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ABSTRACT Frequency division duplex (FDD) systems dominate current cellular networks due to its advan-

tages of low latency and strong anti-interference ability. However, the computation and the feedback over-

heads for predicting the downlink channel state information (DL-CSI) are the major bottlenecks to further

improve the cellular FDD systems performance. To deal with these problems, in this paper, a convolutional

long short-term memory network (ConvLSTM-net)-based deep learning method is proposed for predicting

theDL-CSI from the uplink channel state information (UL-CSI) directly. In detail, our proposed ConvLSTM-

net consists of two modules: one is the feature extraction module that learns spatial and temporal correlations

between the DL-CSI and the UL-CSI, and the other one is the prediction module that maps the extracted

features to the reconstructions of the DL-CSI. To evaluate the outperformance of the ConvLSTM-net, a long

short-term memory network (LSTM-net) and a convolutional neural networks (CNN)-based schemes are

simulated for comparisons. The simulation experiments consist of two parts. One part is that the hyper param-

eters of the proposed ConvLSTM-net are analyzed to explore their effects on the prediction performance.

Another part is that experiments are conducted in the time domain and frequency domain, respectively, for

selecting amore proper domain to predict theDL-CSI accurately. From the experiment results above, it can be

verified that the proposed ConvLSTM-net with proper hyper parameters outperforms the compared schemes

at predicting DL-CSI according to UL-CSI in the cellular FDD systems, especially in the time domain.

INDEX TERMS Channel prediction, channel state information, downlink, deep learning, FDD, uplink.

I. INTRODUCTION

In wireless communication networks, accurate channel

state information at transmitter sides is crucial for var-

ious technologies, such as precoding, beamforming and

power allocation, to guarantee the communication quality

and throughputs [1]. To achieve this goal, in time division

duplex (TDD) based cellular networks, the downlink channel

state information (DL-CSI) at transmitters is inferred from

the uplink channel state information (UL-CSI) without any

additional channel estimation or feedback at the receivers by

exploiting the channel reciprocity [2]. However, the channel

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomohiko Taniguchi.

reciprocity property does not strictly hold in cellular

frequency division duplex (FDD) systems since the uplink

channel and the downlink channel are located in the different

frequency bands [3]. Previously, to obtain the DL-CSI in

cellular FDD systems, the receivers should firstly predict the

DL-CSI and then sent it back to the transmitters [4]. Obvi-

ously, the DL-CSI prediction and feedback may cause high

computation and feedback overheads at the receivers [5]. As a

result, they are the major bottlenecks for the cellular FDD

systems to improve the performance further. Particularly,

the FDD systems dominate the current cellular networks due

to the advantages of low latency and strong anti-interference

ability [4], [6], [7]. Therefore, it is urgent to solve the prob-

lems of computation and feedback overheads in the FDD

based cellular networks.
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To overcome the bottlenecks of the cellular FDD systems

mentioned above, the existing schemes can be classified into

two categories as below.

The first category is DL-CSI feedback methods [7]–[11].

These methods exploit the sparsity structure of the CSI in

specific domains to obtain the moderately accurate mea-

surements of the full DL-CSI from the limited feedbacks.

Among existed DL-CSI feedback methods, [7]–[10] are

based on compression sensing (CS) technologies. However,

two essential problems are inherent in the CS-based meth-

ods. Firstly, the CSI matrix is not exactly sparse in any

specific domain. Secondly, there still exist computational

overhead of estimating DL-CSI and certain feedback over-

head. Fortunately, with the development of the deep neural

networks (DNN), machine learning, especially deep learning,

has been applied in wireless communications [12], such as

channel estimation [13], [14], channel feedback [11], sig-

nal detection [15], [16], beamforming [17], resource allo-

cation [18], and modulated signal identification [19], [20],

which brings hope to solve the problems of the CS-based

methods above. To eliminate the limitations in the traditional

CS-based DL-CSI feedback methods, [11] proposed a deep

learning based CsiNet for DL-CSI feedback. The scheme

learns the inherent characteristics of the CSI for compress-

ing and recovering. Though the CsiNet achieves significant

improvements on reducing the DL-CSI feedback overhead

and enhancing DL-CSI recovery accuracy, it does not con-

sider the computation overhead of the channel prediction at

the receivers. Therefore, this method still cannot satisfy the

scenarios with ultra-low latency requirements.

