ULAM STABILITY FOR THE ORTHOGONALLY GENERAL EULER - LAGRANGE TYPE FUNCTIONAL EQUATION

K. Ravi ${ }^{1}$, M. Arunkumar ${ }^{1}$ and J. M. Rassias ${ }^{2}$

${ }^{1}$ Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, TamilNadu, India e-mail: shckravi@yahoo.co.in, annarun2002@yahoo.co.in
${ }^{2}$ Pedagogical Department E.E.,
Section of Mathematics and Informatics, National and Capodistrian University of Athens, 4, Agamemnonos Str., Aghia Paraskevi, Athens 15342, GREECE.
e-mail: jrassias@primedu.uoa.gr

Abstract

In this paper, J. M. Rassias introduces the general Euler-Lagrange type functional equation of the form

$$
f(m x+y)+f(m x-y)=2 f(x+y)+2 f(x-y)+2\left(m^{2}-2\right) f(x)-2 f(y) \quad(*)
$$

for any arbitrary but fixed real constant m with $m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2}$. We investigate the Ulam stability for the orthogonally general Euler - Lagrange type functional equation (*) controlled by the mixed type product-sum function

$$
(x, y) \rightarrow \epsilon\left[\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|y\|_{E}^{2 p}\right)\right]
$$

introduced by the third author of this paper, and by a non-negative function with $x \perp y$.
Keywords: Hyers - Ulam - Rassias stability , Ulam - Gavurta - Rassias stability, Orthogonally Euler -Lagrange functional equation, Orthogonality space, Quadratic mapping.

2000 Mathematics Subject Classification: 39B55, 39B52, 39B82,46H25.

1 Introduction

In 1940, S. M. Ulam [27] raised the question concerning the stability of group homomorphisms:

Let G_{1} be a group and let G_{2} be a metric group with the metric $\rho(.,$.$) . Given \epsilon>$ 0 , does there exists a $\delta>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $\rho(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $\rho(h(x), H(x))<\epsilon$ for all $x \in G_{1}$?
D. H. Hyers [6] answered this problem under the assumption that the groups are Banach spaces. Th. M. Rassias [24] generalized the theorem of Hyers for approximately linear mappings. The stability phenomenon that was proved by Th. M. Rassias [24] is called the Hyers Ulam - Rassias Stability.
J. M. Rassias [11-23] solved the Ulam problem for different mappings and for many EulerLagrange type quadratic mappings. In 2005, J. M. Rassias [23] solved Euler- Lagrange type quadratic functional equation of the form

$$
Q\left(m_{1} a_{1} x_{1}+m_{2} a_{2} x_{2}\right)+m_{1} m_{2} Q\left(a_{1} x_{1}-a_{2} x_{2}\right)=\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left(m_{1} Q\left(x_{1}\right)+m_{2} Q\left(x_{2}\right)\right)
$$

and discussed its Ulam stability problem.
The orthogonal Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y), x \perp y \tag{1.1}
\end{equation*}
$$

in which \perp is an abstract orthogonality symbol, was investigated by S. Gudder and D. Strawther [5]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.1) in [4].

We now introduce the concepts of orthogonality vector space, orthogonality space and orthogonality normed space and then proceed to prove our main results.
Definition 1.1. A vector space X is called an orthogonality vector space if there is a relation $x \perp y$ on X such that
(i) $x \perp 0,0 \perp x$ for all $x \in X$;
(ii) if $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;
(iii) $x \perp y$, $a x \perp b y$ for all $a, b \in \mathbb{R}$;
(iv) if P is a two-dimensional subspace of X; then
(a) for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;
(b) there exists vectors $x, y \neq 0$ such that $x \perp y$ and $x+y \perp x-y$.

Any vector space can be made into an orthogonality vector space if we define $x \perp 0,0 \perp x$ for all x and for non zero vector x, y define $x \perp y$ iff x, y are linearly independent. The relation \perp is called symmetric if $x \perp y$ implies that $y \perp x$ for all $x, y \in X$. The pair (x, \perp) is called an orthogonality space. It becomes orthogonality normed space when the orthogonality space is equipped with a norm.
Definition 1.2. Let X be an orthogonality space and Y be a real Banach space. A mapping $f: X \rightarrow Y$ is called orthogonally quadratic if it satisfies the so called orthogonally EulerLagrange (or Jordan - von Neumann) quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.2}
\end{equation*}
$$

for all $x, y \in X$ with $x \perp y$, (see [15]).
The orthogonality Hilbert space for the orthogonally quadratic functional equation (1.2) was first investigated by F. Vajzovic [28]. Recently Ulam - Gavruta - Rassias stability for the orthogonally Euler - Lagrange type functional equation of the form

