices must have a way to use those names to locate (resolve) and connect to

(route to) their targets in order to make them useful for communication. This chapter first intro-

duces the motivation and goals for the UIA routing layer in Section 3.1, then explores three specific

approaches to routing in the remaining sections.

3.1 Motivation and Goals of UIA Routing

The Internet traditionally assumes that DNS names resolve to IP addresses, and that the IP routing

mechanism alone provides the means for devices to communicate with each other via these names

and IP addresses. This assumption means in practice that the target of a DNS host name must have a

static, public IP address, and static IP addresses are both increasingly rare and expensive on today’s

commoditized Internet, and are management-intensive to assign and use even once obtained.

By default, today’s mobile personal devices usually have dynamic IP addresses assigned by the

Dynamic Host Configuration Protocol (DHCP) [68], and these devices are often located behind fire-

walls or network address translators [112], where their private IP addresses are not reachable or even

globally unique outside of their private networks. Forwarding protocols like Mobile IP [183] can

give a mobile device the illusion of having a static IP address independent of its actual attachment

point, but this solution does not eliminate the necessity or attendant cost and difficulty of obtaining

the static “home” IP address for the mobile host, and increases the cost and latency of all commu-

nication when the mobile host is away from its home location, since all traffic must be forwarded

through the home address.

In UIA, whenever physically possible, we would like personal devices to provide fully auto-

matic connectivity between each other whenever the user requires—especially between devices that

have social affinity by virtue of being in the same user’s personal group or nearby in the user’s

social network. When the user refers to a personal name, UIA should automatically find a way

to communicate without requiring the user to understand or set up IP addresses or other protocol

technicalities. Communication should function smoothly in a variety of scenarios such as across the

65

Internet, between Internet-connected private LANs, and within ad hoc networks disconnected from

the Internet (e.g., among passengers in a train).

To provide this automatic connectivity, UIA devices cooperate in an overlay routing protocol to

provide robust location-independent connectivity in the face of changing IP addresses, Internet rout-

ing failures, network address translators, or isolation from central network infrastructure. The rest

of this chapter explores three specific approaches to designing this overlay routing protocol: social

routing in Section 3.2, identity hash routing in Section 3.3, and compact routing in Section 3.4. The

first approach is simple, works well in scenarios we expect to be common, and is implemented and

working in the deployed UIA prototype. The other two approaches are more general and ambitious,

but have as yet been validated only under simulation and will require further development before

widespread deployment. All three approaches have strengths and limitations; it is not yet clear

which—or what combination of ideas from each—will eventually yield the best long-term solution.

3.2 Social Routing

Because of UIA’s goal of providing names that persistently refer to a particular device regardless

of how they move or where they are attached to the Internet, UIA’s endpoint identifiers (EIDs), to

which UIA personal names resolve (see Section 2.3.1, cannot and do not contain any embedded

information about the current location of the device, because that information would have to change

whenever the device moves. This design contrasts with the hierarchical CIDR [199] structure of

IP addresses on the Internet, in which varying-length prefixes of an IP address indicate the node’s

attachment point at different administrative levels, such as edge network, service provider, and

network provider. The CIDR structure makes Internet routing simple and efficient, but is also the

source of many of the difficulties UIA is trying to fix. Therefore, the UIA overlay routing layer

must address the more difficult problem of routing over topology-independent or flat identifiers,

also known as name-independent routing in the theory literature [2, 15].

Since efficient, scalable routing with location-independent node identities is inherently challeng-

ing in its most general form [92], we would like to find an appropriate set of simplifying assumptions

that will yield a robust, efficient solution for the scenarios we primarily care about. The primary

purpose of UIA’s personal name system, as described in Chapter 2, is to provide connectivity with

devices that are administratively related, by virtue of having been merged into the same personal

group, or that are socially related, by virtue of being located in the personal groups of users who

are “friends” or otherwise have personal naming relationships between their devices, and thus are

likely to wish to communicate.

Given this primary purpose, the first overlay routing approach we explore—social routing—

leverages the “social network” provided by the naming layer to reduce the scope of the routing

problem, from routing between arbitrary devices, to routing “between friends.” The total number

of interconnected devices may ultimately be very large, but the number of devices in a particular

user’s personal group and the personal groups of his immediate friends should generally be much

66

smaller, which immediately reduces the scalability challenges to a more reasonable degree. Also,

since a user’s own devices and those of his friends are likely to be both more trustworthy and more

willing to spend resources forwarding the user’s packets if needed, the naming layer’s social network

provides a trust framework that the routing layer can take advantage of.

The social routing protocol we develop here is optimized for connecting to devices in the user’s

immediate social neighborhood: primarily the user’s own devices and those of friends named in the

user’s personal group, and occasionally “friends of friends,” but rarely more indirect contacts. In

practice we expect users to create (or copy from other users) names in their own personal groups for

others with whom they wish to interact regularly, justifying our assumed usage model.

In brief, a UIA device builds and maintains an overlay network between itself and other devices

nearby in its social neighborhood. To locate a remote device by its EID, a device floods a location

request through the overlay to discover the EIDs, IP addresses, and ports of devices forming a path

through the overlay to the target. The originating device then connects directly to the target’s dis-

covered IP address and port, or if the target is not directly reachable (e.g., because of an intervening

NAT), forwards traffic to it by source-routing data via existing connections in the discovered path.

3.2.1 Overlay Construction and Maintenance

Each UIA device maintains an open TCP connection with up to a configurable number of overlay

peers. A device chooses its peers from the larger set of devices in its social network based on a

number of criteria. Ideally, a device’s peers should be on the public Internet, so that a device behind

a NAT can receive messages from devices outside via its active peering connections. A device

should choose other devices when none on the public Internet are reachable, however, so that the

overlay remains useful in ad hoc environments. Furthermore, the devices of friends should be close

to each other in the overlay, so that location or forwarding paths between them are short.

To meet these goals, a device first prefers as peers devices that are stable, and secondarily

prefers those that are closest to it in friendship distance. A device is considered stable if it does not

have a private IP address [196] and has met a threshold level of availability in the recent past. A

peer’s friendship distance is roughly the number of labels in the local device’s shortest name for that

peer. The rest of this section explains how a device discovers stable peers and calculates friendship

distances.

Each device maintains a potential peer set that contains potential peers’ EIDs and the times, IP

addresses, and ports at which the device has connected to those peers in the past. Initially, a device

populates this set with the devices to which the user has directly introduced the device. To discover

new potential peers, a device periodically exchanges its potential peer set with those of other devices

within a configurable maximum friendship distance. A device adds to the set only those devices to

which it is able to establish a TCP connection when it discovers them.

A device classifies a potential peer as stable if it meets an availability threshold (e.g., 90%) at

the same public IP address and port in the recent past (e.g., the last week). To monitor availability,

a device periodically chooses a random potential peer and attempts a connection to its last known

67

location. A device need not have a static IP address to be classified as stable: a device with a

dynamic non-private IP address that changes infrequently, such as a home PC left on and connected

via a DSL or cable modem, will also typically be classified as stable.

A device computes the friendship distance of each of its potential peers by assigning a distance

of 1 to its direct peers: those the naming layer identifies as devices in the user’s personal group

and in groups to which the user has linked (the user’s immediate friends). The device then assigns

distances to indirect peers transitively, giving the direct peer of a direct peer a distance of 2, for

example.

To improve robustness, a device manufacturer can seed the potential peer sets of its products

with a set of default peers, which devices treat as having an infinite friendship distance. Two newly-

purchased mobile devices, after being introduced and exchanging potential peer sets, thus have at

least one stable peer in common at the outset to help them re-connect after a move. Once the

mobile devices discover other stable peers at smaller friendship distances, however, they prefer the

new devices over the default peers, mitigating the manufacturer’s cost in providing this robustness-

enhancing service.

3.2.2 Token-limited Flooding

To communicate with a remote device, a device first attempts a direct TCP connection to the IP

address and port at which it last connected to the target, if any. If this connection fails or the

originator has no address information for the target device, it floods a location request through the

overlay to locate the target by its EID.

UIA uses a token count, in place of the traditional hop count [42], to limit the scope of location

request floods. The token count bounds the total number of devices to which a request may be

forwarded, rather than the number of times each request may be re-broadcast. This distinction is

important for two reasons. First, although devices seek to connect with a fixed number of peers,

the number of devices that choose a given device depends on the target’s stability and popularity,

so the overlay’s degree is highly non-uniform. Hop count is thus a poor predictor of the number of

devices a request will reach. Second, the overlay network is highly redundant: two friends’ devices

are likely to share many common peers, for example, so searching all devices within some distance

of a request’s source is often unnecessary.

Location requests contain the EIDs, IP addresses, and ports of devices they have traversed;

devices forward responses back through the overlay along the same path.

A device with an open TCP connection to a request’s target immediately responds with the

target’s IP address and port. Otherwise, it subtracts one token for itself, divides the other tokens

among its peers not already in the path, distributing any remainder randomly, and forwards the

request to those peers that receive a non-zero count. The device retains the request’s target EID

and return path for a short period, waiting for the forwarded requests to complete, and replying to

the original request when any of the forwarded ones succeed or when all of them have failed. A

request also fails if the source has not received a successful response within a timeout. If a device

68

receives a duplicate request for the same EID as an outstanding request (e.g., along a different path),

it forwards the new request anyway according to its token count, giving peers for which there were

not enough tokens in previous instances another chance to receive the request.

As we find in Section 7.2, most location requests succeed within the near vicinity of the source

in the overlay network. To limit the cost of the search, a device thus initially sends each request with

a limited number of tokens and retries after each failure with a multiplicatively increased number,

up to some maximum.

3.2.3 Source-Routed Forwarding

To communicate with the target device after receiving a successful location response, the originator

tries to open a direct connection to each device in the response path, starting with the target itself

and proceeding backwards along the path until a connection succeeds. In the best case, the first

connection attempt in this sequence—the one directly to the target device—succeeds, and no for-

warding is necessary; in this case the UIA overlay routing layer merely functions as a “resolver,”

mapping location-independent EIDs to location-dependent IP addresses. If the first, direct connec-

tion attempt fails, however, the originator source-routes messages to the target along the tail of the

path starting with the device to which it successfully connected directly.

Consider for example two devices a and b behind different NATs, both of which peer with

a common stable device s. When a performs a location request for b’s EID, it discovers the path

a→ s→ b. Device a then tries to open a direct connection to b, but b’s NAT blocks that connection,

so a forwards traffic to b through s instead. Device s itself initiates no location requests, but merely

forwards traffic along the path specified by a.

3.3 Identity Hash Routing

The social routing protocol described in the last section achieves scalability by assuming that users

mostly wish to communicate with their friends, an assumption that is likely to hold in many scenar-

ios but not all. If the user wishes to run applications on top of UIA that depend on large-scale self-

organizing protocols, such as swarm downloading [55], such protocols frequently require commu-

nication between arbitrary nodes that are administratively and socially unrelated. Thus, we would

like to develop a more general overlay routing protocol for UIA that efficiently provides scalable

routing between any indirectly connected pair of UIA nodes, not just between friends.

This section introduces Identity Hash Routing (IHR), a routing scheme inspired by Distributed

Hash Table (DHT) algorithms [146,156,194,209,234,271]. DHTs normally provide only resolution

service—the ability to look up a value in a self-organizing distributed structure given its key or

content hash—and assume that the network in which they are operating is fully-connected: i.e., that

every node can communicate directly with every other node on demand. But many nodes on today’s

Internet cannot be reached directly except via forwarding or NAT traversal through other nodes, and

the rules determining which nodes can and can’t directly reach which others are complex, subtle,

69

and dynamic results of the interplay between interdomain and intradomain routing, firewall policies,

NATs, and many other factors. In a traditional DHT, when many member are persistently reachable

by some DHT members but not others, this condition causes widespread “disagreement” in the DHT

about which nodes are alive and which aren’t, which can prevent convergence and make lookups

unreliable [89].

With UIA routing, in contrast, we want each node to be able to find and connect to any other

even if many pairs of nodes are connected only indirectly, requiring explicit forwarding through

intermediate nodes (or NAT traversal) to facilitate that communication. Nevertheless, we find in

this section that it should be feasible to adapt DHT lookup algorithms into scalable overlay routing

schemes. Unlike traditional DHTs, IHR does not assume that underlying protocols provide con-

nectivity between any two nodes. When the underlying network fails to provide direct connectivity

for any reason, such as intermittent glitches, network address translators, or incompatible address-

based routing technologies, we want IHR to route around these discontinuities by forwarding traffic

through other IHR nodes.

Key Properties of IHR

The crucial scalability property IHR provides is that it efficiently allows each UIA node to find a

route to any of a large number N of total nodes in the connected network, while directly storing

information about (and routes to) only about O(log N) other nodes. Like the DHT algorithms

it builds on, IHR achieves this scalability by distributing routing information throughout the net-

work in a self-organizing structure: in particular, IHR uses a structure adapted from the Kademlia

DHT [156].

The cost of distributing routing information throughout the network for scalability is that indi-

vidual IHR nodes rarely have enough information to determine the shortest or “best” possible route

to another node. In effect, IHR does not implement a distributed “all-pairs shortest paths” algorithm

like conventional protocols for flat namespaces do [126]. In fact, it is known to be impossible to

achieve shortest-path routing with o(N) state per node [92]. Instead, IHR attempts the more moder-

ate goal of efficiently finding some path whenever one exists, and usually finding “reasonably short”

paths. This goal is appropriate for the UIA routing layer because its purpose is to provide some

usable communication path in the unfortunate situations when IP cannot find any (e.g., due to the

devices being in different IP address domains).

In general we cannot expect IHR to be as efficient as routing protocols that take advantage of the

locality and aggregation properties of structured addresses. IHR is not intended to replace address-

based routing protocols, but to complement them. By using address-based protocols such as IP

to move data efficiently across the many “short” hops comprising the core Internet infrastructure

and other large managed networks, IHR only needs to route data across across a few “long” hops,

resolving the discontinuities between address domains and bridging managed core networks to ad

hoc edge networks. For this reason, it is less important for IHR to find the best possible route all the

time, and more important for the algorithm to be scalable, robust, and fully self-managing.

70

We explore two specific IHR forwarding mechanisms based on the same routing protocol. One

mechanism guarantees that nodes can operate in O(log N) space per node on any network topology.

The other forwarding mechanism allows IHR to find somewhat better routes and still uses O(log N)

space on typical networks, but may require O(N) space on worst-case network topologies. With

either forwarding mechanism, simulation results presented later in Chapter 7 indicate that IHR

consistently finds paths that are on average within 2× the length of the best possible path. IHR

occasionally chooses paths that are much longer than the best possible path, but these bad paths are

rare.

3.3.1 Routing Protocol Design

This section describes the distributed lookup and routing structure that enables IHR nodes to locate

and communicate with each other by their topology-independent identities.

Neighbors and Links

Each node in a IHR network maintains a neighbor table, in which the node records information

about all the other IHR nodes with which it is actively communicating at a given point in time,

or with which it has recently communicated. The nodes listed in the neighbor table of a node

A are termed A’s neighbors. A neighbor of A is not necessarily “near” to A in either geographic,

topological, or node identifier space; the presence of a neighbor relationship merely reflects ongoing

or recent pairwise communication.

Some neighbor relationships are mandated by the design of the IHR protocol itself as described

below, while other neighbor relationships are initiated by the actions of upper-level protocols. For

example, a request by an upper-level protocol on node A to send a packet to some other node B

effectively initiates a new IHR neighbor relationship between A and B. These neighbor relation-

ships may turn out to be either ephemeral or long-term. A IHR node’s neighbor table is analogous

to the table an IPv4 or IPv6 host must maintain in order to keep track of the current path maximum

transmission unit (MTU) and other vital information about other endpoints currently or recently of

interest to upper-level protocols.

As a part of each entry in a node’s neighbor table, the node’s IHR implementation maintains

whatever information it needs to send packets to that particular neighbor. This information de-

scribes a link between the node and its neighbor. A link between two nodes A and B may be either

physical or virtual. A physical link is a link for which connectivity is provided directly by the un-

derlying protocol (IP). For example, if A and B are both well-connected nodes on the Internet that

can successfully communicate via their public IP addresses, then AB is a physical link from the

perspective of the IHR layer, even though this communication path may in reality involve many

hops at the IP layer and even more hops at the link layer. If a physical link is available between A

and B, then A and B are termed physical neighbors, and each node stores the other’s IP address or

other address information for underlying protocols in the appropriate entry of its neighbor table.

71

Figure 3-1: Forwarding via virtual links

A virtual link, in contrast, is a link between two nodes that can only communicate by forwarding

packets through one or more intermediaries at the IHR level. We describe such nodes as virtual

neighbors. The mechanism for IHR-layer packet forwarding and the contents of the neighbor table

entries for a node’s virtual neighbors will be described later in Section 3.3.2. For now, however, we

will simply assume that the following general principle holds. Given any two existing physical or

virtual links AB and BC with endpoint B in common, nodes A and C can construct a new virtual

link AC between them by establishing an IHR-level forwarding path through B. That is, IHR nodes

can construct new virtual links recursively from existing physical and virtual links.

In Figure 3-1, for example, virtual link AC builds on physical links AB and BC , and virtual

link AD in turn builds on virtual link AC and physical link CD. Once these virtual links are set up,

node A has nodes B, C , and D in its neighbor table, the last two being virtual neighbors. Node D

only has nodes C and A as its neighbors; D does not necessarily need to know about B in order to

use virtual link AC .

Constructing Virtual Links

IHR nodes construct new virtual links with a single basic mechanism, represented by the build link

procedure shown in Figure 3-2. A node n can only build a virtual link to some other node nt if n

already has some “waypoint” node nw in its neighbor table, and nw already has nt in its neighbor

table respectively. Node n can then use the build link procedure to construct a link from n to nt.

In the build link procedure, n first attempts to initiate a direct connection to nt via the under-

lying routing protocol, using any network- or link-layer address(es) for nt that n may have learned

from nw. For example, if nt is a node with several network interfaces each in different address

domains, then nt might publish both the IP addresses and the IEEE MAC addresses of all of its

network interfaces, so that other IHR nodes in any of these domains can initiate direct connections

with nt even if they don’t know exactly which domain they are in. If at least one of these direct

connection attempts succeeds, then n now has nt as a physical neighbor, and a virtual link is not

necessary.

If all direct connection attempts fail (or do not succeed quickly enough), however, then n con-

structs a virtual link to nt using nw as a forwarding waypoint. In this way, the build-link procedure

72

// build a link from node n to target node nt,

// using node nw as a waypoint if necessary

n.build link(nw, nt) {

assert (n and nw are neighbors)

assert (nw and nt are neighbors)

try to contact nt by its IP address, MAC address, etc.

if direct contact attempt succeeds {
build physical link from n to nt

} else {
build virtual link from n to nt via nw

}

assert (n and nt are neighbors)

}

Figure 3-2: Pseudocode to build a physical or virtual link

takes advantage of underlying connectivity for efficiency whenever possible, but succeeds even

when only indirect connectivity is available.

IHR Network Structure

While virtual links provide a basic forwarding mechanism, IHR nodes must have an algorithm to

determine which virtual links to create in order to form a communication path between any two

nodes. For this purpose, all connected IHR nodes in a network self-organize into a distributed

structure that allows any node to locate and build a communication path to any other by resolving

the target node’s identifier one bit at a time from left to right. The IHR network structuring algorithm

is closely related to peer-to-peer distributed hash table (DHT) algorithms such as Pastry [209] and

Kademlia [156]. Unlike DHTs, however, IHR uses this self-organizing structure not only to look up

information such as the IP or MAC address(es) of a node from its IHR identifier, but also as a basis

for constructing IHR-level forwarding paths between nodes for which underlying protocols provide

no direct connectivity.

For simplicity of exposition we will assume that each node has only one identifier, each node’s

identifier is unique, and all identifiers are generated by the same l-bit hash function. UIA’s endpoint

identifiers (EIDs) already meet these requirements. We will treat IHR node identifiers as opaque l-

bit binary bit strings. The longest common prefix (LCP) of two nodes n1 and n2, written lcp(n1, n2),

is the longest bit string prefix common to their respective IHR identifiers. The proximity of two

nodes prox(n1, n2) is the length of lcp(n1, n2): the number of contiguous bits their identifiers have

in common starting from the left. For example, nodes 1011 and 1001 have an LCP of 10 and a

proximity of two, while nodes 1011 and 0011 have an empty LCP and hence a proximity of zero.

73

Figure 3-3: Neighbor tables, buckets, and node ID space

Nodes that are “closer” in identifier space have a higher proximity. Since node identifiers are unique,

0 ≤ prox(n1, n2) < l if n1 6= n2, and prox(n, n) = l.

Each node n divides its neighbor table into l buckets, as illustrated in Figure 3-3, and places

each of its neighbors ni into bucket bi = prox(n, ni) corresponding to that neighbor’s proximity

to n. This distance metric, also known as the XOR metric [156], has the important symmetry

property that if node n2 falls into bucket b of node n1’s neighbor table, then n1 falls into bucket b of

n2’s neighbor table. This symmetry facilitates the establishment of pairwise relationships between

nodes, and allows both nodes in such a relationship to benefit from requests flowing between them

in either direction.

In order for a IHR network to be fully functional, the network must satisfy the following connec-

tivity invariant. Each node n perpetually maintains an active connection with at least one neighbor

in every bucket b, as long a reachable node exists anywhere in the network that could fit into bucket

b. In practice each node attempts to maintain at least k active neighbors in each bucket at all times,

for some redundancy factor k.

Building Communication Paths

If the connectivity invariant is maintained throughout an IHR network, then any node n can com-

municate with any target node nt by the following procedure, outlined in pseudocode in Figure 3-4.

74

// build a communication path from node n
// to target node nt

n.build path(nt) {
i = 1
b1 = prox(n, nt)
n1 = n.neighbor table[b1]
while (ni 6= nt) {

bi+1 = prox(ni, nt)
assert (bi+1 > bi)

ni+1 = ni → find neighbor in bucket (bi+1)
if find neighbor in bucket request failed {

return failure: node nt does not exist or is not reachable.

}

n.build link(ni, ni+1)
assert (ni+1 is now n’s neighbor)

i = i + 1
}
return success: we now have a working link to nt.

}

Figure 3-4: Pseudocode to build a path to any node

Node n first looks in bucket b1 = prox(n, nt) of its own neighbor table. If this bucket is empty,

then nt does not exist or is not reachable, and the search fails. If the bucket contains nt itself,

then the target node is already an active neighbor and the search succeeds. Otherwise, n picks any

neighbor n1 from bucket b1. Since n1’s and nt’s proximity to n are both b1, the first b1 bits of n1

and nt match those of n’s identifier, while their immediately following bits are both opposite that

of n. The proximity of n1 to nt is therefore at least b1 + 1.

Node n now sends a message to n1 requesting n1’s nearest neighbor to nt. Node n1 looks in

bucket b2 = p(n1, nt) in its neighbor table, and returns information about at least one such node,

n2, if any are found. The information returned includes the IHR identifier of the nodes found along

with any known IP addresses, IEEE MAC addresses, or other underlying protocol addresses for

those nodes. Node n then uses the build link procedure in Figure 3-2 to establish a connection to

n2, via a direct physical link if possible, or a virtual link through n1 otherwise.

Now n2 is also an active neighbor of n, falling into the same bucket of n’s neighbor table as n1

but closer in proximity to nt. The original node n continues the search iteratively from n2, resolving

at least one bit per step and building additional recursive virtual links as needed, until it finds the

desired node or the search fails. If the search eventually succeeds, then n will have nt as an active

(physical or virtual) neighbor and communication can proceed.

In practice, nodes can improve the robustness and responsiveness of the build path procedure

by selecting a set of up to k neighbor nodes at each iteration and making find neighbor requests

75

to all of them in parallel, in much the same way that Kademlia parallelizes its DHT lookups. Par-

allelizing the construction of IHR communication paths has the added benefit that the originating

node is likely to end up having discovered several alternate paths to the same node. The originat-

ing node can evaluate these alternative paths using some suitable criteria, choose the best of them

for subsequent communication, and keep information about the others stored away for use if the

primary path fails. The two endpoint nodes can even balance their traffic load across these paths if

they can find reason to believe that the paths are sufficiently independent for load-balancing to be

effective in improving overall performance.

The Merge Procedure

The above build path procedure is much like the lookup procedure used in the Kademlia DHT,

modified to support construction of indirect forwarding paths between nodes that cannot commu-

nicate directly via underlying protocols. For network construction and maintenance, however, IHR

requires a much more robust algorithm than those used in Kademlia and other DHTs. DHTs gener-

ally assume not only that underlying protocols provide full any-to-any connectivity between nodes,

but also that nodes join or leave the network at a limited rate and relatively independently of each

other. In the discontinuous network topologies on which IHR is intended to run, however, a single

broken link can split the network at arbitrary points, causing the nodes in either partition to perceive

that all the nodes in the other partition have disappeared en masse. If the network split persists for

some time, the nodes on either side will re-form into two separate networks, which must somehow

be merged again once the networks are re-connected.

IHR assumes that underlying protocols provide some means by which topologically near IHR

nodes can discover each other and establish physical neighbor relationships. For example, IHR

nodes might use Ethernet broadcasts IPv4 subnet broadcasts, or IPv6 neighbor discovery to detect

nearby neighbors automatically. The current UIA prototype depends on Bonjour [11] to provide

this local-area discovery function.

Nodes might also contain “hard-coded” IP addresses of some well-known IHR nodes on the In-

ternet, so that nodes with working Internet connections can quickly merge into the public Internet-

wide IHR network. Finally, the user might in some cases explicitly provide the address information

necessary to establish contact with other relevant IHR nodes. Whenever a new physical link is es-

tablished by any of the above means, the node on each end of the link performs the merge procedure

outlined in Figure 3-5, to merge itself into the network reachable from the other node.

The merge process works as follows. Suppose that node n has node n1 as a neighbor, falling

in bucket b1 = p(n, n1) in its neighbor table. If b1 > 0, then n and n1 have one or more initial

identifier bits in common, and any neighbors of n1 in buckets 0 through b1 − 1 are also suitable for

the corresponding buckets in n’s neighbor table. Node n therefore requests information from n1

about about at least one of n1’s neighbors in each of these buckets, and builds a physical or virtual

(via n1) link to that node. Assuming n1’s neighbor table satisfied the connectivity invariant, n’s

neighbor table now does as well for buckets 0 through b1 − 1.

76

// merge node n into the portion of a network

// reachable from neighbor n1

n.merge(n1) {
i = 1
b1 = prox(n, n1)
while (bi < l) {

for j = 0 thru (bi − 1) {
if n.neighbor table[j] not already full {

nj = ni → find neighbor in bucket (j)
if find neighbor in bucket request succeeded {

n.build link(ni, nj)
}
}

}

ni+1 = ni → find neighbor in bucket (bi)
if find neighbor in bucket request failed

break

bi+1 = prox(n, ni+1)
assert (bi+1 > bi)

n.build link(ni, ni+1)
i = i + 1

}
}

Figure 3-5: Pseudocode to merge a node into a network

Node n now asks n1 for any neighbor from n1’s bucket b1 other than n itself, as if n was

searching for its own identifier in n1’s network. If such a node n2 is found, then its proximity

b2 = p(n, n2) must be at least b1 + 1. Node n builds a link to n2 via n1, fills any empty buckets

0 < bi < b2 from n2’s neighbor table as above, and then continues the process from n2 for neighbors

with proximity greater than b2. Eventually n reaches some node ni with proximity bi, whose bucket

bi contains no neighbors other than n itself. This means that there are no other nodes in n1’s

network with greater proximity to n than pi, and so n has satisfied the connectivity invariant in its

own neighbor table, at least with respect to the portion of the network reachable from n1.

Merge Notifications

After a node n merges into another node n1’s network via the merge procedure above, however,

there may be other nodes in n1’s network besides the ones that n contacted directly that also need

to learn about n before their neighbor tables will satisfy the connectivity invariant for the new,

larger network. In addition, n may not be just a “lone” node joining n1’s network, but may instead

be a member of a larger existing network (reachable from n’s neighbor table) that previously split

77

from or evolved independently from n1’s network. In this case, many nodes in n’s network may

need to learn about nodes in n1’s network, and vice versa, before the connectivity invariant will be

re-established globally.

To cause other nodes to update their neighbor tables appropriately, IHR uses a simple notifica-

tion mechanism. Whenever a node n makes contact for any reason with a new physical or virtual

neighbor nn, and bucket bn = prox(n, nn) of n’s neighbor table was not full before the addition of

nn, n sends a message to all of its existing neighbors notifying them of the new node nn. In response

to this notification message, each of n’s existing neighbors ni contacts nn via ni.build link(n, nn),

and then likewise merges into nn’s network via ni.merge(nn). If this process helps ni to fill any

of its previously underfull neighbor table buckets, then ni subsequently sends notifications to its

neighbors, and so on. The chain reaction stops when all of the affected nodes cease finding new

nodes that fit into underfull buckets in their neighbor tables.

To understand this process, consider two initially separate IHR networks: a “red” network con-

sisting of i nodes r1 . . . ri, and a “green” network consisting of j nodes g1 . . . gj . We say that any

given node n satisfies the red connectivity invariant if each bucket in n’s neighbor table contains

at least one red node if any red node exists that could fit into that bucket. Similarly, we say that a

node n satisfies the green connectivity invariant if each of n’s buckets contains at least one green

node if any green node exists that could fit into that bucket. We assume that all green nodes initially

satisfy the green connectivity invariant, but no green nodes satisfy the red connectivity invariant

because there are initially no connections between the red and green networks. Similarly, all red

nodes satisfy the red connectivity invariant but no red nodes satisfy the green connectivity invariant.

Now suppose that a physical link is somehow established between nodes r1 and g1, connecting

the two networks. In response, r1 performs a merge(g1), filling any underfull buckets in its neighbor

table that can be filled from green nodes reachable from g1, and g1 likewise performs a merge(r1)

to fill its buckets from nodes in the red network. Node r1 effectively locates and builds links with its

nearest (highest-proximity) neighbors in the green network, and g1 likewise locates and builds links

with its nearest neighbors in the red network. As a result, after the merge process r1 satisfies the

green connectivity invariant and g1 satisfies the red connectivity invariant. Since r1 and g1 already

satisfied the red and green invariants, respectively, and adding new neighbors to a node’s neighbor

table cannot “un-satisfy” a previously satisfied connectivity invariant, both r1 and g1 now satisfy

the global connectivity invariant covering both red and green nodes.

Assuming node identifiers are reasonably uniformly distributed, with high probability one or

both of r1 and g1 will find one or more new nodes in the opposite network that fit into previously

underfull buckets. Before the merge, bucket b = prox(r1, g1) in both r1 and g1 may already have

been full, which is likely if r1 and g1 are far apart in identifier space. There may even be no nodes

in the green network that fall into underfull buckets in r1, but this event is unlikely unless the green

network is much smaller than the red network. Similarly, there may be no nodes in the red network

that fall into underfull buckets in g1, but only if the red network is much smaller than the green

78

network. If the two networks are similar in size, then both r1 and g1 will almost certainly find new

neighbors that fit into underfull buckets.

At any rate, the discovery of new neighbors falling in these underfull buckets causes r1 and/or g1

to send merge notifications to their existing neighbors in the red and green networks, respectively,

supplying a link to the opposite node as a “hint” from which other nodes in each network can

start their merge processes. Each node in either network that is notified in this way initiates its own

merge process to fill its neighbor table from nodes in the other network, in the process triggering the

merge process in its other neighbors, eventually leaving all nodes satisfying the global connectivity

invariant.

In practice it is important to ensure that the inevitable flurry of merge notifications does not

swamp the whole network, especially when two relatively large networks merge. Standard protocol

engineering solutions apply to this problem, however, such as rate-limiting the acceptance or spread

of notifications, propagating merge notifications periodically in batches, and keeping a cache in

each node of recently-seen merge notifications to avoid performing the same merge many times in

response to equivalent merge notifications received from different neighbors.

3.3.2 Packet Forwarding

The previous section described how IHR nodes form a self-organizing structure in which any node

can build a communication path to any other node by recursively constructing virtual links on top

of other links, but did not specify exactly how virtual links operate. In this section we explore

the construction and maintenance of virtual links in more detail. We will explore in particular two

alternative methods for implementing virtual links: one based on source routing, the other based

on recursive tunneling. Source routing potentially enables nodes to find more efficient routes and

keeps the basic forwarding mechanism as simple as possible, while the recursive tunneling approach

minimizes the amount of state each node must maintain in its neighbor table.

Source Routing

With source routing, each entry in a node’s neighbor table that represents a virtual neighbor contains

a complete source route to the target node. The source route lists the IHR identifiers of a sequence

of nodes, starting with the origin node and ending with the target node, such that each adjacent pair

in the sequence has (or recently had) a working physical link between them. Of course, since these

links need only be “physical” from the perspective of the IHR layer, each link in a IHR source route

may represent many hops at the IP routing or link layers.

Consider for example Figure 3-6, in which the five nodes A,B,C,D,E are connected by a

chain of physical links. Nodes A and C have established a virtual link AC by building a two-hop

source route via their mutual neighbor B, and nodes C and E have similarly established a virtual

link CE via D. Suppose node A subsequently learns about E from C and desires to create a

virtual link AE via C . Node A contacts C requesting C’s source route to E, and then appends C’s

79

Figure 3-6: Source routing versus recursive tunneling

source route for CE (A,B,C) to A’s existing source route for AC (C,D,E), yielding the complete

physical route A,B,C,D,E.

To send a packet to E, node A includes in the packet’s IHR header the complete source route for

the virtual link AE stored in its neighbor table entry for E. Each IHR node along the path examines

the header to find the packet’s current position along its path, and bumps this position indicator to

the next position before forwarding the packet to the next IHR node in the path. Forwarding by

source routing in IHR is thus essentially equivalent to source routing in IP [120].

In theory each node may have to store up to l × k entries in its neighbor table, where l is the

node identifier size and hence the number of buckets in the neighbor table, and k is the redundancy

factor within each bucket. In practice only the top log2 N buckets will be non-empty, where N

is the total number of nodes in the network. With source route forwarding, neighbor table entries

may have to hold source routes for paths up to N − 1 hops in length, in the worst-case network

topology of N nodes connected together in one long chain. In this case each node may require

O(N log N) storage. In practical networks these source routes will of course be much shorter, so

this large worst-case storage requirement may not be a problem.

Recursive Tunneling

In contrast with source routing, where each entry in a node’s neighbor table for a virtual neighbor

contains a complete, explicit route that depends only on physical links, recursive tunneling preserves

the abstraction properties of neighbor relationships by allowing the forwarding path describing a

virtual link to refer to both physical and (other) virtual links. As a result, each neighbor table entry

representing a virtual link needs to hold only two IHR identifiers: the identifier of the target node,

and the identifier of the “waypoint” through which the virtual link was constructed. Recursive

80

Figure 3-7: Forwarding by Recursive Tunneling

tunneling therefore guarantees that each node requires at most O(log N) storage, since neighbor

table entries have constant size.

In the example in Figure 3-6, node A has constructed virtual link AC via B, and node C has

constructed virtual link CE via D, and as before, A learns about E from C and wants to construct

a virtual link AE via C . With recursive tunneling, A does not need to duplicate its route C or ask C

for information about its route to E in order to construct its new virtual link to E. Instead, A merely

depends on the knowledge that it already knows how to get to C , and that C knows how to get to

E, and constructs a neighbor table entry for E describing the “high-level” two-hop forwarding path

A,C,E.

Recursive tunneling has several beneficial properties. First, since each neighbor table entry for

a virtual neighbor needs to store only two IHR identifiers, the size of each neighbor table entry can

be limited to a constant, and the size of a node’s entire neighbor table depends only on the size

of IHR identifiers (and hence the number of buckets), and the number of entries in each bucket.

Second, if “low-level routes” in the network change, all “higher-level routes” that are built on them

will immediately use the correct, updated information with no information propagation delays. For

example, if node D above goes down making the path C,D,E unavailable, but C finds an alternate

route to E, then the virtual link AE will automatically use this new route without A even having to

be aware that something in C’s neighbor table changed.

The actual packet forwarding mechanism for recursive tunneling is of course slightly more

involved than for source routing. As illustrated in Figure 3-7, to send a packet to E, node A wraps

the packet data in three successive headers. First, it prepends a IHR tunneling header describing

the “second-level” virtual path from A to E via C . Only nodes C and E will examine this header.

Second, A prepends a second IHR tunneling header describing the “first-level” virtual path from

A to C via B. Finally, A prepends the appropriate lower-layer protocol’s header, such as an IP or

Ethernet header, necessary to transmit the packet via the physical link from A to B.