The second category is channel correlations based meth-

ods. In detail, the transmitters acquire the DL-CSI by utilizing

the UL-CSI. The relevant work is summarized as follows. The

DL-CSI covariance matrix is estimated from the uplink (UL)

pilots sent by the receivers to the transmitters in [3]. Based on

the empirical results that there exists some strong correlations

between the UL arrival and the downlink (DL) departure

angles in the cellular FDD systems, a method called direc-

tional training was proposed in [21] to obtain the DL-CSI

by sending a small number of training symbols. A method

that derives the DL-CSI covariance matrix from the UL-CSI

based on channel reciprocity in angle domain of the cellular

FDD systems is proposed in [22]. The above methods are

based on the slow variations of long-term statistical channel

characteristics in different frequency bands, which mainly

include the channel covariance matrix and the direction of

arrival. Different from the above methods, [23] proposes a

new perspective that physical paths traversed by signals in

different frequency bands are same. By utilizing the observa-

tion, it extracts the frequency-independent physical paths of

signals from the UL-CSI, and then learns parameter values of

the physical paths. Finally, it transforms these information to

DL-CSI at any other frequency bands.

In summary, all these methods mentioned above reveal

that there exist certain correlations between the DL-CSI and

the UL-CSI in the cellular FDD systems. However, these

methods are either computationally exhaustive or based on

the mathematical models, which may mismatch the actual

channel characteristics due to the complex signal propagation

environments.

Inspired by the advantages of deep learning technolo-

gies [24] and the channel correlations in the cellular FDD

systems, the goal of the present study is to enable the cel-

lular FDD systems to predict the DL-CSI from the UL-CSI

directly. From the deep learning perspective, we treat deriving

the DL-CSI from the UL-CSI as a spatiotemporal image fore-

casting problem and propose a convolutional long short-term

memory network (ConvLSTM-net) to resolve this problem.

The ConvLSTM-net learns frequency-independent informa-

tion from the UL-CSI and then transfers it to the DL-CSI.

Considering time-varying properties of the channel, we also

treat predicting the DL-CSI from the UL-CSI as a time

sequence forecasting problem and design a long short-

term memory network (LSTM-net) to handle this problem.

To evaluate the performance of the proposed networks, a con-

volutional neural network (CNN) [25] is simulated for com-

parisons. Firstly, since convolutional kernel size is a very

important hyper parameter for convolutional operations, this

paper explores the effects of different kernel sizes of the

CNN and the CovnLSTM-net schemes. Secondly, to select

a more effective domain for exploring channel reciprocity of

the cellular FDD systems, this paper conducts experiments

in frequency domain and time domain respectively. Simula-

tion results demonstrate that the proposed ConvLSTM-net

with proper hyper parameters outperforms the LSTM-net

and CNN at predicting DL-CSI according to UL-CSI in the

cellular FDD systems, especially in time domain.

Contributions of this paper can be concluded as follows:

(1) Two new neural networks are proposed to derive the

DL-CSI from the UL-CSI. (2) The effects of different kernel

sizes of CNN and CovnLSTM-net are analyzed. (3) The

proposed schemes are implemented in time domain and fre-

quency domain respectively to select a more effective domain

to predict the DL-CSI from the UL-CSI.

The rest of the paper is structured as follows. System

model is introduced in Section II. Section III details the

ConvLSTM-net and compared schemes. In section IV, exper-

iments are simulated to evaluate the outperformance of the

proposed ConvLSTM-net. Finally, Section V concludes the

paper.

II. SYSTEM MODEL

We consider the base station (BS) and the user equip-

ment (UE) with single antenna in a cellular FDD system.

In current cellular FDD systems, DL-CSI is predicted at

UE side and then is sent to BS for serving the information

transmission, e.g. precoding, power allocation. This commu-

nication process incurs high communication and feedback

overheads, as shown in Fig. 1 (a).