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+4 f(x)-2 f(y) \tag{1.3}
\end{equation*}
$$

was investigated by Ravi and Arunkumar [26].
In this paper, we investigate the Ulam stability for the orthogonally general Euler - Lagrange type functional equation

$$
\begin{equation*}
f(m x+y)+f(m x-y)=2 f(x+y)+2 f(x-y)+2\left(m^{2}-2\right) f(x)-2 f(y) \tag{1.4}
\end{equation*}
$$

for all $x, y \in X$ with $x \perp y$, controlled by the mixed type product-sum function

$$
(x, y) \rightarrow \epsilon\left\{\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|y\|_{E}^{2 p}\right)\right\}
$$

a concept introduced by the third author of this paper, and by a general non-negative function. Note that the general Euler - Lagrange type functional equation (1.4) is equivalent to the standard Euler - Lagrange equation (1.2).

A mapping $f: X \rightarrow Y$ is called orthogonally quadratic if it satisfies the quadratic functional equation (1.4) for all $x, y \in X$ with $x \perp y$ where X be an orthogonality space and Y be a real Banach space.

2 Stability of the Functional Equation (1.4)

In this section, let (E, \perp) denote an orthogonality normed space with norm $\|\cdot\|_{E}$ and $\left(F,\|\cdot\|_{F}\right)$ is a Banach space.

Theorem 2.1. Let $f: E \rightarrow F$ be a mapping which satisfying the inequality

$$
\begin{align*}
\| f(m x+y)+f(m x-y) & -2 f(x+y)-2 f(x-y)-2\left(m^{2}-2\right) f(x)+2 f(y) \|_{F} \\
& \leq \epsilon\left\{\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|x\|_{E}^{2 p}\right)\right\} \tag{2.1}
\end{align*}
$$

for all $x, y \in E$ with $x \perp y$, where ϵ and p are constants with $\epsilon, p>0$ and either

$$
m>1 ; p<1 \text { or } m<1 ; p>1 \text { with } m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2} \text { and }-1 \neq|m|^{p-1}<1
$$

Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} x\right)}{m^{2 n}} \tag{2.2}
\end{equation*}
$$

exists for all $x \in E$ and $Q: E \rightarrow F$ is the unique orthogonally Euler - Lagrange quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{\epsilon}{2\left|m^{2}-m^{2 p}\right|}\|x\|_{E}^{2 p} \tag{2.3}
\end{equation*}
$$

for all $x \in E$.

Proof. Replacing (x, y) with $(0,0)$ in (2.1), we obtain $2\left|2-m^{2}\right|\|f(0)\|=0$ or $f(0)=0$ if $m^{2} \neq 2$. Again substituting (x, y) by $(x, 0)$ in (2.1), we get

$$
\left\|f(m x)-m^{2} f(x)\right\|_{F} \leq \frac{1}{2} \epsilon\|x\|_{E}^{2 p}
$$

(i.e).,

$$
\begin{equation*}
\left\|\frac{f(m x)}{m^{2}}-f(x)\right\|_{F} \leq \frac{1}{2} \frac{\epsilon}{m^{2}}\|x\|_{E}^{2 p}(m \neq 0) \tag{2.4}
\end{equation*}
$$

for all $x \in E$. Now replacing x by $m x$ and dividing by m^{2} in (2.4) and then adding the resulting inequality with (2.4), we obtain

$$
\begin{equation*}
\left\|\frac{f\left(m^{2} x\right)}{m^{4}}-f(x)\right\|_{F} \leq \frac{1}{2} \frac{\epsilon}{m^{2}}\left(1+\frac{m^{2 p}}{m^{2}}\right)\|x\|_{E}^{2 p} \tag{2.5}
\end{equation*}
$$

for all $x \in E$. Using induction on n we obtain that

$$
\begin{align*}
\left\|\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)\right\|_{F} & \leq \frac{1}{2} \frac{\epsilon}{m^{2}} \sum_{k=0}^{n-1} \frac{m^{2 p k}}{m^{2 k}}\|x\|_{E}^{2 p} \tag{2.6}\\
& \leq \frac{1}{2} \frac{\epsilon}{m^{2}} \sum_{k=0}^{\infty} \frac{m^{2 p k}}{m^{2 k}}\|x\|_{E}^{2 p}
\end{align*}
$$

