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Abstract 

Accurate identification of protein-DNA interactions is critical to understand the 

molecular mechanisms of proteins and design new drugs. We proposed a novel deep-

learning method, ULDNA, to predict DNA-binding sites from protein sequences 

through a LSTM-attention architecture embedded with three unsupervised language 

models pretrained in multiple large-scale sequence databases. The method was 

systematically tested on 1287 proteins with DNA-binding site annotation from Protein 

Data Bank. Experimental results showed that ULDNA achieved a significant increase 

of the DNA-binding site prediction accuracy compared to the state-of-the-art 

approaches. Detailed data analyses showed that the major advantage of ULDNA lies in 

the utilization of three pre-trained transformer language models which can extract the 

complementary DNA-binding patterns buried in evolution diversity-based feature 

embeddings in residue-level. Meanwhile, the designed LSTM-attention network could 

further enhance the correlation between evolution diversity and protein-DNA 

interaction. These results demonstrated a new avenue for high-accuracy deep-learning 

DNA-binding site prediction that is applicable to large-scale protein-DNA binding 

annotation from sequence alone.  

 

Key words: Protein-DNA interaction, deep learning, unsupervised language model, 

evolution diversity, LSTM-attention network.  
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1. Introduction 

Protein-DNA interactions play critical roles in various biological processes, including 

gene expression and regulation, DNA replication, repair, and recombination [1, 2]. The 

accurate identification of protein-DNA binding residues not only contributes to 

understanding the molecular mechanisms of proteins, but also has important practical 

significance for drug design [3]. Direct determination of DNA-binding sites via 

biochemical experiments, such as fast ChIP5 [4], X-ray crystallography [5], and Cryo-

EM [6], is typically time-consuming and laborious, and often incomplete. As a result, 

numerous sequenced proteins have no available DNA-binding annotation to date. As of 

June 2023, for example, the UniProt database [7] harbored ~246 million protein 

sequences, but only <0.1% of them were annotated with known DNA-binding site 

records using experimental evidence. To fill the gap between sequence and DNA-

binding annotation, it is urgent to develop efficient computational methods for protein-

DNA binding site prediction [8, 9].  

Existing DNA-binding site prediction methods can be divided into two categories, 

i.e., template detection-based methods and machine learning-based methods [10]. In 

the early stage, template detection-based methods lead the trend of protein-DNA 

interaction prediction [11, 12]. Specifically, these methods identify DNA-binding sites 

through detecting the templates that have similar sequence or structure to the query. For 

examples, S-SITE [13] identifies sequence templates using PSI-BLAST alignment [14], 

while PreDNA [15] and DBD-Hunter [16] search templates through structure alignment. 

There exist other elegant predictors, including PreDs [17], DBD-Threader [18], 

DR_bind [19], and Morozov’s method [20].  

Template-based approaches have a common drawback: the accuracy of these 

methods is contingent upon the availability of templates with readily identifiable DNA-

binding site annotation. To eliminate such dependence, machine learning-based 

methods have emerged to extract hand-crafted features from sequences and structures 

(e.g., position-specific scoring matrix [21] and solvent accessible surface area [22]), 

which can then be used by machine learning approaches (e.g., support vector machine 

[23] and random forest [24]) to implement DNA-binding site prediction, with typical 

examples including DNAPred [10], TargetDNA [25], MetaDBSite [26], and TargetS 

[27].  

Despite the potential advantage, the prediction accuracy of many early machine 

learning-based methods was not satisfactory. One of the major reasons is due to the lack 
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of informative feature representation methods, as most of the approaches are based on 

simple feature representations, such as amino acid coding, physiochemical properties, 

and evolution conservation, which cannot fully extract the complex pattern of protein-

DNA interaction [28, 29]. To partly overcome this barrier, several methods, e.g., Guan’s 

method [30], PredDBR [31], iProDNA-CapsNet [32], and GraphBind [33], utilize deep 

learning technology to predict DNA-binding sites. Compared to traditional machine 

learning approaches, one advantage of deep learning technologies is that they could 

extract more discriminative feature embeddings from sequences and structures through 

designing complex neural networks. Nevertheless, the performance of deep learning 

methods is often hampered by the limitation of experimental annotation data consisting 

of only ~4000 protein-DNA complexes from Protein Data Bank (PDB) [34]. The 

insufficient experimental data significantly limit the effectiveness of training the deep 

neural network models. 