In present paper, we want to remove away the computation

and feedback overheads by deriving the DL-CSI from the

UL-CSI directly without any additional DL-CSI prediction
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FIGURE 1. (a) The traditional communication process in the cellular FDD
systems. (b) The proposed communication process in the cellular FDD
systems.

FIGURE 2. Framework of the CNN.

or feedback at UE sides. Under the proposed scheme above,

the communication process is described as Fig.1 (b). Con-

sider a scenario that the cellular FDD system is operated in

orthogonal frequency division multiplexing (OFDM) model

with Ns subcarriers and the channel is time-varying. Then a

sample of Nt time slots CSI is a complex matrix with size

of Ns × Nt .

III. DETAILED INTRODUCTION OF THE PROPOSED

CONVLSTM-NET AND COMPARED SCHEMES

In this section, the principle and structure of the proposed

ConvLSTM-net are introduced in detail. For the sake of anal-

ysis, a related work CNN [25] and the proposed LSTM-net

are also described in detail as benchmarks.

A. THE CNN

This part reviews the CNN proposed by [25]. In this scheme,

the UL-CSI matrix is fed into a CNN as a two-dimensional

image with two channels, see Fig. 2. As shown in Fig. 2,

convolution kernel can extract features of the UL-CSI hidden

in the adjacent subcarriers and the adjacent time slots. The

convolutional operation can be described as Eq. (1), where

hℓ+1
i0,j0,d

denotes the convolutional result of d th convolutional

kernel in ℓ th layer at location (i0, j0) and fi,j,dℓ,d denotes the

weight of the convolutional kernel. Besides, Dℓ is the number

of channels of convolutional kernel, which is the same as the

number of channels of the input image. When set the hyper

parameter padding as ‘‘same’’,H equals the rows of the input

image and W equals the columns of the input image.

hℓ+1
i0,j0,d

=
∑H

i=0

∑W

j=0

∑Dℓ

dℓ
fi,j,dℓ,d × hℓ

i0+i,j0+j,dℓ (1)

With the stacking of several convolution layers, the depth

features obtained by each layer gradually transforms from

generalized features to high-level semantic representations.

The CNN includes five hidden convolutional layers and uses

tanh as activation function in all hidden layers. In order to

fully utilize the edge information of the input data, symmetric

padding is used in first two layers and zero padding is used

in other layers [25].

B. THE PROPOSED LSTM-NET

The CNN only extract local temporal correlations between

time slots (W time slots, see Fig. 2) of the UL-CSI. To exploit

more information hidden in the whole time slots of the

UL-CSI, we design a LSTM-net to resolve this problem.

LSTM-net has been amazingly successful at capturing long-

term patterns in time series data. In the proposed LSTM-net

scheme, the UL-CSImatrix is split according to time slots and

each time slot is sent to the LSTM-net as a time step. The pro-

posed LSTM-net consists of four LSTM layers. An unrolled

through time structure of a LSTM layer is shown in Fig. 3.

In Fig. 3, from hul(1) to hul(t) are t time slots of the UL-CSI

and from hdl(t+1) to hdl(2t) denote next t time slots of the

DL-CSI. To describe the operating principle of LSTM-net,

the architecture of a basic LSTM cell is shown in Fig. 4 [26].

FIGURE 3. Unrolled through time structure of a LSTM layer.

FIGURE 4. The inner structure of a basic LSTM cell.

In Fig. 4, ct−1 and st−1 are the long-term state and short-

term state of t − 1 time step respectively. By training the

LSTMcell, it can learnwhat to throw away through forgetting

gate ft , what to store in the long-term state through adding

operation and what to read from it through output gate ot .