for all $x \in E$. In order to prove the convergence of the sequence $\left\{f\left(m^{n} x\right) / m^{2 n}\right\}$ replace x by $m^{l} x$ and divide by $m^{2 l}$ in (2.6), for any $n, l>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(m^{n+l} x\right)}{m^{2(l+n)}}-\frac{f\left(m^{l} x\right)}{m^{2 l}}\right\|_{F} & =\frac{1}{m^{2 l}}\left\|\frac{f\left(m^{n+l} x\right)}{m^{2 n}}-f\left(m^{l} x\right)\right\|_{F} \\
& \leq \frac{1}{2} \frac{\epsilon}{m^{2}} \frac{1}{m^{2 l(1-p)}} \sum_{k=0}^{\infty} \frac{m^{2 p k}}{m^{2 k}}\|x\|_{E}^{2 p} . \tag{2.7}
\end{align*}
$$

Since $m^{2(1-p)}<1$, the R.H.S of (2.7) tends to 0 as $l \rightarrow \infty$ for all $x \in E$. Thus $\left\{f\left(m^{n} x\right) / m^{2 n}\right\}$ is a Cauchy sequence. Since F is complete, there exists a mapping $Q: E \rightarrow F$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} x\right)}{m^{2 n}} \quad \forall x \in E
$$

By letting $n \rightarrow \infty$ in (2.6), we arrive the formula (2.3) for all $x \in E$. To prove Q satisfies (1.4), replace (x, y) by $\left(m^{n} x, m^{n} y\right)$ in (2.1) and divide by $m^{2 n}$ then it follows that

$$
\begin{aligned}
& \frac{1}{m^{2 n}} \| f\left(m^{n}(m x+y)\right)+f\left(m^{n}(m x-y)\right)-2 f\left(m^{n}(x+y)\right)-2 f\left(m^{n}(x-y)\right) \\
& -2\left(m^{2}-2\right) f\left(m^{n} x\right)+2 f\left(m^{n} y\right) \|_{F} \leq \frac{\epsilon}{m^{2 n}}\left\{\left\|m^{n} x\right\|_{E}^{p}\left\|m^{n} y\right\|_{E}^{p}+\left(\left\|m^{n} x\right\|_{E}^{2 p}+\left\|m^{n} y\right\|_{E}^{2 p}\right)\right\}
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we get

$$
\left\|Q(m x+y)+Q(m x-y)-2 Q(x+y)-2 Q(x-y)-2\left(m^{2}-2\right) Q(x)+2 Q(y)\right\|_{F} \leq 0
$$

which gives

$$
Q(m x+y)+Q(m x-y)=2 Q(x+y)+2 Q(x-y)+2\left(m^{2}-2\right) Q(x)-2 Q(y)
$$

for all $x, y \in E$ with $x \perp y$. Therefore $Q: E \rightarrow F$ is an orthogonally Euler - Lagrange quadratic mapping which satisfies (1.4). To prove the uniqueness of Q, let Q^{\prime} be another orthogonally Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.3). We have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\|_{F} & =\frac{1}{m^{2 n}}\left\{\left\|Q\left(m^{n} x\right)-f\left(m^{n} x\right)\right\|_{F}+\left\|f\left(m^{n} x\right)-Q^{\prime}\left(m^{n} x\right)\right\|_{F}\right\} \\
& \leq \frac{1}{2} \frac{2 \epsilon}{m^{2}} \sum_{j=0}^{\infty} \frac{1}{m^{2(k+n)(1-p)}}\|x\|_{E}^{2 p} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in E$. Therefore Q is unique. This completes the proof of the theorem.
Theorem 2.2. Let $f: E \rightarrow F$ be a mapping which satisfying the inequality

$$
\begin{align*}
\| f(m x+y)+f(m x-y) & -2 f(x+y)-2 f(x-y)-2\left(m^{2}-2\right) f(x)+2 f(y) \|_{F} \\
& \leq \epsilon\left\{\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|x\|_{E}^{2 p}\right)\right\} \tag{2.8}
\end{align*}
$$

for all $x, y \in E$ with $x \perp y$, where ϵ and p are constants with $\epsilon, p>0$ and either

$$
m>1 ; p>1 \text { or } m<1 ; p<1 \text { with } m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2} \quad \text { and }-1 \neq|m|^{1-p}<1 .
$$

Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} m^{2 n} f\left(\frac{x}{m^{n}}\right) \tag{2.9}
\end{equation*}
$$

exists for all $x \in E$ and $Q: E \rightarrow F$ is the unique orthogonally Euler - Lagrange quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{\epsilon}{2\left|m^{2 p}-m^{2}\right|}\|x\|_{E}^{2 p} \tag{2.10}
\end{equation*}
$$

for all $x \in E$.
Proof. Replacing x by $\frac{x}{m}(m \neq 0)$ in (2.4), we get

$$
\begin{equation*}
\left\|f(x)-m^{2} f\left(\frac{x}{m}\right)\right\|_{F} \leq \frac{1}{2} \frac{\epsilon}{m^{2 p}}\|x\|_{E}^{2 p}(m \neq 0) \tag{2.11}
\end{equation*}
$$

for all $x \in E$. Now replacing x by $\frac{x}{m}$ and multiply by m^{2} in (2.11) and summing the resultant inequality with (2.11), we arrive

$$
\begin{equation*}
\left\|f(x)-m^{4} f\left(\frac{x}{m^{2}}\right)\right\|_{F} \leq \frac{1}{2} \frac{\epsilon}{m^{2 p}}\left(1+\frac{m^{2}}{m^{2 p}}\right)\|x\|_{E}^{2 p} \tag{2.12}
\end{equation*}
$$

for all $x \in E$. Using induction on n we obtain that

$$
\begin{align*}
\left\|f(x)-m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\|_{F} & \leq \frac{1}{2} \frac{\epsilon}{m^{2 p}} \sum_{k=0}^{n-1} \frac{m^{2 k}}{m^{2 p k}}\|x\|_{E}^{2 p} \tag{2.13}\\
& \leq \frac{1}{2} \frac{\epsilon}{m^{2 p}} \sum_{k=0}^{\infty} \frac{m^{2 k}}{m^{2 p k}}\|x\|_{E}^{2 p}
\end{align*}
$$

for all $x \in E$. In order to prove the convergence of the sequence $\left\{m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\}$, replace x by $\frac{x}{m^{l}}$ and multiply by $m^{2 l}$ in (2.13), for any $n, l>0$, we obtain

$$
\begin{align*}
\left\|m^{2(n+l)} f\left(\frac{x}{m^{l+n}}\right)-m^{2 l} f\left(\frac{x}{m^{l}}\right)\right\|_{F} & =m^{2 l}\left\|m^{2 n} f\left(\frac{x}{m^{l+n}}\right)-f\left(\frac{x}{m^{l}}\right)\right\|_{F} \\
& \leq \frac{1}{2} \frac{\epsilon}{m^{2 p}} \frac{1}{m^{2 l(p-1)}} \sum_{k=0}^{\infty} \frac{m^{2 k}}{m^{2 p k}}\|x\|_{E}^{2 p} \tag{2.14}
\end{align*}
$$

Since $m^{2(p-1)}<1$, the R.H.S of (2.14) tends to 0 as $l \rightarrow \infty$ for all $x \in E$. Thus $\left\{m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\}$ is a Cauchy sequence. Since F is complete, there exists a mapping $Q: E \rightarrow F$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} m^{2 n} f\left(\frac{x}{m^{n}}\right) \quad \forall x \in E .
$$

By letting $n \rightarrow \infty$ in (2.13), we arrive the formula (2.10) for all $x \in E$. To show that Q is unique and it satisfies (1.4), the proof is similar to that of Theorem 2.1