To alleviate the issue caused by the lack of annotated data, a promising approach 

is to utilize protein language models pre-trained through deep-learning networks on 

large-scale sequence databases without DNA-binding annotations. Due to the extensive 

sequence training and learning, important inter-residue correlation patterns, which are 

critical for protein-DNA interaction, can be extracted through the language models and 

utilized for feature embedding. Recently, several protein language models, such as 

TAPE [35], SeqVec [36], and Bepler’s approach [37], have been emerged, often through 

supervised learners such as convolutional neural networks (CNNs) [38], in protein 

structure and function prediction tasks, with examples including the predictions of 

contact map [39], molecular function [40], mutation and stability [35], and GO 

transferals [41].  

In this work, we proposed a new deep learning model, ULDNA, for high accuracy 

protein-DNA binding site prediction by the integration of the unsupervised protein 

language models from multiple information sources with the designed LSTM-attention 

network. Specifically, we utilize three recently proposed language models (i.e., ESM2 

[42], ProtTrans [43], and ESM-MSA [44]), separately pre-trained on different large-

scale sequence databases, to extract the complementary evolution diversity-based 

feature embeddings, which are highly associated with protein-DNA interaction. Then, 

a LSTM-attention network is designed to train DNA-binding site models from multi-

source feature embeddings through enhancing the correlation between evolution 

diversity and DNA-binding pattern. ULDNA has been systematically tested on five 
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protein-DNA binding site datasets, where the results demonstrated significant 

advantage on accurate DNA-binding site prediction over the current state-of-the-art of 

the field. The standalone package and an online server of ULDNA are made freely 

available through URL http://csbio.njust.edu.cn/bioinf/uldna/. 

 

2. Materials and methods 

2.1 Benchmark datasets 

The proposed methods were evaluated by five protein-DNA binding site datasets, 

including PDNA-543 [25], PDNA-41 [25], PDNA-335 [27], PDNA-52 [27], and 

PDNA-316 [26], from previous works.  

PDNA-543 and PDNA-41 separately consist of 543 and 41 DNA-binding protein 

chains, which were deposited in the PDB before and after October 10, 2014, 

respectively. Here, a sequence identity cut-off 30% has been used to filter out the 

redundant proteins within each dataset and between different datasets using the CD-

HIT program [45].  

PDNA-335 and PDNA-52 contain 335 and 52 DNA-binding chains, respectively, 

which are released in PDB before and after March 10, 2010. The sequence identity 

within each dataset and between different datasets is reduced to 40% through PISCES 

software [46].  

PDNA-316 collects 316 DNA-binding chains before 2011, where the maximal 

pairwise sequence identity of proteins is culled to 30% using CD-HIT [45]. The detailed 

statistical summary of five datasets is presented in Table 1. 

 
Table 1. Statistical summary of five protein-DNA binding site datasets. 

Dataset No. of Sequences No. of DNA-binding residues No. of No-DNA-binding residues 

PDNA-543 543 9,549 134,995 

PDNA-41 41 734 14,021 
PDNA-335 335 6,461 71,320 

PDNA-52 52 973 16,225 
PDNA-316 316 5,609 67,109 

2.2 The framework of ULDNA 

ULDNA is a deep learning-based method for protein-DNA binding site prediction, with 

input being a query amino acid sequence and output including confidence scores of 

belonging DNA-binding sites. As shown in Figure 1, ULDNA consists of two 

procedures, including feature embedding extraction using multi-source language 
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models and DNA-binding site prediction using LSTM-attention network.  