When the packet reaches node B, B strips off the lower-layer protocol header, and looks in the

first-level (outer) IHR tunneling header to find the IHR identifier of the next hop. B then looks up

81

this identifier in its neighbor table, prepends the appropriate (new) lower-layer protocol header, and

transmits the packet to C .

When the packet reaches node C , C strips off both the lower-layer protocol header and the first-

level IHR tunneling header (since C was the destination according to that header), and examines

the second-level tunneling header to find the final destination, E. C now looks up E in its neighbor

table and, finding that E is a first-level virtual neighbor, C prepends a new first-level tunneling

header describing the route from C to E via D. Finally, C prepends the lower-layer protocol header

for the physical link from C to D and forwards the message to D. D subsequently forwards the

message to E, which finally strips off the lower-layer protocol header and both of the tunneling

headers before interpreting the packet data.

Path Optimization

When an upper-layer protocol on one node attempts to contact some other node via IHR, the

build path procedure described in Section 3.3.1 searches the network structure for the requested

node identifier, and in the process may build one or more virtual links using the build link pro-

cedure of Section 3.3.1. The search process through which these virtual links are constructed is

essentially driven by the distance relationships in IHR identifier space, which have nothing to do

with distance relationships in the underlying physical topology.

Each IHR node has complete flexibility, however, in the way it chooses the k nodes to fill a

particular bucket in its neighbor table whenever there are more than k nodes in the network that

could fit into that bucket. If the network contains N nodes with uniformly distributed identifiers,

then we expect nodes to have some flexibility in their choice of neighbors throughout the first

log2 N − log2 k buckets. Further, we naturally expect nodes to select the “best” k nodes they

find for each such bucket: either the closest in terms of physical topology (IHR hop count), or the

best according to some other pragmatic measure involving latency, bandwidth, and/or reliability for

example.

In general, therefore, we expect the first few iterations of the build path process to stay within

the node’s immediate topological vicinity, with subsequent hops covering larger topological dis-

tances as the remaining distance in identifier space is progressively narrowed. While the first few

build path hops will depend only on physical or inexpensive “low-order” virtual links, the last few

hops might each depend on an expensive “high-order” virtual link, eventually resulting in a commu-

nication path that criscrosses throughout the network in a highly non-optimal fashion. It is therefore

important that we find a way to optimize the routes produced using this process.

The most basic path optimization is inherent in the build link procedure. If a node A locates

target node B via the build path process, but A subsequently finds that it can contact B directly

using underlying protocols such as IP using address information it discovers during the process,

then build link will “short-circuit” the path from A to B with a physical link requiring no IHR-

level forwarding.

82

Figure 3-8: Path optimization opportunities on different topologies, when A builds a virtual link to

F via D.

A second important path optimization is for nodes to check for obvious redundancies in the

routes produced as higher-order virtual links are built from lower-order virtual links. Source rout-

ing makes this type of path optimization easier, since each node has information about the complete

physical route to each neighbor in its neighbor table, but we will explore a more limited form of path

optimization as well that works with recursive tunneling. Other more sophisticated forms of path

optimization are certainly possible and desirable, such as optimizations relying on a deeper analysis

of the relationships between known neighbors, or based on additional information exchanged be-

tween neighbors beyond the minimal information required to maintain the network and build virtual

links. We leave more advanced path optimizations for future work, however, and focus for now on

the effects of simple optimizations that rely on strictly local information.

Source Route Optimization

In IHR forwarding by source routing, we optimize source routes when combining two shorter paths

into a longer one simply by checking for nodes that appear in both shorter paths. For example,

in Figure 3-8(a), suppose node A has established a virtual link AD via B with path A,B,C,D,

by building on virtual link BD with path B,C,D. A virtual link also exists between D and F .

A now learns about F through D and attempts to create a virtual link AF via D. Without path

optimization, the resulting path will be A,B,C,D,C,B, F . The path can be trivially shortened to

the optimal A,B,F , however, simply by noting that B appears twice and eliminating the redundant

hops between them.

The same optimization shortens the path from A to F in Figure 3-8(b) from A,B,C,D,C,E, F

to the optimal A,B,C,E, F . This path optimization does not help in the case of Figure 3-8(c),

however, since A does not necessarily know that B and E are direct neighbors.

83

Recursive Tunnel Optimization

Path optimization is not as easy in forwarding by recursive tunnels, because the information needed

to perform the optimization is more spread out through the network. For example, in Figure 3-8(a),

node A knows that the first hop along virtual link AD is the physical link AB, but A does not

necessarily know what type of link BD is and may not even know that node C exists.

In general, for any virtual link from n to n1 via n2, node n also contains in its neighbor table

a virtual or physical link representing the first hop from n to n2. If the lower-order link from n to

n2 is a virtual link via some node n3, then n also contains in its neighbor table a physical or virtual

link from n to n3, and so on. We call this chain of intermediate nodes along the path from n to n1

that n inherently knows about n’s first hop chain for n1. For example, A’s first hop chain for D in

Figure 3-8(a) is A,B,D, whereas D’s first hop chain for A is D,C,B,A.

To implement path optimization for recursive tunnels, we extend the build link procedure of

Section 3.3.1 so that when a node n attempts to build a new virtual link to nt via waypoint node nw,

n contacts its existing neighbor nw requesting nw’s first hop chain for nt. Node n then compares

the information returned against its own first hop chain for nw, and short-circuits any redundant

path elements.

For example, in Figure 3-8(a), node A is building a virtual link to F via D, so A requests D’s

first hop chain to F , which is D,C,B,F . A compares this chain with its first hop chain for D,

which is A,B,D, discovering redundant node B and shortening the path to A,B,F .

This form of path optimization does not help in Figure 3-8(b), however, where the redundant

path component between C and D is hidden from A because C is not in A’s first hop chain. Sim-

ilarly, this optimization does not handle Figure 3-8(c) for the same reason that the source routing

optimization above fails.

3.4 Compact Routing

Scaling pressures resulting from the Internet’s growth have created a strong interest in compact

routing, which promises provably short routes and small forwarding tables [2,15,56,139,140,245].

Compact routing would in theory be very useful in the context of UIA, because it would ensure

that (as with Identity Hash Routing) a large number of nodes may participate in a self-organizing

routing structure while requiring each node to maintain only a small (sublinear in the network size)

amount of state, and (unlike Identity Hash Routing) the routing algorithm would also guarantee a

small (typically constant or O(log N)) bound on stretch or inefficiency of paths chosen. Existing

compact routing schemes have so far failed to bridge the gap from theory to practice, however,

in part because they were formally developed and described as centralized algorithms that take a

monolithic network map (assumed to be static), and compute a set of routing tables for all nodes at

once. Practical routing protocols such as UIA requires, in contrast, must perform their computations

in a decentralized and incremental fashion, and must be robust against dynamic topology changes

and failures.

84

This section explores one possible design for a practical compact routing protocol for UIA,

based on the theoretical work of Thorup and Zwick (TZ) [245]. This decentralized protocol com-

putes routing tables with O(log N) entries and bounds path stretch by O(log N). When more space

and bandwidth are available, routes shorten smoothly and automatically. Previous compact routing

work did not consider congestion caused by the choice of routes: we find that the TZ protocol is

unfortunately subject to hot spots, and modify our protocol to improve congestion on a variety of

simulated topologies.

3.4.1 Introduction to Compact Routing

Scaling pressures caused by the Internet’s ongoing explosion in size and diversity have fueled an

increasing interest in new approaches to Internet routing [37,47,80,139,235]. Recent theoretical ad-

vances in compact routing algorithms [2, 15, 56, 245] suggest the possibility of much more scalable

routing techniques with formally provable performance properties, but these techniques have yet

to cross the chasm from formal, centralized “algorithm” to practical, distributed “protocol.” Some

practical issues that still must be solved before any of these algorithms will become usable include:

(a) creating protocols to compute compact routing tables incrementally using locally available in-

formation, (b) analyzing the performance of the resulting routes on diverse network topologies, (c)

ensuring that routing table maintenance does not cause too much control traffic overhead [140],

(d) providing the administrative controls over routing policy demanded by network operators, (e)

providing resiliency against topology changes and temporary failures, and (f) designing a realistic,

evolutionary deployment strategy. We do not solve all of these problems here, but merely attempt to

take a step forward in understanding and addressing them, and to evaluate the suitability of compact

routing as a method of providing overlay routing in UIA.

This section explores one approach to developing a practical compact routing protocol, based on

Thorup/Zwick’s variable (k-level) compact routing scheme [245], which we refer to as TZk. TZk

uses a selection of landmarks distributed throughout the graph as the roots of multiple overlapping

routing trees; two nodes wishing to communicate choose the “best” routing tree of which they are

both members and route within that tree. TZk arranges these landmarks in a configurable number

(k) of levels; routing trees built around the more numerous low-level landmarks have smaller mem-

bership, ensuring globally that every node participates in only a few trees. With one level (k = 1),

TZk behaves similarly to classic distance-vector routing, finding optimal routes using O(n)-size

routing tables. Two levels (k = 2) yields worst-case stretch of 3 and routing tables of size O(
√

n).

With log n levels, TZk has O(log n) worst-case stretch and routing tables of size O(log n). We

choose TZk as a starting point because its variable-level design makes it theoretically much more

flexible and scalable than fixed, two-level compact routing schemes [56], whose requirements of

O(
√

N) state per node may be reasonable for large networks of large devices (e.g., core routers)

or small networks of small devices (e.g., personal devices on an ad hoc network of limited size),

but are probably not reasonable for an Internet-size network containing of billions of small personal

devices participating in one overlay routing cloud.

85

Analysis of compact routing algorithms in prior work has focused primarily on routing table

size and stretch, but other factors such as path congestion, resilience to failures, route computa-

tion/convergence delays, and control message costs are equally important in practice. The primary

contributions of the present work are to build a simple distributed routing protocol based on TZk in

order to evaluate the scheme’s usefulness for UIA overlay routing, and to perform a large-scale

simulation-based analysis of the protocol on a variety of graph types, including both synthetic

graphs constructed from different theoretical models and realistic graphs of up to 190,000 nodes

derived from actual Internet topology. We will note differences between our protocol and TZk as

they become relevant.

We find later in Chapter 7 that TZk creates substantial congestion of global routing paths near

high-level landmarks, and we introduce a means to control the severity of this congestion via an

adjustable tradeoff against per-node routing table size. Congestion probably cannot be eliminated

entirely, however, leading to the practical observation that landmarks may need to be chosen not

randomly as in “pure” TZk but deliberately to be nodes adequately provisioned to handle this con-

gestion. This need for careful landmark selection may unfortunately limit TZk’s potential usefulness

for UIA overlay routing, since we prefer UIA nodes to be fully “self-managing,” but it may be pos-

sible to limit the negative effects of this congestion in the situations most normal users care about,

for example by combining the techniques explored here with some of the techniques explored in the

previous sections on Social Routing and Identity Hash Routing.

The compact routing protocol presented here also refines TZk by enabling nodes to use multiple

independent routing trees for resilience against temporary network failures. This thesis does not

develop or analyze the protocol in a fully dynamic setting in the context of long-term topology

changes, however.

3.4.2 Routing Protocol Design

We assume that the network is represented by a weighted, undirected graph whose edge weights rep-

resent some suitable distance or cost metric for each link: round-trip delay for example. We assume

that all network nodes are routers (which is typically the case in UIA), and we leave consideration

of link capacity issues for later.

The key idea of TZk and our protocol is to replace the single routing tree of the Kleinrock/Kamoun

model [134] with many overlapping routing trees of varying sizes. All nodes share membership in

a few large routing trees, which they use to route between distant nodes, but many smaller rout-

ing trees provide efficient local routes. This shift from one routing tree to many enables TZk to

achieve low stretch on arbitrary networks, including on highly-connected graphs where the Klein-

rock/Kamoun model fails [140]. Figure 3-9 illustrates three routing trees in an example network—

those centered at nodes A, B, and C—and the distinct but overlapping “clouds” of nodes participat-

ing in those trees.

There are four main processes comprising our protocol: landmark selection, routing tree con-

struction, global addressing, and route selection. The first three processes compute the tables that

86

Figure 3-9: Landmarks in Thorup/Zwick (TZk) scheme

nodes require to route messages; this computation could in principle be done either centrally or in

distributed fashion, and either offline or online, although for UIA overlay routing we naturally want

to support distributed online computation. The final route selection process occurs dynamically

when a given pair of nodes wish to communicate.

In the landmark selection process, each node receives—or assigns itself—an integer landmark

level. The total number of landmark levels, k, is a configurable parameter, and the specific choices

of landmarks and levels may be either automatically or administratively controlled; for UIA routing

we of course prefer automatic control. The basic goal is for each higher level i + 1 to contain

approximately a constant, evenly distributed fraction of the landmarks from level i. In Figure 3-9,

all nodes are landmarks, and dots of different sizes indicate different landmark levels.

Routing tree construction is largely automatic but can also be tuned administratively if neces-

sary. In this process, every node in the network searches outward from itself for nearby landmarks,

and joins multiple shortest-path routing trees rooted at a subset of those landmarks. To maintain

87

Figure 3-10: Routing tree selection

TZk’s worst-case stretch guarantee of 2k − 1, each node u joins the routing tree of every landmark

at each level i that is closer to u than u’s closest level i + 1 landmark. With a suitable distribution

of landmarks, each node is required to join only a few routing trees at each level, keeping routing

tables compact. Nodes may join the routing trees of additional, more distant landmarks beyond this

minimum requirement as their storage permits, however, improving both stretch and congestion.

In a dynamic network, nodes may join the routing trees of new landmarks that appear within their

“range” for that landmark level, and may leave the routing trees of landmarks that fail or go outside

of the node’s range for that level.

Figure 3-9 shows three overlapping routing trees: two at level 1, and a level 2 tree covering the

whole network. Figure 3-10 illustrates how a particular node collects nearby landmarks, using its

closest level i + 1 landmark as a “horizon” at which to stop collecting level i landmarks.

Finally, each node forms a global address for itself consisting of the identities of its closest

r landmarks at each level, and a locator on each of those landmarks’ routing trees, where r is a

redundancy factor for robustness against failures. A node u wishing to send a message to another

node v searches v’s global address for the best landmark also known to u and routes the message

over that landmark’s routing tree. The two nodes may optionally further improve their route for

88

ongoing communication by exchanging information about additional landmarks that may be present

in their routing tables but not “published” in their global addresses.

The following sections describe each phase in detail.

3.4.3 Landmark Selection

There are many possible ways to choose landmarks. The specific property we wish this assignment

to satisfy is that if any network node performs a best-first search outward from itself and places all

the landmarks it encounters in order of distance from itself, it should encounter a small number of

landmarks at each level i before encountering the first landmark at level i + 1. This is the property

that determines the compactness of a given node’s routing table.

Randomized Landmark Selection

The original TZk algorithm makes every node a landmark, and assigns landmark levels by a random

process. Every node begins as a level 0 landmark. If k total landmark levels are desired in a network

of n nodes, then TZk selects the landmarks for level i + 1 by including each level i landmark

independently with probability n−1/k. With this distribution of landmarks, every network node

encounters about n1/k landmarks at any level i as it searches outward from itself before finding the

first level i + 1 landmark.

If k = 2, for example, then TZk randomly chooses about
√

n of the n total nodes to be level

1 landmarks, leaving all remaining nodes as level 0 landmarks. If k = logb n for some constant

b > 0, then the total number of landmarks decreases by a factor of b at each level. In this latter

case, randomized landmark selection is easy to perform in a fully decentralized fashion: each node

chooses a random identifier expressed in base b, and its landmark level i is simply the number of

leading zero digits in its identifier.

Explicit Landmark Selection

Although TZk’s randomized landmark selection process provides a simple means of guaranteeing

compact routing tables, in a practical large-scale network, some landmarks may have to be chosen

deliberately for reasons of bandwidth and reliability. As we will see later in Section 7.4.3, global

traffic routes tend to converge on and around high-level landmarks in a TZk network. This route con-

vergence may cause network overload unless these landmarks are deliberately chosen (or designed)

to be nodes that are adequately provisioned to handle the load incurred by this route convergence.

In addition, a failure at or near a high-level landmark is likely to affect a disproportionately large

portion of the network, so the highest-level landmarks should be chosen to be highly reliable nodes.

For these reasons, unlike TZk, our protocol assumes that some or all landmarks may be chosen

administratively. Although for UIA overlay routing purposes we would prefer if all participating

devices were fully self-managing, it may be reasonable to assume that a small percentage of devices

may be administratively assigned to the highest landmark levels: e.g., high-capacity UIA routing

89

“hubs” deployed by companies wishing to ensure that the UIA-based personal devices they sell

perform well.

If a network operator is not sufficiently careful about landmark selection, however, some net-

work nodes may end up with larger routing tables than others. If there are many level 1 but not

enough level 2 landmarks in a given area of the network, for example, then nodes in that area may

have overly full routing tables at level 1 because they must search outward through many level 1

landmarks before encountering the closest level 2 landmark. Such situations are easy both to detect

and to rectify, however. A node whose level 1 routing table grows too large might trigger an alarm,

for example. In response to this alarm, a network operator could simply pick a level 1 landmark

from the middle of the node’s routing table and promote it to level 2, thereby “chopping off” the

node’s level 1 routing table at that point. Once too many landmarks in the area have been promoted

to level 2, the network operator may have to promote some of those to level 3, and so on. Our

protocol thus allows routing table compactness to be ensured either automatically, through TZk’s

random selection process, or administratively as the network evolves, simply by “oiling the wheel

that begins to squeek.”

Landmark Pruning

The original TZk algorithm makes every node a landmark, each serving as the root of a distinct

shortest-path routing tree. In our protocol, however, we assume that the set of landmarks may be

a subset of all nodes; a non-landmark node participates on the routing trees of nearby landmarks

but does not have a routing tree of its own. Although omitting landmarks may in general increase

stretch, it is easy to prove that certain landmarks may be omitted or pruned without affecting the

routes chosen by the protocol.

Consider for example any pair of adjacent nodes u and v such that when the edge between

them is removed, the graph component containing u forms a tree. All nodes in this “edge tree”

including u may be pruned from the set of landmarks, leaving v as their nearest landmark. Since

the pruned nodes can only reach the rest of the network through v, the shortest-path routing trees

their landmarks would form beyond v would use exactly the same routes as v’s routing tree itself,

and there is only one loop-free way to route within the edge tree itself.

Similar pruning optimizations may be possible even within graph cycles, but this simple edge

tree optimization may be particularly useful for Internet-like topologies, which tend to be highly

connected at the core but treelike at the fringes [147]. Indeed, in the large Skitter [38] graph we

used as one of our test topologies, about 26% of the nodes are located in edge trees and thus need

not be landmarks.

3.4.4 Routing Tree Construction

Once the landmarks are selected and assigned levels, our protocol computes a routing tree rooted

at each landmark permitting any two nodes residing on the same tree to communicate. There are

90

essentially three parts to this problem: determining the structure and extent of each routing tree,

assigning addresses or locators to each node on a tree, and using those addresses to route messages

over the tree. Only the first part of the problem is highly specific to our protocol or TZk; for

assigning locators and routing on a particular tree many well-known techniques may be used.

Forming Routing Trees

The size and shape of the routing tree around each landmark is determined implicitly by the set

of nearby nodes that “choose” that landmark for their routing tables, which in turn depends on the

topology of this neighborhood. As explained above, every node u joins at least the routing trees of

all level i landmarks closer than any level i + 1 landmark, and may join the trees of additional more

distant landmarks if desired to optimize stretch or congestion at the expense of routing table size.

Since there are no landmarks at level k to serve as a “horizon” for level k − 1 landmarks, every

node in the network participates in the routing trees rooted at each of the level k−1 landmarks; these

form the network’s global routing trees. The membership of the smaller routing tree surrounding a

lower-level landmark l is termed the landmark’s cluster by Thorup and Zwick, and is suggestive of

though not the same as a cell in a Voronoi diagram.

Each landmark’s routing tree should be a shortest-path tree: that is, the path taken along the tree

from any member node u to the landmark l serving as the tree’s root should be a shortest path from

u to l. This shortest path property is crucial to the TZk algorithm’s formal stretch guarantee.

Distributed Routing Tree Construction

In principle, routing tree computation may be performed centrally on a complete graph of the net-

work and the resulting routing tables shipped to the nodes for use, or the nodes themselves could

compute their own routing tables via a distributed protocol. The original TZk algorithm was pre-

sented in terms of a centralized computation, but to permit more detailed analysis we explore a

simple distributed message-based protocol based on the algorithm. Although the current message-

based protocol is rudimentary, it demonstrates that computation of TZk routing tables has deep

similarities to classic distance-vector routing, so many techniques used in existing distance-vector

protocols may be reapplicable to compact routing.

In our protocol, each node learns about nearby landmarks and builds its routing tables incre-

mentally by gossiping with its neighbors. Each node’s routing table stores the set of landmarks the

node has discovered so far for each level, and for each such landmark, the length of the shortest

known path to that landmark and the identity of the “next hop” along that path. In this respect

our protocol works much like a classic Bellman-Ford distance-vector protocol, except that in our

protocol each node sets a “distance horizon” on the set of landmarks it learns at a given level i,

based on the closest known level i + 1 landmark it has learned (if any). Whenever a node learns

from a neighbor about a new landmark at some level i—or a better route to an already-known level

i landmark—that is closer than the closest currently-known level i + 1 landmark, the node updates

its routing table and then broadcasts the route to all of its neighbors. If the node learns a route to

91

a level i + 1 landmark that is closer than one or more known routes to level i or lower landmarks,

then the protocol can either throw away the “excess” lower-level routes to keep each node’s routing

table to the minimum size, or retain a limited number of extra routes in order to reduce stretch and

congestion, as described later.

Addressing and Routing on Individual Trees

The simple distributed protocol above effectively forms a shortest-path tree around each landmark

containing the appropriate set of member nodes as per the requirements of the TZk algorithm. How-

ever, the simple distance-vector protocol only provides the information necessary to route packets

inward on each tree toward the landmark; we require the ability to route both inward and outward

on the tree, from any node on the tree to any other node. For this purpose a variety of well-studied

routing schemes are suitable; we touch on only a few particularly relevant ones here.

The simplest solution is to extend the distance-vector protocol above so that nodes gossip and

store complete source routes to their nearest landmarks instead of just the “next hop.” A node u’s

“address” on a landmark l’s routing tree is simply u’s source route to l. If u wishes to reach another

node v over l’s tree, u simply reverses v’s source route to l, appends the result to u’s own source

route to l yielding a source route from u to v through l, and trims any cycle from the resulting

path. The danger of this approach is that source routes may become long, O(n) on arbitrary graphs,

although this should not be a major problem on Internet-like scale-free graphs, which have low

diameter.

As an alternative to source routing, interval routing [211] can route over trees using addresses

that are always of size O(log n) regardless of network topology. Classic interval routing requires

each node to have storage proportional to its degree, but Thorup and Zwick propose a scheme

that combines interval and source routing so as to use tree-addresses of size O(log2 n) and constant

storage per node regardless of topology [245]. Most realistic network nodes use storage proportional

to their degree anyway, however, just to keep track of the status of each link for example, so classic

interval routing techniques may be adequate from a practical compactness perspective.

The primary practical disadvantage of interval routing is that it requires ongoing maintenance of

the address space and perhaps occasional renumbering as the network topology evolves. A straight-

forward way to address this challenge is for each landmark to divide time into epochs, and compute

a new set of routing tree addresses for each epoch, tagging each tree-address with the epoch counter

so that more than one epoch’s addresses may be used at once and nodes in the landmark’s routing

tree may transition gracefully from one epoch to the next. This approach is reminiscent of the Des-

tination Sequenced Distance Vector (DSDV) routing algorithm [182] for mobile ad hoc networks,

although the epochs used for compact routing may need to be longer since our protocol must as-

sign addresses and build a routing structure usable for routing “outward” from landmarks to nodes

participating in its tree, and not just “inward” toward destinations as in DSDV.

92

3.4.5 Global Addresses

Once the above routing trees are constructed and all nodes have located their nearest landmarks at

each level, each node chooses a global address for itself. In our protocol, the global address of any

node u contains the identities of the r landmarks closest to u (i.e., the first r landmarks at each level

of u’s routing table), u’s distance from each of those landmarks, and u’s tree-address on the routing

trees of each of those landmarks. Using source routes as tree addresses, for example, each node’s

global address consists of its closest r landmarks at each level and its distances and source routes to

those landmarks.

Our protocol’s redundancy factor r ≥ 1 is an adjustable parameter that controls a tradeoff be-

tween global address size and robustness against failures, as we will explore in detail later. A value

of r = 1 corresponds to the original TZk algorithm, which guarantees all nodes global reachability

and bounded worst-case stretch, but only in the absence of failures. If tree-addresses are of size

O(log n), as with interval routing or source routing on a scale-free graph, then each node’s global

address is of size O(rk log n).

The fact that a node’s global address has a structure that depends on network topology creates

two challenges, however. First, this means that TZk provides name-dependent rather than name-

independent routing, so to use it in an architecture like UIA that relies on nodes having flat, location-

independent endpoint identities (EIDs), nodes still require a way to resolve an EID into a global ad-

dress that is directly usable for routing. Fortunately, this distributed lookup/resolution is precisely

what DHTs were designed to accomplish, so a standard DHT protocol [146,156,194,209,234,271]

built on top of TZk but below UIA’s naming layer provides an obvious approach to addressing this

challenge. Other potentially useful, “locality-aware” techniques for resolving location-independent

names have been developed for ad hoc networking [43] and in the formal literature on name-

independent compact routing [2, 15].

Second, since network topology changes may result in changes to the node’s set of closest

landmarks, as well as to the node’s position and tree-address on those landmarks’ routing trees, the

node’s global address must change over time and the EID-to-address resolution mechanism must

adapt to those global address changes, ideally while maintaining continuous connectivity during

these changes whenever possible. DHT protocols generally support dynamic changes to key/value

pairs they index and store, so in theory these dynamic updates are not a problem, but in practice

there may be efficiency issues if many nodes’ global addresses change too rapidly. We leave most

of these EID resolution and dynamic adaptation challenges for future work.

3.4.6 Route Selection

There are two situations to consider when two nodes u and v wish to communicate: one in which

u must “unilaterally” choose a route to v with no information other than u’s routing table and v’s

global address, and one in which u and v are already in contact but wish to choose the best route for

ongoing traffic. We consider each of these cases in turn.

93

Unilateral Route Selection:

If a node u wishes to communicate with an arbitrary target node v in the network, u must first obtain

v’s global address—by looking it up in a directory such as DNS or a DHT as suggested above, for

example. Given the target v’s global address, u then compares v’s published list of landmarks with

those in u’s own routing table, picks the “best” landmark l known to both nodes, extracts v’s tree-

address on l’s routing tree from v’s global address, and uses that tree-address to send a message to

v over l’s routing tree. In the original TZk algorithm, in which each node’s global address contains

only the single closest landmark at each level (corresponding to r = 1 in our protocol), u simply

picks the lowest-level landmark and tree-address from v’s global address. When u picks a route to v

“unilaterally” this way without cooperation from v, TZk guarantees a worst-case stretch of 4k − 3,

somewhat higher than the theoretical optimum of 2k− 1 [245]. To obtain 2k− 1 worst-case stretch

TZk requires a handshaking phase, described below.

In our protocol, however, v’s global address contains r entries per level, and the best route

between u and v could be via the routing tree of some landmark (slightly) farther from v than v’s

closest landmark at that level but (much) closer to u. Since our protocol includes v’s distance to

each of its landmarks in v’s global address, u can estimate the total distance over a given landmark’s

routing tree by adding u’s distance to the landmark and v’s distance to the same landmark. This

result is a conservative estimate, since a message will not actually reach the landmark if the source

and target nodes are within the same “branch” of the tree.

Cooperative Route Selection:

Once u and v are in communication over some route, they may be able to find a better route through

handshaking. The original TZk algorithm requires such a handshaking step in order to achieve the

optimal stretch bound of 2k− 1. Once u first contacts v over its unilaterally-chosen path, v uses the

same unilateral route selection procedure to find a route back to u; in doing so, v may find a better

(lower-level) landmark known to both u and v. v then responds to u with an indication of the best

landmark, and both nodes use the chosen landmark for subsequent communication. TZk’s optimal

worst-case stretch depends on the two nodes routing on the lowest-level landmark that either node

can discover unilaterally, hence the handshaking requirement.

An interesting and potentially useful property of TZk and our protocol is that its worst-case

stretch bound for the path between a particular pair of nodes, u and v, becomes smaller if u and

v are close together. In particular, if two nodes u and v agree through handshaking to use a level i

tree, the worst-case stretch for their subsequent communication is 2i + 1.1 Thus, routing between

nearby nodes on a level 0 tree is always optimal (stretch 1), routing on a level 1 tree has a worst-case

stretch of 3 regardless of the total number of levels k in the network, and so on.

In our generalization to TZk with the redundancy parameter r, u can unilaterally estimate the

cost of the (at least r) available redundant paths to v as described above, but u and v may find still

1Thorup and Zwick do not point out this property explicitly but it may be read easily from their proofs.

94

better paths by dynamically exchanging additional routing table information not included in their

respective global addresses. For a precise selection of the best path, the two nodes could simply try

several paths and dynamically select the best (e.g., the one with the shortest delay), or ideally even

use multiple paths simultaneously if supported by upper-layer protocols [121].

In the limit, if we set r =∞ in our protocol, then each node publishes in its global address all of

the landmarks it knows at each level—i.e., its full routing table. If k = log n and each tree-address

is O(log n) size, then each node’s global address is of size O(kn1/klog n), or O(log3 n) in the case

of k = log n. This additional log n factor in global address size not only purchases redundancy

against failures, but also guarantees the asymptotically optimal 2k − 1 worst-case stretch without

handshaking, since u already has all the information v might provide in TZk’s handshaking step.

If u finds v’s global address in a directory or DHT, u need not necessarily retrieve v’s entire

global address; u could instead send the directory service a Bloom filter [34] summarizing the

identities of the landmarks in u’s routing table, and the directory service merely returns those entries

from v’s global address for landmarks u may know about.

95

96

Chapter 4

Transport

Once personal devices are conveniently nameable via the UIA personal naming system, and can

efficiently locate and connect with each other via UIA’s overlay routing system, devices still need to

be able to utilize their connection effectively in order to support the wide variety of applications that

current and future users expect to run on their personal devices. In contrast with the terminal- and

batch-oriented applications that the Internet was originally designed around, modern applications

are often highly interactive, allow multiple communication activities to occur at once in parallel,

and can be very sensitive to network transmission or reordering delays.

This chapter rounds out UIA by introducing Structured Stream Transport (SST), a new transport

protocol developed specifically to support the highly interactive and concurrent applications that are

becoming common on modern personal devices. We first explore the motivation and goals for the

new transport in Section 4.1. Section 4.2 then introduces the structured stream abstraction that

the new transport is built on, and Section 4.3 explores how this new transport abstraction may be

leveraged in a variety of different applications. Finally, Section 4.4 details the design of the new

transport protocol.

4.1 Motivation and Goals

Current Internet transports offer applications a choice between two abstractions: reliable byte streams

as in TCP [242] or SCTP [232], or best-effort datagrams as in UDP [185] or DCCP [136]. Streams

are convenient for large or long-running activities that must preserve data content and order, such

as terminal sessions or file transfers, but datagrams more efficiently support numerous small trans-

actions that need to proceed independently as quickly as possible, such as DNS requests or frames

of a media stream.

The classic stream and datagram abstractions are conceptually simple and worked reasonably

well for the types of applications that dominated the early Internet. Long-lived TCP streams are

well-suited to character-stream-oriented terminal protocols like Telnet [186], Rlogin [128], and

Secure Shell [264–267]; batch text messaging systems such as E-mail [58, 135, 168, 201] and

USENET [77,114,175]; and bulk data transfer protocols such as FTP [113,187]. Small, ephemeral

97

UDP datagrams are suitable for simple transactional protocols with small requests and replies, such

as DNS queries [256] and NFS block I/O [217].

4.1.1 The Mismatch of Traditional Transports with Modern Applications

Modern Internet applications, especially interactive applications designed for today’s mobile per-

sonal devices, are placing increasing strain on the traditional stream and datagram abstractions,

however. Modern interactive applications such as web browsers, for example, often use a mixture of

small and large transactions: such an application faces awkward tradeoffs, because it could benefit

from the efficiency of UDP for small transactions but needs TCP to handle the occasional large ones.

Using one TCP stream per transaction as in HTTP/1.0 [29] makes poor use of network resources

and is unfair to other applications when a client uses many concurrent streams; serializing trans-

actions onto persistent streams increases transaction latency [171]; and implementing pipelining

correctly in web servers has proven challenging enough that seven years after the standardization of

HTTP/1.1 [78], popular browsers still leave pipelining disabled for compatibility [141, 165].

Similarly, multimedia streaming applications are becoming increasingly important on mod-

ern personal devices. RTP [256] over UDP may be adequate for fixed-rate voice communication

in which all media frames are small, but modern high-definition, variable-bit-rate video encod-

ing schemes can produce occasional large frames. These large frames are especially likely to be

dropped, because UDP drops an entire datagram if any of its composite fragments are lost in transit

due to congestion or transmission errors, and cannot retransmit lost fragments. At the same time,

these large frames are often semantically the most critical ones not to drop, since they typically

represent “key” frames with respect to which other nearby frames are represented via differential

encoding. Multimedia streaming applications can and sometimes do use TCP instead of UDP be-

cause of its reliable delivery, but this approach does not work well if the multimedia stream is delay-

sensitive (e.g., a real-time audio/video conferencing stream), because one dropped packet in a TCP

stream delays delivery of all data behind it in the stream until the dropped packet is successfully

retransmitted.

Modern applications for personal devices face further tradeoffs because neither streams nor

datagrams offer a means to associate related transport instances. Applications such as FTP [187]

and SIP [206] associate transport instances manually by passing IP addresses and port numbers

in messages, causing protocol fragility and problems traversing NATs [112]. Other applications

multiplex many activities onto one TCP stream, as with SSH tunneling [264], but performance

suffers from TCP’s total ordering of the multiplexed stream, where one lost packet blocks delivery

of all data queued behind it in the stream.

98

4.1.2 A Transport Abstraction for Personal Device Applications

To address the above problems, the UIA architecture introduces a new transport protocol called

Structured Stream Transport, or SST, which is specifically designed around the needs of modern

interactive applications running on today’s personal devices.

SST addresses the problems of transaction size and instance association by augmenting tradi-

tional streams with an explicit hereditary structure. A structured stream provides not only reliable

data delivery as in TCP, but also permits the creation of additional lightweight child streams or

substreams. When an application spawns a child from an existing stream, SST conveys this par-

ent/child relationship to the remote application, ensuring that only the intended recipient can accept

the new stream and preserving its structural context. Each stream delivers data reliably and in order

within that stream, with its own receiver-directed flow control and optional record marking, while

other streams may proceed independently with no head-of-line blocking. SST shares sequencing,

congestion control, and security state among all streams between a pair of hosts, minimizing per-

stream state overhead and allowing the application to use as many concurrent streams as convenient

to match its logical structure. The application may also create and destroy streams rapidly to match

the natural longevity of its transactions, because SST eliminates TCP’s 3-way handshake delay on

all streams after the first, and also eliminates the 4-minute TIME-WAIT period on close that can

cause TCP state overload [75]. The application can transmit datagrams on an SST stream with

best-effort delivery, but SST treats these datagrams as ephemeral substreams that are semantically

indistinguishable to the receiving application from ordinary substreams, allowing SST to fall back to

stream-oriented delivery for “datagrams” too large to transmit as such without unacceptable prob-

ability of loss. Finally, the application can prioritize SST streams relative to each other, giving

preference to interactive or multimedia streams over background activities, and applications can use

substreams for out-of-band signaling to change priorities mid-stream, e.g., expediting the loading

of images in the currently visible area of a web page.

Although SST is primarily intended for use in new or evolving applications, analyzing the

requirements of well-established protocols can serve to illustrate the general utility of structured

streams. Applications like FTP and SIP that modularize their operation across several transport

instances, for example, can use a top-level SST stream for control signaling and open private sub-

streams for data or media transfers, instead of separate transport connections. Allowing SST to

manage and associate the application’s transport instances makes the application protocol sim-

pler, more robust, and friendlier to other applications due to SST’s shared congestion control.