Theorem 2.3. Let E be a real orthogonality normed linear space and F be a real complete normed linear space. Assume in addition that $f: E \rightarrow F$ is an approximately quadratic mappings for which there exists a constant $\theta>0$ such that f satisfies

$$
\begin{align*}
\| f(m x+y)+f(m x-y) & -2 f(x+y)-2 f(x-y)-2\left(m^{2}-2\right) f(x)+2 f(y) \|_{F} \\
& \leq \theta H(x, y), \quad x \perp y \tag{2.15}
\end{align*}
$$

for all $(x, y) \in E^{2}, x \perp y$ and $H: E^{2} \rightarrow \mathbb{R}^{+} \cup\{0\}$ is a non negative real valued function, such that

$$
\begin{equation*}
R(x)=\sum_{j=0}^{\infty} \frac{H\left(m^{j} x, 0\right)}{m^{2 j}}(<\infty)(m \neq 0) \tag{2.16}
\end{equation*}
$$

is a non negative function on x, with $m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2}$ and the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{H\left(m^{k} x, m^{k} y\right)}{m^{2 k}}=0 \tag{2.17}
\end{equation*}
$$

holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings $Q: E \rightarrow$ F such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{\theta}{2 m^{2}} R(x)+\frac{\|f(0)\|_{F}}{\left|m^{2}-1\right|} \tag{2.18}
\end{equation*}
$$

for all $x \in E$. In addition $f: E \rightarrow F$ is a mapping such that the transformation $t \rightarrow f(t x)$ is continuous in real t for each fixed $x \in E$, then Q is \mathbb{R} - linear mapping.

Proof. Letting $y=0$ in (2.15), we get

$$
\begin{align*}
\left\|\frac{f(m x)}{m^{2}}-f(x)+\frac{f(0)}{m^{2}}\right\|_{F} \leq \frac{\theta}{2 m^{2}} H(x, 0) & (m \neq 0) \\
\left\|f(x)-\frac{f(m x)}{m^{2}}\right\|_{F} \leq \frac{\theta}{2 m^{2}} H(x, 0)+\frac{\|f(0)\|_{F}}{m^{2}} & (m \neq 0) \tag{2.19}
\end{align*}
$$

for all $x \in E$. Now replacing x by $m x$ divide by m^{2} in (2.19), we obtain

$$
\left\|\frac{f(m x)}{m^{2}}-\frac{f\left(m^{2} x\right)}{m^{4}}\right\|_{F} \leq \frac{\theta}{2 m^{4}} H(m x, 0)+\frac{\|f(0)\|_{F}}{m^{4}} .
$$

Using (2.19) and the above inequality, we arrive

$$
\begin{equation*}
\left\|f(x)-\frac{f\left(m^{2} x\right)}{m^{4}}\right\|_{F} \leq \frac{\theta}{2 m^{2}}\left[H(x, 0)+\frac{H(m x, 0)}{m^{2}}\right]+\frac{\|f(0)\|_{F}}{m^{2}}\left[1+\frac{1}{m^{2}}\right] \tag{2.20}
\end{equation*}
$$

for all $x \in E$. Using the induction on n we obtain that

$$
\begin{equation*}
\left\|f(x)-\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\|_{F} \leq \frac{\theta}{2 m^{2}} \sum_{j=0}^{n-1} \frac{H\left(m^{j} x, 0\right)}{m^{2 j}}+\frac{\|f(0)\|_{F}}{m^{2}} \sum_{j=0}^{n-1} \frac{1}{m^{2 j}} \tag{2.21}
\end{equation*}
$$

for all $x \in E$. In order to prove the convergence of the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}$ replace x by $m^{l} x$ and divided by $m^{2 l}$ in (2.21), for any $n, l>0$, we obtain

$$
\begin{aligned}
\| \frac{f\left(m^{l} x\right)}{m^{2 l}}-\frac{f\left(m^{n+l} x\right)}{m^{2(n+l)} \|_{F}} & =\frac{1}{m^{2 l}}\left\|f\left(m^{l} x\right)-\frac{f\left(m^{n+l} x\right)}{m^{2 n}}-\right\|_{F} \\
& \leq \frac{\theta}{2 m^{2}} \sum_{j=0}^{n-1} \frac{H\left(m^{j+l} x, 0\right)}{m^{2(j+l)}}+\frac{\|f(0)\|_{F}}{m^{2}} \sum_{j=0}^{n-1} \frac{1}{m^{2(j+l)}} \\
& \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty
\end{aligned}
$$

for all $x \in E$. Thus $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}$ is a Cauchy sequence. Since F is complete, there exists a mapping $Q: E \rightarrow F$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} x\right)}{m^{2 n}}, \quad \forall x \in E .
$$