 

Figure 1. The workflow of ULDNA 

Procedure I: Feature embedding extraction using multi-source language 

models. The input sequence is fed to ESM2 [42] and ProtTrans [43] transformers to 

output two feature embedding matrices with the scales of 𝐿 × 2560 and 𝐿 × 1024, 

respectively; Meanwhile, we search the multiple sequence alignment (MSA) of the 

input sequence from UniClust30 database [47], which is further fed to ESM-MSA 

transformer [44] to generate another feature embedding matrix with the scale of 

𝐿 × 768, where 𝐿 is the length of input sequence, 2560, 1024 and 768 are preset 

hyper-parameters in transformer models. ESM2, ProtTrans, and ESM-MSA are both 

unsupervised attention networks with 36, 24, and 12 layers, respectively, and separately 

trained on Uniref50 [48], UniClust30 & Uniref50, and BFD (Big Fantastic Database) 

[49] & Uniref50, respectively, where “&” means that two databases are both used to 

train a transformer. Each transformer has learnt abundant evolution knowledge from 

millions of sequences and could encode the input sequence (or MSA) as a feature 

embedding matrix with evolution diversity. Considering that the evolution knowledge 

from multiple database sources could be complementary, we concentrate the above-

mentioned three feature embedding matrices from different transformer models as a 

combination embedding matrix with the scale of 𝐿 × 4352. 

Procedure II: DNA-binding site prediction using LSTM-attention network. 

The concentrated feature embedding is fed to a designed LSTM-attention network to 

generate a score vector with 𝐿  dimensions, indicating the confidence scores of 

belonging DNA-binding sites for all residues in query sequence. In LSTM-attention 

network, a BiLSTM layer and a self-attention layer are combined to enhance the 

correlation between evolution diversity and DNA-binding in residue-level to improve 

DNA-binding prediction.  
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2.3 Unsupervised protein language models 

The architecture of ESM2 transformer [42] is illustrated in Figure S1, with input 

and output being a query amino acid sequence and an evolution diversity-based feature 

embedding matrix, respectively. ESM2 includes 36 attention layers, each of which 

consists of 20 attention heads and a feed-forward network (FFN). In each attention head, 

the scale dot-product attention is performed to learn the evolution correlation between 

amino acids in the query sequence from an individual view. Then, the FFN fuses the 

evolution knowledge from all attention heads to capture the evolution diversity for the 

entire sequence. The ESM2 model with 3 billion parameters was trained on over 60 

million proteins from UniRef50 database, as carefully described in Text S1. 

ProtTrans transformer [43] shares the similar architecture to ESM2, with including 

24 layers, each of which consists of 32 attention heads. The ProtTrans model with 3 

billion parameters was trained on over 45 million proteins from BFD and UniRef50 

databases.  

ESM-MSA transformer [44] is designed to extract the co-evolution-based feature 

embedding matrix for a MSA, as shown in Figure S2. ESM-MSA consists of 12 

attention blocks, each of which contains a row-attention layer and a column-attention 

layer which separately learn the co-evolution correlation between amino acids in 

sequence-level and position-level. The ESM-MSA model with 100 million parameters 

was trained on over 26 million MSAs from Unclust30 and UniRef50 databases, with 

details in Text S2.  

2.4 LSTM-attention network 

As shown in Figure 1, the designed LSTM-attention network consists of a BiLSTM 

layer, a self-attention layer, a fully connected layer, and an output layer.  

The BiLSTM layer includes a forward LSTM and a backward LSTM, which have 

the same architecture consisting of 256 cells with reverse propagation directions. Each 

LSTM cell is mainly composed of two states (i.e., cell state 𝑐 and hidden state ℎ) and 

three gates (i.e., forget gate 𝑓, input gate 𝑖, and output gate 𝑜). Cell state and hidden 

state are separately used to store and output the signals at the current time-step. Forget 

gate, input gate, and output gate are used to control the ratios of incorporating history 

signal, inputting current signal, and outputting updated signal, respectively. Specifically, 

at time-step 𝑡 (𝑡 ≤ 𝐿, 𝐿 is the length of input sequence), the above-mentioned states 

and gates are computed as follows:  

 ℎ! = 𝑜! ∙ tanh	(𝐶!) (1) 
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 𝐶! = 𝑓! ∙ 𝐶!"# + 𝑖! ∙ 𝐶!$ (2) 