Transaction-oriented protocols like HTTP can adopt a simple one-transaction-per-stream model as

in HTTP/1.0 [29], relying on SST to multiplex many transactions efficiently onto one persistent

connection, and avoiding both the serialization-induced latencies of persistent streams [171] and

the application-level complexity and fragility of pipelining [165]. Applications based on RPC [225]

can use SST either as a datagram-oriented transport that combines the efficiency and statelessness of

UDP for small messages with support for messages of arbitrary size, as a transaction-oriented trans-

port using lightweight streams to associate requests with responses, or as a stream-oriented transport

99

that eliminates the need for RPC’s record marking layer. Character-oriented streaming applications

such as Telnet [186] and Rlogin [128] can use structured streams in place of TCP’s legacy Urgent

mechanism to handle asynchronous attention signals such as CTRL-C, improving their promptness

by eliminating TCP’s need to deliver all data already in the pipeline reliably before it can begin

delivering the actual urgent data.

4.1.3 Design and Implementation Features

In addition to the new structured stream abstraction, several other novel aspects of SST’s design

may suggest useful transport design principles:

• SST builds its structured streams on top of an intermediate channel protocol: a connection-

oriented sequenced datagram service reminiscent of DCCP [136] but semantically closer to

IPsec’s packet sequencing [131, 132]. The channel protocol’s monotonic sequence numbers

and replay protection logic, in particular, enable SST’s lightweight streams to avoid 3-way

handshakes or TIME-WAIT periods.

• The SST channel protocol selectively acknowledges packets via acknowledgment ranges,

which provide more information than TCP’s SACK [154] and D-SACK [79] extensions, fa-

cilitate forward acknowledgment [155] and reordering tolerance [32], and offer redundancy

against lost acknowledgments, without the complexity or overhead of variable-length SACK

headers.

• SST separates the multiplexing and rendezvous functions that port numbers serve in traditional

transports, using small, temporary local stream identifiers for multiplexing and more friendly

service and protocol names for rendezvous during connection initiation.

• SST can attach a stream to multiple underlying datagram channels successively or at once, to

insulate application streams from temporary failures, IP address changes, and channel lifetime

limits.

• SST jumpstarts a child stream’s flow control state by borrowing from its parent’s receive

window, allowing the initiator to start sending data on the child stream without waiting for

the receiver’s initial window update.

• SST demonstrates how layering and functional reuse enables substantially more functionality

than TCP with no additional per-packet overhead in comparable scenarios.

A user-space prototype implementation of SST, running on real and simulated networks, at-

tests to SST’s practicality and utility. The prototype achieves within 10% of the bandwidth of

mature native TCP implementations on “consumer-grade” DSL and WiFi connections, and its con-

gestion control is TCP-fair to within ±2%. Under a simulated web browsing workload, using one

HTTP/1.0-style transaction per stream with SST achieves the performance of HTTP/1.1 pipelining,

100

with lower application complexity, and more flexibility as demonstrated by a simulation of dynamic

Web download prioritization in response to user actions. Although the SST prototype is not yet

integrated with the deployed UIA prototype, it should serve well both as a secure point-to-point

connection and authentication protocol for the UIA routing layer to use in place of SSL over TCP,

and as a new end-to-end transport for UIA naming layer communication and for new UIA-aware

applications at higher levels.

The primary contributions of SST are: (a) the structured stream abstraction, (b) a novel protocol

design that implements this abstraction by splitting the transport into separate stream and channel

layers, and (c) a user-space prototype for easy experimentation and deployment.

4.2 Structured Streams

This section describes the structured stream abstraction as viewed by an application using SST,

leaving technical details of the SST protocol itself to Section 4.4.

4.2.1 Data Transfer Semantics

Like a TCP stream [242], an SST stream is a reliable, byte-oriented conversation between applica-

tions. Apart from the ability to create substreams, SST streams are semantically almost identical

to TCP streams, so porting application protocols from TCP to SST is straightforward. Each partic-

ipant sends and receives segments of bytes, and the transport guarantees reliable in-order delivery

of those segments in the absence of connection failure, but may fragment, combine, and buffer seg-

ments. Each endpoint may close its end of the stream independently, so a client may for example

close its end to signal the completion of a request before awaiting the server’s reply on the same

stream.

SST data transfer semantics differs from TCP’s in only two respects. First, SST dispenses

with TCP’s Urgent feature, but this feature may be emulated using substreams as described later in

Section 4.3.4. Second, senders may set explicit record marks in an SST stream, which SST reliably

delivers to the receiver, simplifying many applications and making their buffer management more

efficient at little cost in the transport layer.

4.2.2 Creating and Accepting Substreams

An application can use an SST stream not only to transfer data but also to “fork off” child streams

or substreams. The terms “substream” and “child stream” refer only to hereditary relationships

between streams: once created, there is no semantic difference between a “top-level” stream and

a substream. SST extends the traditional sockets API with three new operations for creating sub-

streams:

• create_substream(stream)→ new stream:

creates a new child stream from an existing stream.

101

• listen_substream(stream):

indicates willingness to accept substreams on a stream.

• accept_substream(stream)→ new stream:

accepts a substream initiated by the other endpoint.

An application calls listen_substream to indicate willingness to accept new streams as

children of an existing stream, much as the application would use a traditional listen socket to re-

ceive incoming top-level streams. The peer application on the existing stream’s other endpoint may

then initiate a substream by calling create_substream on the existing stream. SST notifies the

listening application of the incoming substream, and the listener accepts it via accept_substream.

Once created and accepted, child streams are independent of and may outlive their parents.

4.2.3 Inter-Stream Semantics

Since SST conveys parent/child relationships on substream creation, the application can use con-

textual state negotiated in a parent stream to determine communication behavior on child streams.

A videoconferencing application may for example initiate a call in a “root” stream, then initiate one

child substream for video and a second for audio, negotiate codec parameters for each media stream

on its respective SST substream, and finally transmit media frames themselves on “grandchild” sub-

streams. SST’s inter-stream structure enables applications to modularize and associate their related

communication activities, without having to multiplex all activities onto one stream or manually

track logical associations between separate transport instances. SST endeavors to make streams

“lightweight enough” for the application to use a new stream for each logical transaction regardless

of size, enabling the application to “frame” its protocol data units according to its needs [51].

SST ensures reliability and data ordering within a stream but not between streams, so the loss

and retransmission of a data segment on one stream does not delay communication on other streams.

If a client issues many requests to a server at once on separate streams, for example, the server may

accept several requests concurrently and respond to them in any order, completing “easy” requests

quickly without blocking them behind long-running requests submitted earlier. Each stream pro-

vides independent flow control, so the receiving application may accept data at different rates on

different streams, or accept data continuously on one stream while temporarily blocking the sender

on another. SST’s flow control applies to new child streams as well as to stream data, allowing a

server to prevent its clients from overloading it with too many concurrent requests.

4.2.4 Datagrams as Ephemeral Substreams

TCP delivers data reliably if the participants wait for all necessary retransmissions and acknowl-

edgments, as the TCP standard dictates [242], but most TCP stacks offer an option to limit the time

a host buffers unacknowledged data after stream close (e.g., SO LINGER in BSD). By imposing a

fixed deadline, this option can have the side-effect of deviating from TCP’s usual reliable semantics

102

and turning it into a “best-effort” delivery service. Suppose an application opens a stream, sends

some data, then closes the stream with a short linger timeout without ever receiving on the stream.

The sending TCP transmits the data and closing FIN, but does not hold unacknowledged segments

beyond the linger timeout. The receiver obtains the data and a graceful close indication if every

segment including the FIN arrives intact, or if retransmissions complete before the linger timeout;

otherwise the receiver sees a connection reset. If the linger timeout expires within one round-trip

time of the first data transmission, then no retransmissions are possible, making this usage of TCP

semantically equivalent to a best-effort, “fire and forget” datagram delivery service—if less efficient.

SST has a send_datagram operation providing best-effort delivery, but SST treats this op-

eration as equivalent to creating a child stream, sending data on it, and closing the child with a

short linger timeout to avoid buffering the sent data. SST’s receive_datagram operation is

similarly a shorthand for accepting a substream, reading data, and closing the substream. Since an

SST “datagram” is semantically just an ephemeral substream, the receiver can accept the substream

with accept_substream instead of receive_datagram, and can then read the substream’s

content as it would with a normal substream. The receiver gets a connection reset if it ever tries

to send on this ephemeral substream. The receiving application thus cannot tell whether the sender

invoked send_datagram or the equivalent sequence of operations.

SST can use an optimization described later to deliver best-effort datagrams efficiently and state-

lessly as in datagram transports such as UDP or DCCP. Because the receiving application cannot

tell whether this optimization was used, however, the sending SST is free not to use it when net-

work conditions may not be suitable. If for example a datagram to be sent is large enough that at

least one fragment is likely to be lost, given the current loss rate computed from congestion con-

trol statistics, SST forgoes the datagram delivery optimization and sends the datagram instead on a

“real” substream, transparently to the application. SST thus solves the “large datagram” problem of

traditional best-effort services, where datagram loss rates quickly become unacceptable as datagram

size increases.

4.2.5 Other Application-Visible Features

SST may be deployed either at system level as a “native transport” alongside TCP and UDP, or at

application level atop UDP. The latter usage allows applications to ship with a library implemen-

tation of SST without requiring special privileges or extensions to existing operating systems, and

they can use it as they would SSL/TLS [64] or DTLS [200]. Deploying SST atop UDP also allows

it to traverse existing NATs that only natively support TCP and UDP.

Since communication security is now essential for most applications on today’s Internet, but

IP-layer security [132] is still not widely deployed other than for VPNs, SST provides optional

transport-layer security built on standard practices. SST’s security is mostly transparent to appli-

cations, except for configuration of security parameters and secure identification of communication

peers.

103

Since a large percentage of hosts on the Internet today are connected behind NATs or firewalls,

many applications require traversal of these barriers, especially applications with peer-to-peer com-

munication patterns such as Voice-over-IP. For this reason, SST supports hole-punching [82] to

traverse BEHAVE-compliant NATs [16], and provides an optional host registration protocol to as-

sist applications in establishing peer-to-peer connectivity between communication partners behind

NATs.

4.3 Using Structured Streams

To examine the practical benefits of structured streams, this section briefly explores requirements

and challenges faced by several classic application protocols. We use these protocols for illustrative

purposes only, without implying that specific applications should necessarily be migrated to SST.

4.3.1 Application Protocol Modularity

FTP [187] modularizes its operation across multiple transport instances: one TCP stream for control

signaling and a separate stream for each file transfer. With SST, such an application can use a top-

level stream for control and simply open substreams for data communication. Since SST conveys

the parent/child relationship on substream creation, application protocols need not communicate

IP addresses or port numbers explicitly to associate the related transport instances, simplifying the

application and avoiding difficulties traversing NATs [112].

Internet telephony similarly uses a TCP stream for call setup via SIP [206], and separate UDP

streams for media delivery via RTP and RTCP [214]. The disconnect between these streams at the

transport layer, and the resulting need for SIP messages to carry IP addresses and UDP port numbers,

causes even worse NAT traversal problems than in FTP, resulting in complex extensions [205] as

well as competing proposals for ground-up redesign using application-level multiplexing [224].

With SST, a telephony application could run SIP in a top-level stream, open substreams for RTP

and RTCP during a call, and send individual media datagrams as ephemeral substreams of those

respective substreams, using SST to multiplex the streams while preserving their association.

4.3.2 Transactional Protocols

The need to support transaction-oriented applications efficiently has long been recognized [31, 35,

46]. In the absence of a general transport satisfying this demand, HTTP/1.0 [29] used a separate

TCP connection for each request, each requiring a 3-way handshake and TIME-WAIT period af-

ter close, leading to unacceptable overhead as the Web became riddled with small images. Since

TCP congestion control distributes available bandwidth per stream, opening many concurrent TCP

connections is also unfair to other users [18]. HTTP/1.1 [78] allows reuse of a TCP connection for

successive requests, reducing the total number of connections, with the disadvantage of serializing

requests and often making pages take longer to load [171]. In theory requests may be pipelined to

104

improve latency, but seven years after the publication of HTTP/1.1, today’s common browsers still

avoid pipelining by default because many servers implement it incorrectly [141, 165]. Pipelining

also fixes response order to request order, blocking the server from satisfying simple static con-

tent requests promptly until it finishes processing dynamic content requests submitted earlier for

example.

HTTP could benefit from UDP’s efficiency—particularly for the many conditional GET requests

browsers use to test the freshness of cached objects, whose responses are usually small—but HTTP

cannot use UDP because responses may be arbitrarily large, and the client has no way of knowing

this when it submits the request. SIP supports operation over UDP, but gets into trouble for precisely

this reason [102].

With SST, applications can use one stream per transaction, with minimal startup latency on all

streams after the first, and without serialization of independent requests or long-term state retention

after close. Alternatively, applications can use SST as a best-effort datagram transport, sending re-

quests and replies in separate ephemeral streams, achieving UDP’s statelessness for small messages

without UDP’s message size limits. In either case, SST ensures fairness relative to TCP applications

that use only one stream, since all of an application’s SST streams between the same pair of hosts

share a single congestion control context.

4.3.3 RPC

ONC RPC [225] can run over either TCP or UDP, but the choice between the two transports presents

application designers with an awkward tradeoff. Many applications would like to use UDP for its

efficient handling of small requests, lack of unnecessary serialization or head-of-line blocking, and

minimal server state requirements. Because of the “large datagram” problem discussed in Sec-

tion 4.2.4, however, an RPC application can only use UDP if it guarantees that every possible re-

quest and reply message fits in a “reasonable” size for datagram-oriented delivery—typically around

8KB by current conventions.

By running RPC in “datagram mode” over SST, the application can obtain the same efficient

delivery for small requests via the optimization described in Section 4.4.3, while still being able

to rely on the transport to convey occasional larger requests reliably. Alternatively, RPC could run

over SST using one transaction per stream as discussed above for HTTP, using SST to associate

requests with replies and ensuring reliable delivery of all messages, at minimal performance cost

since substreams impose no round-trip startup delays or serialization. If serialization is actually

desired, running RPC in “stream mode” over one SST stream eliminates the need for RPC’s record

marking layer since SST provides reliable record marking.

4.3.4 Out-of-Band Signaling

Many application protocols require some form of out-of-band signaling, and traditionally must use

ad hoc methods to implement it due to the lack of transport layer support. Internet telephony sets

105

Figure 4-1: SST protocol architecture

up two separate UDP media sessions, for example: an RTP stream for data and a parallel RTCP

stream for related out-of-band signaling [214]. With SST, an application need not set up out-of-

band control channels in advance: the application can create a new substream at any time in which

to convey an out-of-band message relating to the parent stream, without interfering with the normal

operation of the parent. Section 7.5 explores one experimental use of out-of-band signaling in SST.

TCP’s Urgent feature is a limited out-of-band signaling mechanism, used primarily in terminal

protocols such as Telnet [186] and Rlogin [128] to clear the communication pipeline when the user

invokes an “attention” signal such as CTRL-C. Although SST does not support the Urgent feature,

an SST application can emulate it by opening an ephemeral substream and transmitting an explicit

urgent pointer, expressed as a byte offset in the parent stream for example.

In the specific case of terminal applications, while TCP reliably delivers all data up to the Ur-

gent pointer, terminal applications typically just discard this intervening data—a semantic mismatch

resulting in unnecessary network transmission and delays. Instead of just emulating the Urgent fa-

cility, a terminal application designed for SST could achieve better responsiveness by using its main

stream only for control and opening two substreams for character data, one for each direction. To

clear its character transmit pipeline, a host resets its character send substream and opens a new one,

prepending a generation counter to each new stream so the receiver can distinguish the most recent.

SST immediately stops sending obsolete data in the old stream and promptly begins delivering the

new stream, as desired for the terminal application’s semantics. (Adapting a particular existing pro-

tocol such as Telnet or Rlogin this way would involve additional subtleties such as avoiding the

loss of control signals embedded in the character stream; this example is intended only to suggest a

general approach and not a precise recipe.)

106

Figure 4-2: SST communication abstractions

4.4 Protocol Design

SST consists of three related protocols, organized as shown in Figure 4-1. The channel protocol

is a connection-oriented best-effort delivery service that provides packet sequencing, integrity and

privacy protection, selective acknowledgment, and congestion control. The negotiation protocol sets

up the channel protocol’s state, negotiating shared security keys and optional features. Finally, the

stream protocol builds on the channel and negotiation protocols to implement the reliable structured

stream abstraction SST presents to the application. This thesis focuses on the channel and stream

protocols, which are of primary importance for implementing the structured stream abstraction.

4.4.1 Packets, Channels, and Streams

Figure 4-2 illustrates three key communication abstractions that form the interfaces between SST’s

layers—packets, channels, and streams—and how instances of these communication abstractions

relate to each other over time.

At the lowest level, SST assumes that the underlying protocol (e.g., IP or UDP) provides only an

unreliable, connectionless, unicast packet delivery service, in which packets are independent of each

other and have ephemeral lifetimes. Each packet carries some number of bytes, up to the network

path’s current maximum transfer unit (MTU), which may change at any time. All communication

within a channel or stream ultimately reduces to a series of packets at this level.

107

On top of this connectionless service SST’s channel protocol builds a connection-oriented packet

delivery service. Semantically, the channel protocol’s most important functions are to associate each

transmitted packet with a particular connection instance or channel, and to assign monotonically

increasing packet sequence numbers to all packets transmitted within a particular channel. The

channel protocol also attaches acknowledgment information to packets to determine when pack-

ets have arrived successfully, and uses this acknowledgment information internally to implement

congestion control at channel granularity. Finally, the channel protocol protects each packet with

a message authenticator and an optional encryption wrapper to provide end-to-end security for all

packets transmitted over the channel.

The stream protocol builds on this intermediate channel abstraction to provide TCP-like reli-

able byte streams to the application. The stream protocol handles segmentation and reassembly,

retransmission of lost segments, receiver-directed flow control, and substream creation and man-

agement. At any point in time, the stream protocol normally multiplexes all streams between the

same pair of hosts onto a single channel. All streams multiplexed onto one channel therefore share

that underlying channel’s packet sequence number space, and the channel’s congestion control, ac-

knowledgment, and security state. Each stream has its own byte sequence number space, however,

which the stream protocol uses to preserve the order of data segments within a stream in much the

same way that TCP does.

The stream protocol leverages the channel protocol’s association of packets with channel in-

stances, and the channel protocol’s monotonic packet sequence numbers, to manage per-stream state

efficiently. The channel protocol’s services in particular enable the stream protocol to avoid TCP’s

3-way handshake on stream startup, and TCP’s TIME-WAIT state after close, enabling lightweight

stream creation and shutdown. The fact that a channel’s sequence number space does not wrap

facilitates efficient stream creation and termination, but this property also implies that the stream

protocol must migrate long-lived streams from one channel to another to give streams unlimited

lifetimes as in TCP.

Figure 4-3 shows the layout of a typical SST packet, not including any lower-layer headers

for the underlying packet delivery service. SST can be layered directly atop most any best-effort

packet delivery service, such as directly atop IP, atop UDP for compatibility with NATs and firewalls

on today’s Internet, or atop UIA’s overlay routing layer (see Chapter 3). The channel header is

always eight bytes in the current version of SST, and includes fields for channel identification, packet

sequencing, and acknowledgment. The stream header is typically four or eight bytes depending on

packet type, and contains fields for stream identification, receive window control, and sequencing

bytes within a stream. Following the application payload, the channel protocol’s trailing message

authenticator is typically four bytes for lightweight TCP-grade security, and 12 or more bytes for

cryptographic security.

The next section details SST’s channel protocol, and Section 4.4.3 describes the stream protocol.

Finally, Section 4.4.4 briefly outlines the negotiation protocol.

108

Figure 4-3: SST packet layout

4.4.2 Channel Protocol

The channel protocol’s purpose is to provide transport services that are independent of how the ap-

plication “frames” its communication into protocol data units [51], or streams in SST. The commu-

nication state required to provide these services is thus shareable across many application streams.

The channel protocol’s services consist of associating transmitted packets with connection state in-

stances or channels, assigning monotonic sequence numbers to packets within a channel, providing

integrity and optional privacy protection for each packet, acknowledging packets and passing this

acknowledgment information to upper layers, and providing congestion control.

SST borrows its connection state, sequencing, and packet security model from IPsec [132] in-

stead of TCP. SST channels are inspired by IPsec security associations, and SST packet sequence

numbers work like those IPsec uses for replay protection in the AH and ESP [131]. While IPsec

“hides” its sequencing semantics from upper layers in the interest of operating invisibly to existing

transports, one of SST’s design insights is that this sequencing model provides a useful building

block for new, richer transport services.

The following sections detail the channel protocol’s identification, sequencing, security, ac-

knowledgment, and congestion control services. While one packet submitted to the channel pro-

tocol currently translates to one packet in the underlying protocol (e.g., IP or UDP), the channel

protocol could be extended to provide services such as chunk bundling [232] or quality-of-service

enhancement [238].

Channel Identification

SST’s negotiation protocol sets up a channel’s initial state when an application first connects to a

target host: each run of the negotiation protocol yields a new channel. As part of channel negotia-

tion, each host assigns a channel ID for each direction of flow. Each transmitted packet includes the

receiver’s channel ID, enabling the receiver to find the associated channel instance state; channel

IDs thus play the role of IPsec’s security parameters index (SPI). A channel’s ID may be reassigned

immediately once the channel’s lifetime ends: the packet authenticator described below rejects old

109

or replayed packets from prior channel instances. As SST’s channel protocol is designed for use by

the stream protocol, which needs at most a few active channels at once, the channel ID field may be

relatively small (currently 8 bits). Channel zero is reserved for the negotiation protocol.

Packet Sequencing and Replay Protection

TCP uses its byte sequence numbers for three different purposes: to distinguish and order data

segments within a connection instance, to distinguish segments belonging to entirely different con-

nection instances [239,246], and to protect against packet forgery [26]. SST uses its packet sequence

numbers for only the first purpose, leaving the other two functions to an explicit packet authenticator

keyed with a secret unique to the channel instance, as described below.

Each channel has a 64-bit packet sequence number space for each direction of flow, from which

the channel protocol assigns sequence numbers consecutively to each packet transmitted. As in

IPsec or DCCP [136], every packet sent gets a new sequence number, including acknowledgments

and retransmissions. The sequence number space does not wrap, so if a host sends 264 packets on

one channel, it negotiates and switches to a new channel with a fresh space. A channel’s lifetime

may also be limited in other ways, such as by key expiration or a change in a host’s IP address. If

a host foresees the imminent expiration of a channel, it can begin negotiating a new one while still

using the old one for a seamless handover.

Like IPsec’s 64-bit sequence number extension [131], SST authenticates packets using full se-

quence numbers but transmits only the low bits explicitly in each packet. While the size of the

sequence number space limits a channel’s total lifetime, the size of the sequence number field in the

packet header limits the window of packets a host may transmit within one round-trip. SST’s current

24-bit sequence number field requires the sender to stay less than about 222 packets ahead of the

receiver to ensure that the receiver extrapolates sequence numbers correctly. To achieve maximum

performance on fast links with long delay, SST may need an optional header extension like DCCP’s

long header format [136], or a timestamp extension as in PAWS [122].

Also like IPsec, the channel protocol checks the sequence number of each received packet

against a bit mask of sequence numbers recently received, and discards without further process-

ing both duplicates and packets too old to be covered by the bit mask. The width of this bit mask

therefore limits how far out of order within a channel’s sequence space a packet may be delivered to

upper-layer protocols; we call this value the channel’s mis-ordering limit (MOL). While IPsec hides

its replay protection behavior from higher-level protocols, SST exposes this behavior, simplifying

the stream layer’s state management as described later in Section 4.4.3.

As one way to protect upper layers from out-of-order packets at critical synchronization points,

the sequencing layer can provide barriers analogous to the memory barriers used in weakly con-

sistent processor architectures [221]. When an upper layer requests a barrier, the sequencing layer

adjusts its replay protection state to reject any packet that subsequently arrives with a sequence

number lower than the highest it has seen so far. Barriers are easy for the sequencing layer to im-

plement, and they enable the stream layer to avoid TIME-WAIT state retention. Setting barriers

110

too frequently can reduce communication efficiency by limiting the channel layer’s ability to accept

packets received out of order, however, so this facility should be used sparingly by upper layers.

Authentication and Encryption

SST’s packet security follows the design of IPsec’s ESP [131], including its use of “Encrypt-then-

MAC” composition as per accepted practice [25]. The negotiation protocol determines on channel

setup the cryptographic algorithms and shared secrets used to protect the channel. A channel’s

keys and security parameters remain fixed throughout its lifetime: a host re-keys a connection by

negotiating a new channel and migrating existing application streams to the new channel. Since

SST uses a 64-bit packet sequence number at most once per channel, these sequence numbers can

feed counter-based encryption modes [69], which are easily parallelized and require no plaintext

expansion. SST’s packet security therefore need not add any per-packet overhead other than the

MAC.

If strong security is not needed, the application can disable encryption and request a lightweight

32-bit authenticator in place of a cryptographic MAC. The lightweight authenticator protects the

channel against stale or replayed packets sent in prior channel instances, and against attackers who

can inject forged packets but cannot monitor the communication stream, providing security compa-

rable to other unsecured Internet transports like TCP. SST computes this authenticator by calculating

an ordinary 32-bit checksum over the packet and a pseudo-header containing the full 64-bit sequence

number, then adding two values to the resulting checksum: first, the same 4-microsecond timer that

TCP uses to choose its initial sequence numbers [59, 246]; and second, a hash of the connection

identifiers and a random internal secret, as in Bellovin’s method of “keying” TCP ISNs [26]. SST’s

keyed checksum offers slightly better protection than TCP’s keyed sequence numbers, because an

SST attacker must blindly guess exactly the correct checksum key, not just any sequence number

within some validity window.

Acknowledgments and Congestion Control

The channel protocol attaches acknowledgment information to each transmitted packet, and uses

this information to implement congestion control. Each transmitted packet acknowledges a contigu-

ous range of received sequence numbers, indicated in the packet header’s Ack Sequence Number

(ASN) and Ack Count (AckCt) fields. A host sends an acknowledgment for every one or two upper-

level data segments received as in TCP [6], but sets the AckCt field as large as possible reflecting

the most recent contiguous run of packets received. Successive acknowledgments therefore usually

cover overlapping sequence number ranges, minimizing the effects of a lost acknowledgment. Fig-

ure 4-4 for example illustrates the behavior of a host that acknowledges every packet, upon receiving

sequence numbers 1 through 7 in order except for a lost packet with sequence number 4.

Sending an acknowledgment range in each packet gives SST the benefits of selective acknowl-

edgment without the overhead or complexity of variable-length SACK headers [154]. Because SST

assigns each packet a fresh sequence number, including retransmissions of previously-transmitted

111

Figure 4-4: Packet acknowledgment example

data, its acknowledgments provide more information than even TCP with D-SACK [79]: the sender

can tell exactly which copy of a retransmitted segment arrived and detect false retransmits before the

receiver has seen duplication. SST can thus implement improvements to TCP congestion control [6]

such as forward acknowledgment [155], reordering tolerance [32], and delay-sensitive schemes like

TFRC [107]. As SST implements congestion control at channel granularity, applications may use

many concurrent streams without behaving “antisocially” as with redundant TCP connections [78].

SST can negotiate at channel setup any protocol extensions necessary to implement congestion

control schemes requiring cooperation with the receiver.

4.4.3 Stream Protocol

The stream layer multiplexes streams onto channels by dividing application data into segments ac-

cording to the current maximum transfer unit (MTU) of the network path, and transmitting each

segment as a separate packet on the current channel. The receiving stream layer accepts these po-

tentially out-of-order segments and delivers them in order to the application. The sender uses the

channel layer’s packet-oriented acknowledgments to determine when a segment has been success-

fully received, so the stream layer requires no byte-oriented acknowledgments as in TCP.

SST’s stream layer can migrate an active stream from one channel to another transparently to

the application, giving streams potentially unlimited lifetimes independent of the limited lifetimes

of the underlying channels. The stream layer can attach a stream to a new channel before detaching

it from the old one, allowing the application to continue using the stream without interruption while

transparently migrating the stream to the new channel. SST does not treat channel failure due to

112

loss of connectivity as a “hard failure” like a TCP timeout. At the application’s option, SST can

retain stream state indefinitely until connectivity resumes and the negotiation protocol creates a new

channel. At this point SST migrates the application’s streams to the new channel and the application

resumes where it left off. Stream migration also supports end-to-end host mobility [222, 223]: if a

host’s IP address changes, SST channels bound to that address fail, but if either endpoint can find

the other’s new address (e.g., one host is non-mobile or has a dynamic DNS name), SST can create

a fresh channel between the new address pair and transparently migrate the application’s streams to

the new channel. Of course, if one endpoint host reboots, then its stream state is normally lost and

the application must create new streams.

Because the stream protocol relies on the channel protocol for loss detection and congestion

control, and these mechanisms operate within a particular channel or network path, the latency dif-

ferences and resulting packet reordering across multiple paths should not confuse these mechanisms

as they do for TCP.

Stream Identification and Attachment

When the stream layer creates a new stream on behalf of an application, it assigns the stream a

Unique Stream Identifier or USID. A stream’s USID is at least 128 bits, remains fixed through the

stream’s lifetime, and identifies the stream as it migrates from one channel to another. The stream

layer must then attach the stream to a particular channel before it can transmit application data. In

the process of attaching the stream to a channel, the stream layer assigns a shorter, temporary 16-bit

Local Stream Identifier (LSID) to identify the stream efficiently within the scope of that particular

channel. The stream layer uses this LSID in place of the stream’s full USID in data segments it

transmits on this channel. The stream keeps its USID but gets a new LSID each time SST attaches

it to a different channel. The application is not normally aware of either USIDs or LSIDs.

While each stream has only one USID, LSIDs are specific not only to a channel but to each

direction of flow within that channel. Each endpoint has its own LSID space for each channel, in

which it assigns LSIDs to streams independently of its peer. Each host tracks both its own and its

peer’s LSID space, using its own LSID space to identify the stream for a data segment it transmits

to its peer, and using its peer’s LSID space to identify the stream for a data segment it receives. For

bidirectional use, a stream must have two LSIDs, one assigned by each host for each direction of

flow. A stream may in fact have more than one LSID at once for each flow direction: two in each

direction, and all potentially on different channels, allowing seamless stream migration from one

channel to another.

Root and Top-Level Application Streams

When the stream protocol initiates negotiation of a new channel, it creates and implicitly attaches a

root stream to the channel. SST uses this root stream only for internal signaling: the application is

unaware of its existence. When an application opens a “top-level” application stream via connect,

SST first opens a channel to the desired host if none already exists, then creates a child of the

113

channel’s invisible root stream for the application’s use. SST can reuse the same channel and root

stream to create many top-level streams to the same target host, avoiding 3-way handshakes for

successive top-level streams in the same way that it does for substreams the application creates via

create_substream.

TCP uses its port numbers for two purposes: to distinguish among transport instances between

the same pair of hosts, and to name application rendezvous points via well-known port numbers.

SST splits these two functions, using LSIDs exclusively for stream multiplexing, and using explicit

service negotiation for rendezvous. When the stream layer creates a new top-level stream, before

handing this stream to the application, it first sends a message on the new stream to the responding

host’s stream layer, indicating the rendezvous point the initiating application wishes to connect to.

The responding stream layer intercepts this message and replies indicating whether an application

is listening at the given rendezvous point. On success, both stream layers then hand this top-level

stream to the respective applications. An SST rendezvous point is currently a pair of strings: a

service name (e.g., “www”) and a protocol name (e.g., “http”).

Creating Streams

To create a new child of a stream already attached to a channel, the stream layer sends an Init packet,

shown in Figure 4-5. The initiator specifies the LSID it assigned the new stream and the LSID of

the existing parent, both in the initiator’s LSID space. The packet may also carry application data

for the new stream, as described below.

Although Init packets carry no USIDs, the hosts must agree on a USID for the new stream so

they can attach the stream to other channels. Each host uses a convention for assigning LSIDs that

allows an Init packet’s receiver to extrapolate a USID from the new stream’s 16-bit LSID. Each

host assigns LSIDs in its LSID space for a channel using the low 16 bits of a 64-bit counter, and

its peer tracks this counter and extrapolates the full 64-bit value from a received LSID the same

way the channel layer extrapolates packet sequence numbers. The hosts use these 64-bit counters,

plus a pseudorandom nonce unique to the channel and flow direction, to agree on the new stream’s

USID implicitly. The initiator may skip counter values corresponding to LSIDs still in use by other

streams, provided it doesn’t get too far ahead of its peer and lose counter synchronization.

Upon receiving an Init packet with an unknown LSID, the responder records the new LSID,

then sends a Reply packet to assign its own “return-path” LSID to the new stream for data transfer

in the opposite direction. The Reply packet has the same format as an Init packet, except it contains

the initiator’s just-assigned LSID for the new stream in place of the parent stream’s LSID (see

Figure 4-5). The responder assigns LSIDs using its 64-bit counter as above to maintain counter

synchronization, but does not use the counter to derive a USID since each stream requires only one

USID.

114

Figure 4-5: Stream data transfer packets

Data Transfer and Acknowledgment

Both Init and Reply packets may contain application data and stream control flags. The initiator

uses Init packets to start sending data on the new stream immediately without waiting for the re-

ceiver’s acknowledgment, eliminating TCP’s 3-way handshake delay on new streams once a channel

has been opened to the desired host. The responder may similarly start sending response data im-

mediately via Reply packets. The Init and Reply packets contain a 16-bit Byte Sequence Number

(BSN) field indicating the data segment’s logical offset in the new stream, so a host can send up to

216−1+MTU bytes of data this way before it must start using using ordinary Data packets, which

it can do only after receiving an acknowledgment indicating that the peer is aware of the newly

assigned LSID.

Data packets have the same structure as Init and Reply packets, except that they have a 32-bit

BSN and no PSID or RSID (see Figure 4-5). The stream layer uses this BSN to reassemble data

segments in the correct order at the receiver, using wraparound arithmetic as in TCP, making the

longevity of a stream effectively unlimited.

A host buffers each data segment it sends until it receives an acknowledgment for that segment,

periodically retransmitting unacknowledged segments. Since the channel layer’s acknowledgments

refer to packet sequence numbers and not to byte sequence numbers, the sender records the packet

sequence numbers the channel protocol assigns each data segment during recent transmission at-

tempts, in order to lookup and free the segment when a corresponding acknowledgment arrives.

Since the channel layer’s packet sequence numbers are independent of the stream layer’s LSIDs, a

115

packet in one stream may effectively acknowledge segments in other streams. The stream layer uses

a separate Ack packet type to send acknowledgments that cannot be piggybacked onto data flowing

in the opposite direction.

Since the channel layer’s acknowledgments are definitive, the receiver must only acknowledge

a data segment once it has fully processed and locally buffered the segment. If the receiver cannot

process a segment due to a temporary resource shortage, it may drop the segment without acknowl-

edgment, but using flow control to avoid the need to drop segments is preferred since dropped

segments trigger the sender’s congestion control and affect the entire channel.

If a data segment already transmitted must be retransmitted with a smaller MTU, the sender

“re-fragments” the segment into smaller segments for retransmission, adjusting the BSN fields in

the new segments accordingly. A host may also repackage an Init or Reply packet’s data into an

ordinary Data packet for retransmission, if an acknowledgment for some other Init or Reply packet

arrives in the meantime.

Init, Reply, and Data packets contain several flags indicating special stream events. The Push

(P) and Close (C) flags work like TCP’s PSH and FIN flags, whereas the Mark (M) flag is new:

• Push (P) indicates that the stream’s data up through this segment should be pushed to the

receiving application without waiting for more segments to arrive, exactly as in TCP.

• Mark (M) indicates the end of a message or record, directing the stream layer to deliver

the segment as soon as possible, and never to combine it with subsequent data segments

for delivery to the application, even if subsequent data is already available due to out-of-

order delivery for example. The stream layer indicates this record boundary to the receiving

application, so that the application does not have to embed its own markers in the stream.

• Close (C) indicates the last segment in the stream in one direction. After sending its final

Close segment, the sender may continue receiving data as in TCP; the stream terminates after

each participant closes its end or one issues a Reset. Section 4.4.3 below describes how SST

garbage collects stream state after close.

Datagram Delivery

When the application submits a datagram to be sent as an “ephemeral substream” with best-effort

semantics as described in Section 4.2.4, the stream layer checks that the datagram is small enough

to ensure a reasonable chance of successful delivery, and if so transmits it using a sequence of

Datagram packets shown in Figure 4-5. The first packet in the sequence has the First (F) flag set, the

last packet has the Last (L) flag set, and the packets have consecutive sequence numbers, allowing

the receiver to determine when a received datagram is complete. Each packet’s LSID refers to the

parent stream; the sender never assigns an LSID or maintains any state for the ephemeral child

substream.