Letting $n \rightarrow \infty$ in (2.21) and using the definition of $Q(x)$ and (2.16), we arrive at the formula (2.18). Indeed

$$
\begin{aligned}
\|f(x)-Q(x)\|_{F} & \leq \frac{\theta}{2 m^{2}} \sum_{j=0}^{\infty} \frac{H\left(m^{j} x, 0\right)}{m^{2 j}}+\frac{\|f(0)\|_{F}}{m^{2}} \sum_{j=0}^{\infty} \frac{1}{m^{2 j}} \\
& \leq \frac{\theta}{2 m^{2}} R(x)+\frac{\|f(0)\|_{F}}{m^{2}}\left[\frac{m^{2}}{m^{2}-1}\right] \\
& \leq \frac{\theta}{2 m^{2}} R(x)+\frac{\|f(0)\|_{F}}{\left|m^{2}-1\right|}
\end{aligned}
$$

for all $x \in E$. To prove Q satisfies (1.4), replace (x, y) by $\left(m^{n} x, m^{n} y\right)$ in (2.15) and divide by $m^{2 n}$ then it follows that

$$
\begin{aligned}
& \frac{1}{m^{2 n}} \| f\left(m^{n}(m x+y)\right)+f\left(m^{n}(m x-y)\right)-2 f\left(m^{n}(x+y)\right)-2 f\left(m^{n}(x-y)\right) \\
& -2\left(m^{2}-2\right) f\left(m^{n} x\right)+2 f\left(m^{n} y\right) \|_{F} \leq \frac{\theta}{m^{2 n}} H\left(m^{n} x, m^{n} y\right)
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we get

$$
\left\|Q(m x+y)+Q(m x-y)-2 Q(x+y)-2 Q(x-y)-2\left(m^{2}-2\right) Q(x)+2 Q(y)\right\|_{F} \leq 0
$$

which gives

$$
Q(m x+y)+Q(m x-y)=2 Q(x+y)+2 Q(x-y)+2\left(m^{2}-2\right) Q(x)-2 Q(y)
$$

for all $x, y \in E$ with $x \perp y$. Therefore $Q: E \rightarrow F$ is an orthogonally Euler - Lagrange quadratic mapping which satisfies (1.4). To prove the uniqueness of Q, let Q^{\prime} be another orthogonally Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.18). We have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\|_{F} & =\frac{1}{m^{2 n}}\left\{\left\|Q\left(m^{n} x\right)-f\left(m^{n} x\right)\right\|_{F}+\left\|f\left(m^{n} x\right)-Q^{\prime}\left(m^{n} x\right)\right\|_{F}\right\} \\
& \leq \frac{1}{m^{2 n}}\left\{\frac{\theta}{m^{2}} R(x)+\frac{2\|f(0)\|_{F}}{\left|m^{2}-1\right|}\right\} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in E$. Therefore Q is unique. This completes the proof of the theorem.

Theorem 2.4. Let E be a real orthogonality normed linear space and F be a real complete normed linear space. Assume in addition that $f: E \rightarrow F$ is an approximately quadratic mappings for which there exists a constant $\theta>0$ such that f satisfies

$$
\begin{align*}
\| f(m x+y)+f(m x-y) & -2 f(x+y)-2 f(x-y)-2\left(m^{2}-2\right) f(x)+2 f(y) \|_{F} \\
\leq & \theta H(x, y), \quad x \perp y \tag{2.22}
\end{align*}
$$

for all $(x, y) \in E^{2}, x \perp y$ and $H: E^{2} \rightarrow \mathbb{R}^{+} \cup\{0\}$ is a non negative real valued function, such that

$$
\begin{equation*}
R(x)=\sum_{j=0}^{\infty} m^{2 j} H\left(\frac{x}{m^{j+1}}, 0\right)(<\infty)(m \neq 0) \tag{2.23}
\end{equation*}
$$

is a non negative function on x, with $m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2}$ and the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} m^{2 k} H\left(\frac{x}{m^{k}}, \frac{y}{m^{k}}\right)=0 \tag{2.24}
\end{equation*}
$$

holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings $Q: E \rightarrow$ F such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{\theta}{2} R(x)+\frac{\|f(0)\|_{F}}{\left|1-m^{2}\right|} \tag{2.25}
\end{equation*}
$$

for all $x \in E$. In addition $f: E \rightarrow F$ is a mapping such that the transformation $t \rightarrow f(t x)$ is continuous in real t for each fixed $x \in E$, then Q is \mathbb{R} - linear mapping.

Proof. Replacing x by $\frac{x}{m}$ in (2.19) and using the proof of Theorem 2.3, we arrive at the desired result.