 𝐶!$ = tanh	(𝑤% ∙ [ℎ!"#, 𝑥!] + 𝑏%) (3) 

 𝑜! = 𝜎(𝑤& ∙ [ℎ!"#, 𝑥!] + 𝑏&) (4) 

 𝑓! = 𝜎(𝑤' ∙ [ℎ!"#, 𝑥!] + 𝑏') (5) 

 𝑖! = 𝜎(𝑤( ∙ [ℎ!"#, 𝑥!] + 𝑏() (6) 

where	 𝐶!"# and  ℎ!"# are cell state and hidden state, respectively, at the time-step 

𝑡 − 1, 𝑥! is the input vector at the time-step 𝑡 (i.e., the feature embedding vector with 

4352 dimensions of the 𝑡 -th residue in the query sequence for DNA-binding 

prediction), 𝑤∗ is the weight vector, 𝑏∗ is the bias, [	, ] is concentration operation 

between two vectors, and 𝜎 is the Sigmoid function. The output of BiLSTM layer is 

represented as a 𝐿 × 512 matrix through concentrating the hidden states in all LSTM 

cells at all time-steps. 

The self-attention layer consists of 10 attention heads, each of which performs the 

scale dot-product attention as follows: 

 𝐴( = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑀(
* ∙ 𝑀(

+/K𝑑()	𝑀(
, 	 (7) 

 𝑀(
* = 𝐻 ∙ 𝑊(

*, 𝑀(
+ = 𝐻 ∙ 𝑊(

+ , 𝑀(
, = 𝐻 ∙ 𝑊(

, (8) 

where 𝐻 is the output matrix by the BiLSTM layer, 𝐴( is a 𝐿 × 64 attention matrix 

in the 𝑖-th attention head, 𝑀(
* , 𝑀(

+ , and 𝑀(
,  are Query, Key, and Value matrices, 

respectively, 𝑀(
* ∙ 𝑀(

+ is a 𝐿 × 𝐿	weight matrix measuring the position-correlation for 

each amino acid pair in the query sequence, and 𝑑( is the scale parameter. 

The attention matrices in all of 10 heads are concentrated and then fed to a fully 

connected layer with 1024 neurons, followed by an output layer with 1 neuron: 

 𝐴 = 𝐴#𝐴-…𝐴#.	 (9) 

 𝐹 = 𝑅𝑒𝑙𝑢(𝑊/ ∙ 𝐴 + 𝑏/)	 (10) 

 𝑠 = 𝜎(𝑊0 ∙ 𝐹 + 𝑏0)	 (11) 

where 𝑠 is a score vector with 𝐿 dimensions, indicating the confidence scores of 

belonging DNA-binding sites for all residues for the query sequence.  

The cross-entropy loss [50] is used as the training loss: 

 𝐿𝑜𝑠𝑠 = #
1
∙ ∑ ((𝑦( ∙ log(𝑠() + (1 − 𝑦() ∙ log(1 − 𝑠()1

(2# ) (12) 

where 𝑠( is the confidence score of belonging DNA-binding site for the 𝑖-th residue 

in the query sequence; 𝑦( = 1 , if the 𝑖 -th residue is a DNA-binding site in the 

experimental annotation; otherwise, 𝑦( = 0. We minimize the loss function to optimize 

ULDNA pipeline using Adam optimization algorithm [51].  

2.5 Evaluation indices 
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Four indices, i.e., Sensitivity (Sen), Specificity (Spe), Accuracy (Acc), and Mathew’s 

Correlation Coefficient (MCC), are utilized to evaluate the proposed methods: 

 𝑆𝑒𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	 (13) 

 𝑆𝑝𝑒 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)	 (14) 

 𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)	 (15) 

					𝑀𝐶𝐶 = (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)/.(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃)	 (16) 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and 

false negatives, respectively. 

Because the above four indices are threshold-dependent, it is critical to select an 

appropriate threshold for fair comparisons between various predictors. In this work, we 

select the threshold which maximizes the value of MCC over ten-fold cross-validation. 