If the sending stream layer judges the ephemeral substream to be too large for delivery as a

datagram, it sends the substream instead in standard reliable fashion using Init and Data packets,

116

retransmitting individual segments as necessary, and closes the substream when finished. The re-

ceiving application obtains no indication of the actual delivery method by which the ephemeral

substream arrived.

Flow Control

While congestion control operates at channel granularity, SST provides flow control for each stream

individually, allowing the receiving application to accept data at different rates on each stream.

Every packet the stream layer sends contains a receive window update, indicated in the header’s 5-

bit Window field. This field uses an exponential encoding: a value n indicates a window of at least

2n− 1 bytes. When the window is large, the sender does not need to know its size precisely since it

will take a while to fill anyway, but the receiver’s updates become more precise as its buffers fill and

the window shrinks. To avoid a variant of silly window syndrome [53], the sender never fragments

data segments just to make a partial segment fit into the receive window: instead it waits until the

window can accommodate a full-size segment, or a short segment containing a Push marker.

TCP uses its cumulative acknowledgment position as a “base” from which to calculate the win-

dow horizon, but SST has no cumulative acknowledgments from which to calculate such a horizon.

SST’s window credit instead represents the total number of unacknowledged bytes the sender may

have in flight. The receiver deducts from its advertised window the size of each segment it receives

and acknowledges, and cancels this deduction once it delivers the segment to the application. The

sender similarly deducts each segment it sends from its window credit and cancels this deduction

when the segment is acknowledged, even if the segment was received and acknowledged out of

order. The sender tracks the packet sequence numbers of window updates and always uses only the

most recently-sent update.

For flow control, SST treats an Init packet’s data as belonging to the parent stream—the stream

specified in the packet’s PSID field—although the data is semantically part of the new child stream.

In effect, when a host sends data on a new stream without waiting for an initial window size from

the responder, the sender “borrows” from the parent’s receive window to send this initial data. This

borrowing maintains proper flow control and avoids receive buffer overrun while allowing stream

creation with no round-trip delay.

Detaching and Migrating Streams

The stream layer sends an Attach packet, shown in Figure 4-6, to attach an existing stream to a new

channel. The Attach packet contains the LSID assigned by the sender and the permanent USID of

the stream to be attached. The sender can attach a stream to a limited number of channels at once

(currently two), and indicates via an attachment slot number which of these potential attachments it

is using. The receiver looks up the stream by the specified USID, associates the specified attachment

slot in that stream with the specified LSID in the channel on which the Attach packet arrived, and

acknowledges the packet via the channel layer.

117

Figure 4-6: Stream control packets

A host may detach a stream from a channel, freeing the stream’s LSID in that channel for

use by other streams, by sending a Detach packet (Figure 4-6). By detaching idle streams the

application has not used for some time and treating its LSID space as a cache, SST can manage an

arbitrary number of streams. Host API issues may impose limits on the number of open streams,

such as Unix’s file descriptor limit—but in the current user space SST prototype, which does not

use file descriptors for streams, the number of open streams is limited only by available memory.

Section 4.4.3 later describes how SST avoids confusing packets referring to different uses of the

same LSID.

Forceful Reset

As in TCP, either host may unilaterally terminate an SST stream in both directions and discard any

buffered data. A host resets a stream by sending a Reset packet (Figure 4-6) containing an LSID in

either the sender’s or receiver’s LSID space, and an O (Orientation) flag indicating in which space

the LSID is to be interpreted. When a host uses a Reset packet to terminate a stream it believes to

be active, it uses its own LSID referring to the stream, and resends the Reset packet as necessary

until it obtains an acknowledgment.

A host also sends a Reset in response to a packet it receives referring to an unknown LSID or

USID. This situation may occur if the host has closed and garbage collected its state for a stream

but one of its acknowledgments to its peer’s data segments is lost in transit, causing its peer to

retransmit those segments. The stateless Reset response indicates to the peer that it can garbage

collect its stream state as well. Stateless Reset responses always refer to the peer’s LSID space,

since by definition the host itself does not have an LSID assigned to the unknown stream.

Garbage Collecting and Reusing LSIDs

An SST application that uses one stream per transaction may create and destroy streams rapidly: in

the worst case, a host can create a stream, assign it an LSID, transmit up to an MTU of data, and

close its end of the stream, all with one Init packet. The responder may similarly acknowledge the

Init packet, send up to one MTU of response data, and close the stream, with one Reply packet. SST

118

may therefore reuse 16-bit LSIDs for many successive streams within a channel’s lifetime, leading to

the risk of confusing packets referring to different uses of the same LSID. This is the same problem

that at a lower level motivates TCP’s ISN selection [239, 246] and the channel protocol’s keyed

authenticators (Section 4.4.2). SST’s stream protocol, however, benefits from the channel protocol’s

monotonic packet sequence numbering and its mis-ordering limit described in Section 4.4.2.

To avoid confusing old and new uses of an LSID, after detaching an LSID the stream layer

imposes a “quiet period” before creating or attaching another stream with the same LSID. This

quiet period corresponds to TCP’s TIME-WAIT, but SST counts the duration of this quiet period

in packet sequence numbers instead of wall-clock time, relying on the channel layer’s mis-ordering

limit (MOL). With a 32 packet MOL, for example, after detachment a host waits for both its and

its peer’s sequence numbers to advance 32 packets beyond a point when both hosts know about the

detachment. The channel’s replay logic drops packets that arrive so late that they might confuse

new stream attachments using this LSID. Because the MOL is a (typically small) constant, and one

packet can attach and/or detach only one stream, the number of LSIDs that may be stuck in this

quiet period is similarly small, regardless of packet rate. The mis-ordering limit thus avoids the

need for time-bounded TIME-WAITs and eliminate the risk of state overload under heavy use [75].

The channel protocol’s barrier mechanism, described earlier in Section 4.4.2, provides an al-

ternative method of handling LSID reuse that can eliminate the “quiet period” completely. If the

stream layer on a host sets a barrier once it has closed a stream or detached its LSID and received

acknowledgment of that close or detach from the other host, the channel layer guarantees to the

stream layer that no old packets sent before this point that might refer to the obsolete LSID will

subsequently be delivered, even if they arrive out of order. Thus, setting an explicit barrier has the

effect of temporarily setting the MOL to zero and allowing it to “grow” gradually back to its normal

value as further (in-order) packets arrive. While barriers enable stream state to be garbage collected

even more quickly than with a quiet time defined by the MOL, they have the potential disadvan-

tage of unnecessarily preventing the delivery of other packets that might happen to arrive out of

order, including packets associated with completely unrelated streams. For this reason, imposing a

MOL-based quiet period should probably be considered the preferred approach.

4.4.4 The Negotiation Protocol

The negotiation protocol is responsible for setting up new channels with either weak or strong

security. Negotiation with weak security sets up the unpredictable checksum key described in Sec-

tion 4.4.2. The initiator may piggyback application data onto the first negotiation protocol packet,

allowing channel setup with no effective round-trip overhead, but the responder may ignore this

initial data and return a cookie challenge if it is loaded or under DoS attack.

The strong security mode uses Just Fast Keying [4] to establish shared cryptographic secrets

and verify host identities using a simple, fixed four-message (two round-trip) exchange. The last

two messages may carry piggybacked application data, for an effective minimum channel setup

overhead of one round trip, identical to TCP’s.

119

SST is designed to work with UIA ad hoc naming [84] and UIP routing [80] to support seam-

less communication among both fixed and mobile personal devices. UIA, UIP, and SST use cryp-

tographic host identifiers analogous to those of HIP [163] to identify endpoints securely, so when

a host’s IP address changes, SST merely reruns the negotiation protocol to establish a channel be-

tween the new addresses, and migrates existing streams to the new channel.

120

Chapter 5

NAT Traversal

One of the primary goals of UIA is to support convenient peer-to-peer communication among per-

sonal mobile devices. Unfortunately, now-ubiquitous middleboxes on the Internet such as firewalls

and Network Address Translators (NAT) [70, 250] cause well-known difficulties for peer-to-peer

(P2P) communication, since the peers involved may not have a publicly reachable or even globally

unique IP address [112, 226, 228]. While the UIA routing layer’s ability to forward traffic through

publicly reachable intermediate nodes provides a general-purpose method of traversing middle-

boxes, this explicit forwarding can increase end-to-end latency and unnecessarily burden these in-

termediate nodes. In some cases indirect overlay forwarding paths may be “optimized” into direct

IP-level paths between peers located behind middleboxes, via NAT traversal techniques.

Several NAT traversal techniques are known, but their documentation is slim, and data about

their robustness or relative merits is slimmer. This chapter presents the first thorough development

and analysis of a simple but robust and practical NAT traversal technique, known as hole punching.

While Dan Kegel publicly documented the basics of UDP hole punching in 1999 [129], the present

work examines previously unaddressed scenarios such as the increasingly common situation of

hosts behind multiple levels of NAT: e.g., behind both a home NAT router and a large ISP-deployed

NAT. We also explore a clean, symmetric approach to TCP hole punching, which works over a

substantial percentage of deployed NATs without relying on delicate, timing-sensitive techniques

such as NAT port number prediction or address spoofing, as other NAT traversal proposals for TCP

do [30, 72, 100]. To evaluate the effectiveness of the proposed hole punching techniques, Chapter 7

will later present the first published empirical study on the compatibility of a wide variety of NATs

deployed “in the wild” with TCP and UDP hole punching techniques.

Section 5.1 first introduces NAT traversal background, terminology, and basic concepts, and

Section 5.2 summarizes hole punching techniques for UDP, which are already moderately well-

understood. Section 5.3 then explores how hole punching can be reliably used to set up peer-to-

peer TCP streams as well. Finally, Section 5.4 summarizes middlebox properties these techniques

depend on. Later in Chapter 7 we will evaluate the reliability of this technique on a wide variety

of deployed NATs, finding that about 82% of the NATs tested support hole punching for UDP, and

about 64% support hole punching for TCP streams. As NAT vendors become increasingly conscious

121

Figure 5-1: Public and private IP address domains

of the needs of important P2P applications such as Voice over IP and online gaming protocols,

support for hole punching is likely to increase in the future, making this optimization ever more

important for UIA and other networking architectures supporting peer-to-peer communication.

5.1 Background and NAT Traversal Concepts

The combined pressures of tremendous growth and massive security challenges have forced the

Internet to evolve in ways that make life difficult for many applications. The Internet’s original

uniform address architecture, in which every node has a globally unique IP address and can com-

municate directly with every other node, has been replaced with a new de facto Internet address

architecture, consisting of a global address realm and many private address realms interconnected

by Network Address Translators (NAT). In this new address architecture, illustrated in Figure 5-1,

only nodes in the “main,” global address realm can be easily contacted from anywhere in the net-

work, because only they have unique, globally routable IP addresses. Nodes on private networks

can connect to other nodes on the same private network, and they can usually open TCP or UDP

122

connections to “well-known” nodes in the global address realm. NATs on the path allocate tem-

porary public endpoints for outgoing connections, and translate the addresses and port numbers in

packets comprising those sessions, while generally blocking all incoming traffic unless otherwise

specifically configured.

The Internet’s new de facto address architecture is suitable for client/server communication in

the typical case when the client is on a private network and the server is in the global address realm.

The architecture makes it difficult for two nodes on different private networks to contact each other

directly, however, which is often important to the “peer-to-peer” communication protocols used

in applications such as teleconferencing, online gaming, and sharing information among personal

devices as UIA is intended to support. We clearly need a way to make such protocols function

smoothly in the presence of NAT.

One of the most effective methods of establishing peer-to-peer communication between hosts

on different private networks is known as “hole punching.” This technique is already widely used in

UDP-based applications, but essentially the same technique also works for TCP. Contrary to what its

name may suggest, hole punching does not compromise the security of a private network. Instead,

hole punching enables applications to function within the the default security policy of most NATs,

effectively signaling to NATs on the path that peer-to-peer communication sessions are “solicited”

and thus should be accepted. This chapter documents hole punching for both UDP and TCP, and

details the crucial aspects of both application and NAT behavior that make hole punching work.

Unfortunately, no traversal technique works with all existing NATs, because NAT behavior is

not standardized. Chapter 7 presents some experimental results evaluating hole punching support

in current NATs. This data is derived from results submitted by users throughout the Internet by

running “NAT Check,” a tool specially designed for this experiment, over a wide variety of NATs

by different vendors. While the data points were gathered from a “self-selecting” user community

and may not be representative of the true distribution of NAT implementations deployed on the

Internet, the results are nevertheless generally encouraging.

While evaluating basic hole punching, we also point out variations that can make hole punching

work on a wider variety of existing NATs at the cost of greater complexity. Our primary focus,

however, is on developing the simplest hole punching technique that works cleanly and robustly in

the presence of “well-behaved” NATs in any reasonable network topology. We deliberately avoid

excessively clever tricks that may increase compatibility with some existing “broken” NATs in the

short term, but which only work some of the time and may cause additional unpredictability and

network brittleness in the long term.

Although the larger address space of IPv6 [62] may eventually reduce the need for NAT, in the

short term IPv6 is increasing the demand for NAT, because NAT itself provides the easiest way

to achieve interoperability between IPv4 and IPv6 address domains [249]. Further, the anonymity

and inaccessibility of hosts on private networks has widely perceived security and privacy benefits.

Firewalls are unlikely to go away even when there are enough IP addresses: IPv6 firewalls will still

123

commonly block unsolicited incoming traffic by default, making hole punching useful even to IPv6

applications.

5.1.1 Terminology

We adopt the NAT terminology and taxonomy defined in RFC 2663 [228], as well as additional

terms defined more recently in RFC 3489 [207] and RFC 4787 [16]. Readers are directed to the

above RFCs for detailed information about terminology, but the most basic terms and concepts are

summarized below.

• Session: Of particular importance is the notion of session. A session endpoint for TCP

or UDP is an (IP address, port number) pair, and a particular session is uniquely identified

by its two session endpoints. From the perspective of one of the hosts involved, a session is

effectively identified by the 4-tuple (local IP, local port, remote IP, remote port). The direction

of a session is normally the flow direction of the packet that initiates the session: the initial

SYN packet for TCP, or the first user datagram for UDP.

• Traditional NAT: Of the various flavors of NAT [228], the most common type is traditional

or outbound NAT [226], which provides an asymmetric bridge between a private network

and a public network. Outbound NAT by default allows only outbound sessions to traverse

the NAT: incoming packets are dropped unless the NAT identifies them as being part of an

existing session initiated from within the private network. Outbound NAT conflicts with

peer-to-peer protocols because when both peers desiring to communicate are “behind” (on

the private network side of) two different NATs, whichever peer tries to initiate a session, the

other peer’s NAT rejects it. NAT traversal entails making P2P sessions look like “outbound”

sessions to both NATs.

• Basic NAT versus NAPT: Outbound NAT has two sub-varieties: Basic NAT, which only

translates IP addresses, and Network Address/Port Translation (NAPT), which translates en-

tire session endpoints. NAPT, the more general variety, has also become the most common

because it enables many hosts on a private network to share the use of a single public IP

address. Throughout this chapter we assume NAPT, though the principles and techniques we

discuss apply equally well (if sometimes trivially) to Basic NAT.

• Loopback/Hairpin Translation: When a host in the private domain of a NAT device at-

tempts to connect with another host behind the same NAT device using the public address of

the host, the NAT device performs the equivalent of a “Twice-NAT” translation on the packet

as follows. The originating host’s private endpoint is translated into its assigned public end-

point, and the target host’s public endpoint is translated into its private endpoint, before the

packet is forwarded to the target host. We refer to the above translation performed by a NAT

device as loopback translation; it may also be referred to as hairpin translation.

124

Figure 5-2: NAT Traversal by Relaying

5.1.2 Relaying

The most reliable but least efficient method of P2P communication across NAT is simply to make

the communication look to the network like standard client/server communication, through relaying.

Suppose two client hosts A and B have each initiated TCP or UDP connections to a well-known

server S, at S’s global IP address 18.181.0.31 and port number 1234. As shown in Figure 5-2,

the clients reside on separate private networks, and their respective NATs prevent either client from

directly initiating a connection to the other. Instead of attempting a direct connection, the two clients

simply use the server S to relay messages between them. For example, to send a message to client

B, client A sends the message to server S along its already-established client/server connection,

and server S forwards the message on to client B using its existing client/server connection with B.

Relaying always works as long as both clients can connect to the server. Its disadvantages

are that it consumes the server’s processing power and network bandwidth for every data packet

forwarded this way, and communication latency between the peering clients is likely increased

even if the server is well-connected. Nevertheless, since there is no more efficient technique that

works reliably on all existing NATs, relaying is a useful fall-back strategy if maximum robustness is

desired. The TURN protocol [208] defines a method of implementing relaying in a relatively secure

fashion.

UIA’s overlay routing layer effectively provides a generalized relaying service, which can cre-

ate indirect paths between UIA nodes even when such a path must traverse several intermediate

125

Figure 5-3: NAT Traversal by Connection Reversal

nodes or must be relayed for purposes other than NAT traversal (e.g., to cross between different

network technologies, such as IP and Bluetooth). In the UIA worldview, the NAT traversal solu-

tions developed in the following sections represents optimizations that permit the dynamic creation

of “shortcuts” that bypass these intermediate relay hops at the IP level, once the P2P connection is

established with the help of the intermediary. Since UIA treats NAT traversal only as an optimiza-

tion, it is acceptable that NAT traversal does not work on 100% of existing NATs, as we will see in

Chapter 7: when hole punching does not work, UIA can always fall back on less efficient, explicit

relaying.

5.1.3 Connection Reversal

Some P2P applications use a straightforward but limited technique, known as connection reversal,

to enable communication when both hosts have connections to a well-known rendezvous server

S and only one of the peers is behind a NAT, as shown in Figure 5-3. If A wants to initiate a

connection to B, then a direct connection attempt works automatically, because B is not behind

a NAT and A’s NAT interprets the connection as an outgoing session. If B wants to initiate a

connection to A, however, any direct connection attempt to A is blocked by A’s NAT. B can instead

relay a connection request to A through a well-known server S, asking A to attempt a “reverse”

connection back to B. Despite the obvious limitations of this technique, the central idea of using a

126

well-known rendezvous server as an intermediary to help set up direct peer-to-peer connections is

fundamental to the more general hole punching techniques described next.

5.2 UDP Hole Punching

UDP hole punching enables two clients to set up a direct peer-to-peer UDP session with the help of

a well-known rendezvous server, even if the clients are both behind NATs. This technique was men-

tioned in section 5.1 of RFC 3027 [112], documented more thoroughly elsewhere on the Web [129],

and used in recent experimental Internet protocols [116, 205]. Various proprietary protocols, such

as those for on-line gaming, also use UDP hole punching.

5.2.1 The Rendezvous Server

Hole punching assumes that the two clients, A and B, already have active UDP sessions with a

rendezvous server S. When a client registers with S, the server records two endpoints for that

client: the (IP address, UDP port) pair that the client believes itself to be using to talk with S, and

the (IP address, UDP port) pair that the server observes the client to be using to talk with it. We

refer to the first pair as the client’s private endpoint and the second as the client’s public endpoint.

The server might obtain the client’s private endpoint from the client itself in a field in the body of

the client’s registration message, and obtain the client’s public endpoint from the source IP address

and source UDP port fields in the IP and UDP headers of that registration message. If the client is

not behind a NAT, then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the body of UDP datagrams for 4-byte fields

that look like IP addresses, and translate them as they would the IP address fields in the IP header.

To be robust against such behavior, applications may wish to obfuscate IP addresses in message

bodies slightly, for example by transmitting the one’s complement of the IP address instead of the

IP address itself. Of course, if the application is encrypting its messages, then this behavior is not

likely to be a problem.

5.2.2 Establishing Peer-to-Peer Sessions

Suppose client A wants to establish a UDP session directly with client B. Hole punching proceeds

as follows:

1. A initially does not know how to reach B, so A asks S for help establishing a UDP session

with B.

2. S replies to A with a message containing B’s public and private endpoints. At the same time,

S uses its UDP session with B to send B a connection request message containing A’s public

and private endpoints. Once these messages are received, A and B know each other’s public

and private endpoints.

127

Figure 5-4: UDP hole punching, peers behind a common NAT

3. When A receives B’s public and private endpoints from S, A starts sending UDP packets

to both of these endpoints, and subsequently “locks in” whichever endpoint first elicits a

valid response from B. Similarly, when B receives A’s public and private endpoints in the

forwarded connection request, B starts sending UDP packets to A at each of A’s known

endpoints, locking in the first endpoint that works. The order and timing of these messages

are not critical as long as they are asynchronous.

We now consider how UDP hole punching handles each of three specific network scenarios. In

the first situation, representing the “easy” case, the two clients actually reside behind the same NAT,

on one private network. In the second, most common case, the clients reside behind different NATs.

In the third scenario, the clients each reside behind two levels of NAT: a common “first-level” NAT

deployed by an ISP for example, and distinct “second-level” NATs such as consumer NAT routers

for home networks.

It is in general difficult or impossible for the application itself to determine the exact physical

layout of the network, and thus which of these scenarios (or the many other possible ones) actu-

ally applies at a given time. Protocols such as STUN [207] can provide some information about

the NATs present on a communication path, but this information may not always be complete or

reliable, especially when multiple levels of NAT are involved. Nevertheless, hole punching works

automatically in all of these scenarios without the application having to know the specific network

organization, as long as the NATs involved behave in a reasonable fashion. (“Reasonable” behavior

for NATs will be described later in Section 5.4.)

5.2.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients (probably unknowingly) happen to reside

behind the same NAT, and are therefore located in the same private IP address realm, as shown in

Figure 5-4. Client A has established a UDP session with server S, to which the common NAT has

128

Figure 5-5: UDP hole punching, peers behind different NATs

assigned its own public port number 62000. Client B has similarly established a session with S, to

which the NAT has assigned public port number 62005.

Suppose that client A uses the hole punching technique outlined above to establish a UDP

session with B, using server S as an introducer. Client A sends S a message requesting a connection

to B. S responds to A with B’s public and private endpoints, and also forwards A’s public and

private endpoints to B. Both clients then attempt to send UDP datagrams to each other directly at

each of these endpoints. The messages directed to the public endpoints may or may not reach their

destination, depending on whether or not the NAT supports hairpin translation as described below in

Section 5.2.5. The messages directed at the private endpoints do reach their destinations, however,

and since this direct route through the private network is likely to be faster than an indirect route

through the NAT anyway, the clients are most likely to select the private endpoints for subsequent

regular communication.

By assuming that NATs support hairpin translation, the application might dispense with the

complexity of trying private as well as public endpoints, at the cost of making local communication

behind a common NAT unnecessarily pass through the NAT. As our results in Section 7.6 show,

however, hairpin translation is still much less common among existing NATs than are other “P2P-

friendly” NAT behaviors. For now, therefore, applications may benefit substantially by using both

public and private endpoints.

5.2.4 Peers behind different NATs

Suppose clients A and B have private IP addresses behind different NATs, as shown in Figure 5-5.

A and B have each initiated UDP communication sessions from their local port 4321 to port 1234

on server S. In handling these outbound sessions, NAT A has assigned port 62000 at its own public

IP address, 155.99.25.11, for the use of A’s session with S, and NAT B has assigned port 31000 at

its IP address, 138.76.29.7, to B’s session with S.

129

In A’s registration message to S, A reports its private endpoint to S as 10.0.0.1:4321, where

10.0.0.1 is A’s IP address on its own private network. S records A’s reported private endpoint, along

with A’s public endpoint as observed by S itself. A’s public endpoint in this case is 155.99.25.11:

62000, the temporary endpoint assigned to the session by the NAT. Similarly, when client B regis-

ters, S records B’s private endpoint as 10.1.1.3:4321 and B’s public endpoint as 138.76.29.7:31000.

Now client A follows the hole punching procedure described above to establish a UDP commu-

nication session directly with B. First, A sends a request message to S asking for help connecting

with B. In response, S sends B’s public and private endpoints to A, and sends A’s public and

private endpoints to B. A and B each start trying to send UDP datagrams directly to each of these

endpoints.

Since A and B are on different private networks and their respective private IP addresses are not

globally routable, the messages sent to these endpoints will reach either the wrong host or no host at

all. Because many NATs also act as DHCP servers, handing out IP addresses in a fairly deterministic

way from a private address pool usually determined by the NAT vendor by default, it is quite likely

in practice that A’s messages directed at B’s private endpoint will reach some (incorrect) host on

A’s private network that happens to have the same private IP address as B does. Applications

must therefore authenticate all messages in some way to filter out such stray traffic robustly. The

messages might include application-specific names or cryptographic tokens, for example, or at least

a random nonce pre-arranged through S.

Now consider A’s first message sent to B’s public endpoint, as shown in Figure 5-5. As this

outbound message passes through A’s NAT, this NAT notices that this is the first UDP packet in

a new outgoing session. The new session’s source endpoint (10.0.0.1:4321) is the same as that

of the existing session between A and S, but its destination endpoint is different. If NAT A is

well-behaved, it preserves the identity of A’s private endpoint, consistently translating all out-

bound sessions from private source endpoint 10.0.0.1:4321 to the corresponding public source

endpoint 155.99.25.11:62000. A’s first outgoing message to B’s public endpoint thus, in effect,

“punches a hole” in A’s NAT for a new UDP session identified by the endpoints (10.0.0.1:4321,

138.76.29.7:31000) on A’s private network, and by the endpoints (155.99.25.11:62000, 138.76.29.7:

31000) on the main Internet.

If A’s message to B’s public endpoint reaches B’s NAT before B’s first message to A has

crossed B’s own NAT, then B’s NAT may interpret A’s inbound message as unsolicited incoming

traffic and drop it. B’s first message to A’s public address, however, similarly opens a hole in B’s

NAT, for a new UDP session identified by the endpoints (10.1.1.3:4321, 155.99.25.11:62000) on

B’s private network, and by the endpoints (138.76.29.7:31000, 155.99.25.11:62000) on the Internet.

Once the first messages from A and B have crossed their respective NATs, holes are open in each

direction and UDP communication can proceed normally. Once the clients have verified that the

public endpoints work, they can stop sending messages to the alternative private endpoints.

130

Figure 5-6: UDP hole punching, peers behind multiple levels of NAT

5.2.5 Peers Behind Multiple Levels of NAT

In some topologies involving multiple NAT devices, two clients cannot establish an “optimal” P2P

route between them without specific knowledge of the topology. Consider a final scenario, depicted

in Figure 5-6. Suppose NAT C is a large industrial NAT deployed by an internet service provider

(ISP) to multiplex many customers onto a few public IP addresses, and NATs A and B are small

consumer NAT routers deployed independently by two of the ISP’s customers to multiplex their

private home networks onto their respective ISP-provided IP addresses. Only server S and NAT

C have globally routable IP addresses; the “public” IP addresses used by NAT A and NAT B are

actually private to the ISP’s address realm, while client A’s and B’s addresses in turn are private

to the addressing realms of NAT A and NAT B, respectively. Each client initiates an outgoing

connection to server S as before, causing NATs A and B each to create a single public/private

translation, and causing NAT C to establish a public/private translation for each session.

Now suppose A and B attempt to establish a direct peer-to-peer UDP connection via hole punch-

ing. The optimal routing strategy would be for client A to send messages to client B’s “semi-public”

endpoint at NAT B, 10.0.1.2:55000 in the ISP’s addressing realm, and for client B to send messages

to A’s “semi-public” endpoint at NAT B, namely 10.0.1.1:45000. Unfortunately, A and B have no

way to learn these addresses, because server S only sees the truly global public endpoints of the

clients, 155.99.25.11:62000 and 155.99.25.11:62005 respectively. Even if A and B had some way

to learn these addresses, there is still no guarantee that they would be usable, because the address

assignments in the ISP’s private address realm might conflict with unrelated address assignments in

the clients’ private realms. (NAT A’s IP address in NAT C’s realm might just as easily have been

10.1.1.3, for example, the same as client B’s private address in NAT B’s realm.)

131

The clients therefore have no choice but to use their global public addresses as seen by S for

their P2P communication, and rely on NAT C providing hairpin or loopback translation. When

A sends a UDP datagram to B’s global endpoint, 155.99.25.11:62005, NAT A first translates the

datagram’s source endpoint from 10.0.0.1:4321 to 10.0.1.1:45000. The datagram now reaches NAT

C , which recognizes that the datagram’s destination address is one of NAT C’s own translated public

endpoints. If NAT C is well-behaved, it then translates both the source and destination addresses in

the datagram and “loops” the datagram back onto the private network, now with a source endpoint

of 155.99.25.11:62000 and a destination endpoint of 10.0.1.2:55000. NAT B finally translates the

datagram’s destination address as the datagram enters B’s private network, and the datagram reaches

B. The path back to A works similarly. Many NATs do not yet support hairpin translation, but it is

becoming more common as NAT vendors become aware of this issue.

5.2.6 UDP Idle Timeouts

Since the UDP transport protocol provides NATs with no reliable, application-independent way to

determine the lifetime of a session crossing the NAT, most NATs simply associate an idle timer with

UDP translations, closing the hole if no traffic has used it for some time period. There is unfortu-

nately no standard value for this timer: some NATs have timeouts as short as 20 seconds. If the

application needs to keep an idle UDP session active after establishing the session via hole punch-

ing, the application must send periodic keep-alive packets to ensure that the relevant translation state

in the NATs does not disappear.

Unfortunately, many NATs associate UDP idle timers with individual UDP sessions defined by a

particular pair of endpoints, so sending keep-alives on one session will not keep other sessions active

even if all the sessions originate from the same private endpoint. Instead of sending keep-alives on

many different P2P sessions, applications can avoid excessive keep-alive traffic by detecting when

a UDP session no longer works, and re-running the original hole punching procedure again “on

demand.”

5.3 TCP Hole Punching

Establishing peer-to-peer TCP connections between hosts behind NATs is slightly more complex

than for UDP, but TCP hole punching is remarkably similar at the protocol level. Since it is not as

well-understood, it is currently supported by fewer existing NATs. When the NATs involved do sup-

port it, however, TCP hole punching is just as fast and reliable as UDP hole punching. Peer-to-peer

TCP communication across well-behaved NATs may in fact be more robust than UDP communica-

tion, because unlike UDP, the TCP protocol’s state machine gives NATs on the path a standard way

to determine the precise lifetime of a particular TCP session.

132

5.3.1 Sockets and TCP Port Reuse

The main practical challenge to applications wishing to implement TCP hole punching is not a

protocol issue but an application programming interface (API) issue. Because the standard Berkeley

sockets API was designed around the client/server paradigm, the API allows a TCP stream socket to

be used to initiate an outgoing connection via connect(), or to listen for incoming connections

via listen() and accept(), but not both. Further, TCP sockets usually have a one-to-one

correspondence to TCP port numbers on the local host: after the application binds one socket to a

particular local TCP port, attempts to bind a second socket to the same TCP port fail.

For TCP hole punching to work, however, we need to use a single local TCP port to listen

for incoming TCP connections and to initiate multiple outgoing TCP connections concurrently.

Fortunately, all major operating systems support a special TCP socket option, commonly named

SO_REUSEADDR, which allows the application to bind multiple sockets to the same local end-

point as long as this option is set on all of the sockets involved. BSD systems have introduced a

SO_REUSEPORT option that controls port reuse separately from address reuse; on such systems

both of these options must be set.

5.3.2 Opening Peer-to-Peer TCP Streams

Suppose that client A wishes to set up a TCP connection with client B. We assume as usual that

both A and B already have active TCP connections with a well-known rendezvous server S. The

server records each registered client’s public and private endpoints, just as for UDP. At the protocol

level, TCP hole punching works almost exactly as for UDP:

1. Client A uses its active TCP session with S to ask S for help connecting to B.

2. S replies to A with B’s public and private TCP endpoints, and at the same time sends A’s

public and private endpoints to B.

3. From the same local TCP ports that A and B used to register with S, A and B each asyn-

chronously make outgoing connection attempts to the other’s public and private endpoints as

reported by S, while simultaneously listening for incoming connections on their respective

local TCP ports.

4. A and B wait for outgoing connection attempts to succeed, and/or for incoming connections

to appear. If one of the outgoing connection attempts fails due to a network error such as

“connection reset” or “host unreachable,” the host simply re-tries that connection attempt

after a short delay (e.g., one second), up to an application-defined maximum timeout period.

5. When a TCP connection is made, the hosts authenticate each other to verify that they con-

nected to the intended host. If authentication fails, the clients close that connection and con-

tinue waiting for others to succeed. The clients use the first successfully authenticated TCP

stream resulting from this process.

133

Figure 5-7: Sockets versus ports for TCP hole punching

Unlike with UDP, where each client only needs one socket to communicate with both S and

any number of peers simultaneously, with TCP each client application must manage several sock-

ets bound to a single local TCP port on that client node, as shown in Figure 5-7. Each client

needs a stream socket representing its connection to S, a listen socket on which to accept incoming

connections from peers, and at least two additional stream sockets with which to initiate outgoing

connections to the other peer’s public and private TCP endpoints.

Consider the common-case scenario in which the clients A and B are behind different NATs,

as shown in Figure 5-5, and assume that the port numbers shown in the figure are now for TCP

rather than UDP ports. The outgoing connection attempts A and B make to each other’s private

endpoints either fail or connect to the wrong host. As with UDP, it is important that TCP applications

authenticate their peer-to-peer sessions, due of the likelihood of mistakenly connecting to a random

134

host on the local network that happens to have the same private IP address as the desired host on a

remote private network.

The clients’ outgoing connection attempts to each other’s public endpoints, however, cause the

respective NATs to open up new “holes” enabling direct TCP communication between A and B. If

the NATs are well-behaved, then a new peer-to-peer TCP stream automatically forms between them.

If A’s first SYN packet to B reaches B’s NAT before B’s first SYN packet to A reaches B’s NAT,

for example, then B’s NAT may interpret A’s SYN as an unsolicited incoming connection attempt

and drop it. B’s first SYN packet to A should subsequently get through, however, because A’s NAT

sees this SYN as being part of the outbound session to B that A’s first SYN had already initiated.

5.3.3 Behavior Observed by the Application

What the client applications observe to happen with their sockets during TCP hole punching depends

on the timing and the TCP implementations involved. Suppose that A’s first outbound SYN packet

to B’s public endpoint is dropped by NAT B, but B’s first subsequent SYN packet to A’s public

endpoint gets through to A before A’s TCP retransmits its SYN. Depending on the operating system

involved, one of two things may happen:

• A’s TCP implementation notices that the session endpoints for the incoming SYN match those

of an outbound session A was attempting to initiate. A’s TCP stack therefore associates this

new session with the socket that the local application on A was using to connect() to B’s

public endpoint. The application’s asynchronous connect() call succeeds, and nothing

happens with the application’s listen socket.

Since the received SYN packet did not include an ACK for A’s previous outbound SYN, A’s

TCP replies to B’s public endpoint with a SYN-ACK packet, the SYN part being merely

a replay of A’s original outbound SYN, using the same sequence number. Once B’s TCP

receives A’s SYN-ACK, it responds with its own ACK for A’s SYN, and the TCP session

enters the connected state on both ends.

• Alternatively, A’s TCP implementation might instead notice that A has an active listen socket

on that port waiting for incoming connection attempts. Since B’s SYN looks like an incoming

connection attempt, A’s TCP creates a new stream socket with which to associate the new TCP

session, and hands this new socket to the application via the application’s next accept()

call on its listen socket. A’s TCP then responds to B with a SYN-ACK as above, and TCP

connection setup proceeds as usual for client/server-style connections.

Since A’s prior outbound connect() attempt to B used a combination of source and des-

tination endpoints that is now in use by another socket, namely the one just returned to the

application via accept(), A’s asynchronous connect() attempt must fail at some point,

typically with an “address in use” error. The application nevertheless has the working peer-

to-peer stream socket it needs to communicate with B, so it ignores this failure.

135

The first behavior above appears to be usual for BSD-based operating systems, whereas the

second behavior appears more common under Linux and Windows.

5.3.4 Simultaneous TCP Open

Suppose that the timing of the various connection attempts during the hole punching process works

out so that the initial outgoing SYN packets from both clients traverse their respective local NATs,

opening new outbound TCP sessions in each NAT, before reaching the remote NAT. In this “lucky”

case, the NATs do not reject either of the initial SYN packets, and the SYNs cross on the wire

between the two NATs. In this case, the clients observe an event known as a simultaneous TCP

open: each peer’s TCP receives a “raw” SYN while waiting for a SYN-ACK. Each peer’s TCP

responds with a SYN-ACK, whose SYN part essentially “replays” the peer’s previous outgoing

SYN, and whose ACK part acknowledges the SYN received from the other peer.