The following two analogous Theorems 2.5 and 2.6 can be obtained as two special cases: either $m=1$ or $m=-1$. In these two cases the pertinent functional equations are obviously equivalent to the classical quadratic equation:

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.26}
\end{equation*}
$$

for all $x, y \in E$ with $x \perp y$.
Theorem 2.5. Let $f: E \rightarrow F$ be a mapping satisfying the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\|_{F} \leq \epsilon\left[\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|x\|_{E}^{2 p}\right)\right] \tag{2.27}
\end{equation*}
$$

for all $x, y \in E$ with $x \perp y$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}} \tag{2.28}
\end{equation*}
$$

exists for all $x \in E$ and $Q: E \rightarrow F$ is the unique Euler-Lagrange quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{3 \epsilon}{4-2^{2 p}}\|x\|_{E}^{2 p} \tag{2.29}
\end{equation*}
$$

for all $x \in E$.
Proof. Letting $y=x$ in (2.27), we get

$$
\begin{equation*}
\left\|\frac{f(2 x)}{4}-f(x)\right\|_{F} \leq \frac{3 \epsilon}{4}\|x\|_{E}^{2 p} \tag{2.30}
\end{equation*}
$$

for all $x \in E$. Now Replacing x by $2 x$ and dividing by 4 in (2.30) and summing the resultant inequality with (2.30), we arrive

$$
\begin{equation*}
\left\|\frac{f\left(2^{2} x\right)}{4^{2}}-f(x)\right\|_{F} \leq \frac{3 \epsilon}{4}\left(1+\frac{2^{2 p}}{4}\right)\|x\|_{E}^{2 p} \tag{2.31}
\end{equation*}
$$

for all $x \in E$. Using induction on n, we obtain that

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-f(x)\right\|_{F} & \leq \frac{3 \epsilon}{4} \sum_{k=0}^{n-1} \frac{2^{2 p k}}{4^{k}}\|x\|_{E}^{2 p} \tag{2.32}\\
& \leq \frac{3 \epsilon}{4} \sum_{k=0}^{\infty} \frac{2^{2 p k}}{4^{k}}\|x\|_{E}^{2 p}
\end{align*}
$$

for all $x \in E$. In order to prove the convergence of the sequence $\left\{f\left(2^{n} x\right) / 4^{n}\right\}$, replace x by $2^{l} x$ and divide by 4^{l} in (2.32), for $n, l>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(2^{n+l} x\right)}{4^{l+n}}-\frac{f\left(2^{l} x\right)}{4^{l}}\right\|_{F} & =\frac{1}{4^{l}}\left\|\frac{f\left(2^{n+l} x\right)}{4^{n}}-f\left(2^{l} x\right)\right\|_{F} \\
& \leq \frac{1}{4^{l}} \frac{3 \epsilon}{4} \sum_{k=0}^{n-1} \frac{2^{2 p k}}{4^{k}}\left\|2^{l} x\right\|_{E}^{2 p} \\
& \leq \frac{3 \epsilon}{4} \sum_{k=0}^{\infty} \frac{2^{2 p(k+l)}}{4^{(k+l)}}\|x\|_{E}^{2 p} \\
& \leq \frac{3 \epsilon}{4} \sum_{k=0}^{\infty} \frac{1}{2^{2(1-p)(k+l)}\|x\|_{E}^{2 p} .} \tag{2.33}
\end{align*}
$$

As $p<1$, the R.H.S of (2.33) tends to 0 as $l \rightarrow \infty$. Thus $\left\{f\left(2^{n} x\right) / 4^{n}\right\}$ is a Cauchy sequence. Since F is complete, there exists a mapping $Q: E \rightarrow F$ and define

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}} \quad \forall x \in E .
$$

Letting $n \rightarrow \infty$ in (2.32), we arrive the formula (2.29) for all $x \in E$. To prove Q satisfies (1.4) and it is unique the proof is similar to that of Theorem 2.1. Hence the proof is complete.