Moreover, a threshold-independent index, i.e., area under the receiver operating 

characteristic curve (AUROC), is used to evaluate the overall prediction performances 

of predictors. 

 

3. Results and discussions  

3.1 Comparison with existing DNA-binding site predictors 

To demonstrate the strong performance of the proposed ULDNA, we compared it with 

12 start-of-the-art DNA-binding site predictors, including BindN [52], ProteDNA [53], 

BindN+ [54], MetaDBSite [26], DP-Bind [55], DNABind [56], TargetDNA [25], 

iProDNA-CapsNet [32], DNAPred [10], Guan’s method [30], COACH [13], and 

PredDBR [31], on PDNA-41 test dataset under independent validation, as shown in 

Table 1. It could be found that ULDNA achieves the highest MCC values among all of 

13 competing methods. Compared to the second-best performer, i.e., PredDBR (a 

recently proposed deep learning model), ULDNA gains 43.9% average improvement 

of MCC values under three thresholds, respectively. More importantly, four evaluation 

metrics of ULDNA are both higher than those of PredDBR under 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒 and 

𝑆𝑝𝑒 ≈ 0.95. Meanwhile, a similar trend but with more significant distinctions can be 

observed in comparison with other predictors. Taking DNAPred as an example, 

ULDNA shares 9.3%, 18.6%, 17.6%, 76.2%, and 9.0% improvements for Sen, Spe, 

Acc, MCC, and AUROC values, respectively, under 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒. It cannot escape from 

our notice that ProteDNA obtains the highest Spe value (0.998) but with the lowest Sen 

(0.048). The underlying reason is that ProteDNA predict too many false negatives. 
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Table 1. Performance comparisons between ULDNA and 12 competing  

predictors on PDNA-41 under independent validation. 

Method Sen Spe Acc MCC AUROC 

BindN a 0.456 0.809 0.792 0.143 - 

ProteDNA a 0.048 0.998 0.951 0.160 - 
BindN+ (𝑆𝑝𝑒 ≈ 0.95) a 0.241 0.951 0.916 0.178 - 

BindN+ (𝑆𝑝𝑒 ≈ 0.85) a 0.508 0.854 0.837 0.213 - 
MetaDBSite a 0.342 0.934 0.904 0.221 - 

DP-Bind a 0.617 0.824 0.814 0.241 - 
DNABind a 0.702 0.803 0.798 0.264 - 

TargetDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) a 0.602 0.858 0.845 0.269 - 
TargetDNA (𝑆𝑝𝑒 ≈ 0.95) a 0.455 0.933 0.909 0.300 - 

iProDNA-CapsNet (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) b 0.754 0.753 0.753 0.245 - 
iProDNA-CapsNet (𝑆𝑝𝑒 ≈ 0.95) b 0.422 0.949 0.924 0.315 - 

DNAPred (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) c 0.761 0.767 0.761 0.260 0.858 
DNAPred (𝑆𝑝𝑒 ≈ 0.95) c 0.447 0.949 0.924 0.337 0.858 

Guan’s method d 0.476 0.964 0.949 0.357 - 
COACH e 0.462 0.951 0.927 0.352 - 

PredDBR (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) e 0.764 0.758 0.758 0.264 - 
PredDBR (𝑆𝑝𝑒 ≈ 0.95) e 0.431 0.958 0.931 0.351 - 

PredDBR (threshold = 0.5) e 0.391 0.968 0.939 0.359 - 
ULDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) 0.824 0.899 0.895 0.458 0.935 

ULDNA (𝑆𝑝𝑒 ≈ 0.95) 0.556 0.970 0.950 0.499 0.935 
ULDNA (threshold = 0.5) 0.271 0.994 0.958 0.417 0.935 

a Results excerpted from TargetDNA [25]; b Results excerpted from iProDNA-CapsNet [32]; c 

Results excerpted from DNAPred [10]; d Results excerpted from Guan et al [30]; e Results 
excerpted from PredDBR [31]; “𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒” and “𝑆𝑝𝑒 ≈ 0.95” mean the thresholds that make 
𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒 and “𝑆𝑝𝑒 ≈ 0.95”, respectively, on PDNA-543 training dataset over ten-fold cross-
validation. Bold fonts highlight the best performer in each evaluation metric.  