What the respective applications observe in this case again depends on the behavior of the

TCP implementations involved, as described in the previous section. If both clients implement

the second behavior above, it may be that all of the asynchronous connect() calls made by the

application ultimately fail, but the applications running on the clients nevertheless each receive a

new, working peer-to-peer TCP stream socket via accept()—as if this TCP stream had magically

“created itself” on the wire and was merely passively accepted by the two endpoints! As long

as the application does not care whether it ultimately receives its peer-to-peer TCP sockets via

connect() or accept(), the process results in a working stream on any TCP implementation

that properly implements the standard TCP state machine specified in RFC 793 [242].

Each of the alternative network organization scenarios discussed in Section 5.2 for UDP works

in exactly the same way for TCP. For example, TCP hole punching works in multi-level NAT sce-

narios such as the one in Figure 5-6 as long as the NATs involved are well-behaved.

5.3.5 Sequential Hole Punching

In a variant of the above TCP hole punching procedure implemented by the NatTrav library [72],

the clients attempt connections to each other sequentially rather than in parallel. For example: (1)

A informs B via S of its desire to communicate, without simultaneously listening on its local port;

(2) B makes a connect() attempt to A, which opens a hole in B’s NAT but then fails due to a

timeout or RST from A’s NAT or a RST from A itself; (3) B closes its connection to S and does

a listen() on its local port; (4) S in turn closes its connection with A, signaling A to attempt a

connect() directly to B.

This sequential procedure may be particularly useful on Windows hosts prior to XP Service

Pack 2, which did not correctly implement simultaneous TCP open, or on sockets APIs that do not

support the SO_REUSEADDR functionality. The sequential procedure is more timing-dependent,

however, and may be slower in the common case and less robust in unusual situations. In step (2),

for example, B must allow its “doomed-to-fail” connect() attempt enough time to ensure that at

136

least one SYN packet traverses all NATs on its side of the network. Too little delay risks a lost SYN

derailing the process, whereas too much delay increases the total time required for hole punching.

The sequential hole punching procedure also effectively “consumes” both clients’ connections to

the server S, requiring the clients to open fresh connections to S for each new P2P connection to

be forged. The parallel hole punching procedure, in contrast, typically completes as soon as both

clients make their outgoing connect() attempts, and allows each client to retain and re-use a

single connection to S indefinitely.

5.4 Properties of P2P-Friendly NATs

This section describes the key behavioral properties NATs must have in order for the hole punching

techniques described above to work properly. Not all current NAT implementations satisfy these

properties, but many do, and NATs are gradually becoming more “P2P-friendly” as NAT vendors

recognize the demand for peer-to-peer protocols such as voice over IP and on-line gaming.

This section is not meant to be a complete or definitive specification for how NATs “should”

behave; we provide it merely for information about the most commonly observed behaviors that

enable or break P2P hole punching. The IETF started the BEHAVE working group to define offi-

cial “best current practices” for NAT behavior [118]. As of this writing, the BEHAVE group has

standardized NAT behavior recommendations for UDP [16] and IP multicast [261], and is finalizing

similar recommendations for TCP [101], which include the considerations outlined in this section

and others. NAT vendors should of course follow the IETF working group directly as official be-

havioral standards are formulated.

5.4.1 Consistent Endpoint Translation

The hole punching techniques described here only work automatically if the NAT consistently maps

a given TCP or UDP source endpoint on the private network to a single corresponding public end-

point controlled by the NAT. A NAT that behaves in this way is referred to as a cone NAT in RFC

3489 [207] and elsewhere, because the NAT “focuses” all sessions originating from a single private

endpoint through the same public endpoint on the NAT.

Consider again the scenario in Figure 5-5, for example. When client A initially contacted the

well-known server S, NAT A chose to use port 62000 at its own public IP address, 155.99.25.11,

as a temporary public endpoint to representing A’s private endpoint 10.0.0.1:4321. When A later

attempts to establish a peer-to-peer session with B by sending a message from the same local private

endpoint to B’s public endpoint, A depends on NAT A preserving the identity of this private end-

point, and re-using the existing public endpoint of 155.99.25.11:62000, because that is the public

endpoint for A to which B will be sending its corresponding messages.

A NAT that is only designed to support client/server protocols will not necessarily preserve the

identities of private endpoints in this way. Such a NAT is a symmetric NAT in RFC 3489 terminology.

For example, after the NAT assigns the public endpoint 155.99.25.11:62000 to client A’s session

137

with server S, the NAT might assign a different public endpoint, such as 155.99.25.11:62001, to the

P2P session that A tries to initiate with B. In this case, the hole punching process fails to provide

connectivity, because the subsequent incoming messages from B reach NAT A at the wrong port

number.

Many symmetric NATs allocate port numbers for successive sessions in a fairly predictable way.

Exploiting this fact, variants of hole punching algorithms [30, 100] can be made to work “much of

the time” even over symmetric NATs by first probing the NAT’s behavior using a protocol such as

STUN [207], and using the resulting information to “predict” the public port number the NAT will

assign to a new session. Such prediction techniques amount to chasing a moving target, however,

and many things can go wrong along the way. The predicted port number might already be in use

causing the NAT to jump to another port number, for example, or another client behind the same

NAT might initiate an unrelated session at the wrong time so as to allocate the predicted port number.

While port number prediction can be a useful trick for achieving maximum compatibility with

badly-behaved existing NATs, it does not represent a robust long-term solution. Since symmetric

NAT provides no greater security than a cone NAT with per-session traffic filtering, symmetric NAT

is becoming less common as NAT vendors adapt their algorithms to support P2P protocols.

5.4.2 Handling Unsolicited TCP Connections

When a NAT receives a SYN packet on its public side for what appears to be an unsolicited incoming

connection attempt, it is important that the NAT just silently drop the SYN packet. Some NATs

instead actively reject such incoming connections by sending back a TCP RST packet or even an

ICMP error report, which interferes with the TCP hole punching process. Such behavior is not

necessarily fatal, as long as the applications re-try outgoing connection attempts as specified in step

4 of the process described in Section 5.3.2, but the resulting transient errors can make hole punching

take longer.

5.4.3 Leaving Payloads Alone

A few existing NATs are known to scan “blindly” through packet payloads for 4-byte values that

look like IP addresses, and translate them as they would the IP address in the packet header, without

knowing anything about the application protocol in use. This bad behavior fortunately appears to

be uncommon, and applications can easily protect themselves against it by obfuscating IP addresses

they send in messages, for example by sending the bitwise complement of the desired IP address.

5.4.4 Hairpin Translation

Some multi-level NAT situations require hairpin translation support in order for either TCP or UDP

hole punching to work, as described in Section 5.2.5. The scenario shown in Figure 5-6, for ex-

ample, depends on NAT C providing hairpin translation. Support for hairpin translation is unfortu-

nately rare in current NATs, but fortunately so are the network scenarios that require it. Multi-level

138

NAT is becoming more common as IPv4 address space depletion continues, however, so support for

hairpin translation is important in future NAT implementations.

139

140

Chapter 6

UIA Implementation

This chapter describes UIA’s current implementation status. All of the UIA components described

in prior chapters have been prototyped, although these prototypes are not yet feature-complete or

fully integrated into a single easily installable and usable system. UIA represents an ambitious new

networking architecture, and fully implementing and refining it into a robust system ready for pro-

duction use will take substantial additional work. Section 6.1 describes the current implementation

of the personal name system described in Chapter 2, Section 6.2 describes the prototypes of the

three approaches to UIA routing explored in Chapter 3, and Section 6.3 describes the Structured

Stream Transport (SST) prototype.

6.1 Personal Naming Implementation

A UIA prototype implementing the personal naming (Chapter 2) and social routing (Section 3.2)

protocols currently runs on Linux and Mac OS X, and is partially ported to FreeBSD. As illustrated

in Figure 6-1, the prototype consists of two user-level daemons implementing UIA’s naming and

routing layers, respectively, and a graphical application for browsing and controlling devices and

groups. The control application and other UIA-aware applications on the device interface directly

to the naming and routing daemons via Sun RPC. Through these interfaces, UIA-aware applications

can resolve UIA names to EIDs, explore and modify groups on behalf of the user, send packets to

EIDs, receive packets on the device’s EID, and discover peers on the local-area network.

6.1.1 Prototype Status

The UIA prototype’s name daemon is written in Python and implements most of the design de-

scribed in Section 2.3, providing group creation, merging, named links between groups, naming

state gossip, state evaluation, multi-component name resolution, and ownership revocation. The

prototype name daemon does not yet implement certain aspects of the name system design, how-

ever, such as multiple personal EIDs per device (Section 2.3.1), undo of merge operations (Sec-

tion 2.3.3), copying orphaned change records across revocations (Section 2.3.3), and the caching

141

Figure 6-1: Structure of UIA prototype implementation

remote name resolution protocol (Section 2.3.6). The prototype routing daemon will be described

later in Section 6.2.

The UIA control application allows the user to browse the UIA namespace and create and mod-

ify groups, as illustrated earlier in Figure 2-3, and supervises the device introduction process as

illustrated in Figure 2-1. The control application is still unpolished and does not yet fully support

shared groups or revocation, however.

The source code for the UIA prototype is available on the Web at:

http://pdos.csail.mit.edu/uia/

6.1.2 Support for Smaller Devices

The UIA prototype has been ported to the Nokia 770 Internet Tablet, a Linux-based Internet ap-

pliance with an ARM processor. The naming and routing layers have the full functionality of the

regular Linux/Mac version of UIA, but the port of the GUI control application is not yet complete.

In general, the routing and naming modules should port easily among smaller devices, while the

GUI component requires more modifications because of the more specialized and restrictive user

interface frameworks available on each class of mobile device. UIA does not rely on extensive data

142

entry or other forms of user interaction that are fundamentally difficult to achieve on small devices,

however.

6.1.3 Using UIA Names in Legacy Applications

The UIA prototype supports legacy applications through a tun wrapper and DNS proxy. The tun

wrapper disguises EIDs as device-local IP addresses and uses the kernel’s tun device to forward

applications’ TCP and UDP packets for these special IP addresses over UIA’s routing layer. The

DNS proxy similarly intercepts name lookups made by local applications and resolves UIA names

to device-local IP addresses for the corresponding EIDs. We have run Apache, Firefox, OpenSSH,

and Apple’s Personal File Sharing over UIA using this legacy interface without modification or

recompilation.

UIA’s legacy application support layer makes the user’s personal group appear to applications

like a global virtual private network, by intercepting network-local broadcast packets that applica-

tions send to UIA’s special IP addresses and forwarding them securely to each of the user’s personal

devices. Because of this feature, many broadcast-based “local-area” service discovery protocols

such as Bonjour [11] automatically work across all the devices in the user’s personal group, even

when some of the devices are in fact remote. We have used Apple’s Bonjour-based Personal File

Sharing, for example, to locate and share files remotely between devices in a UIA personal group

as if they were present on the same LAN.

6.2 Overlay Routing Implementation

Of the three approaches to UIA overlay routing explored in Chapter 3, only the first (Social Routing)

is fully implemented and deployed in an immediately usable form; the other two currently have only

minimal prototypes suitable for simulation and analysis purposes. We briefly examine each of these

implementations in turn.

6.2.1 Social Routing

The social routing protocol described in Section 3.2 is implemented and in regular use in the UIA

prototype. The social routing overlay protocol is implemented in C++ as a standalone UIA routing

daemon, which interacts with other UIA components via RPC, as illustrated in Figure 6-1.

Local Discovery

The social routing daemon uses Apple’s Bonjour [11] to discover and connect with other devices

that happen to be located on the same local area network. UIA devices use this local-area discov-

ery mechanism for two purposes. First, the UIA naming layer depends on local-area discovery to

implement its secure local introduction process, described in Section 2.2.1. Second, once devices

143

are already introduced at the UIA naming layer, the routing layer takes advantage of local-area dis-

covery to find and re-connect with devices that may have moved or changed IP addresses since last

contact, but are now located on the same local-area network. Since the local-area discovery mech-

anism works even if the devices in that LAN are not actually connected to the Internet, through

this local-area discovery mechanism the routing protocol can successfully connect and route to (or

through) devices in small “ad hoc” edge networks not connected to the Internet, such as the ad hoc

network a small group of people might create at a business lunch or on a bus or plane.

Locating and Routing to Remote Devices

To connect with devices that are not directly reachable at their last known IP address or via the

local-area discovery mechanism, the social routing daemon uses the flooding mechanism described

earlier in attempt to find the desired EID within the social network formed by the UIA devices that

are currently reachable. The prototype currently uses SSL [173] over TCP connections to implement

cryptographic EID authentication and provide secure communication between UIA devices.

Routing Legacy Application Traffic over UIA

As mentioned earlier, the UIA prototype supports legacy applications through a tun wrapper and

DNS proxy. The tun wrapper disguises EIDs as device-local IP addresses and uses the kernel’s

tun device to forward applications’ TCP and UDP packets for these special IP addresses over

UIA’s routing layer. In this way, applications can bind a socket to the local device’s EID or connect

to a remote device by EID.

The current overlay routing layer represents EIDs as “fake” IP version 6 (IPv6) addresses [62],

because the 128-bit size of IPv6 addresses makes it simple to generate these fake addresses uniquely

(with high probability), simply but truncating the cryptographic EID and prepending a prefix denot-

ing these addresses as unique local addresses [110]. No IPv6 infrastructure is required for the UIA

routing daemon to work, however, and all messages forwarded over network links are tunneled

through IPv4 sockets. In any case, the current prototype’s use of IPv6 is purely for convenience; it

could just as well represent EIDs as fake IPv4 addresses, providing full compatibility with applica-

tions that only support IPv4, at a small cost in the complexity of managing the space of fake IPv4

addresses within each host’s address space.

UIA’s legacy application support layer effectively makes the user’s personal group appear to ap-

plications like a global virtual private network, by intercepting network-local broadcast packets that

applications send to UIA’s special IP addresses and forwarding them securely to each of the user’s

personal devices. Because of this feature, many broadcast-based “local-area” service discovery pro-

tocols such as Bonjour automatically work across all the devices in the user’s personal group, even

when some of the devices are in fact remote. We have used Apple’s Bonjour-based Personal File

Sharing, for example, to locate and share files remotely between devices in a UIA personal group

as if they were present on the same LAN.

144

6.2.2 Identity Hash Routing

The Identity Hash Routing algorithm described in Section 3.2 is implemented for simulation and

experimental evaluation purposes in about 2300 lines of C++, including a custom simulation testbed.

The prototype implements most of the IHR algorithm as described including the merge procedure,

and supports both source routing and virtual link forwarding. The prototype does not yet simulate a

dynamically evolving network topology in general, but does support simulation of “net split” events

of various magnitudes for purposes of testing the merge procedure.

6.2.3 Compact Routing

The TZk-based compact routing algorithm described in Section 3.4 is implemented for simulation

and experimental evaluation purposes in two versions: a mostly-Python version consisting of about

2000 lines of Python [189] and 630 lines of C to optimize performance-critical calculations, and a

4500-line all-C++ version. The two implementations are mostly equivalent. The prototypes imple-

ment randomized landmark selection and distributed routing tree construction based on simulated

messages, but they do not yet implement address assignment for interval routing or attempt to sim-

ulate dynamically changing networks.

6.3 Structured Stream Transport Implementation

A prototype implementation of the Structured Stream Transport (SST) protocol described in Chap-

ter 4 is implemented and usable in both simulation and real-world network environments, although

not yet complete or integrated with the main UIA prototype. The SST prototype takes the form of

a user-space library written in C++, which runs on Linux, BSD, Mac OS X, and Windows. The

library builds on the Qt portability framework [248], relying on the Core and Network components

of Qt (but not the large graphical user interface component).

The prototype implements the SST protocol atop UDP, so its use requires no special privileges

or OS extensions, and the library can be statically linked into or distributed with applications to

minimize deployment burden on users. Although running transport protocols atop UDP is not the

traditionally accepted and sanctioned approach, this approach has a number of advantages in addi-

tion to application-level deployment, such as compatibility with existing NATs and firewalls [86].

The prototype implements most of the SST protocol design, including classic TCP congestion con-

trol [6], but a few features such as flow control and MTU discovery are still incomplete.

The prototype also allows the application to assign priority levels to streams, for explicit control

of data transmission within the scope of a congestion controlled channel. For controlled testing and

simulation, the library allows client applications to run multiple instances of SST simultaneously in

one process, and to virtualize SST’s use of the host’s timing and networking facilities. The prototype

currently totals about 13,000 source lines, or 4,400 semicolons, and is available on the Web at:

http://pdos.csail.mit.edu/uia/sst/

145

146

Chapter 7

Evaluation

This chapter evaluates the various components and algorithms comprising UIA in terms of real-

world experience using the currently-deployed parts of UIA, experimental tests, and simulation

studies.

7.1 Experience Using UIA Personal Names

The primary goal of UIA’s naming system is convenience and usability by non-technical users, a

goal that can only be evaluated effectively once UIA has been deployed longer and more widely

in the field. We currently run the UIA prototype on a number of desktop and laptop machines

in our lab, however, and regularly run existing applications such as SSH over UIA to reach our

mobile devices via their short personal device names, and our personal experience so far confirms

the convenience and simplicity of the basic UIA personal naming model.

Many practical challenges remain before UIA personal naming can be widely deployed, how-

ever. Our decision to implement UIA initially using user-space daemons facilitated UIA’s porta-

bility to multiple operating systems, but its level of integration with any one system is limited: a

production-quality implementation of UIA naming will probably have to be somewhat more OS-

specific in order to integrate cleanly and smoothly. For example, most mature operating systems

provide a clean, OS-sanctioned mechanism to hook into the system’s name resolution mechanism,

whose use would eliminate our prototype’s need to redirect all DNS lookups to a local DNS proxy

and avoid the associated potential confusion if the user manually edits the system’s DNS resolver

configuration. The OS-sanctioned mechanisms to hook into name resolution tend to change com-

pletely from one OS to another, however, so we avoided using them for portability reasons.

7.1.1 Interaction with Global Names and Legacy Applications

One minor pragmatic difficulty we encountered in using UIA personal names in legacy applications

is that certain applications, particularly web browsers like Firefox, assume that any valid DNS host

name must contain at least one period (‘.’); otherwise the application interprets the name as some

147

other word such as a search term to be submitted to a Web search engine. This “at least one dot”

assumption is valid in the traditional DNS world in which there are only a few top-level domains

(TLDs), none of which represent host names, but becomes invalid in the context of UIA, where

single-component host names are commonplace and represent hosts within the user’s own personal

group. Fortunately, until such applications can be modified to remove this assumption or be made

specifically aware of UIA host names, there is an easy workaround: simply append a period to the

end of the name when typing it: e.g., ‘homepc.’ instead of just ‘homepc’. The recent decision

of ICANN to open up the allocation of new top-level domains [45, 117] may eventually force the

reevaluation of this traditional assumption even in the case of global DNS names.

One danger inherent in UIA’s current behavior of resolving personal names as if they were

global names is the potential confusion that might be caused if the user creates a personal name that

conflicts with a DNS top-level domain. If the user names one of her personal devices ‘com’, for

example, she will no longer be able to refer to any global DNS name ending in ‘.com’. This danger

could be ameliorated by detecting and warning the user if she attempts to create a personal name

that conflicts with a known TLD, and could be avoided entirely at some cost in the conciseness and

convenience of personal names by placing all personal names under some particular “virtual” TLD

such as ‘.pers’. This latter approach would also conveniently avoid the problem mentioned above

of applications that assume every DNS name contains at least one dot.

7.2 Social Routing Evaluation

This section uses real-world experience and simulations to evaluate the Social Routing protocol

implemented in the currently deployed UIA prototype, in order to verify that the proposed design is

capable of providing the desired connectivity on realistic networks.

7.2.1 Experience with Social Routing

We currently run the UIA prototype on a number of desktop and laptop machines in our lab, and

regularly run existing applications such as SSH over UIA to reach our mobile devices via their

short personal device names. The overlay routing protocol automatically accounts for IP address

changes and traverses NATs as necessary; SSH connections open when we take a laptop home need

not be restarted. Although these uses are already possible via alternate protocols such as Mobile

IP, the complexity of configuring these alternatives has generally deterred even those of us with

the necessary technical knowledge from deploying them. We feel that UIA’s zero-configuration

personal naming and connectivity provides a crucial missing element in making mobile devices

usable.

One of the key requirements for the social routing protocol to work reliably is for every user

to have at least one stable, publicly reachable node somewhere in his own or one of his friends’

personal groups. While we found this requirement easy to satisfy since most machines at MIT

and many other universities have their own public IP address, this requirement could prove more

148

of a problem for users whose only “stable” desktop machines are located behind home and/or cor-

porate firewalls and NATs. Although we implemented the default peer mechanism described in

Section 3.2.1 to address this difficulty, UIA has not yet seen sufficient deployment among such

users to evaluate this issue thoroughly.

7.2.2 Experimental Setup

We use as our simulated network a crawl of the social networking site Orkut gathered by Li and

Dabek [145]. This graph is merely suggestive; until UIA is more widely deployed, it will not be

clear how accurately the Orkut graph characterizes UIA’s likely usage model. The graph has 2,363

users, which we take to represent devices, as if each user owned one device. Friend relationships

are bidirectional, and the number of friends per user is highly skewed: the median is only 7, but the

most popular user has over 1,000.

Our simulator takes as input a percent stable parameter and randomly chooses that percent of

the devices to be stable and publicly accessible. All other devices the simulator considers to be

mobile and inaccessible except through some stable device, as if behind a NAT. We assume that all

devices agree as to which devices are stable.

Each device chooses 16 peers and allows at most 64 devices to choose it, to limit each device’s

overlay maintenance cost in a real network. Devices choose peers in order of friendship distance.

A device can only choose a given target as a peer if the target does not already have 64 peers, or if

the new device is closer than one of the target’s existing peers, in which case the target discards a

random peer at higher friendship distance. Since we do not yet have traces with which to simulate

the network’s evolution, the simulated devices choose peers in random order, iterating until the

network reaches a fixed point.

The simulator then performs token-limited location requests on the resulting overlay between

10,000 random pairs at friendship distances 1, 2, and 3. Each lookup starts with 16 tokens, and

doubles after each failure, up to a maximum of 256 tokens. The simulator records the percentage of

requests that succeed after a given number of rounds and the total number of messages sent.

7.2.3 Location Success Rate

An important performance metric for the location algorithm is the number of tokens needed to

locate a target device successfully. Using more tokens increases the chance of success (assuming

that the overlay is in fact connected), but also increases the cost of concluding that an unreachable

device is offline. Figure 7-1 shows the success rate measured in the simulation for locating devices

at friendship distance 1. Using 256 tokens, the location algorithm achieves greater than a 99.5%

success rate for 10% or more stable devices. Using 64 tokens the algorithm achieves 97.5% success

for 10% or more stable devices. The vast majority of requests—80% of requests at 10% or more

stable devices—succeed within the first inexpensive round of 16 tokens.

149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
C

o
n

n
ec

ti
o

n
s

S
u

cc
es

sf
u

l

Percent Stable Nodes

256 Tokens
64 Tokens
32 Tokens
16 Tokens

0 Tokens

Figure 7-1: Location request success rate

At the far left of the graph where few stable devices are available, the success rate drops off

because each stable device can only support 64 peers, and there are not enough stable devices for

each mobile device to choose a full 16 peers, or in some cases any. As the percentage of stable

devices increases, a linearly increasing number of location requests are to stable devices that can be

contacted directly without flooding, thus requiring no tokens.

We also measured the success rates for locating devices at friendship distances of 2 and 3,

though we omit the corresponding graphs. The results for distance 2 are almost as good as for

distance 1, presumably because two devices at friendship distance 2 are likely to peer with some

common stable device at distance 1 from each of them. Success rate drops considerably at distance

3, however, achieving only 50% success with 256 tokens in networks of 40% or more stable devices,

for example.

7.2.4 Messages Sent

The lower line in Figure 7-2 shows the total number of messages sent during successful token-

limited lookup requests for devices at friendship distance 1. A request’s message count is ultimately

bounded by its token count, but is often much less because successful lookups usually do not require

all available tokens.

At the left edge of the graph, there are not enough stable devices for every mobile device to

have a peer, so few requests succeed. Those that do succeed do so cheaply, however, because all

of the connected mobile devices have clustered around the same few stable devices. The message

150

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

M
ea

n
 M

es
sa

g
es

 S
en

t
P

er
 C

o
n

n
ec

ti
o

n

Percent Stable Nodes

Ideal hop count-limited
256 Tokens

Figure 7-2: Mean messages sent per location request

count peaks near the point where the number of stable devices becomes barely sufficient to serve all

of the mobile devices, so the requests usually succeed but only after contacting many devices. As

the number of stable devices increases further, more requests complete without flooding at all, since

stable targets are reachable directly at their last known IP addresses.

To contrast UIA’s token-limited scheme with flooding limited by hop count [42], the upper line

in the figure shows the total number of messages sent for successful hop count-controlled location

requests in which the originating device knows via an oracle the exact hop count required for the

search to succeed in one round. As the graph shows, the token-based scheme requires far fewer

messages than even this “ideal” hop count-limited scheme. The inefficiency of the hop count scheme

results from the skewed popularity distribution and redundancy of the friendship graph, as discussed

in Section 3.2.2.

7.3 Identity Hash Routing Evaluation

Although Identity Hash Routing (IHR) is not yet fully implemented as a usable distributed protocol

or integrated into the UIA prototype, in this section we use simulation results to evaluate the po-

tential utility of IHR’s routing and forwarding algorithms for a future version of UIA. Until a full

implementation has been deployed and a substantial critical mass of users has developed, simula-

tions provide the only realistic option for tuning the protocol and predicting how it will behave on

the large networks it is intended to support.

151

7.3.1 Performance Metrics

In order to asses the basic viability of the IHR routing protocol, we focus here on measuring the

efficiency of the network paths the protocol finds through random network topologies. Many other

important factors that will affect the performance of real-world IHR networks remain for future

study. In particular, while simulations confirm that the protocol recovers from random node failures

and network partitions, we do not yet have a full characterization of the dynamic behavior of a IHR

network under continuous change.

In order to measure the efficiency of routing paths chosen by IHR nodes, we define the IHR

path length between two nodes n1 and n2 to be the total number of physical hops in the path that

n1 constructs to n2 using the build path procedure in Figure 3-4. We define the stretch between

n1 and n2 to be the ratio of the IHR path length to the length of the best possible path through the

underlying topology.

We measure the stretch for a given pair of nodes by using build path to construct a path from

one node to the other, measuring the total number of physical hops in the path, and then eliminating

all the virtual links that build path constructed so that the measurement of one path does not affect

the measurement of subsequent paths. On networks of 100 nodes or less we measure all possible

paths between any two nodes; on larger networks we take a sample of 10,000 randomly chosen node

pairs.

7.3.2 Test Network Topology

Selecting appropriate network topologies for simulations of IHR is difficult, because we have no

way to predict the topologies of the networks on which a protocol like IHR will actually be deployed.

Using topological maps of the existing IPv4 Internet would not make sense: the existing well-

connected Internet is precisely the portion of today’s global network infrastructure across which

IHR will not have to find paths, because IP already does that well enough, and IHR simply treats

these paths as direct physical links. For the function IHR is designed provide, finding paths between

nodes on the Internet and nodes on the many private and ad hoc networks attached to it, no reliable

topological data is available precisely because most of these adjoining networks are private.

Nevertheless, we can construct artificial topologies that approximate the most important char-

acteristics we believe this global network infrastructure to have. First, we expect the topology on

which IHR is deployed to consist of many clusters, in which each node in a given cluster can reliably

address and connect with any other node in the same cluster, but nodes in one cluster have limited

connectivity to nodes in other clusters. Second, because of the diversity of existing networking

technologies and deployment scenarios, we expect the size of these clusters to follow a power law

distribution, with larger clusters having better connectivity to neighboring clusters. Finally, we ex-

pect all of these clusters to be within at most a few hops from a single huge, central cluster, namely

the public IP-based Internet.

152

To construct an artificial topology having these characteristics, we start with a single distin-

guished cluster we will call the root cluster, initially containing a single node. We then randomly

“grow” the network one node at a time as follows. For each new node, we choose the number of

attachment points the node will have based on a geometric random variable with a multihoming

probability parameter pm. Approximately pmN of the network’s N nodes will have at least two

attachment points, p2
mN have at least three attachment points, and so on.

We choose each attachment point for a new node via a random walk from the root cluster using

a downstream probability parameter pd and a new cluster probability parameter pn. At each step,

with probability pd we move the attachment point downstream, and with probability 1 − pd we

terminate the process. To move the attachment point downstream, we choose a node at random

from the current cluster, then we either create a new cluster “private” to that node with probability

pn, or else we with probability 1− pn we pick at random any cluster that node is attached to (which

could be the cluster we just came from). Once the random walk terminates, we add the new node to

the cluster at which the walk ended.

We call the resulting random network topology a rooted topology, since it consists of many

small clusters centered around the single large root cluster, approximating the well-connected IP-

based Internet surrounded by many smaller private networks.

We choose somewhat arbitrarily the following “baseline” parameters for the experiments. We

use network topologies of varying sizes constructed with a multihoming probability pm = 1/10,

a downstream probability pd = 3/4, and new link probability pn = 1/2. On these topologies we

build IHR networks with a redundancy factor k = 3, by adding nodes to the network one at a time in

random order. We will vary these parameters to explore their impact on the efficiency of the routing

protocol.

7.3.3 Source Routing versus Recursive Tunneling

Figure 7-3 shows the average and maximum path stretch observed (vertical axis) between any two

nodes on networks of a given size (horizontal axis), for both source routing and recursive tunnel-

ing. The error bars indicate standard deviation of the measured stretch. In the random 10,000-node

rooted topology, the root cluster contains 3233 nodes (32% of the network), the average distance be-

tween any two nodes is 2.5 hops, and the maximum distance between any two nodes (total network

diameter) is 8 hops.

With both source routing and recursive tunneling, we see that the IHR routing protocol con-

sistently finds paths that are on average no more than twice as long as the best possible path. The

average-case efficiency of recursive tunneling is slightly worse than for source routing, due to the

more limited amount of information nodes have to optimize paths they find through the network.

The routing protocol occasionally chooses bad paths—up to 6× stretch for source routing and up

to 16× for recursive tunneling—but the low standard deviation indicates that these bad paths occur

rarely.

153

 1

 2

 4

 8

 16

 10 100 1000 10000

A
ve

ra
ge

 s
tr

et
ch

Network size (number of nodes)

Maximum stretch - recursive tunneling
Maximum stretch - source routing

Average stretch - recursive tunneling
Average stretch - source routing

Figure 7-3: Network path stretch for source routing versus recursive tunneling

7.3.4 Rooted versus Unrooted Networks

We would next like to determine how much the IHR routing protocol benefits from the tree-like

structure of rooted network topologies. Is the IHR routing protocol only viable when some underly-

ing protocol such as IP is doing most of the work of routing within the large central cluster, or could

IHR routing also be used to internetwork a number of small link-layer networks joined in ad-hoc

fashion?

To explore this question, we modify the random network creation procedure of Section 7.3.2 so

that the random walk to find each new attachment point for a given starts at a cluster chosen uni-

formly at random from all existing clusters, rather than at a well-known root cluster. The resulting

unrooted topologies have a much more uniform and unpolarized distribution in their cluster sizes

and in the connections between clusters. In the random 10,000-node unrooted topology, for exam-

ple, the largest cluster contains only 11 nodes, the average distance between any two nodes is 7.7

hops, and the network diameter is 19 hops. We expect efficient routing on such a diffuse network to

be more difficult than on a rooted network.

Figure 7-4 compares the path efficiency of IHR source route-based forwarding on rooted and

unrooted networks of varying sizes. We find that unrooted networks indeed yield greater stretch,

but not by a wide margin. This result suggests that IHR routing is not highly dependent on rooted

topologies and may be useable as well on more diffuse topologies.

154

 1

 2

 4

 8

 16

 10 100 1000 10000

A
ve

ra
ge

 s
tr

et
ch

Network size (number of nodes)

Maximum stretch - unrooted network
Maximum stretch - rooted network

Average stretch - unrooted network
Average stretch - rooted network

Figure 7-4: Network path stretch for rooted versus unrooted networks

7.3.5 Discussion and Future Work

The above development and evaluation of IHR suggests that the basic approach of adapting DHT

lookup algorithms into overlay routing schemes may indeed be viable. Since IHR has so far only

been analyzed under simulation and is not integrated into the deployed UIA prototype, however, it

is likely that many practical issues will still need to be addressed in order to make it into a robust

distributed protocol.

One potential issue with the scheme as described above is the danger of temporary routing

loops developing between nodes due to dynamic changes in the network topology. For example,

with forwarding based on recursive tunneling, if node A has a virtual link through B to C , then

B’s physical link to C fails, B might see A’s advertised (virtual) link to C and try to use it to build

a virtual link to C through B. These mutually recursive virtual links will eventually time out and

be garbage collected, but the resulting loop could cause considerable network inefficiency and slow

routing table convergence in the meantime. These issues are not different from the looping issues

of classic Bellman-Ford routing, however, and the many solutions to this problem that have been

explored in the context of traditional routing protocols are likely to be applicable to IHR as well.

A second, somewhat more serious challenge with IHR is the security of the distributed routing

structure against the variety of disruption or denial-of-service attacks that malicious nodes might

mount. These threats have already received considerable attention in the context of traditional DHT

lookup schemes [40,67,220,230], and many of the proposed remedies may apply to IHR as well, but

fully understanding the similarities and differences between DHT lookup and DHT-inspired overlay

routing for security purposes will require further analysis. One approach that may be particularly

155

useful in the context of UIA is to build on the social trust framework provided by UIA’s naming

layer, as the Sprout DHT does [152].

IHR lacks a formal bound on stretch—i.e., on the inefficiency of the paths it finds. Furthermore,

the typical stretch measured in the above simulations may be reasonable in practice, when multi-hop

UIA routing is only needed as a “backup solution” when IP routing provides no path at all, but is

not what we might hope for. In the next section, therefore, we explore the use of routing schemes

that can guarantee bounded stretch on any topology—though as we will see there are downsides to

these schemes as well.

7.4 Compact Routing Evaluation

As with IHR, the TZk-based compact routing protocol has not yet been developed into a fully op-

erational protocol ready for use on real-world networks, but this section uses simulations to analyze

a variety of general properties of the protocol that are likely to be important to its practical utility.

We first examine stretch, then congestion of network routes, and finally robustness against failures

in the network. Although these are far from the only properties important for practical deployment,

these first-step results appear promising and help confirm the protocol’s scalability and understand

the remaining challenges to be addressed.

7.4.1 Simulation Framework and Method

The simulated message-based compact routing protocol builds on a custom, lightweight simulation

framework in C++, because we found existing simulation frameworks insufficiently scalable to

handle the large graph sizes we wished to test (over 190,000 nodes in one case). The current

simulation environment and routing protocol represents a second generation to an earlier Python-

based simulator, which yielded comparable results on smaller graphs but did not scale sufficiently

to handle the largest ones.

Due to the unavailability of realistic network topology datasets or generators that included use-

ful edge weights—e.g., measured round-trip delays between network nodes—we did not try to

model time realistically in our protocol. Instead, all simulated nodes perform protocol processing

in lock step: they receive messages from neighbors, process them, and send new messages to their

neighbors in one time step, and once sent, messages arrive at their destinations one time step later.

The simulated protocol selects landmarks randomly so as to reduce the expected number of land-

marks by a factor of two at each level, yielding about log2 n landmark levels for an n-node topology.

Given this landmark selection, the protocol computes compact routing trees in the way described

earlier in Section 3.4.4, where at each time step each node gossips all new routing table informa-

tion with its neighbors. The routing tables of all nodes thus gradually converge toward shortest-path

routes to their landmarks in similar fashion to classic Bellman-Ford routing protocols—with the key

difference of course that each node does not end up with routing table pointers to all other nodes

but merely a selection of nearby landmarks at each level. Our current protocol does not solve the

156

Name Description

mesh random 2D mesh on a Euclidean plane

scale-free scale-free graph generated by preferential attachment

regular random regular graph

Table 7.1: Synthetic topologies used for simulation

 1

 2

 3

 4

 5

 6

 7

 8

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
st

re
tc

h

network size

mesh
regular

scale-free

(a) Pure TZk

 1

 2

 3

 4

 5

 6

 7

 8

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
st

re
tc

h

network size

mesh
regular

scale-free

(b) With 25 extra table entries

Figure 7-5: Maximum stretch relative to shortest-path routes

well-known “counting to infinity” problem of Bellman-Ford protocols, but many existing solutions

to this problem such as destination sequencing [182] (or in this case “landmark sequencing”) are

applicable.