Theorem 2.6. Let $f: E \rightarrow F$ be a mapping satisfying the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\|_{F} \leq \epsilon\left[\|x\|_{E}^{p}\|y\|_{E}^{p}+\left(\|x\|_{E}^{2 p}+\|x\|_{E}^{2 p}\right)\right] \tag{2.34}
\end{equation*}
$$

for all $x, y \in E$ with $x \perp y$, where ϵ and p are constants with $\epsilon>0$ and $p>1$. Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) \tag{2.35}
\end{equation*}
$$

exists for all $x \in E$ and $Q: E \rightarrow F$ is the unique orthogonally Euler - Lagrange quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{F} \leq \frac{3 \epsilon}{2^{2 p}-4}\|x\|_{E}^{2 p} \tag{2.36}
\end{equation*}
$$

for all $x \in E$.
Proof. Replacing x by $\frac{x}{m}$ in (2.30) and using the proof of Theorem 2.5, we arrive at the desired result.

References

[1] J. Alonso and C. Benitez, 1988, Orthogonality in normed linear spaces: survey I. Main properties, Extracta Math. 3, 1-15.
[2] J. Alonso and C. Benitez, 1989, Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math. 4, 121-131.
[3] J. Aczel and J. Dhombres, 1989, Functional Equations in Several Variables, (Cambridge Univ,Press,Cambridge).
[4] R. Ger and J. Sikorska, 1995, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, 143-151.
[5] S. Gudder and D. Strawther, 1975, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58, 427-436.
[6] D.H.Hyers, 1941, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27, 222-224.
[7] J.C.James, 1945, Orthogonality in normed linear spaces, Duck Math. J. 12, 291-302.
[8] P. Nakmahachalasint, 2007, On the generalized Ulam - Gavruta - Rassias stability of a mixed type linear and Euler - Lagrange - Rassias functional equation, International Journal of Mathematics and Mathematical Sciences: IJMMS, Volume 2007, Article ID 63239, 1-10, doi:10.1155/2007/63239, Hindawi Publ. Corporation., 2007.
[9] P. Nakmahachalasint, 2007, Hyers-Ulam-Rassias and Ulam-Gavruta - Rassias stabilities of an additive functional equation in several variables, International Journal of Mathematics and Mathematical Sciences: IJMMS, Hindawi Publ. Corporation., 2007.
[10] A. Pietrzyk, 2006, Stability of the Euler - Lagrange - Rassias functional equation, Demonstratio Mathematica, 39 (3), 523-530.
[11] J.M.Rassias, 1982, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, 126-130.
[12] J.M.Rassias, 1984, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108, 445-446.
[13] J. M. Rassias, 1989, Solution of problem of Ulam, J. Approx. Th. USA, 57, 268-273.
[14] J. M. Rassias, 1992, Solution of a stability problem of Ulam, Discuss. Math. 12, 95-103.
[15] J. M. Rassias, 1992, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20, 185-190.
[16] J. M. Rassias, 1994, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28, 231-235.
[17] J. M. Rassias, 1994, Complete solution of the multi dimensional problem of Ulam, Discuss Math. 14, 101-107.
[18] J. M. Rassias, 1996, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29, 755-766.
[19] J. M. Rassias, 1998, Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl. 220, 613-639.
[20] J. M. Rassias, 1999, Generalizations of the Eulers theorem to Heptagons leading to a quadratic vector identity. In Advances in Equations and Inequalities, (Hadronic press, Inc.), (1999) 179-183.
[21] J. M. Rassias, 1999, On the stability of the multi dimensional Euler-Lagrange functional equation, J. Ind. Math. Soc. 66, 1-9.
[22] J. M. Rassias, 2002, On some approximately quadratic mappings being exactly quadratic, J. Ind. Math. Soc 69, 155-160.
[23] J. M. Rassias and M. J. Rassias, 2005, On the Ulam stability for Euler-Lagrange type quadratic functional equations, Austral. J. Math. Anal. Appl. 2, 1-10.
[24] Th.M.Rassias, 1978, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300.
[25] J. Rätz, 1985, On orthogonally additive mappings, Aequationes Math. 28, 35-49.
[26] K. Ravi and M. Arunkumar, 2007, On the Ulam- Gavruta- Rassias stability of the orthogonally Euler-Lagrange type functional equation, IJAMAS, Vol. 7, No. Fe 07, 143-156.
[27] S.M.Ulam, 1960, Problems in Modern Mathematics, (Wiley, New York).
[28] F. Vajzovic, 1967, Uber das Funktional H mit der Eigenschaft: $(x, y)=0 \Rightarrow H(x+y)+H(x-y)=$ $2 H(x)+2 H(y)$, Glasnik Mat. Ser. III $2(22), 73-81$.