Table 2 summarizes the performance comparison among DNABR [29], 

MetaDBSite [26], TargetS [27], DNAPred [10], COACH [13], PredDBR [31], and 

ULDNA on PDNA-52 test dataset under independent validation, where ULDNA 

achieves the highest MCC value among all control methods. Specifically, the 

improvements of MCC values between ULDNA and other 6 predictors range from 14.6% 

to 179.5%.  

We further compare our method with all the above mentioned methods as well as 

other 4 competing methods, including EC-RUS [57], DBS-PRED [58], DISIS [59] and 

BindN-rf [28], on three training datasets (i.e., PDNA-543, PDNA-335, and PDNA-316) 

over cross-validation, as listed in Tables S1, S2, and S3. Again, the proposed ULDNA 

outperforms all other methods.  
Table 2. Performance comparisons between ULDNA and 6 competing  
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predictors on PDNA-52 under independent validation. 

Method Sen Spe Acc MCC AUROC 

DNABR a 0.407 0.873 0.846 0.185 - 

MetaDBSite a 0.580 0.764 0.752 0.192 - 
TargetS a 0.413 0.965 0.933 0.377 0.836 

DNAPred b 0.518 0.949 0.925 0.405 0.876 
COACH c 0.599 0.935 0.916 0.420 - 

PredDBR c 0.539 0.958 0.935 0.451 - 
ULDNA 0.704 0.944 0.931 0.517 0.945 

a Results excerpted from TargetDNA [25]; b Results excerpted from 
DNAPred [10]; c Results excerpted from PredDBR [31]; Bold fonts 
highlight the best performer in each evaluation metric. 

 

3.2 Contribution analysis of different protein language models  

To analyze the contributions of three protein language models (i.e., ESM2, ProtTrans, 

and ESM-MSA) in DNA-binding site prediction, we further benchmarked the designed 

LSTM-attention network with seven different feature embeddings, respectively, 

including three individual embeddings from ESM2, ProtTrans, and ESM-MSA, and 

four combination embeddings from ProtTrans + ESM-MSA (PE), ESM2 + ESM-MSA 

(EE), ESM2 + ProtTrans (EP), and ESM2 + ProtTrans + ESM-MSA (EPE), where “+” 

means the individual feature embeddings from different language models are 

concentrated as a combination embeddings. Figure 1 illustrates the performance of 

seven feature embeddings on three training datasets (i.e., PDNA-543, PDNA-335, and 

PDNA-316) under cross-validation and two test datasets (i.e., PDNA-41 and PDNA-

52) under independent validation.  

It could be found that EPE achieves the best performance among seven feature 

embeddings. From the view of MCC values, EPE separately gains 5.8%, 8.8%, 13.1%, 

3.2%, 2.4%, and 2.0% average improvements on five datasets in comparison with 

ESM2, ProtTrans, ESM-MSA, PE, EE, and EP, respectively. With respect to AUROC 

values, EPE occupies the top-1 positions on four out of five datasets. Moreover, ESM2 

shows the highest MCC and AUROC values among three individual embeddings; 

meanwhile, the largest increase is caused by adding ESM2 to PE on each dataset.  

These data demonstrate the following two conclusions. First, three language 

models pretrained on different large-scale sequence databases are complementary to 

improve DNA-binding site prediction. Second, ESM2 made the most important 

contribution among three language models.  
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Figure 1. The MCC and AUROC values of seven feature embeddings on five 

benchmark datasets.   

3.3 Ablation study 

To analyze the contributions of algorithmic innovations in ULDNA to its improved 

performance, we design an ablation study, in which we start from a baseline model (M0) 

and incrementally add algorithmic components of ULDNA to build two advanced 

models (M1 and M2, with M2 = ULDNA). The pipelines of the three models are 

designed as follows (see Figure S1 for the architectures): 

M0: Model is trained on BiLSTM consisting of 256 cells with a one-hot coding 

matrix [60] extracted from the input sequence, followed by a fully connected network, 

in which an output layer with SoftMax function [61] is used to generate the confidence 

scores of belonging DNA-binding sites for all residues in the input sequence. In the 

training stage, the cross-entropy loss [62] is used as the loss function, as described in 

Eq 9.  