For comparison, we evaluate the compact routing protocol’s performance on several different

types of synthetic networks of varying size, as well as topologies from Skitter [38] and DIMES [244]

derived from actual Internet measurements. The types of synthetic topologies used are shown in

Table 7.1. The “mesh” generator places nodes randomly on a 2D plane and connects all nodes closer

than a certain radius. This is an approximate model for wireless ad-hoc networks. The “scale-free”

generator starts with a loosely-connected network, and connects nodes with probability proportional

to their degree. The Internet’s core exhibits some scale-free-like properties. The “regular” generator

creates a random d-regular graph. It exercises the behavior of the protocol on highly disordered

networks.

7.4.2 Stretch

After running the compact routing protocol to produce routing trees, the simulation chooses 10

random routing targets per node, measures the length of the paths chosen by the routing protocol,

and compares it against the shortest path length computed via Dijkstra’s single-source shortest path

algorithm to compute path stretch. (It was not practical to evaluate all pairs on the larger networks

because of the O(n2) time required.) Figure 7-5 shows the maximum measured stretch observed

on all sampled paths, and Figure 7-6 shows average stretch. The figure presents measurements for

two versions of the protocol in each case: the “Pure TZk” version conforms to the original TZk

algorithm, and the “With 25 extra table entries” version permits each node to grow its routing table

by as many as 25 entries beyond the minimum number required for pure TZk—a fairly arbitrary

157

 1

 1.5

 2

 2.5

 3

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
st

re
tc

h

network size

mesh
regular

scale-free

(a) Pure TZk

 1

 1.5

 2

 2.5

 3

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
st

re
tc

h

network size

mesh
regular

scale-free

(b) With 25 extra table entries

Figure 7-6: Average stretch relative to shortest-path routes

“slop factor” that we use to get an idea of the sensitivity of the routing algorithm to routing table

size. These extra entries are distributed evenly over all the levels of the routing table, which gives

the optimal benefit to the maximum stretch bound. The number of levels in these simulations is

always log2 n, which gives small TZk routing tables and O(log n) max stretch.

Krioukov et al. [139] formally analyzed the average-case stretch of another compact routing

algorithm presented by Thorup and Zwick in the same paper as TZk [245], which we call TZ2

because it uses a fixed two-level landmark hierarchy. They later compared the stretch of TZ2 and

several other 2-level, stretch 3 algorithms via simulations [140]. Although TZ2 selects landmarks

and constructs routing tables somewhat differently from TZk, the resulting behavior is conceptually

similar for purposes of computing stretch: namely, a message from a node u to a node v follows a

shortest path directly from u to v if the two nodes are close together, and otherwise takes a shortest

path from u toward v’s closest landmark l followed by a shortest path from l toward v—which is

equivalent to routing on a shortest-path tree rooted at l. Therefore, although no formal average-case

stretch analysis of TZk has been done yet, there is reason to believe that a similar analysis might

yield similar results. Krioukov’s specific stretch results are not directly comparable to ours despite

this conceptual similarity, however, because the TZ2 algorithm they evaluated is a fixed 2-level

scheme with O(
√

n) size routing tables, whereas the simulations done here use a variable number

of landmark levels (approximately log2 n) with O(log n) size routing tables.

7.4.3 Route Congestion

Because TZk routes all “long-distance” traffic over a few large trees rooted at the top-level land-

marks, a high percentage of this long-distance traffic passes through or near these top-level land-

marks, causing high path congestion in the links around them. To evaluate this congestion bot-

tleneck, the simulation computes the routes chosen by the compact routing protocol between all

random pairs, and counts the number of routes that pass through the most congested edge in the net-

work. Figure 7-7 shows the maximum congestion measured for the routing protocol divided by the

congestion measured for shortest-path distance-vector routing, for both the original TZk algorithm

and the protocol with extra routing table entries.

158

 1

 10

 100

 1000

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
co

n
g

es
ti

o
n

network size

mesh
regular

scale-free

(a) Pure TZk

 1

 10

 100

 1000

 512 1024 2048 4096 8192 16384

re
la

ti
v

e
co

n
g

es
ti

o
n

network size

mesh
regular

scale-free

(b) With 25 extra table entries

Figure 7-7: Network congestion relative to shortest-path routes

nodes Stretch Rel. Cong.

Skitter (TZ) 7,536 1.67 45.8

. . . (25 entries) 7,536 1.32 3.42

Skitter-RTR (TZ) 192,245 1.53 26.9

. . . (25 entries) 192,245 1.33 4.87

DIMES (TZ) 16,847 2.08 29.2

. . . (25 entries) 16,847 1.19 0.79

Table 7.2: Skitter and DIMES simulations, with and without optimizations.

We observe that extra table entries improve congestion considerably, although congestion around

high-level landmarks still unavoidably occurs. Some level of congestion is probably acceptable in

a deployment of compact routing on real networks, because real networks are typically designed

to aggregate many low-capacity edge links and “bundle” them over a high-capacity core [147]. As

long as the high-level landmarks used by the routing protocol are deliberately chosen to be nodes

within that high-capacity core, this congestion around high-level landmarks may in effect turn out

to be exactly what the network operator is seeking. If congestion does turn out to be a problem, the

protocol provide a means for operators to trade off congestion for routing table size, the same as for

stretch.

Measurements on AS adjacency graphs from skitter [38] and DIMES [244] are shown in Ta-

ble 7.2, along with one skitter router-adjacency graph. These datasets have a small number of highly

connected nodes, which tends to result in high congestion near the hubs. The pure TZk approach

has high congestion relative to shortest-paths; the modified protocol does considerably better with

only 25 extra table entries.

7.4.4 Reliability

Since recomputation of all compact routing trees in response to any topology change may be expen-

sive [140], we would like to avoid this cost when possible and instead take advantage of the natural

redundancy provided by the protocol’s many separate routing trees in order to “route around” tem-

porary failures. In this way, no recomputation of routing trees is necessary as a result of such

159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
nr

ou
te

ab
le

 p
ai

rs

Fraction of failed links

Pure TZ
12 table entries
25 table entries
50 table entries

100 table entries

Figure 7-8: Resiliency to network failures

temporary failures; instead any end hosts trying to communicate through a broken link simply try a

different routing tree instead.

To determine the effectiveness of the protocol at providing robustness in this way, we examine

the failure rate of routing attempts when some percentage of network edges are randomly disabled,

breaking any tree routing paths using those edges. For this test the protocol is configured for full

redundancy (r = ∞): i.e., each node’s global address contains all the nodes in its routing table.

Figure 7-8 shows the routing failure rate over the random edge failure rate on the Skitter topology,

with several settings for the number of extra landmarks each node collects at each level. From

this graph we observe that the protocol provide substantial resilience at least against small numbers

of randomly-distributed failures, especially when a considerable set of landmarks are available in

which to seek a usable routing tree.

Of course, failures on real networks are often not randomly distributed; evaluating our protocol

under more sophisticated failure models remains for future work.

7.5 Structured Stream Transport Evaluation

This section reports on preliminary experience implementing and using SST in real and simulated

environments. We examine how SST scales across transaction sizes in comparison with TCP and

UDP, how Web-style transactions on SST compare with non-persistent, persistent, and pipelined

HTTP over TCP, and how applications can dynamically prioritize SST streams to improve interac-

tive responsiveness.

7.5.1 Experience with Applications

The SST prototype is in regular use by Netsteria, an experimental peer-to-peer application support-

ing text-based chat, voice-over-IP calling and conferencing, and swarming file transfers. As the

application is primarily a vehicle for exploring networking ideas such as SST, it focuses little atten-

tion on backward compatibility or interoperability with existing application protocols on existing

transports.

160

Netsteria’s combination of different types of network activities operating concurrently serves

well to exercise SST’s capabilities and drive its development. The file transfer mechanism, for

example, divides files into variable-length blocks and uses a separate SST stream for each block

request/reply transaction, making use of SST’s scalability over transaction sizes. The voice chat

mechanism uses SST’s ephemeral substreams to transmit small media frames efficiently with best-

effort delivery to minimize latency.

7.5.2 Performance Validation

To test SST’s basic performance against the “gold standard” of TCP, we first run microbenchmarks

of raw bandwidth and TCP-friendliness on three transports: the SST prototype, the host operating

system’s native TCP, and a user-space TCP implementation that was developed alongside the SST

library for comparison purposes. Though the native TCPs are more mature, the user-space TCP

can run on either a real or simulated network like the SST library. Since SST always uses selective

acknowledgments, the user-space TCP implements TCP’s SACK extension to ensure a fair com-

parison, as do the native TCP stacks on the hosts used for testing. Since TCP does not provide

cryptographic security, the benchmarks run SST in its comparable checksum-based authentication

mode.

Downloading a 10MB file from a PC running SuSE Linux 10.0 to a MacBook Pro running Mac

OS 10.4.8 over a real 1.5Mbps DSL connection, and taking the best of three runs to factor out out

possible delays caused by unrelated system daemon activity, SST was measured to be 1.0% slower

than native TCP, and user-space TCP was 2.1% slower—a difference barely out of the noise, but

attributable to the overhead of implementing transports outside the kernel atop UDP. Running the

same benchmark over an 802.11g wireless LAN providing about 18Mbps maximum throughput,

SST was 7.1% slower than native TCP, and user-space TCP was 3.6% slower. These results sug-

gest that even the unoptimized SST prototype performs adequately on “consumer-grade” networks,

although a more optimized implementation would be desired on high-speed networks. Comparing

SST against the user-space TCP on simulated networks with similar parameters, the two transports

exhibited identical performance to within 0.2%.

The second benchmark runs two downloads at once—one using the native TCP, the other using

either SST or the user-space TCP—to verify “TCP-friendly” congestion control behavior. The

user-space transports were found to be fair, and just barely less aggressive than native TCP: SST

takes a 48.8% bandwidth share against native TCP’s 51.2% share, and the user-space TCP takes

48.1% against native TCP’s 51.9%. This result is unsurprising given that both user-space transports

implement the classic TCP congestion control schemes.

7.5.3 Scalability over Transaction Size

We now compare SST against TCP and UDP when used for Web-style transactions in which the

request is small but the response varies in size. Since we wish to examine how SST’s performance

161

10s

6s
4s

2s

1s

600ms
400ms

200ms

100ms

60ms
40ms

2M512K128K32K8K2K512B128B32B

R
eq

u
es

t
+

 R
es

p
o
n
se

 T
im

e

Size of Object Transferred

UDP
TCP
SST

Figure 7-9: Transactional use of UDP, TCP, and SST over a 216× range of transaction sizes.

scales when the application uses transport instances to match its transaction structure, this test uses

one SST or TCP stream per transaction as in HTTP/1.0, leaving HTTP/1.1 persistent streams to the

next section. The UDP test operates as in DNS or RPC, with each request datagram soliciting a

single response datagram.

Figure 7-9 shows client-observed transaction latency on a log/log plot for responses ranging

from 32 bytes to two megabytes, measured on the real 1.5Mbps DSL connection described above,

which has about 50ms minimum latency. For small transactions where network latency dominates,

TCP takes twice as long as UDP due to its 3-way handshake. UDP ceases functioning beyond

around 8KB due to middleboxes on the test connection, and IP version 4 limits datagrams to 64KB

in any case. In this test the network connection was quiescent and no UDP datagrams were lost,

but in a second test whose results are not shown, on a connection loaded with two concurrent long-

running TCP downloads, the effective UDP datagram loss rate often exceeded 50% even at the

widely-used 8KB datagram size.

As the graph shows, SST can create new streams for small transactions with the same low

latency as UDP, while scaling to support long-running transfers. The SST test runs its transactions

over a “warm” communication channel already set up by the negotiation protocol, representing

the common case in which a client makes multiple requests to the same server. Even without a

warm channel, SST can piggyback the first application request and response data segments onto

the negotiation protocol packets if cryptographic security is not required and the responder is not

162

4s

2s

1s

600ms

400ms

200ms

100ms

60ms

64K8K1K128B64K8K1K128B64K8K1K128B64K8K1K128B64K8K1K128B

R
eq

u
es

t
+

 R
es

p
o
n
se

 T
im

e
(l

o
w

er
 i

s
b
et

te
r)

1 request per page 2 requests per page 3-4 requests per page 5-8 requests per page 9+ requests per page

TCP: HTTP/1.0 serial
TCP: HTTP/1.0 parallel
TCP: HTTP/1.1 persistent
TCP: HTTP/1.1 pipelined
SST: HTTP/1.0 parallel

Figure 7-10: Web workload comparing single-transaction SST streams against four HTTP flavors

over TCP.

heavily loaded, retaining a total latency of one round trip. Otherwise, SST adds one round trip delay

for channel setup.

7.5.4 Web Traffic Workload

HTTP/1.1 addressed the inefficiency of short-lived TCP streams through persistent connections,

which are now in common use, and pipelining, which is not. Since SST attempts to offer the

benefits of persistent streams with the simplicity of the one-transaction-per-stream model, we now

compare SST against the behavior of several flavors of HTTP over TCP, under a simulated web

workload. While HTTP is a useful protocol for comparison purposes because it is well-understood

and supports several connection schemes, the issues we explore here are not specific to HTTP but

apply to any application protocol based on a request/response model.

For this test we simulate a series of web page loads, each page consisting of a “primary” HTTP

request for the HTML, followed by a batch of “secondary” requests for embedded objects such as

images. As the simulation’s workload we use a fragment of the UC Berkeley Home IP web client

traces available from the Internet Traffic Archive [119]. We sort the trace by client IP address so

that each user’s activities are contiguous, then we use only the order and sizes of requests to drive

the simulation, ignoring time stamps. Since the traces do not indicate which requests belong to

one web page, the simulation approximates this information by classifying requests by extension

into “primary” (e.g., ‘.html’ or no extension) and “secondary” (e.g., ‘gif’, ‘.jpg’, ‘.class’),

and then associating each contiguous run of secondary requests with the immediately preceding

primary request. The simulation pessimistically assumes that the browser cannot begin requesting

secondary objects until it has downloaded the primary object completely, but at this point it can in

theory request all of the secondary objects in parallel. This assumption may slightly decrease the

amount of potential parallelism available to any of the downloading schemes tested: since SST is

designed to take maximum advantage of available parallelism, any experimental error caused by

163

this assumption is merely likely to make SST’s benefit appear less in the simulations than it would

be in reality.

Figure 7-10 shows a scatter plot of the total duration of each web page load against the total

size of all downloads for that page, on the simulated 1.5Mbps network used in Section 7.5.2. The

plot is divided into five groups by the total number of HTTP requests per web page. The leftmost

group, for pages with no secondary requests, has a best-case load time half that of other groups,

because in the latter groups secondary requests do not start until the primary request completes.

The points labeled “HTTP/1.0 serial” reflect the behavior of early web browsers that load pages by

opening TCP connections for each request sequentially, “HTTP/1.0 parallel” represents browsers

that open up to eight single-transaction TCP streams in parallel, “HTTP/1.1 persistent” represents

modern browsers that use up to two concurrent persistent TCP streams as per RFC 2616 [78], and

“HTTP/1.1 pipelined” uses two concurrent streams with up to four pipelined requests each. The

SST case uses one transaction per stream, as in HTTP/1.0, but imposes no limit on the number of

parallel streams. As the graph indicates, HTTP/1.0 over SST achieves performance comparable to

pipelined HTTP/1.1 streams over TCP, both of which are much faster than other methods, including

the current common case of persistent but non-pipelined TCP streams.

7.5.5 Dynamic Prioritization

In a final experiment, we consider a hypothetical SST-enabled web browser in which a user views a

“photo album” page containing several large images. Traditional browsers load the images on a page

from top to bottom, so if the user immediately scrolls within the page after opening it, or clicks on a

link to a text anchor somewhere in the middle of the page, she must wait until the browser loads the

(probably invisible) images above the visible area before the desired images begin to appear. Our

SST-enabled browser instead expedites the loading of the image(s) within the currently visible scroll

area—perhaps in particular the image immediately under the user’s mouse pointer. In this scenario,

the image to be expedited might change at any time as the user scrolls the window or moves the

mouse.

With persistent or pipelined TCP connections, the browser cannot change the order of requests

already in the pipeline, but with SST the browser and web server can cooperate to achieve the desired

result. The client specifies an initial priority for each request it submits, and changes the priority of

a request already in progress by spawning a temporary substream from the request’s original stream

and sending a short “change priority” message on this substream. On receipt, the server attaches this

new priority level to the appropriate SST stream on its end, causing its stream layer to transmit data

for high-priority streams before others. This prioritization feature required no changes to the SST

protocol as described in Section 4.4, and only a minor API extension to the SST implementation for

the server’s use. The server could theoretically also use the client’s priority information to control

other processing resources on behalf of the client, such as the relative priorities of disk reads or

threads performing CGI computations.

164

1.5MB

1MB

512K

 0
 0 5 10 15 20 25 30

T
o

ta
l

B
y

te
s

T
ra

n
sf

er
re

d

high-priority request

priority change request

high-priority request complete
Request 1
Request 2
Request 3

Figure 7-11: Dynamic request prioritization

Stream Delivery Datagram Delivery

SST TCP SCTP SST UDP DCCP

Data Packet 20 20 28 16 8 12

Ack Packet 20 20 28 16 — 16

Sack Packet 20 32+ 28+ 16 — 20+

Data + Ack 20 20 44 16 — 16

Data + Sack 20 32+ 44+ 16 — 20+

Table 7.3: Transport layer header overhead

Figure 7-11 shows the behavior observed by the client in a simple scenario on the usual sim-

ulated 1.5Mbps network. At time zero the client requests two 1.5MB files at normal priority, and

the server divides return bandwidth evenly between them. At five seconds the client submits a

third request labeled high-priority, causing the server to commit all bandwidth to the new request,

temporarily blocking the old ones. At ten seconds the client submits two priority change requests,

changing Request 1 to high-priority and Request 3 to normal, and the client observes the prior-

ity changes take effect one round-trip later. When Request 1 finally completes, the remaining two

requests again divide available bandwidth evenly until they complete as well.

7.5.6 Wire Efficiency

Minimizing the per-packet overhead of transport layer headers is important to many applications,

especially voice applications that frequently send frames only a few bytes in size. Table 7.3 com-

pares SST’s header overhead in bytes against the minimal overhead imposed by several other trans-

ports. The numbers for SST include the 32-bit lightweight checksum that SST uses in its non-

cryptographic security mode, but do not include a UDP encapsulation header since SST could be

run directly atop IP like the other transports. The DCCP numbers are for DCCP’s short header

format, which uses 24-bit sequence numbers instead of 48-bit at the cost of weakening the protocol

against packet forgery attacks. SST also transmits 24-bit sequence numbers in packets, but does not

165

SST TCP SCTP DCCP RDP UDP

Prototype 4400 540

Linux 2.6.20 5400 8000 2900 630

FreeBSD 5.4 4400 510

4.3BSD 990 900 170

Table 7.4: Transport code size (semicolon count)

rely on them to protect against forgery, instead relying on 32-bit keyed checksums that depend on

full 64-bit internal sequence numbers. SST effectively provides most of the functionality of SCTP

and DCCP, along with structured stream support not available in any existing transport, with no

more wire overhead than basic TCP.

7.5.7 Implementation Size

For a rough comparison of implementation complexity, Table 7.4 shows the code size of several

transports measured in number of semicolons. The top line shows the user-space C++ implemen-

tations of SST and TCP used in the above experiments; the other lines show existing transports

written in C. The user-space TCP is “bare-bones” and implements only the TCP features needed for

the above experiments. The SST prototype will no doubt grow as it matures, but it already includes

cryptographic security functionality that none of the other transports do. In comparison, libssl

from OpenSSL 0.9.8e is about 13,000 semicolons (41,000 lines).

7.6 NAT Traversal Evaluation

To evaluate the robustness of the TCP and UDP hole punching techniques described in Chapter 5 on

a variety of existing NATs, we implemented and distributed a test program called NAT Check [169],

and solicited data from Internet users about their NATs.

NAT Check’s primary purpose is to test NATs for the two behavioral properties most crucial to

reliable UDP and TCP hole punching: namely, consistent identity-preserving endpoint translation

(Section 5.4.1), and silently dropping unsolicited incoming TCP SYNs instead of rejecting them

with RSTs or ICMP errors (Section 5.4.2). In addition, NAT Check separately tests whether the

NAT supports hairpin translation (Section 5.4.4), and whether the NAT filters unsolicited incoming

traffic at all. This last property does not affect hole punching, but provides a useful indication the

NAT’s firewall policy.

NAT Check makes no attempt to test every relevant facet of NAT behavior individually: a wide

variety of subtle behavioral differences are known, some of which are difficult to test reliably [123].

Instead, NAT Check merely attempts to answer the question, “how commonly can the proposed hole

punching techniques be expected to work on deployed NATs, under typical network conditions?”

166

Figure 7-12: NAT check test method for UDP

7.6.1 Test Method

NAT Check consists of a client program to be run on a machine behind the NAT to be tested,

and three well-known servers at different global IP addresses. The client cooperates with the three

servers to check the NAT behavior relevant to both TCP and UDP hole punching. The client program

is small and relatively portable, currently running on Windows, Linux, BSD, and Mac OS X. The

machines hosting the well-known servers all run FreeBSD.

UDP Test: To test the NAT’s behavior for UDP, the client opens a socket and binds it to a local

UDP port, then successively sends “ping”-like requests to servers 1 and 2, as shown in Figure 7-12.

These servers each respond to the client’s pings with a reply that includes the client’s public UDP

endpoint: the client’s own IP address and UDP port number as observed by the server. If the two

servers report the same public endpoint for the client, NAT Check assumes that the NAT properly

preserves the identity of the client’s private endpoint, satisfying the primary precondition for reliable

UDP hole punching.

When server 2 receives a UDP request from the client, besides replying directly to the client it

also forwards the request to server 3, which in turn replies to the client from its own IP address. If

the NAT’s firewall filters “unsolicited” incoming traffic on a per-session basis, then the client never

sees these replies from server 3, even though they are directed at the same public port as the replies

from servers 1 and 2.

To test the NAT for hairpin translation support, the client simply opens a second UDP socket at

a different local port and uses it to send messages to the public endpoint representing the client’s

first UDP socket, as reported by server 2. If these messages reach the client’s first private endpoint,

then the NAT supports hairpin translation.

167

TCP Test: The TCP test follows a similar pattern as for UDP. The client uses a single local

TCP port to initiate outbound sessions to servers 1 and 2, and checks whether the public endpoints

reported by servers 1 and 2 are the same, the first precondition for reliable TCP hole punching.

The NAT’s response to unsolicited incoming connection attempts also impacts the speed and

reliability of TCP hole punching, however, so NAT Check also tests this behavior. When server 2

receives the client’s request, instead of immediately replying to the client, it forwards a request to

server 3 and waits for server 3 to respond with a “go-ahead” signal. When server 3 receives this

forwarded request, it attempts to initiate an inbound connection to the client’s public TCP endpoint.

Server 3 waits up to five seconds for this connection to succeed or fail, and if the connection attempt

is still “in progress” after five seconds, server 3 responds to server 2 with the “go-ahead” signal and

continues waiting for up to 20 seconds. Once the client finally receives server 2’s reply (which server

2 delayed waiting for server 3’s “go-ahead” signal), the client attempts an outbound connection to

server 3, effectively causing a simultaneous TCP open with server 3.

What happens during this test depends on the NAT’s behavior as follows. If the NAT just drops

server 3’s “unsolicited” incoming SYN packets, then nothing happens on the client’s listen socket

during the five second period before server 2 replies to the client. When the client finally initiates

its own connection to server 3, opening a hole through the NAT, the attempt succeeds immediately.

If on the other hand the NAT does not drop server 3’s unsolicited incoming SYNs but allows them

through (which is fine for hole punching but not ideal for security), then the client receives an

incoming TCP connection on its listen socket before receiving server 2’s reply. Finally, if the NAT

actively rejects server 3’s unsolicited incoming SYNs by sending back TCP RST packets, then

server 3 gives up and the client’s subsequent attempt to connect to server 3 fails.

To test hairpin translation for TCP, the client simply uses a secondary local TCP port to attempt

a connection to the public endpoint corresponding to its primary TCP port, in the same way as for

UDP.

7.6.2 Test Results

The NAT Check data we gathered consists of 380 reported data points covering a variety of NAT

router hardware from 68 vendors, as well as the NAT functionality built into different versions

of eight popular operating systems. Only 335 of the total data points include results for UDP

hairpin translation, and only 286 data points include results for TCP, because we implemented these

features in later versions of NAT Check after we had already started gathering results. The data is

summarized by NAT vendor in Table 7.5; the table only individually lists vendors for which at least

five data points were available. The variations in the test results for a given vendor can be accounted

for by a variety of factors, such as different NAT devices or product lines sold by the same vendor,

different software or firmware versions of the same NAT implementation, different configurations,

and probably occasional NAT Check testing or reporting errors.

Out of the 380 reported data points for UDP, in 310 cases (82%) the NAT consistently translated

the client’s private endpoint, indicating basic compatibility with UDP hole punching. Support for

168

UDP TCP

Hole Hole

Punching Hairpin Punching Hairpin

NAT Hardware

Linksys 45/46 (98%) 5/42 (12%) 33/38 (87%) 3/38 (8%)

Netgear 31/37 (84%) 3/35 (9%) 19/30 (63%) 0/30 (0%)

D-Link 16/21 (76%) 11/21 (52%) 9/19 (47%) 2/19 (11%)

Draytek 2/17 (12%) 3/12 (25%) 2/7 (29%) 0/7 (0%)

Belkin 14/14 (100%) 1/14 (7%) 11/11 (100%) 0/11 (0%)

Cisco 12/12 (100%) 3/9 (33%) 6/7 (86%) 2/7 (29%)

SMC 12/12 (100%) 3/10 (30%) 8/9 (89%) 2/9 (22%)

ZyXEL 7/9 (78%) 1/8 (13%) 0/7 (0%) 0/7 (0%)

3Com 7/7 (100%) 1/7 (14%) 5/6 (83%) 0/6 (0%)

OS-based NAT

Windows 31/33 (94%) 11/32 (34%) 16/31 (52%) 28/31 (90%)

Linux 26/32 (81%) 3/25 (12%) 16/24 (67%) 2/24 (8%)

FreeBSD 7/9 (78%) 3/6 (50%) 2/3 (67%) 1/1 (100%)

All Vendors 310/380 (82%) 80/335 (24%) 184/286 (64%) 37/286 (13%)

Table 7.5: User reports of NAT support for UDP and TCP hole punching

hairpin translation is much less common, however: of the 335 data points that include UDP hairpin

translation results, only 80 (24%) show hairpin translation support.

Out of the 286 data points for TCP, 184 (64%) show compatibility with TCP hole punching: the

NAT consistently translates the client’s private TCP endpoint, and does not send back RST packets

in response to unsolicited incoming connection attempts. Hairpin translation support is again much

less common: only 37 (13%) of the reports showed hairpin support for TCP.

Since these reports were generated by a “self-selecting” community of volunteers, they do not

constitute a random sample and thus do not necessarily represent the true distribution of the NATs in

common use. The results are nevertheless encouraging: it appears that the majority of commonly-

deployed NATs already support UDP and TCP hole punching at least in single-level NAT scenarios.

7.6.3 Testing Limitations

There are a few limitations in NAT Check’s current testing protocol that may cause misleading

results in some cases. First, we only learned recently that a few NAT implementations blindly

translate IP addresses they find in unknown application payloads, and the NAT Check protocol

currently does not protect itself from this behavior by obfuscating the IP addresses it transmits.

Second, NAT Check’s current hairpin translation checking may yield unnecessarily pessimistic

results because it does not use the full, two-way hole punching procedure for this test. NAT Check

currently assumes that a NAT supporting hairpin translation does not filter “incoming” hairpin con-

nections arriving from the private network in the way it would filter incoming connections arriving

at the public side of the NAT, because such filtering is unnecessary for security. We later realized,

169

however, that a NAT might simplistically treat any traffic directed at the NAT’s public ports as

“untrusted” regardless of its origin. We do not yet know which behavior is more common.

Finally, NAT implementations exist that consistently translate the client’s private endpoint as

long as only one client behind the NAT is using a particular private port number, but switch to

symmetric NAT or even worse behaviors if two or more clients with different IP addresses on the

private network try to communicate through the NAT from the same private port number. NAT

Check could only detect this behavior by requiring the user to run it on two or more client hosts

behind the NAT at the same time. Doing so would make NAT Check much more difficult to use,

however, and impossible for users who only have one usable machine behind the NAT. Nevertheless,

we plan to implement this testing functionality as an option in a future version of NAT Check.

7.6.4 Corroboration of Results

Despite testing difficulties such as those above, our results are generally corroborated by those of a

large ISP, who recently found that of the top three consumer NAT router vendors, representing 86%

of the NATs observed on their network, all three vendors currently produce NATs compatible with

UDP hole punching [252]. Additional independent results recently obtained using the UDP-oriented

STUN protocol [123], and STUNT, a TCP-enabled extension [98, 100], also appear consistent with

our results. These latter studies provide more information on each NAT by testing a wider variety of

behaviors individually, instead of just testing for basic hole punching compatibility as NAT Check

does. Since these more extensive tests require multiple cooperating clients behind the NAT and thus

are more difficult to run, however, these results are so far available on a more limited variety of

NATs.

7.7 Summary

In this chapter, we first informally evaluated the currently implemented and deployed naming and

routing prototype from a high-level usability perspective, then delved into each of the alternative

approaches to routing in Sections 7.2–7.4, focusing on performance metrics such as success rate,

routing table size, and route stretch. Section 7.5 then evaluated UIA’s structured stream trans-

port from the perspective of responsiveness—a particularly important usability metric for personal

devices running highly interactive communication applications. Finally, Section 7.6 presented an

experimental study on the effectiveness of hole punching as a tool for optimize the UIA routing

layer or other peer-to-peer communication mechanisms.

A common conclusion that may be safely drawn from all of these sections is that the possible

design space in each functional area is vast and much more work will be needed to achieve the full

promise of “ubiquitous computing” using mobile personal devices, but the evaluation in this chapter

suggests that the ideas proposed in this thesis represent a promising stepping stone for the promise

of “ubiquitous computing.”

170

Chapter 8

Related Work

UIA builds on a large body of related work in the areas of naming systems, location-independent

identifiers, gossip and optimistic replication protocols, and social networks. This chapter explores

the relationship of UIA and its components to prior work. The most important contributions of UIA

with respect to all of this prior work are the new abstractions that UIA introduces for personal device

connectivity, although Section 1.7 also lists other contributions in all the functional areas that don’t

necessarily involve new network abstractions:

• Personal groups built from pairwise introductions and managed without reference to central

authorities or services.

• Personal names supporting global connectivity between users and their personal devices,

without requiring global uniqueness.

• Structured streams for efficient, responsive communication between personal devices, de-

signed for delay-sensitive interactive applications that manage many communication activities

in parallel.

We first examine related work at the network architecture level, then work related to individual

UIA components.

8.1 Network Architectures

UIA’s basic usability goal of making personal device connectivity “just work,” without users having

to configure protocols or register with central services, is consistent with the classic ubiquitous com-

puting idea of trying to make computers “disappear” from the user’s consciousness [260]. UIA’s

technical design builds on and is heavily inspired by the Internet’s existing architecture [54], in-

cluding its foundation on best-effort packet-switched delivery and a separation of naming, routing,

transport, and application concerns. In addition, UIA adopts several existing architectural exten-

sions to the classic Internet that have been proposed before but not yet widely adopted.

171

IP addresses are traditionally overloaded to serve the roles of both node identification and rout-

ing, causing both confusion and technical difficulties when nodes need to move while retaining

their logical identities [50, 159, 210, 219]. UIA incorporates the idea of splitting the “locator” and

“identifier” roles of Internet addresses, as developed in other architectures such as Nimrod [39,191],

HIP [163], FARA [52], JXTA [96], and i3 [235]. As in HIP, UIA borrows from SFS [157] the idea

of making node identifiers self-certifying by generating them from the hash of a public key. In

contrast with prior architectures, however, UIA supports not just identification of hosts but also the

convenient identification and management of personal groups of administratively related hosts, so

that users can identify and name each other via persistent, location-independent logical group iden-

tities whose specific device membership may change over time. UIA’s design also refines previous

notions of host identity by introducing cryptographic EIDs that securely identify not just a host but

a particular user on that host. Different users of a shared UIA host can run independent personal

network services without conflicting or requiring host-wide configuration, and network services can

leverage UIA names and EIDs to authenticate clients at user granularity.

UIA is also influenced by the architectural principle of application level framing [51]. One of

the primary goals of UIA’s structured stream transport is to provide transport objects that directly

mirror the structure of the “application data units” with which the application is concerned.

The Mobile People Architecture (MPA) [150] proposes adding a new “Person Layer” above the

Application Layer in the current Internet architecture, which provides each individual user with a

unique identifier and a Personal Proxy that acts as a central point of contact for the user regardless

of which personal device(s) he is using at the moment. The user’s Personal Proxy can for example

forward incoming calls to the mobile personal device the user is currently carrying, to a fixed device

at the user’s current location, or to the user’s voicemail if the user cannot be located. The Universal

Inbox [190] provides similar services, but implements them in the Internet core rather than at the

edges. MPA and Universal Inbox are complementary to UIA in that they address user location

tracking, call redirection, and media conversion, which UIA leaves to higher layers: it should be

natural to build services analogous to MPA’s “Person Layer” or the Universal Inbox atop UIA’s

naming and routing facilities. UIA on the other hand addresses the problem of making it easy for

technically unsophisticated users to build and manage groups of personal devices, a problem neither

MPA nor Universal Inbox addresses. UIA also supports communication within disconnected edge

networks, which fails in MPA and Universal Inbox because the user becomes unreachable by anyone

whenever the user’s Personal Proxy or other central intermediary services are unreachable.

UIA is a continuation of work begun with Unmanaged Internet Protocol [80, 81]. UIA extends

the earlier work with its personal naming system, new overlay routing algorithms, and the structured

stream transport.

172

8.2 Naming

UIA’s personal naming model is inspired in part by SDSI/SPKI [71, 203]. Like SDSI, UIA allows

users to define locally-scoped personal names bound to cryptographic targets and groups to form

decentralized, composable namespaces. While SDSI associates public keys with users (principals)

and expects users to know about and manage their own public keys, however, UIA simplifies key

management by making each device responsible for creating and managing its own device-specific

key invisibly to the user. UIA devices form user identities out of cooperating groups of personal

devices, which the user builds through simple device introduction and merge. SDSI’s model for

designated certificate servers does not adapt well to disconnected mobile devices, however. UIA

handles lost or stolen devices without re-keying and thus losing the user’s identity.

UIA’s introduction process builds on previously explored ideas for secure associations, such

as the Resurrecting Duckling security model [231] and SPKI/SDSI introduction [65], but UIA is

unique in providing the ability to build symmetric, self-managing, distributed personal groups solely

out of pairwise introductions.

Existing Internet protocols can provide some of UIA’s naming features, but they require con-

figuration effort and technical expertise that deters even sophisticated users. Dynamic DNS [256]

can name devices with dynamic IP addresses, but requires configuration on both the name server

and the named device, and devices still become inaccessible when behind NAT. DNS Security [14]

cryptographically authenticates DNS names, but its administration cost has hindered deployment

even by the Internet’s root naming authorities, let alone by ordinary users.

Uniform Communication Identifiers [74] provide a common identifier for phone, E-mail, and

other forms of communication, along with a central address book shareable among communication

devices. HINTS [149] uses name-history trails to map obsolete user names to current ones. These

systems still rely on globally unique names with centralized registration and management, however.

Bonjour [11] allows devices to choose their own names on local-area networks, but these names

are insecure and ephemeral: any device can claim any name, and its name becomes invalid as soon

as it moves to a different network. UIA uses Bonjour libraries to discover new devices on the

local network, but UIA names persist and remain bound to the original target device despite later

migration.

DHT-based naming systems such as DDNS [57], i3 [235], and CoDoNS [192] provide new

mechanisms for resolving global names. TRIAD [47] provides content delivery and NAT traversal

by routing on global DNS names. In place of global names, UIA focuses on global connectivity via

personal names, which users can choose without the restriction of global uniqueness. In addition,

UIA’s optimistic replication of naming state keeps the user’s namespace available on his devices

even while disconnected from the Internet and its global name services or DHTs.