Equations (2) to (7) summarize the forward propagation pro-

cess during the training process.

it = σ

(

W T
hihul(t) +W T

si st−1 + bi

)

(2)

ft = σ

(

W T
hf hul(t) +W T

sf st−1 + bf

)

(3)
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ot = σ

(

W T
hohul(t) +W T

sost−1 + bo

)

(4)

gt = tanh
(

W T
hghul(t) +W T

sgst−1 + bg

)

(5)

ct = ft ⊗ ct−1 + it ⊗ gt (6)

hdl (t + 7) = st = ot ⊗ tanh(ct ) (7)

where Whi, Whf , Who, Whg are weight matrices between the

input hul (t) and four full connected layers of the LSTM cell,

Wsi, Wsf , Wso, Wsg are weight matrices between the short-

term state st−1 and four full connected layers of the LSTM

cell, bi, bf , bo, bg are the bias terms for each of the four layers

respectively.

C. THE PROPOSED CONVLSTM-NET SCHEME

Although LSTM-net is powerful for learning temporal cor-

relations, it has too much redundancy for spatial features.

To resolve this problem, this paper formulates predicting

the DL-CSI from the UL-CSI as a spatiotemporal image

forecasting problem and designs a ConvLSTM-net. The

ConvLSTM-net consists of several ConvLSTM layers that

have been amazingly successful at capturing spatiotemporal

correlations. Comparedwith the LSTM layer, the ConvLSTM

layer replace full connection operations (see Fig. 4) with

convolutional operations in both input-to-state and state-to-

state transitions [27]. Besides, the inputs, long-term states,

short-term states, forget gates, input gates and output gates of

ConvLSTM layer are 3D tensors whose last two dimensions

(rows and columns) are spatial dimensions. By stacking mul-

tiple ConvLSTM layers, the ConvLSTM-net has powerful

representation ability and is suitable for giving predictions

in complex dynamic systems like the DL-CSI forecasting

problem in this paper.

Our designed ConvLSTM-net consists of two modules:

one is feature extraction module and the other one is pre-

diction module. In detail, the feature extraction module con-

sists of five ConvLSTM layers. Following feature extraction

module, a prediction module including one 3D convolu-

tional layer (3D-CL) is concatenated to recover the DL-CSI.

The architecture of the proposed ConvLSTM-net is shown

in Fig. 5.

FIGURE 5. Framework of our proposed ConvLSTM-net.

Different from CNN, the UL-CSI data should be prepro-

cessed before enter the ConvLSTM-net. Firstly, each time slot

of UL-CSI is reshaped to a two dimension image with size of

Nℓ × Nw, where Ns = NℓNw. In this paper, Nℓ = Nw = 6.

Secondly, real values of the image are extracted as the first

channel and imaginary values of the image are extracted as

the second channel.

One sample of the input of the ConvLSTM-net is a 4D

tensor, i.e., (frames, rows, cols, channels). In the 4D tensor,

‘‘frames’’ denotes the number of time steps of the input (here

is the number of time slots of the UL-CSI), rows × cols ×

channels is the size of one time step (here is a 3D image with

size ofNℓ×Nw×2). As shown in Fig. 5, one sample in present

problem are Nt frames images. Each image is presentation of

one time slot of the UL-CSI matrix as stated above. Likewise,

one sample of the output is also Nt frames images which are

Nt time slots of the predicted DL-CSI.

In Fig.5, the values of Nt × Nℓ × Nw × K denote the

frames, length, width, and channels of the feature maps,

respectively. For all ConvLSTM layers, K= 32. For the final

3D-CL, K= 2. In the ConvLSTM-net, all layers use zero

padding to make feature maps have the same size of the input.

In feature extraction module, each ConvLSTM layer use tanh

as activation function and followed by a batch normalization

layer. The final convolutional layer uses linear activation

function to recover the DL-CSI.

End-to-end training method is used to train all parameters

of the ConvLSTM-net. We use 8 =
{

8ex , 8pre

}

to denote

parameters in feature extraction module and prediction mod-

ule. And then the relationship of the UL-CSI and the recon-

struction of the DL-CSI is defined as

ĤDL = fpre
(

fex (HUL; 8ex) ; 8pre

)

(8)

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we conduct experiments in time domain and

frequency domain respectively to select a more effective

domain for this problem.