M1: We replace the one-hot coding matrix by a combination feature embedding 

matrix concentrated by three individual embeddings from ESM2, ProtTrans, and ESM-

MSA. This combination embedding is further fed to the BiLSTM architecture used in 

M0 to output the confidence scores of belonging DNA-binding sites.  

M2 (M2=ULDNA): We add a self-attention layer consisting of 10 attention heads 

and a feed-forward network in the BiLSTM used in M1.  

Figure 2 summarizes the performance of three ablation models on three training 

datasets under cross-validation and two test datasets under independent validation, 

where we run each model for 10 times and then used the average of all predictions as 

the final-result. Compared with M0, M1 achieves a significant gain with the average 

MCC and AUROC values increased by 148.4% and 23.4%, respectively, on five 

datasets, demonstrating that the protein language models are critical to improve DNA-

binding site prediction of the ULDNA pipeline. After adding the self-attention layer in 
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M1, the corresponding MCC values are increased on average by 1.3% on five datasets. 

The AUROC values of M2 cannot be further improved and even be slightly degraded 

on PDNA-543 and PDNA-41 in comparison with M1, but the corresponding values are 

sustainably increased on other three datasets. These observations indicate that the 

additional self-attention layer is helpful for enhancing the overall performance of 

function prediction, although less significant than the protein language models. 

Figure 2. The MCC and AUROC values of three ablation models on five benchmark 
datasets.   

3.4 Case study 

To further examine the effects of different DNA-binding site prediction methods, we 

selected two proteins (2MXF_A and 3ZQL_A) from our test datasets as illustrations. 

For each protein, we used four in-house methods (denoted as LA-ESM2, LA- ProtTrans, 

LA-EMS-MSA-1b, and ULDNA) and a competing method (PredDBR [31]) to predict 

the corresponding DNA-binding sites. Four in-house methods use the same LSTM-

attention network with different feature embeddings from ESM2, ProtTrans, ESM-

MSA, and ESM2+ProtTrans+ESM-MSA, respectively, where “+” means the individual 

feature embeddings from different language models are concentrated as a combination 

embedding. Table 3 summarizes the modeling results of two proteins for five DNA-

binding site prediction methods, where the corresponding visualization results are 

illustrated in Figure 3. In addition, the predicted and native DNA-binding sites of two 

proteins by five methods are listed in Table S4.  

Several interesting observations can be made from the data. First, the protein 

language models are critical to improve DNA-binding site prediction. Specifically, each 

of four in-house methods with pre-trained protein language models shows the higher 

MCC values than the competing PredDBR without language models on two proteins. 
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Taking ULDNA as an example, it gains 52.7% and 23.5% improvements of MCC 

values on 2MXF and 3ZQL_A, respectively, in comparison with PredDBR.   

Second, the combination of complementary protein language models can further 

increase the accuracy of ULDNA. In 2MXF_A, three in-house methods (i.e., LA-ESM2, 

LA-ProtTrans, and LA-ESM-MSA) with different language models hit 14 true positives 

in total, which is more than that by each individual method, indicating that three 

language models (i.e., ESM2, ProtTrans, and ESM-MSA) derive complementary 

information from different database sources. Meanwhile, the false positives predicted 

by one in-house method can be corrected by other two methods. For example, LA-

ESM2 generates two false positives (10P and 11H), which are correctly predicted as 

non-DNA-binding sites by LA-ProtTrans and LA-ESM-MSA. As a result, by taking the 

combination of three language models, ULDNA gains the most-true positives without 

false positives among all methods. Sometimes, one in-house method can cover all true 

positives predicted by other methods. For example, for 3ZQL_A, all true positives of 

LA-ESM2 and LA-ProtTrans are covered by LA-ESM-MSA. Even in this case, the 

accuracy of final ULDNA is still improved by including the less accurate methods to 

reduce false positives.  