Ficus [103, 105], Coda [133], and Ivy [167] develop optimistic replication algorithms for file

systems, and Bayou [243] does so for databases. Rumor [104] and P-Grid [61] explore optimistic

data replication on mobile devices, Roma [240] uses one mobile device to offer central management

of data on other devices, and Footloose [176] uses mobile devices the user carries to propagate

173

updates among other devices. UIA builds on all of this work to address distributed naming and ad

hoc group management, confronting the additional challenge of maintaining consistency when not

only the data content but the set of participants may change independently on different devices.

The design of UIA’s personal name system may have applicability beyond the domain of per-

sonal devices to other peer-to-peer systems. For example, systems such as SFR [24, 258] and

i3 [235] also identify network endpoints using cryptographically secure, but otherwise meaningless,

bit strings. UIA’s name system can be used to provide human-readable names to such endpoints in

a secure and user-friendly manner.

UIA’s support for naming and connecting to other users via personal group names effectively

creates an explicit social network, comparable to those maintained by popular web sites such as

friendster [90], orkut [174], and facebook [76], except in a completely decentralized fashion with

no central database. UIA’s social network could be useful to higher-level services and applications

for various purposes, such as for sybil-resistant DHT key/value lookup [60] and other sybil-resistant

services [268, 269], and for social data sharing, search, and storage systems such as Turtle [184],

SPROUT [153], F2F [145], and Tribler [188].

8.3 Routing

Existing Internet protocols can provide some of UIA’s connectivity features, but they require con-

figuration effort and technical expertise that deters even sophisticated users. Mobile IP [183] gives

a mobile device the illusion of a fixed IP address, but requires setting up a dedicated forwarding

server at a static, public IP address. Virtual Private Networks (VPNs) [95] provide secure remote

access to corporate networks, but their infrastructure and administration requirements make them

unsuitable for deployment by average consumers for their personal networks.

A resilient overlay network (RON) [9] serves a function similar in spirit to the UIA routing

layer, increasing the reliability of an IP network by detecting connectivity failures in the underlying

network and forwarding traffic around them. RON makes no attempt at scalability beyond a few

dozen nodes, however, and assumes that all participating nodes have unique IP addresses.

Several protocols have been developed to provide connectivity through firewalls and NATs, such

as SOCKS [143], STUN [207], and UPnP [253]. These special-purpose protocols are tied to the

characteristics and network topologies of commonly deployed NATs and firewalls, however, and

do not solve the more general problem of routing between different address domains connected in

arbitrary fashion.

The following sections examine related work specific to the specific routing methods explored

in UIA.

8.3.1 Social Routing

In classic distance-vector routing algorithms [126] such as RIP [109], as well as variants such as

MS [158], ExBF [44], WRP [166], and DSDV [182], each router continuously maintains routing in-

174

formation about every other addressable node or subnet. In link-state algorithms such as OSPF [164]

and FSR [180], routers maintain complete network connectivity maps, achieving faster routing ta-

ble convergence and avoiding the looping problems of basic distance-vector algorithms. With all of

these protocols, however, each router requires at least O(N) storage for a network of size N , and

must regularly exchange connectivity information of size O(N) with each of its neighbors. Since

UIA is intended to run on personal mobile devices with limited storage and network bandwidth, but

which may be interconnected over the Internet in large numbers, it is not practical for each UIA

device to maintain individual records for every other UIA device in the network: thus, UIA requires

a more scalable approach. UIA’s social routing protocol achieves this scalability by limiting scope

to routing among social neighbors, whereas the other two schemes use distributed routing struc-

tures to provide scalable routing among arbitrary nodes while requiring limited state at each node.

In effect, UIA’s social routing protocol does not attempt to provide connectivity between arbitrary

graph nodes efficiently: instead it focuses on providing simple and efficient connectivity between

socially or administratively related nodes: i.e., a user’s own personal devices, and those of friends

and acquaintances.

Reactive or “on demand” routing algorithms designed for ad hoc networks, such as DSR [124]

and AODV [181], require routers to store information only about currently active routes, limit-

ing maintenance traffic and storage overheads on networks with localized traffic patterns. Routing

queries for distant nodes may have to be broadcast through most of the network before the desired

route is found, however, limiting the scalability of these protocols on networks with global traffic

patterns. The social routing protocol uses scoped flooding to locate and create a forwarding path to

an arbitrary node on demand, similar to ad hoc protocols like DSR and AODV, and to unstructured

peer-to-peer search mechanisms as in Gnutella [42]. UIA’s social routing algorithm performs this

flooding on a graph based on the user’s social network, however, rather than on a graph based on

the underlying physical topology. In this sense UIA is analogous to systems that leverage social

networks for other purposes, such as Turtle [184] and Tribler [188] for peer-to-peer file sharing,

SPROUT [153] and other DHTs that leverage social networks for secure key lookup [60], and

F2F [145] for friend-to-friend data storage.

8.3.2 Identity Hash Routing

Distributed hash tables (DHTs) [19, 209, 234] provide scalable lookup of arbitrary flat identifiers

in large distributed address spaces, but tolerate only limited asymmetry or non-transitivity in the

underlying network [89]. UIA’s Identity Hash Routing scheme is inspired by DHTs, but it addresses

the more difficult problem of providing both resolution of flat identifiers and creating any necessary

forwarding paths over potentially arbitrary topologies with asymmetric connectivity.

Like IHR, ROFL [37] borrows DHT techniques to build a scalable routing mechanism. While

ROFL’s goal is to build a new routing infrastructure for the Internet core to replace BGP [198]

and other routing protocols based on structured CIDR [91] addresses, IHR’s goal is to provide a

scalable routing overlay atop the Internet’s existing routing infrastructure, implemented primarily

175

by personal edge devices instead of core routers. Since it is relatively easy to deploy operating

system extensions incrementally on edge devices but difficult to modify Internet core routers and

routing protocols, the overlay approach is likely to be easier to deploy in practice. ROFL and IHR

share the common limitation of offering no formal bound on stretch, and no obvious way to modify

the algorithms to guarantee such a bound; this limitation may be more of a problem for ROFL, since

it aspires to be the “primary” routing mechanism to forward IP traffic across many link layer hops,

whereas UIA’s overlay routing layer merely provides a “backup” routing mechanism that forwards

traffic over a few IP-level hops only when direct IP-level connectivity is unavailable.

8.3.3 Compact Routing

UIA’s compact routing protocol builds on recent theoretical work, which has produced a new class

of routing algorithms ensuring both small (sub-linear) routing table size on every node and bounded

worst-case stretch on arbitrary graphs [2, 15, 56, 245], Unfortunately it is not self-evident how to

convert any of these centralized, static algorithms into practical distributed protocols, let alone

deploy them on existing networks. UIA’s TZk-based protocol is intended to be one step toward

making formal compact routing algorithms practical.

Prior analysis of one compact routing algorithm indicates that the algorithm should provide

average-case stretch close to 1 on Internet-like graphs [139], even though its worst-case stretch is

3. This analysis was done on a different algorithm by Thorup and Zwick from the one used in this

thesis, although both algorithms were presented in the same paper [245]. The two algorithms are

closely related, however, and may have similar average-case stretch properties.

Some formal analysis has also been done on the communication cost of responding to dynamic

topology changes. The worst-case cost is known to be proportional to network diameter, and thus

Ω(n) for arbitrary graphs [3]. Korman and Peleg presented a routing scheme that efficiently adapts

to changes in edge weights (but not additions or removals) in graphs with low local density [138].

Krioukov et al. noted that random scale-free graphs have high local density [140], shedding doubt on

the practicality of large-scale compact routing due to the control overhead of maintaining routing

tables. This cost analysis assumes however that routing tables are always recomputed on every

minor topology change such as a temporary link or router failure. UIA’s compact routing model

assumes in contrast that routing tables need to be recomputed only occasionally as the network’s

nominal topology evolves, leaving temporary outages to be handled by redundancy built into the

routing algorithm and into lower-level networking layers.

UIA builds on prior work analyzing compact routing algorithms by examining other practical

aspects of routing protocol behavior not previously considered, such as route congestion and ro-

bustness to failures. UIA’s protocol has also been validated via simulation on a wider variety of real

and synthetic network topologies, and at much larger scales than has been done previously: e.g.,

one graph used is a Skitter [38] AS-adjacency graph containing about 190,000 nodes and 600,000

edges.

176

UIA’s TZk-based protocol implements name-dependent compact routing, meaning that the pro-

tocol assigns each node a topology-sensitive locator that other nodes use to contact it. There

are name-independent schemes that accept arbitrary location-independent node labels [2, 15] and

have similar worst-case stretch, but their average-case stretch is generally higher than for name-

dependent routing, because any message must be sent to some node that knows the location of the

target before being forwarded to the target itself [140]. Since nodes on real networks usually ex-

change multiple messages in a conversation, it may be preferable for purposes of minimizing stretch

to perform a single address lookup in a directory of some kind, such as the DNS or a DHT, paying

this cost only once and then using more efficient routing for subsequent messages.

TZk’s hierarchy of landmarks is reminiscent of Landmark [251], and related hierarchical ad

hoc routing protocols such as LANMAR [93], L+ [43], and PeerNet [73], all of which dynamically

arrange mobile nodes into a tree. These protocols assign each node a hierarchical address corre-

sponding to its current location in this tree, and implement a location-independent identity-based

lookup service by which the current address of any node can be found. Each non-leaf node serves

as a landmark for all of its children, and is responsible for routing traffic to them from nodes outside

its local subtree. An important technical difference between TZk and landmark routing is that TZk

nodes do not fit into a strict hierarchy but instead choose their reference landmarks based on abso-

lute proximity. In TZk, for example, a level 2 reference landmark may be different from the level

2 reference landmark of the node’s level 1 reference landmark: that is, a node in TZk can choose

a “grandparent” different from its “parent’s parent.” This choice of landmarks based on absolute

proximity without imposing a strict hierarchy is a crucial property upon which TZk’s formal stretch

bound depends. Similar to landmark routing, however, TZk routes local traffic purely within the

lowest levels of the tree, providing scalability when traffic patterns are predominantly local. Since

global traffic must pass through the landmark nodes at the upper levels of the hierarchy, however,

these upper-level nodes may be overloaded in a network with global traffic patterns.

8.4 Transport

The popularity of SSL [64] and SSH tunneling [264] attest to the demand for multiplexing logical

streams onto a secure channel. MUX [94] and BEEP [204] similarly multiplex logical streams onto

one TCP stream, layering their own flow control atop TCP’s. These protocols exacerbate TCP’s

drawbacks, however, by totally ordering many unrelated activities so that one lost packet blocks

everything behind it.

SST builds on many ideas borrowed from other transports. RDP [177, 178] provides reliable

datagram delivery, in-sequence or as-available according to the application’s choice at connection

setup. SCTP [232] multiplexes multiple “streams of datagrams” onto one session, provides both

reliable and best-effort delivery, and supports “multihomed” endpoints for rapid failover. Its streams

do not have individual flow control, however, and cannot be dynamically created or destroyed, but

must be negotiated en masse at session startup. DCCP [136] is a best-effort datagram service with

177

congestion control, comparable to SST’s channel layer, but without SST’s packet security features.

RDP, SCTP, and DCCP all suffer from the “large datagram” problem: datagrams with too many

fragments are almost certain to be lost or require many retransmissions.

SST does not provide multihoming as SCTP does, but its ability to attach streams to more than

one channel at once could be extended to support multihoming, or even to load-balance a stream

across multiple channels following different network paths. Since SST’s stream protocol relies on

the channel protocol for loss detection and congestion control, these mechanisms automatically op-

erate at channel—i.e., path—granularity. Performing “end-to-end” load balancing this way could

thus avoid both the harmful performance side-effects caused by load balancing in lower layers [27],

and the complexity of managing multi-path congestion and retransmission control in a stream trans-

port [121].

The need for efficient transport support for transaction-oriented application protocols has long

been recognized [31,35]. VMTP [46] supports lightweight RPC-style communication in a clustered

environment, but provides no congestion control and limits messages to 16KB. T/TCP [36] enhances

TCP to re-open recently-closed streams quickly, but this serial reuse has the same disadvantages as

HTTP/1.1 persistent connections without the benefits of pipelining [171].

TCP has also been extended to share congestion control state across streams [18, 247]. The

Congestion Manager [22] enables congestion control sharing across multiple transports; SST should

fit well into such an architecture if available.

Another TCP extension provides end-to-end support for host mobility [222]. SST’s separation

into channel and stream layers, and its ability to migrate streams across channels, provides a cleaner

solution reminiscent of a session layer [223].

The rich literature on prioritization in the network layer to ensure quality of service [270] is rele-

vant to SST’s use of prioritization in the transport layer to schedule an application’s streams relative

to each other. Hierarchical schemes [28] may be particularly well-matched to the structured stream

abstraction. SST’s channel layer could be enhanced with techniques developed in OverQoS [238]

to provide better QoS for aggregates of logical streams on ordinary Internet paths.

8.5 NAT Traversal

UDP hole punching was first explored and publicly documented by Dan Kegel [129], and is by

now well-known in peer-to-peer application communities. Important aspects of UDP hole punching

have also been indirectly documented in the specifications of several experimental protocols, such as

STUN [207], ICE [205], and Teredo [116]. We know of no existing published work that thoroughly

analyzes hole punching, however, or that points out the hairpin translation issue for multi-level NAT

(Section 5.2.5).

We also know of no prior work that develops TCP hole punching in the symmetric fashion

described here. Even the existence of the crucial SO_REUSEADDR/SO_REUSEPORToptions in the

Berkeley sockets API appears to be little-known among P2P application developers. NatTrav [72]

178

implements a similar but asymmetric TCP hole punching procedure outlined earlier in Section 5.3.5.

NUTSS [100] and NATBLASTER [30] implement more complex TCP hole punching tricks that

can work around some of the bad NAT behaviors mentioned in Section 5.4, but they require the

rendezvous server to spoof source IP addresses, and they also require the client applications to have

access to “raw” sockets, usually available only at root or administrator privilege levels.

Protocols such as SOCKS [143], UPnP [253], NAT-PMP [48], and MIDCOM [229] allow appli-

cations to traverse a NAT through explicit cooperation with the NAT. These protocols are not widely

or consistently supported by NAT vendors or applications, however, and do not appear to address

the increasingly important multi-level NAT scenarios. Explicit control of a NAT further requires the

application to locate the NAT and perhaps authenticate itself, which typically involves explicit user

configuration. When hole punching works, in contrast, it works with no user intervention.

Recent proposals such as Nimrod [39, 191], HIP [163], and FARA [52] extend the Internet’s

basic architecture by decoupling a host’s identity from its location [50, 159, 210, 219]. IPNL [87],

UIP [80, 81], and DOA [259] propose schemes for routing across NATs in such an architecture.

While such extensions are probably needed in the long term, hole punching enables applications

to work over the existing network infrastructure immediately with no protocol stack upgrades, and

leaves the notion of “host identity” for applications to define.

179

180

Chapter 9

Conclusion

This thesis has presented the Unmanaged Internet Architecture, a connectivity architecture for in-

teractive personal devices owned and managed by nontechnical users. The most important contribu-

tions of this architecture are three novel networking abstractions: personal groups built by pairwise

introduction and managed in a fully distributed fashion; personal names that provide global con-

nectivity despite being locally scoped to a user’s personal group for convenience; and structured

streams enabling interactive, delay-sensitive applications to manage concurrent transactions effec-

tively and obtain maximum responsiveness from given network conditions. The architecture builds

on the central theme of full decentralization, and is comprised of three components: a naming layer

implementing personal groups and personal names, a routing layer to provide connectivity among

those names, and a transport layer to support high-level application communication via the struc-

tured stream abstraction.

9.1 Decentralization

Avoiding unnecessary reliance on central services or authorities is a basic principle applied through-

out UIA’s design. This principle is motivated by three goals: preserving the user’s autonomy to

manage his own devices without having to register with some organization or get help from a tech-

nical expert; preserving connectivity among those devices even when they are connected only via

an isolated local-area network or a temporarily disconnected Internet fragment; and preserving the

user’s privacy by avoiding an architectural requirement that some central service know the user’s

device names and where on the Internet they are located at all times.

While the decentralization principle applies most obviously to UIA’s naming and routing com-

ponents, it also factors into the motivation for UIA’s structured transport component, although less

directly. In a centralized client/server communication model, it may usually be assumed that the

server is “well-connected”—i.e., via a high-bandwidth, low-latency connection—and thus if there

is a high-latency component of the path it is probably on only one end (the client’s). As peer-to-

peer communication between personal devices becomes more common and universally supported,

however, it will be increasingly common for a peer-to-peer transport session to traverse two high-

181

latency links, one for each peer, effectively doubling the total round-trip time and increasing the

user-observable responsiveness benefits of avoiding unnecessary serialization onto one TCP stream.

9.2 Naming

The UIA naming system provides a new approach for introducing, naming, and globally connecting

mobile personal devices, which is complementary to the traditional global name system embodied

by the Internet’s Domain Name System. UIA gives users persistent personal names for conveniently

finding and expressing who they want to talk to, what devices they wish to access, and who can

access their own devices.

Each device starts with a generic name for itself, such as laptop, and a cryptographic end-

system identifier to provide authentic and private communication. A user can merge devices to

form personal groups, which cooperate to maintain a distributed namespace by gossiping logs of

the user’s changes. A user’s group can name both the user’s devices and other users’ groups; users

can form links securely either by physical device introduction or via other trusted channels. Since

UIA names are local and personal, users need not register with central authorities to obtain scarce

globally unique names.

9.3 Routing

UIA’s overlay routing layer provides robust connectivity between personal devices, even as they

migrate among different attachment points having different IP addresses, must communicate from

behind firewalls and NATs, or have connectivity only to a limited set of nodes in an ad hoc edge

network and not to the main Internet. This thesis has explored three approaches to overlay routing,

each of which holds promise but also has limitations: social routing, identity hash routing, and

compact routing.

• Social Routing is UIA’s currently deployed overlay routing scheme, which uses ad hoc for-

warding through social neighbors’ devices to cope with a spectrum of connectivity environ-

ments while focusing on providing connectivity between nearby social neighbors. Scoped

flooding ensures robustness when groups of devices form isolated islands of connectivity, and

a social overlay enables devices to find a target’s current IP address efficiently when they have

Internet connectivity.

• Identity Hash Routing (IHR) builds on scalable structuring ideas borrowed from distributed

hash table (DHT) technology. Whereas conventional DHTs provide only a lookup service and

assume the underlying network is already fully connected, IHR builds a combined lookup

and routing service that can both locate a node by its flat, location-independent Endpoint

Identifier, and at the same time create a forwarding path to the node. IHR supports two

specific forwarding mechanisms: source routing and virtual links. Simulation experiments

182

suggest that IHR should scale well and provide reasonably efficient paths in the common case,

although an important weakness of the algorithm is the absence of any formally guaranteed

bound on stretch, or path length inefficiency compared to shortest-path routing.

• Compact Routing builds on recent theoretical advances to build an overlay routing proto-

col that should provide both scalability and a formal stretch bound. The protocol selects a

hierarchy of landmarks and builds routing trees centered at each landmark; each node in the

network joins a limited number of routing trees and thus requires limited-size (e.g., logarith-

mic) routing tables. Simulation experiments suggest that this protocol should indeed scale

well, although it has two downsides: the routing scheme tends to create congestion around

high-level landmarks, which we can address either by selecting high-capacity, well-connected

nodes as high-level landmarks or by increasing the routing table sizes of individual nodes; and

the routing scheme depends on structured addresses, so a lookup mechanism such as a DHT

must be layered above it to make it fully usable as an overlay routing protocol for UIA.

One take-away message from this exploration is that there are clearly multiple ways to imple-

ment a routing service to fit into the UIA architecture, and none of them may be clearly dominant,

so in the long term it is probably important for UIA to remain agnostic as to which specific routing

scheme is used to connect clouds of personal devices.

9.4 Transport

UIA’s structured stream transport (SST) is designed to support application communication between

personal devices once the naming and routing layers have successfully located and connected to

a desired target device. The modern interactive applications that users wish to run on personal de-

vices typically involve many independent or concurrent transactions, as well as multimedia streams,

none of which TCP can support efficiently and responsively. Although UDP is always an option, it

is inconvenient when transactions are usually small but sometimes may be large, because IP frag-

mentation only works well in practice up to a limited datagram size. SST subsumes both the TCP

stream and UDP datagram abstractions by enabling the application to create and manage many

fine-grained streams easily and efficiently, creating a new stream for each transaction and using

“ephemeral streams” in liu of datagrams. The central characteristic of the structured stream abstrac-

tion is a “fork” operation to create new child streams from an existing stream.

SST is in its infancy and will require refinement, more optimized implementation, further anal-

ysis, and integration into the UIA naming and routing prototype. Structured streams nevertheless

appear to be a promising enhancement to the classic reliable stream abstraction, in order to better

support the needs of modern, highly interactive applications for personal devices. SST’s multiplex-

ing of independent lightweight streams onto persistent channels gives applications the flexibility to

match their use of streams to their natural structure and transaction granularity, avoiding the start-up

delays and serialization imposed by TCP and the datagram size limitations of UDP.

183

9.5 NAT Traversal

One of the UIA routing layer’s functions is to provide communication between personal devices that

are behind (the same or different) NATs. Although the UIA routing layer can address this require-

ment generically by forwarding all application traffic through a well-connected intermediary, more

efficient solutions are often available to this special case in the form of NAT traversal techniques.

Hole punching is a general-purpose NAT traversal technique that does not require any explicit

communication with the NATs involved. As long as the NATs involved meet certain behavioral

requirements, hole punching works consistently and robustly for both TCP and UDP communica-

tion, and can be implemented by ordinary applications with no special privileges or specific network

topology information. Hole punching fully preserves the transparency that is one of the most impor-

tant hallmarks and attractions of NAT, and works even with multiple levels of NAT—though certain

corner case situations require hairpin translation, a NAT feature not yet widely implemented. Now

that many of the “P2P-friendly NAT behaviors” described in this thesis including hairpin translation

are being standardized as part of the IETF’s BEHAVE working group [118], we might hope that the

percentage of NATs that support hole punching effectively will grow in the future.

9.6 Possible Barriers to Adoption

An important pragmatic consideration for any significantly new networking architecture such as

UIA is what barriers to adoption the new architecture is likely encounter in any attempt at large-scale

deployment. While we make no attempt in this thesis to explore this complex issue exhaustively, it

is worth briefly enumerating some of the most likely deployment challenges. These challenges may

be organized into three categories: technical, economic, and political.

9.6.1 Technical Barriers

There are of course many technical challenges to migrating existing operating systems and Internet

protocols to support a new networking architecture like UIA, some of which have been discussed

already throughout this thesis. In particular, the fact that UIA affects multiple architectural layers

means that various parts of the network protocol stack ideally need to be changed to effect a clean

and complete migration, and such changes in practice need to be incrementally deployable one de-

vice (or even one application) at a time without breaking interoperability with existing, “legacy”

systems, in order to see widespread use in the real world. The current UIA prototype takes consid-

erable effort to address these incremental deployment challenges, but additional issues remain.

Operating System Modifications: The current UIA naming and routing prototype is designed

to be installed at system level and operate transparently to applications, but deploying operating

system extensions at least require the user to have administrative privilege. Many users in practice

do not have administrative privileges on at least some of the machines they use regularly, however,

184

such as their work PCs. An implementation of the UIA naming and routing layers that can be linked

into and distributed with particular applications, operating entirely in user space like the prototype

SST transport library already does, could help address this barrier to adoption, but would bring with

it additional technical challenges such as making multiple UIA-enabled applications in one system

cooperate coherently with each other.

Heterogeneity of Devices and Operating Systems: In pursuing the goal of portability across

various operating systems, the current UIA naming and routing prototype is not as well-integrated

into any particular operating system as it needs to be for ease of installation and use by nontechnical

users, but cleanly integrating UIA into each of the many popular operating systems used in modern

personal devices—especially small mobile devices such as smart phones and Internet tablets, which

run a wide variety of embedded operating systems—is likely to be a major engineering challenge

requiring the support of the vendors of those devices.

Prevalence of Firewalls and NATs: While UIA’s overlay routing layer is designed to support

peer-to-peer communication between personal devices located behind firewalls or NATs, using traf-

fic forwarding or NAT traversal techniques as appropriate, the routing layer still depends on the

existence of some UIA-enabled devices that are not behind NATs or highly restrictive firewalls, in

order to provide those forwarding or NAT traversal rendezvous services. If the prevalence of NATs

and firewalls continues to increase, however, there may not be enough non-NATted UIA devices

within a user’s nearby social neighborhood to provide these forwarding or NAT traversal services

to the other devices, forcing UIA (and all other networking architectures and applications oriented

around peer-to-peer communication) into increasing reliance on centralized servers to provide these

forwarding and NAT traversal functions. Such a development would not prevent the deployment

of UIA—the routing layer’s “default peer” mechanism (Section 3.2.1) could make use of central

forwarding/rendezvous services provided by a device manufacturer or software vendor, for exam-

ple, or a user’s accounts in UIA-aware online services could act as “virtual UIA devices” providing

forwarding and rendezvous for the user’s “real” devices—but a high effective reliance on central

servers due to the scarcity of “first-class” UIA devices may undermine the fault tolerance and dis-

connected operation benefits of UIA’s fully decentralized design.

9.6.2 Economic Barriers

While surmounting the above technical barriers is probably possible, the amount of work it will re-

quire implies that such a project would eventually have to receive support and funding from a variety

of market players, such as the manufacturers of personal devices, and the vendors of the operating

systems and applications that run on them. On the positive side, there is clearly a lot of hardware

and software vendor interest in improving the power and capabilities of the networking features

in the personal devices they sell, including peer-to-peer naming and communication features, as

185

evidenced by commercial initiatives such as Apple’s MobileMe service [13] and Microsoft’s Live

Mesh [160].

On the negative side, however (and equally evidenced by the above examples), market incentives

often tend to favor “vendor-specific walled garden” approaches, in which devices manufactured by

or running software written by one vendor work well together but do not easily interoperate with

those from other vendors. To be maximally useful, a personal device connectivity architecture

like UIA will ultimately require support across a wide variety of devices and operating systems.

Achieving such interoperability will in turn require standards development activity supported by

many device and software vendors in the industry, and the willingness of vendors to engage in such

standards activity may in turn hinge on the existence of a strong and vocal demand from users for

standards-based, cross-device, vendor-neutral personal device networking.

Another possible economic roadblock to the widespread deployment of a decentralized archi-

tecture like UIA is the common preference of device and software vendors for relying on centrally

managed services located in data centers and under full control of the vendor. From the vendor’s

perspective, such services have two important advantages over decentralized services running partly

on customers’ devices. First, the vendor always has full control of the data center servers running

the centralized service, and can for example roll out software upgrades all at once without having

to worry about maintaining backward compatibility with an arbitrary number of prior software ver-

sions that may still be running somewhere on some customer’s device. Second, a centralized design

gives vendors greater access to their customers’ information and activities, which they often like to

leverage for targeted advertising and other purposes. This latter advantage from vendors’ perspec-

tive of course may create secrecy and privacy issues from the customers’ perspective, so customers

that are particularly concerned with privacy may prefer more a decentralized connectivity architec-

ture like UIA.

9.6.3 Political Barriers

Finally, associated with the above “centralized versus decentralized” tension is the ongoing political

debate on the privacy rights of individuals versus the desire of governments to monitor personal

communications for law enforcement purposes. UIA’s architecture is based on the idea that an

individual should be able to use his personal devices to communicate freely with each other, and

with the devices of his friends and associates, via secure peer-to-peer communication channels that

are cryptographically authenticated and privacy protected to prevent eavesdropping or interference

from third parties or intermediaries within the network.

Although Western democratic systems have in theory generally upheld individuals’ rights to

engage in private communication of this form, until a few years ago strong encryption technolo-

gies were export-controlled in the US [125] and even banned entirely in France [195]. While the

laws pertaining to use of strong encryption were liberalized substantially due to their usefulness

for e-commerce, and this liberalization did not specifically distinguish between “peer-to-peer” and

“customer-vendor” communication, there is no fundamental reason legal regimes could not distin-

186

guish between these different uses. It is not clear that there is the same level of economic power

backing the preservation of the right to private peer-to-peer communication as there is backing the

right to private customer-vendor communication: in fact the long series of severe anti-piracy laws

passed in the last decade in the US and elsewhere under the backing of large media companies, as

part of their war against online file sharing, suggests that the opposite is likely to be true. Thus, al-

though the private peer-to-peer communication capabilities provided by a connectivity architecture

like UIA are theoretically neutral to any particular (legal or illegal) use, the desires of both govern-

ments and large economic powers to monitor peer-to-peer communications for their own respective

purposes could ultimately represent a major political barrier to the widespread use and deployment

of an architecture like UIA in the long term.

9.7 Future Work

Although the results of this thesis suggest that the Unmanaged Internet Architecture provides a

promising approach to managing and globally connecting personal devices, many avenues for future

work remain, some of which are briefly highlighted in this section.

9.7.1 Naming

The UIA naming system currently operates only at the granularity of personal groups and devices,

but for many applications what the user cares about directly is not devices but logical distributed

applications or services [20]. If Alice makes a voice call to Bob, for example, she might prefer

her voice application to figure out automatically which of Bob’s devices he is currently reachable

at, as in the Mobile People Architecture [150] or Universal Inbox [190], instead of her having to

name a specific device as the target of the call. In other words, Alice wants to invoke Bob’s logical

voice communication service rather than a particular device, leaving the service itself to manage its

own distributed operation across Bob’s personal group. While it should already be possible to build

such distributed services atop the current UIA mechanisms as a separate layer, exploring the details

of how such services would operate and how they might be most cleanly integrated with the UIA

naming paradigm represents a compelling direction for future research.

UIA’s personal naming system is designed to coexist with DNS and support the concurrent use

of UIA’s personal names and DNS’s global names, but UIA and DNS currently use different name

resolution mechanisms: while DNS uses a client/server resolution protocol with limited caching,

UIA relies on optimistic replication of name records. It may be, however, that a single name man-

agement and resolution protocol supporting a continuum of state replication policies, between com-

pletely uncached and completely replicated, could best serve the requirements of both global and

personal naming. Developing a clean, next-generation “unified naming protocol” of this kind that

supports both personal and global names effectively, while permitting a smooth transition from the

legacy DNS protocols, may require considerable additional effort. Such a naming protocol might be

able to support both UIA-style personal names and DNS-style global names at once, however, which

187

would both reduce barriers to UIA’s adoption, since the change isn’t “just for personal names” any-

more, and provide the responsiveness benefits of UIA’s gossip-based namespace synchronization

model to the resolution of global names as well.

UIA currently provides no read access control for its namespaces, only write access control

via group ownership. Users may wish to hide certain names, such as links to business partners,

from view of the general public, or limit visibility of devices at work to business colleagues while

allowing family members to see devices at home. One difficulty in providing read access control

in UIA’s highly decentralized environment is that devices appear to require read access to a group

merely in order to determine who owns it for access control purposes, which may effectively limit

the usefulness of read access control. In order for Alice’s PC to authenticate a change record Bob

writes on his laptop to their shared PhotoClub group, for example, Alice’s PC (and any other

device that wishes to read this group) must be able to read Bob’s personal group to verify that Bob’s

laptop is indeed an indirect owner allowed to write to PhotoClub.

The UIA naming daemon currently assumes that groups are small and change infrequently, so

that it is reasonable for devices always to gossip entire groups and store change records forever (or

until the device is replaced or the user’s account wiped). The caching-based remote name resolution

protocol described in Section 2.3.6, which the current prototype does not yet implement, should

complement the current prototype’s gossip mechanism by allowing devices to resolve names in

large or rarely accessed groups held on other devices without replicating the entire group. Using

caching instead of replication for some groups comes at some cost in availability, of course, since it

is no longer guaranteed that the required name records will be available if all the owners of a remote

group are unreachable.

The current design also may not yet adequately address the gradual state buildup of name records

over long periods of time. A potentially useful modification to the current design would be for a

UIA device to keep a separate log for each group or series, and garbage collect logs of groups the

device does not own and has not accessed recently. A state checkpoint mechanism might similarly

enable devices to garbage collect old change records for groups they own.

UIA currently assumes that groups are owned by one person or a few people managing the

group by consensus: any group owner can modify the group without restriction. Users may wish to

configure groups so that changes require approval from multiple distinct owners, or to make some

owners more “trusted” than others. Treating a PC locked up in a data center as more trustworthy

than a laptop or cell phone could eliminate the risk of ownership disputes if the mobile device is

stolen, for example. The user would have to think ahead and perform more manual configuration,

however, and the consequences might be worse if the trusted PC is compromised.

As pointed out in Section 2.3.3, UIA’s current naming and revocation model can handle the

immediate re-keying of a device due to key compromise or algorithm obsolescence, but to support

smooth, gradual key or algorithm retirement it may be useful to allow a device to have multiple

EIDs at once during some “key transition period” after introducing a new EID but before revoking

the old one. There may be other reasons as well to allow a device to have multiple EIDs at once:

188

so that the device can maintain a collection of keys with a diversity of cryptographic algorithms or

key strengths, for example, allowing the user to pick an algorithm or key strength appropriate to

the security requirements of a particular application or communication session. The current naming

system would interpret the presence of two device name records referring to different EIDs as a

name conflict, and thus would need to be modified to support multiple EIDs per device. One way to

support this feature would be to allow the “target” field of a device name record to contain an EID set

instead of just one EID. Another approach would be to re-apply UIA’s personal group management

algorithm at the “intra-device” level, so that a “personal device” is no longer an atomic entity but

is itself treated as a “group of keys,” and keys can be added or revoked according to mechanisms

analogous to those UIA currently uses to add or revoke devices in the user’s personal group.

As an alternative to the digital signature algorithm with which UIA normally signs namespace

change records, we are experimenting with incorporating Alpaca [144], a security framework based

on proof-carrying authentication [10], into the UIA personal naming model. In Alpaca, instead of a

signature, a change record contains a structured proof that the record’s meaning (e.g., “resolve name

x to EID y”) has been endorsed by the group owner. Proof-carrying authentication enables new

types of proofs to be created and deployed without changing the verifier’s code. We have used this

mechanism to create a UIA group whose records are certified by MIT’s central X.509 certification

authority (CA), so that alice.mit securely maps to the person the MIT CA has endorsed as

alice@mit.edu even though UIA contains no explicit code to check X.509 certificates. Since

UIA’s goal is to provide a fully decentralized network architecture, proof-carrying authentication

furthers that goal by enabling decentralized development of new infrastructure features.

9.7.2 Routing

The routing schemes explored in this thesis indicate several alternative approaches to implementing

the routing layer of the architecture, none of them can be considered the last word in routing for UIA,

and determining the best routing protocol design and developing it into a solid, widely deployable

implementation remains for future work. It is possible that the best routing layer design may result

from a combination of ideas from the routing schemes explored here: for example, leveraging the

naming layer’s social network for security and efficiently as in the current social routing scheme, but

doing so in the context of a larger scalable distributed structure like those explored in the Identity

Hash Routing and Compact Routing schemes.

Social Routing Improvements

Apart from major new algorithmic work on UIA’s routing algorithms, the routing layer’s search

algorithm could be improved incrementally in many ways, such as by using additional hints from

the naming layer to improve its performance. To locate laptop.Charlie.Bob.Alice, for

example, the router might first locate some device belonging to Bob and ask that device to locate

laptop.Charlie. Also, the social routing protocol does not yet, but should, implement the

NAT traversal optimizations described in Chapter 5.

189

Forwarding Protocol Limitations

The routing layer currently uses SSL over TCP for all UIA connectivity, including for tunneling the

UDP datagrams of legacy applications. Although the prototype router implementation benefitted in

the short term from the maturity and portability of SSL, the downside of using SSL over TCP is

that it unnecessarily serializes all upper-level protocol traffic into one stream, creating head-of-line

blocking problems in which one dropped packet delays all traffic (logically related or not) behind it

in the SSL stream. This serialization does not cause significant problems for many applications such

as HTTP [78] and SSH [172], but currently prevents the UIA prototype from being usable for delay-

or jitter-sensitive applications such as audio/video conferencing. The best solution would be to use

the new structured stream transport described in Chapter 4 as UIA’s secure forwarding substrate

for the overlay routing layer, and not just as a transport protocol to support applications. Another

alternative would be to use DTLS [200], an adaptation of SSL for UDP; or to use IPsec [130–132]

above the overlay routing layer.

When forwarding traffic across multiple UIA devices, the routing layer currently encrypts and

authenticates traffic both hop-by-hop and end-to-end, which is inefficient but provides strong secu-

rity. We intend to make hop-by-hop protection optional in the future.