To evaluate the proposed methods, extended Vehicular

A (EVA) dataset including 40,000 independent samples

(35,000 samples for train and 5,000 samples for test) is

adopted [25]. To take into account Doppler frequency shift,

EVA dataset is generated under mobile speed of 50km/h.

One channel matrix sample has size of 72 × 14 (72 subcar-

riers in 14 time slots) and the first 36 subcarriers over the

first 7 time slots is assigned as the UL-CSI, and the second

36 subcarriers over the second 7 time slots is allocated as

the DL-CSI.

For CNN, LSTM-net and ConvLSTM-net, the batch size

and epochs are all set as 35 and 300 respectively. We use

dynamic learning rate by monitoring validation loss. The

learning rate is initialized with 0.01 and will be reduced to

one tenth of the original value if the validation loss does

not reduce after 40 epochs. We use Adam optimizer in the

three networks. They are all trained offline. After training,

these networks can be deployed online to input the UL-CSI

and then get the responding DL-CSI directly. The imple-

mentations of these three neural networks are in Python

and all experiments are run on NVIDIA GTX 1080 Ti.
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We compare the proposed two neural networks (LSTM-net

and ConvLSTM-net) with CNN [25] under normalized mean

squared error (NMSE) metric, which is defined as

NMSE = E







∥

∥

∥
hDL − ĥDL

∥

∥

∥

2

2

‖hDL‖
2
2






(9)

where hDL is the actual DL-CSI and ĥDL is the prediction of

the DL-CSI. As a standard metric, NMSE can fairly evaluate

the performance of a scheme since it is independent of the

elements value of the channel matrix.

For CNN scheme, [25] uses Xaviermethod to initialize net-

work parameters. For ConvLSTM-net, we useGlorot uniform

method and orthogonal method to initialize convolutional

kernel parameters and recurrent kernel parameters respec-

tively. For all networks, we use mean square error (MSE) as

the loss function which is defined as

L (8) =
1

N

∑

N

∥

∥

∥
ĥDL − hDL

∥

∥

∥

2

2
(10)

where operation ‖·‖2 denotes Euclidean norm, and N is the

number of training samples in one batch.

TABLE 1. Experiment results of the CNN and the ConvLSTM-net with
different kernel sizes.

For different data formats, convolutional kernel size is an

important hyper parameter for extracting features. Hence,

we analyze how it effects the performance of the CNN and

the ConvLSTM-net first. This paper trains the CNN and the

ConvLSTM-net with different convolutional kernel sizes in

frequency domain and time domain respectively. The corre-

sponding NMSE results are summarized in Table 1 in which

the best forecast results are marked in red. Notably, when

we compute NMSE, the outputs of the ConvLSTM-net and

the CNN are recovered to its original structure which is a

complex matrix with dimension of 36 × 7. And CSI in time

domain are transformed into frequency domain by Discrete

Fourier Transform for justice. Fig. 6 visualizes the exper-

iment results. The experiment results reveal that the CNN

achieves best performance with kernel size of 3 × 3 and the

ConvLSTM-net obtains best performance with kernel size

FIGURE 6. Performance comparisons of the CNN (conventional scheme)
and the ConvLSTM-net (our proposed scheme) with different kernel size.

FIGURE 7. Performance comparisons of CNN (conventional scheme),
LSTM-net (benchmark method) and ConvLSTM-net (our proposed
scheme).

FIGURE 8. The original DL-CSI.

of 5 × 5. When kernel size is 1 × 1, convolutional operations

learning nothing between adjacent nodes since the convolu-

tional layer is equal to full a connected layer under this con-

dition. Experiment results also reveal that the CNN and the
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FIGURE 9. Prediction of the DL-CSI in frequency domain. (a) Prediction
using the CNN; (b) Prediction using the LSTM-net; (c) Prediction using the
ConvLSTM-net.

ConvLSTM-net whether in frequency domain or time domain

are all non-effective under 1 × 1 kernel size which denotes

that almost correlations exist in adjacent subcarriers. With

kernel size increases, convolutional operations learn features

among bigger areas. For CNN, the input is an image with size

of 36 × 7 (36 subcarriers and 7 time slots) and convolutional

operations are conducted on this image. Compared to CNN,

the input of ConvLSTM-net are 7 frames (7 time slots) images

with size of 6 × 6 (36 subcarriers are reshaped into 6 × 6) and

convolutional operations are operated on each 6 × 6 image.