Legacy Application Support

UIA’s legacy application interface currently cannot provide each user of a multi-user machine with

a fully separate TCP/UDP port space for its own EID, because the kernel’s protocol stack offers

no way to ensure that only a particular user’s applications can bind a socket to the device-local IP

address representing that user’s EID. Thus, without enhancing the kernel’s transport protocols, only

UIA-aware applications can make full use of personal EIDs. Fixing this issue requires changes to

kernel-level code and is thus less portable.

9.7.3 Transport

Some optional extensions to the SST wire protocol presented in this thesis may be desirable for

certain purposes, which could be negotiated at channel setup time. A payload chunking similar

to SCTP’s could allow transmitters to bundle several small stream-level segments into one packet

for more efficient use of the network, in media stream trunking scenarios for example. A payload

padding option as in IPsec’s ESP could help protect against traffic analysis. Some congestion con-

trol algorithms requiring cooperation between sender and receiver may similarly be negotiated at

channel setup time.

The field sizes in the SST header format defined allow a host to send up to about 222 packets in

one round trip time, to create about 214 new streams per round trip to send about 216 bytes of data

immediately on a new stream before receiving the responder’s acknowledgment, and to send about

230 bytes of data per round trip on an established stream (the same as TCP’s maximum window

size). While these limits should be ample enough for common purposes, extremely high-bandwidth,

190

high-latency networks might benefit from a negotiable extended header format with wider fields to

support larger windows.

SST’s stream hierarchy provides an obvious potential affinity with hierarchical scheduling al-

gorithms such as Hierarchical Fair Queuing (HFQ) [111], Hierarchical Packet Fair Queuing (H-

PFQ) [28], and Lottery Scheduling [257], suggesting a simple, powerful, and flexible method of

ensuring fairness among an application’s concurrent communication activities. The naive approach

of matching the scheduling hierarchy exactly to the hereditary stream structure may be inadequate,

however, because an activity that was started for one reason might be continued for other reasons. In

a tabbed web browser that concurrently downloads several web pages, for example, a low-priority

web page might commence downloading a certain image that, as the web browser only later dis-

covers, a high-priority web page also needs. If the image download stream’s scheduling priority is

based only on its original context as a child of the low-priority web page, but the high-priority web

page needs to the image in order to complete, then a classic priority inversion scenario results. Thus,

a mechanism may be needed to allow scheduling contexts to be dynamically “transferred” within

the hierarchy, or better yet, to allow a stream to be “multihomed” and given several parent streams

for scheduling purposes.

Finally, it is easy to envision SST’s stream attachment, detachment, and migration functionality

being extended to support features such as streams that can persist across long-term disconnec-

tion [223] or reboots of either endpoint, or streams whose endpoints can migrate from one endpoint

to another, reminiscent of distributed capabilities [8, 66, 193, 241].

9.7.4 Other Features

While UIA focused on naming, routing, and transport, there are many other functional areas that

bear reconsideration in terms of the requirements of modern personal devices, especially under the

additional challenging demands of UIA’s philosophy of full decentralization. Some important topics

that the current UIA design currently leaves untouched include:

• How to replicate and synchronize not just namespace state but also application-level data

across personal devices in a fully decentralized model like UIA’s.

• How to support the naming not only of devices and groups or “users” but also services effec-

tively, where a logical service might be distributed across several devices in an application-

specific fashion.

• How best to allow new applications to interact with UIA for purposes of making security

decisions, such as supporting access control policies using UIA names, and the potential

security risks of doing so.

Inevitably, UIA can be said to have barely scratched the surface.

191

192

Bibliography

[1] ABI Research. Wi-Fi hotspots stay hot in 2008, July 2008.

[2] Ittai Abraham et al. Compact name-independent routing with minimum stretch. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2004.

[3] Yehuda Afek, Eli Gafni, and Moty Ricklin. Upper and lower bounds for routing schemes in

dynamic networks. In 30th Annual Symposium on Foundations of Computer Science (FOCS),

pages 370–375, October 1989.

[4] William Aiello et al. Just fast keying: Key agreement in a hostile Internet. ACM Transactions

on Information and System Security (TISSEC), 7(2):1–32, May 2004.

[5] S. Alexander and R. Droms. DHCP options and BOOTP vendor extensions, March 1997.

RFC 2132.

[6] M. Allman, V. Paxson, and W. Stevens. TCP congestion control, April 1999. RFC 2581.

[7] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann. TCP performance over

satellite links. In 5th International Conference on Telecommunication Systems, March 1997.

[8] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe. The Eden system:

A technical review. IEEE Transactions on Software Engineering, SE-11(1):43–59, January

1985.

[9] David G. Andersen et al. Resilient overlay networks. In 18th ACM Symposium on Operating

Systems Principles, October 2001.

[10] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In 6th ACM Con-

ference on Computer and Communications Security, November 1999.

[11] Apple Computer, Inc. Bonjour. http://developer.apple.com/networking/
bonjour/.

[12] Apple Computer, Inc. FileVault. http://www.apple.com/macosx/features/
filevault/.

[13] Apple Computer, Inc. MobileMe. http://www.apple.com/mobileme/.

[14] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and

Requirements, March 2005. RFC 4033.

[15] Marta Arias et al. Compact routing with name independence. In 15th ACM Symposium on

Parallelism in Algorithms and Architectures, June 2003.

193

[16] F. Audet, ed. and C. Jennings. Network address translation (NAT) behavioral requirements

for unicast UDP, January 2007. RFC 4787.

[17] Brikam S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan. Improving the performance

of TCP over wireless networks. In 17th International Conference on Distributed Computer

Systems (ICDCS), May 1997.

[18] Hari Balakrishnan et al. TCP behavior of a busy Internet server: Analysis and improvements.

In IEEE INFOCOM, March 1998.

[19] Hari Balakrishnan et al. Looking up data in P2P systems. Communications of the ACM,

February 2003.

[20] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott Shenker, Ion Stoica,

and Michael Walfish. A layered naming architecture for the internet. In ACM SIGCOMM,

September 2004.

[21] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H. Katz. A

comparison of mechanisms for improving TCP performance over wireless links. IEEE Trans-

actions on Networking, 5(6), December 1997.

[22] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan. An integrated congestion

management architecture for Internet hosts. In ACM SIGCOMM, September 1999.

[23] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. Improving TCP/IP

performance over wireless networks. In 1st International Conference on Mobile Computing

and Networking (MOBICOM), November 1995.

[24] Hari Balakrishnan, Scott Shenker, and Michael Walfish. Semantic-free referencing in linked

distributed systems. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS), Febru-

ary 2003.

[25] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-

tions and analysis of the generic composition paradigm. Lecture Notes in Computer Science,

1976:531–545, September 2000.

[26] S. Bellovin. Defending against sequence number attacks, May 1996. RFC 1948.

[27] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman. Packet reordering is not patho-

logical network behavior. Transactions on Networking, 7:789–798, December 1999.

[28] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair queueing algorithms. In ACM

SIGCOMM, pages 143–156, August 1996.

[29] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol — HTTP/1.0, May

1996. RFC 1945.

[30] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig. NATBLASTER:

Establishing TCP connections between hosts behind NATs. In ACM SIGCOMM Asia Work-

shop, April 2005.

[31] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. Transactions

on Computer Systems, 2(1):39–59, February 1984.

194

[32] E. Blanton and M. Allman. On making TCP more robust to packet reordering. Computer

Communications Review, 32(1), January 2002.

[33] E. Blanton and M. Allman. Using TCP duplicate selective acknowledgement (DSACKs)

and stream control transmission protocol (SCTP) duplicate transmission sequence numbers

(TSNs) to detect spurious retransmissions, February 2004. RFC 3708.

[34] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13(7):422–426, 1970.

[35] R. Braden. Towards a transport service for transaction processing applications, September

1985. RFC 955.

[36] R. Braden. T/TCP – TCP extensions for transactions, July 1994. RFC 1644.

[37] Matthew Caesar et al. ROFL: Routing on flat labels. In ACM SIGCOMM, September 2006.

[38] CAIDA. Macroscopic topology AS adjacencies. http://www.caida.org/tools/
measurement/skitter/as adjacencies.xml.

[39] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod routing architecture, August 1996.

RFC 1992.

[40] Miguel Castro et al. Secure routing for structured peer-to-peer overlay networks. In 5th

USENIX Symposium on Operating Systems Design and Implementation (OSDI), December

2002.

[41] Rory Cellan-Jones. Broadband — are you mobile or fixed? BBC News dot.life, August 2008.

[42] Yatin Chawathe et al. Making Gnutella-like P2P systems scalable. In ACM SIGCOMM,

pages 407–418, August 2003.

[43] Benjie Chen and Robert Morris. L+: Scalable landmark routing and address lookup for

multi-hop wireless networks. Technical Report 837, Massachusetts Institute of Technology

Laboratory for Computer Science, March 2002.

[44] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A loop-free Bellman-Ford

routing protocol without bouncing effect. In ACM SIGCOMM, pages 224–237, September

1989.

[45] Jacqui Cheng. .confusion: ICANN opens up Pandora’s Box of new TLDs. Ars Technica,

June 2008.

[46] David R. Cheriton. VMTP: A transport protocol for the next generation of communication

systems. Computer Communications Review, 16(3):406–415, August 1986.

[47] David R. Cheriton and Mark Gritter. TRIAD: A new next-generation Internet architecture,

July 2000.

[48] Stuart Cheshire, Marc Krochmal, and Kiren Sekar. NAT port mapping protocol, June 2005.

Internet-Draft (Work in Progress).

[49] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Firewalls and Internet Secu-

rity. Addison-Wesley, February 2003.

195

[50] J. Noel Chiappa. Endpoints and endpoint names: A proposed enhancement to the internet

architecture, 1999. Internet-Draft (Work in Progress).

[51] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation of

protocols. In ACM SIGCOMM, pages 200–208, 1990.

[52] David Clark, Robert Braden, Aaron Falk, and Venkata Pingali. FARA: Reorganizing the

addressing architecture. In ACM SIGCOMM FDNA Workshop, August 2003.

[53] David D. Clark. Window and acknowledgement strategy in TCP, July 1982. RFC 813.

[54] David D. Clark. The design philosophy of the DARPA Internet protocols. In ACM SIG-

COMM, August 1988.

[55] Bram Cohen. Incentives build robustness in BitTorrent. In 1st Workshop on Economics of

Peer-to-Peer Systems (p2pecon), June 2003.

[56] Lenore J. Cowen. Compact routing with minimum stretch. In 10th Symposium on Discrete

Algorithms (SODA), pages 255–260, Philadelphia, PA, 1999. Society for Industrial and Ap-

plied Mathematics.

[57] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using Chord. In 1st International

Workshop on Peer-to-Peer Systems, March 2002.

[58] M. Crispin. Internet message access protocol - version 4rev1, March 2003. RFC 3501.

[59] Yogen K. Dalal. More on selecting sequence numbers. SIGOPS Operating Systems Review,

9(3):25–36, July 1975.

[60] G. Danezis, C. Lesniewski-Laas, F. Kaashoek, and R. Anderson. Sybil-resistant DHT routing.

In ESORICS, 2005.

[61] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable, replicated peer-to-peer

systems. In 23rd International Conference on Distributed Computing Systems, 2003.

[62] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification, December 1998.

RFC 2460.

[63] Alan Demers et al. Epidemic algorithms for replicated database maintenance. In 6th ACM

Symposium on Principles of Distributed Computing, pages 1–12, 1987.

[64] T. Dierks and C. Allen. The TLS protocol version 1.0, January 1999. RFC 2246.

[65] Steve Dohrmann and Carl Ellison. Public-key support for collaborative groups. In 1st Annual

PKI Research Workshop, April 2002.

[66] James E. (Jed) Donnelley. Managing domains in a network operating system. In Local

Networks and Distributed Office Systems Conference, pages 345–361, May 1981.

[67] John R. Douceur. The Sybil attack. In 1st International Workshop on Peer-to-Peer Systems,

March 2002.

[68] R. Droms. Dynamic host configuration protocol, March 1997. RFC 2131.

196

[69] Morris Dworkin. Recommendation for block cipher modes of operation, December 2001.

NIST Special Publication 800-38A.

[70] K. Egevang and P. Francis. The IP network address translator (NAT), May 1994. RFC 1631.

[71] C. Ellison et al. SPKI Certificate Theory, 1999. RFC 2693.

[72] Jeffrey L. Eppinger. TCP connections for P2P apps: A software approach to solving the NAT

problem. Technical Report CMU-ISRI-05-104, Carnegie Mellon University, January 2005.

[73] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy. PeerNet: Pushing peer-

to-peer down the stack. In 2nd International Workshop on Peer-to-Peer Systems, February

2003.

[74] European Telecommunications Standards Institute. User identification solutions in converg-

ing networks, April 2001.

[75] Theodore Faber, Joe Touch, and Wei Yue. The TIME-WAIT state in TCP and its effects on

busy servers. In IEEE INFOCOM, volume 3, pages 1573–1583, March 1999.

[76] Facebook. http://www.facebook.com/.

[77] C. Feather. Network news transfer protocol (NNTP), October 2006. RFC 3977.

[78] R. Fielding et al. Hypertext transfer protocol — HTTP/1.1, June 1999. RFC 2616.

[79] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective acknowl-

edgement (SACK) option for TCP, July 2000. RFC 2883.

[80] Bryan Ford. Scalable Internet routing on topology-independent node identities. Technical

Report MIT-LCS-TR-926, MIT Laboratory for Computer Science, October 2003.

[81] Bryan Ford. Unmanaged Internet protocol: Taming the edge network management crisis. In

2nd Workshop on Hot Topics in Networks (HotNets-II), November 2003.

[82] Bryan Ford. Peer-to-peer communication across network address translators. In USENIX

Annual Technical Conference, April 2005.

[83] Bryan Ford. Structured streams: a new transport abstraction. In ACM SIGCOMM, August

2007.

[84] Bryan Ford et al. Persistent personal names for globally connected mobile devices. In 7th

USENIX Symposium on Operating Systems Design and Implementation (OSDI), November

2006.

[85] Bryan Ford et al. User-Relative Names for Globally Connected Personal Devices. In 5th

International Workshop on Peer-to-Peer Systems (IPTPS), February 2006.

[86] Bryan Ford and Janardhan Iyengar. Breaking up the transport logjam. In 7th Workshop on

Hot Topics in Networks (HotNets-VII), October 2008.

[87] Paul Francis and Ramakrishna Gummadi. IPNL: A NAT-extended Internet architecture. In

ACM SIGCOMM, August 2002.

[88] N. Freed. Behavior of and requirements for Internet firewalls, October 2000. RFC 2979.

197

[89] Michael J. Freedman et al. Non-transitive connectivity and DHTs. In USENIX WORLDS

2005, December 2005.

[90] Friendster. http://www.friendster.com/.

[91] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing (CIDR): an address

assignment and aggregation strategy, September 1993. RFC 1519.

[92] Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of stretch factor

three. Journal of Parallel and Distributed Computing, 61(5):679–687, 2001.

[93] Mario Gerla, Xiaoyan Hong, and Guangyu Pei. Landmark routing for large ad hoc wireless

networks. In IEEE GLOBECOM, November 2000.

[94] Jim Gettys. Simple MUX protocol specification, October 1996. W3C Working Draft.

[95] B. Gleeson et al. A Framework for IP Based Virtual Private Networks, February 2000. RFC

2764.

[96] Li Gong. JXTA: A network programming environment. IEEE Internet Computing, 5(3):88–

95, May 2001.

[97] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed file

cache consistency. In 12th SOSP, 1989.

[98] Saikat Guha and Paul Francis. Simple traversal of UDP through NATs and TCP too

(STUNT). http://nutss.gforge.cis.cornell.edu/.

[99] Saikat Guha and Paul Francis. Characterization and measurement of TCP traversal through

NATs and firewalls. In Internet Measurement Conference (IMC), October 2005.

[100] Saikat Guha, Yutaka Takeday, and Paul Francis. NUTSS: A SIP-based approach to UDP and

TCP network connectivity. In SIGCOMM 2004 Workshops, August 2004.

[101] S. Guha, Ed., K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT behavioral require-

ments for TCP, April 2007. Internet-Draft (Work in Progress).

[102] V. Gurbani and S. Lawrence. Handling large user datagram protocol (UDP) responses in the

session initiation protocol (SIP), October 2006. Internet-Draft (Work in Progress).

[103] R. G. Guy, G. J. Popek, and T. W. Page, Jr. Consistency algorithms for optimisic replication.

In First International Conference on Network Protocols, 1993.

[104] Richard Guy et al. Rumor: Mobile data access through optimistic peer-to-peer replication.

In ER Workshops, pages 254–265, 1998.

[105] Richard G. Guy et al. Implementation of the Ficus replicated file system. In USENIX Summer

Conference, pages 63–71, June 1990.

[106] J. Hagino and K. Yamamoto. An IPv6-to-IPv4 transport relay translator, June 2001. RFC

3142.

[107] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP friendly rate control (TFRC): Protocol

specification, January 2003. RFC 3448.

198

[108] Chris Hare and Karanjit Siyan. Internet Firewalls and Network Security. New Riders, 1996.

[109] C. Hedrick. Routing information protocol, June 1988. RFC 1058.

[110] R. Hinden and B. Haberman. Unique local IPv6 unicast addresses, October 2005. RFC 4193.

[111] David Hogan. Hierarchical fair queuing. Technical Report 506, University of Sydney, May

1996.

[112] M. Holdrege and P. Srisuresh. Protocol complications with the IP network address translator,

January 2001. RFC 3027.

[113] M. Horowitz and S. Lunt. FTP security extensions, October 1997. RFC 2228.

[114] M. Horton and R. Adams. Standard for interchange of USENET messages, December 1987.

RFC 1036.

[115] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 public key infrastructure certificate

and certificate revocation list (CRL) profile, April 2002. RFC 3280.

[116] C. Huitema. Teredo: Tunneling IPv6 over UDP through NATs, March 2004. Internet-Draft

(Work in Progress).

[117] ICANN. Biggest expansion in gTLDs approved for implementation, June 2008. http://
www.icann.org/en/announcements/announcement-4-26jun08-en.htm.

[118] Internet Engineering Task Force (IETF). Behavior engineering for hindrance avoidance (be-

have). http://www.ietf.org/html.charters/behave-charter.html.

[119] The Internet traffic archive. http://ita.ee.lbl.gov/.

[120] Internet protocol, September 1981. RFC 791.

[121] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart. Concurrent multipath transfer

using SCTP multihoming over independent end-to-end paths. Transactions on Networking,

14(5):951–964, October 2006.

[122] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance, May 1992.

RFC 1323.

[123] C. Jennings. NAT classification results using STUN, October 2004. Internet-Draft (Work in

Progress).

[124] David B. Johnson. Routing in ad hoc networks of mobile hosts. In IEEE Workshop on Mobile

Computing Systems and Applications, pages 158–163, December 1994.

[125] Margret Johnston. U.S. relaxes encryption export policy. PC World, January 2000.

[126] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton

N.J., 1962.

[127] D. N. Kalofonos, Z. Antoniou, F. D. Reynolds, M. Van-Kleek, J. Strauss, and P. Wisner.

MyNet: a platform for secure P2P personal and social networking services. In 6th An-

nual IEEE Conference on Pervasive Computing and Communications (PerCom2008), March

2008.

199

[128] B. Kantor. BSD Rlogin, September 1991. RFC 1258.

[129] Dan Kegel. NAT and peer-to-peer networking, July 1999. http://www.alumni.
caltech.edu/∼dank/peer-nat.html.

[130] S. Kent. IP authentication header, December 2005. RFC 4302.

[131] S. Kent. IP encapsulating security payload (ESP), December 2005. RFC 4303.

[132] S. Kent and K. Seo. Security architecture for the Internet protocol, December 2005. RFC

4301.

[133] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In

13th ACM Symposium on Operating Systems Principles (SOSP), pages 213–225, 1991.

[134] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for large networks: Perfor-

mance evaluation and optimization. Computer Networks, 1(3):155–174, 1977.

[135] J. Klensin, ed. Simple mail transfer protocol, April 2001. RFC 2821.

[136] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control protocol (DCCP), March

2006. RFC 4340.

[137] Eddie Kohler, Mark Handley, and Sally Floyd. Designing DCCP: Congestion control without

reliability. In ACM SIGCOMM, 2006.

[138] Amos Korman and David Peleg. Dynamic routing schemes for general graphs. In 33rd

International Colloquium on Automata, Languages and Programming (ICALP), July 2006.

[139] Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Compact routing on internet-like graphs.

In IEEE INFOCOM, 2004.

[140] Dmitri Krioukov, kc claffy, Kevin Fall, and Arthur Brady. On compact routing for the Inter-

net. SIGCOMM Computer Communications Review, 37(3):41–52, 2007.

[141] Venkat Kudallur et al. IE7 networking improvements in content caching and decompression.

IEBlog, October 2005.

[142] L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, Ed., and G. Fairhurst, Ed. The

lightweight user datagram protocol (UDP-Lite), July 2004. RFC 3828.

[143] M. Leech et al. SOCKS protocol, March 1996. RFC 1928.

[144] Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss, M. Frans Kaashoek, and Robert

Morris. Alpaca: extensible authorization for distributed services. In ACM Computer and

Communications Security, October 2007.

[145] Jinyang Li and Frank Dabek. F2F: Reliable storage in open networks. In 5th IPTPS, February

2006.

[146] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-efficient

management of DHT routing tables. In 2nd Symposium on Networked Systems Design and

Implementation (NSDI ’05), May 2005.

200

[147] Lun Li, David Alderson, Walter Willinger, and John Doyle. A first-principles approach to

understanding the Internet’s router-level topology. In ACM SIGCOMM, August 2004.

[148] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A survey

and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys &

Tutorials, 7(2):72–93, 2005.

[149] Petros Maniatis and Mary Baker. A historic name-trail service. In 5th Workshop on Mobile

Computing Systems and Applications, October 2003.

[150] Petros Maniatis et al. The mobile people architecture. Mobile Computing and Communica-

tions Review, 3(3):36–42, July 1999.

[151] Duncan Martell. Atom sales help Intel expand beyond PC market. NewsFactor Network,

August 2008.

[152] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. DHT routing using social links.

In 3rd International Workshop on Peer-to-Peer Systems (IPTPS), February 2004.

[153] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. SPROUT: P2P routing with

social networks. In 1st International Workshop on Peer-to-Peer Computing and Databases

(P2P&DB), March 2004.

[154] M. Mathis, J. Mahdav, S. Floyd, and A. Romanow. TCP selective acknowledgment options,

October 1996. RFC 2018.

[155] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining TCP congestion control. In

ACM SIGCOMM, August 1996.

[156] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system

based on the XOR metric. In 1st International Workshop on Peer-to-Peer Systems (IPTPS),

March 2002.

[157] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management

from file system security. In 17th Symposium on Operating System Principles, December

1999.

[158] P. M. Merlin and A. Segall. A failsafe distributed routing protocol. IEEE Transactions on

Communications, COM-27(9):1280–1287, September 1979.

[159] D. Meyer, Ed., L. Zhang, Ed., and K. Fall, Ed. Report from the IAB workshop on routing

and addressing, September 2007. RFC 4984.

[160] Microsoft Corporation. Live Mesh tech preview. https://www.mesh.com/.

[161] P. Mockapetris. Domain names: concepts and facilities, November 1987. RFC 1034.

[162] P. Mockapetris. Domain names: implementation and specification, November 1987. RFC

1035.

[163] R. Moskowitz and P. Nikander. Host identity protocol (HIP) architecture, May 2006. RFC

4423.

[164] J. Moy. OSPF version 2, July 1991. RFC 1247.

201

[165] Mozilla.org. Firefox tips & tricks: Pipelining. http://www.mozilla.org/support/
firefox/tips#oth pipelining.

[166] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless net-

works. Mobile Networks and Applications, 1(2):183–197, 1996.

[167] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system.

In 5th USENIX Symposium on Operating Systems Design and Implementation, 2002.

[168] J. Myers and M. Rose. Post office protocol — version 3, May 1996. RFC 1939.

[169] NAT check. http://midcom-p2p.sourceforge.net/.

[170] D. Newman. Benchmarking terminology for firewall performance, August 1999. RFC 2647.

[171] H. F. Nielsen et al. Network performance effects of HTTP/1.1, CSS1, and PNG, June 1997.

W3C NOTE-pipelining-970624.

[172] The OpenSSH project. http://www.openssh.org/.

[173] The OpenSSL project. http://www.openssl.org/.

[174] Orkut. http://www.orkut.com/.

[175] J. Palme. Common internet message headers, February 1997. RFC 2076.

[176] J.M. Paluska et al. Footloose: A case for physical eventual consistency and selective conflict

resolution. In 5th Workshop on Mobile Computing Systems and Applications, 2003.

[177] C. Partridge and R. Hinden. Version 2 of the reliable data protocol (RDP), April 1990. RFC

1151.

[178] Craig Partridge. Implementing the reliable data protocol (RDP). In USENIX Summer Con-

ference, June 1987.

[179] Craig Partridge and Timothy J. Shepard. TCP/IP performance over satellite links. IEEE

Network, 11(5):44–49, September 1997.

[180] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen. Fisheye state routing: A routing scheme for

ad hoc wireless networks. In IEEE International Conference on Communications (ICC),

pages 70–74, June 2000.

[181] Charles E. Perkins and Elizabeth M. Belding-Royer. Ad hoc on-demand distance vector

routing. In 2nd IEEE Workshop on Mobile Computing Systems and Applications, pages 90–

100, February 1999.

[182] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-

vector routing (DSDV) for mobile computers. In ACM SIGCOMM’94 Conference on Com-

munications Architectures, Protocols and Applications, pages 234–244, 1994.

[183] C. Perkins, Editor. IP mobility support for IPv4, August 2002. RFC 3344.

[184] B. Popescu, B. Crispo, and A. Tanenbaum. Safe and private data sharing with Turtle: Friends

team-up and beat the system. In 12th Cambridge Workshop on Security Protocols, 2004.

202

[185] J. Postel. User datagram protocol, August 1980. RFC 768.

[186] J. Postel and J. Reynolds. Telnet protocol specification, May 1983. RFC 854.

[187] J. Postel and J. Reynolds. File transfer protocol (FTP), October 1985. RFC 959.

[188] J.A. Pouwelse et al. Tribler: A social-based peer-to-peer system. In 5th International Work-

shop on Peer-to-Peer Systems (IPTPS), February 2006.

[189] The Python programming language. http://www.python.org/.

[190] Bhaskaran Raman, Randy H. Katz, and Anthony D. Joseph. Universal Inbox: Providing

extensible personal mobility and service mobility in an integrated communication network.

In 3rd IEEE Workshop on Mobile Computing Systems and Applications, December 2000.

[191] R. Ramanathan. Mobility support for Nimrod: Challenges and solution approaches, February

1997. RFC 2103.

[192] Venugopalan Ramasubramanian and Emin Gün Sirer. The design and implementation of a

next generation name service for the Internet. In ACM SIGCOMM, August 2004.

[193] Richard F. Rashid and George G. Robertson. Accent: A communication oriented network

operating system kernel. In 5th ACM Symposium on Operating Systems Principles (SOSP),

December 1981.

[194] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable

content-addressable network. In ACM SIGCOMM, August 2001.

[195] Jim Reavis. Trends in government encryption policies. NetworkWorldFusion, August 1999.

[196] Y. Rekhter et al. Address allocation for private internets, February 1996. RFC 1918.

[197] Y. Rekhter and T. Li. Implications of various address allocation policies for Internet routing,

October 1996. RFC 2008.

[198] Y. Rekhter, T. Li, and S. Hares (editors). A border gateway protocol 4 (BGP-4), January

2006. RFC 4271.

[199] Y. Rekhter and T. Li (editors). An architecture for IP address allocation with CIDR, Septem-

ber 1993. RFC 1518.

[200] E. Rescorla and N. Modadugu. Datagram transport layer security, April 2006. RFC 4347.

[201] P. Resnick, ed. Internet message format, April 2001. RFC 2822.

[202] Matt Richtel. Smaller PCs cause worry for industry. July 2008.

[203] R.L. Rivest and B. Lampson. SDSI: A simple distributed security infrastructure, April 1996.

http://theory.lcs.mit.edu/∼cis/sdsi.html.

[204] M. Rose. The blocks extensible exchange protocol core, March 2001. RFC 3080.

[205] J. Rosenberg. Interactive connectivity establishment (ICE), October 2007. Internet-Draft

(Work in Progress).

203

[206] J. Rosenberg et al. SIP: session initiation protocol, June 2002. RFC 3261.

[207] J. Rosenberg et al. STUN - simple traversal of user datagram protocol (UDP) through network

address translators (NATs), March 2003. RFC 3489.

[208] J. Rosenberg, C. Huitema, and R. Mahy. Traversal using relay NAT (TURN), October 2003.

Internet-Draft (Work in Progress).

[209] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In International Conference on Distributed Systems Plat-

forms (Middleware), 2001.

[210] J. Saltzer. On the naming and binding of network destinations, August 1993. RFC 1498.

[211] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. Computer

Journal, 28(1):5–8, 1985.

[212] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. Internet small computer

systems interface (iSCSI), April 2004. RFC 3720.

[213] Michael Scharf and Sebastian Kiesel. Head-of-line blocking in TCP and SCTP: Analysis and

measurements. In IEEE GLOBECOM, November 2006.

[214] H. Schulzrinne et al. RTP: A transport protocol for real-time applications, July 2003. RFC

3550.

[215] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol (RTSP), April 1998.

RFC 2326.

[216] SecurityInfoWatch.com. Top computer security risks for healthcare. March 2008.

[217] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck.

Network file system (NFS) version 4 protocol, April 2003. RFC 3530.

[218] Site multihoming by IPv6 intermediation (shim6). http://www.ietf.org/html.
charters/shim6-charter.html.

[219] John F. Shoch. Inter-network naming, addressing, and routing. In IEEE COMPCON Fall,

pages 72–79, 1978.

[220] Emil Sit and Robert Morris. Security considerations for peer-to-peer distributed hash tables.

In 1st International Workshop on Peer-to-Peer Systems (IPTPS), March 2002.

[221] Richard L. Sites. Alpha AXP architecture. Digital Technical Journal, 4(4), 1992.

[222] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobility. In 6th

ACM/IEEE International Conference on Mobile Computing and Networking, August 2000.

[223] Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaashoek. Reconsidering Internet mobil-

ity. In 8th Workshop on Hot Topics in Operating Systems, May 2001.

[224] M. Spencer et al. IAX2: Inter-Asterisk eXchange version 2, October 2006. Internet-Draft

(Work in Progress).

204

[225] R. Srinivasan. RPC: remote procedure call protocol specification version 2, August 1995.

RFC 1831.

[226] P. Srisuresh and K. Egevang. Traditional IP network address translator (Traditional NAT),

January 2001. RFC 3022.

[227] P. Srisuresh, B. Ford, and D. Kegel. State of peer-to-peer (P2P) communication across net-

work address translators (NATs), March 2008. RFC 5128.

[228] P. Srisuresh and M. Holdrege. IP network address translator (NAT) terminology and consid-

erations, August 1999. RFC 2663.

[229] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan. Middlebox communication

architecture and framework, August 2002. RFC 3303.

[230] Mudhakar Srivatsa and Ling Liu. Vulnerabilities and security threats in structured peer-

to-peer systems: A quantitative analysis. In 20th Annual Computer Security Applications

Conference (ACSAC), December 2004.

[231] Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues for ad-hoc

wireless networks. In 7th International Workshop on Security Protocols, April 1999.

[232] R. Stewart et al. Stream control transmission protocol, October 2000. RFC 2960.

[233] R. Stewart, ed. Stream control transmission protocol, September 2007. RFC 4960.

[234] Ion Stoica et al. Chord: A scalable peer-to-peer lookup service for Internet applications. In

ACM SIGCOMM, August 2001.

[235] Ion Stoica et al. Internet indirection infrastructure. In ACM SIGCOMM, August 2002.

[236] Brad Stone. What’s in a domain name? Serious money. International Herald Tribune,

January 2008.

[237] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition, June

1997.

[238] Lakshminarayanan Subramanian et al. OverQoS: An overlay based architecture for enhanc-

ing Internet QoS. In 1st USENIX/ACM Symposium on Networked Systems Design and Im-

plementation (NSDI ’04), March 2004.

[239] Carl A. Sunshine and Yogen K. Dalal. Connection management in transport protocols. Com-

puter Networks, 2(6):454–473, December 1978.

[240] E. Swierk, E. Kıcıman, V. Laviano, and M. Baker. The Roma personal metadata service. In

3rd IEEE Workshop on Mobile Computing Systems and Applications, December 2000.

[241] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using sparse capa-

bilities in a distributed operating system. In 6th International Conference on Distributed

Computing Systems (ICDCS), May 1986.

[242] Transmission control protocol, September 1981. RFC 793.

[243] Douglas B. Terry et al. Managing update conflicts in Bayou, a weakly connected replicated

storage system. In 15th ACM Symposium on Operating System Principles, 1995.

205

[244] The DIMES project. http://www.netdimes.org/.

[245] Mikkel Thorup and Uri Zwick. Compact routing schemes. In ACM Symposium on Parallel

Algorithms and Architectures (SPAA), pages 1–10, New York, NY, USA, 2001. ACM Press.

[246] Raymond S. Tomlinson. Selecting sequence numbers. SIGOPS Operating Systems Review,

9(3):11–23, July 1975.

[247] J. Touch. TCP control block interdependence, April 1997. RFC 2140.

[248] Trolltech. Qt cross-platform application framework. http://trolltech.com/
products/qt/.

[249] G. Tsirtsis and P. Srisuresh. Network address translation - protocol translation (NAT-PT),

February 2000. RFC 2766.

[250] Paul F. Tsuchiya and Tony Eng. Extending the IP internet through address reuse. Computer

Communications Review, 23(1):16–33, January 1993.

[251] Paul Francis Tsuchiya. The Landmark hierarchy: A new hierarchy for routing in very large

networks. In ACM SIGCOMM, pages 35–42, August 1988.

[252] Justin Uberti. E-mail on IETF MIDCOM mailing list, February 2004. Message-ID:

〈402CEB11.1060906@aol.com〉.

[253] UPnP Forum. Internet gateway device (IGD) standardized device control protocol, November

2001. http://www.upnp.org/.

[254] Robert Vamosi. Security watch: Don’t get burned by viruses and hackers. September 2006.

[255] David Velten, Robert Hinden, and Jack Sax. Reliable data protocol, July 1984. RFC 908.

[256] P. Vixie, Editor, S. Thomson, Y. Rekhter, and J. Bound. Dynamic updates in the domain

name system, April 1997. RFC 2136.

[257] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share

resource management. In 1st USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), November 1994.

[258] Michael Walfish, Hari Balakrishnan, and Scott Shenker. Untangling the Web from DNS.

In 1st USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI

’04), March 2004.

[259] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert Morris, and

Scott Shenker. Middleboxes no longer considered harmful. In USENIX Symposium on Op-

erating Systems Design and Implementation, December 2004.

[260] Mark Weiser. The computer for the 21st century. Mobile Computing and Communications

Review, 3(3), July 1999.

[261] D. Wing and T. Eckert. IP multicast requirements for a network address translator (NAT) and

a network address port translator (NAPT), February 2008. RFC 5135.

[262] Ye Xia and David Tse. Analysis on packet resequencing for reliable network protocols. In

IEEE INFOCOM, April 2003.

206

[263] Raj Yavatkar and Namrata Bhagawat. Improving end-to-end performance of TCP over mobile

internetworks. In Workshop on Mobile Computing Systems and Applications, December

1994.

[264] T. Ylonen and C. Lonvick, Ed. The secure shell protocol architecture, January 2006. RFC

4251.

[265] T. Ylonen and C. Lonvick, Ed. The secure shell (SSH) authentication protocol, January 2006.

RFC 4252.

[266] T. Ylonen and C. Lonvick, Ed. The secure shell (SSH) connection protocol, January 2006.

RFC 4254.

[267] T. Ylonen and C. Lonvick, Ed. The secure shell (SSH) transport layer protocol, January 2006.

RFC 4253.

[268] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao. SybilLimit: A near-

optimal social network defense against sybil attacks. In IEEE Symposium on Security and

Privacy, May 2008.

[269] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. SybilGuard:

Defending against sybil attacks via social networks. In ACM SIGCOMM, September 2006.

[270] Hui Zhang and Srinivasan Keshav. Comparison of rate-based service disciplines. In ACM

SIGCOMM, pages 113–121, 1991.

[271] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.

Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE Jour-

nal on Selected Areas in Communications, 22(1):41–53, January 2004.

207