FromTable. 1 and Fig. 6, we can see that whether in frequency

domain and time domain, CNN with kernel size of 3 × 3

is superior to CNN with kernel size of 5 × 5 significantly

(NMSE decreased about 6 dB). However, whether in fre-

quency domain and time domain, the ConvLSTM-net with

FIGURE 10. Comparison between the prediction and the original DL-CSI
in frequency domain. (a) Comparative results of the CNN; (b) Comparative
results of the LSTM-net; (c) Comparative results of the ConvLSTM-net.

kernel size of 5 × 5 precedes the ConvLSTM-net with kernel

size of 3 × 3 dramatically (NMSE decreased about 6 dB).

Analysis from data formats of the two networks, the results

demonstrate that larger kernel size can extract more features

between subcarriers, however, time correlations between time

slots can’t be extracted perfectly by convolutional operations.

Compared to frequency domain, NMSE of the CNN with

kernel size of 3 × 3 in time domain increased about 1.3 dB.

However, compared to frequency domain, NMSE of the

ConvLSTM-net with kernel size of 3 × 3 in time domain

decreased about 1 dB and NMSE of the ConvLSTM-net with

size of 5 × 5 in time domain decreased about 1.5 dB. The

results demonstrate that, compared to frequency domain, CSI

in time domain contains a bit more time information that can
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be extracted by the ConvLSTM-net and a bit less space infor-

mation that can be extracted by CNN. Whether in frequency

domain or in time domain, the proposed ConvLSTM-net

outperformance the CNNdramatically with about 20 dB gain.

In the following, we compare NMSE results of the

ConvLSTM-net with the CNN and the LSTM-net, as shown

in Fig. 7. From Fig. 7, we can see that the LSTM-net outper-

forms the CNN with about 1dB gain and the ConvLSTM-net

achieves the best performance. For the LSTM-net, the pre-

diction accuracy in time domain is little better than that in

frequency domain, which also demonstrates that CSI in time

domain contains a bit more time information.

To further analyze the performance of the ConvLSTM-net,

we visualize the performance of the CNN, the LSTM-net

and the ConvLSTM-net respectively. This paper plot one

sample of original DL-CSI, predictions of the DL-CSI and

the comparison between them in Figs. 8∼10 (conduct exper-

iments in frequency domain only for limitation of space).

In these figures, X-axis denotes the number of time slots of

the channel matrix (i.e., columns), Y-axis denotes the number

of subcarriers of the channel matrix (i.e., rows) and Z-axis

denotes values of the channel matrix. From Fig. 9 and Fig. 10,

we can see that the prediction result of the CNN has high

errors at the edge subcarriers because of the principle of

convolutional layers and the LSTM-net has high errors at

the edge time slots because of the principle of LSTM layers.

However, the proposed ConvLSTM-net method can achieve

low NMSE at all subcarriers and all time slots due to its

stronger ability of exploiting temporal correlations among

adjacent time slots compared with the CNN and stronger

power of exploiting spatial correlations among subcarriers

compared with the LSTM-net.

V. CONCLUSION

In this paper, we have proposed a new ConvLSTM-net to

enable the cellular FDD systems to predict their DL-CSI

from the UL-CSI directly without any additional computation

and feedback overheads. Besides, a LSTM-net has also been

proposed as a benchmark. To evaluate the performance of

the ConvLSTM-net, we have conducted comparative exper-

iments in time domain and frequency domain respectively.

In addition, we have explored the performance of the pro-

posed networks with different kernel sizes. The correspond-

ing experiment results have revealed that the proper kernel

size is different for different networks due to their diverse

data formats. And the ConvLSTM-net obtains the best per-

formance among three networks due to its strong ability of

exploiting temporal correlations aswell as spatial correlations

in data samples, especially in time domain.
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