 
Figure 3. Visualization of prediction results for two proteins using five DNA-binding 

site prediction models: (A) LA-ESM2, (B) LA-ProtTrans, (C) LA-ESM-MSA, (D) 

ULDNA, (E) PredDBR. The color scheme is used as follows: DNA in orange, true 

positives in blue, false positives in red, false negatives in green. The pictures are made 

with PyMOL [63].   
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Table 3. The modeling results of five DNA-binding site prediction methods  
on two representative examples   

Method 
 2MXF_A  3ZQL_A 

 TP FP TN FN MCC  TP FP TN FN MCC 

LA-ESM2  12 2 29 4 0.710  12 9 213 2 0.678 

LA-ProtTrans  12 4 27 4 0.621  11 8 214 3 0.651 
LA-ESM-MSA  12 1 30 4 0.760  14 10 212 0 0.746 

ULDNA  13 0 31 3 0.861  14 8 214 0 0.783 
PredDBR  8 2 29 6 0.564  14 18 204 0 0.634 

Bold fonts highlight the best performer in each evaluation metric. 

4. Conclusions 

We developed a new deep learning-based method, named ULDNA, to predict DNA-

binding sites from the primary protein sequences. The algorithm was built on 

transformer embedding and LSTM-attention decoding. The large-scale tests on five 

protein-DNA binding site datasets demonstrated that ULDNA consistently outperforms 

other state-of-the-art approaches in the accuracy of DNA-binding site prediction. The 

improvement of ULDNA can be attributed to several advancements. First and most 

importantly, three transformers can effectively extract complementary evolution 

diversity-based feature embeddings for the input sequence from different database 

sources. Second, the designed LSTM-attention network enhances the correlation 

between evolution diversity and protein-DNA interaction pattern to improve prediction 

accuracy.  

Despite the encouraging performance, there is still considerable room for further 

improvements. First, the serial feature concentration strategy, currently used in ULDNA, 

cannot perfectly deal with the redundant information among the feature embeddings 

from different transformers, where a more advanced feature fusion approaches may 

alleviate the negative impact caused by information redundancy in the future. Second, 

with the development of protein structure prediction models (e.g., AlphaFold2 [64] and 

ESMFold [42]), the predicted structures will have the huge potential to improve DNA-

binding site prediction. Studies along these lines are under progress. 
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Supporting Texts 
 

Text S1. The procedures for ESM2 transformer 

A. Masking 

For an input sequence, the masking strategy [1] is performed on the corresponding 

tokens (i.e., amino acids). Specifically, we randomly sample 15% tokens, each of which 

is changed as a special “masking” token with 80% probability, a randomly chosen 

alternate amino acid with 10% probability, and the original input token (i.e., no change) 

with 10% probability. 

B. One-hot encoding  

The masked sequence is represented as a 𝐿 × 28 matrix using one-hot encoding [2], 

where 28 is the types of tokens, including 20 common amino acids, 6 non-common 

amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token. 

C. Embedding with position information 

The one-hot coding matrix 𝑋 of the masked sequence is multiplied by an embedding 

weight matrix 𝑊! to generate an embedding matrix 𝐻!: 

 𝐻! = 𝑋𝑊! , 𝑋 ∈ 𝑅"×$%,𝑊! ∈ 𝑅$%×& , 𝐻! ∈ 𝑅"×& (S1) 

where 𝐿 is the length of the masked sequence, 28 is the types of tokens in the masked 

sequence, and 𝐷 is the embedding dimension.   

Then, the position embedding strategy is used to record the position of each token 

in the masked sequence to generate a position embedding matrix 𝐻': 

 𝐻' = -

ℎ(
ℎ$
…
ℎ"

0 , ℎ) = 1𝑣),(, 𝑣),$, … , 𝑣),&3, 	𝐻' ∈ 𝑅"×&, and 	ℎ) ∈ 𝑅& (S2) 

𝑣),$+ = sin	( )
(,,,,!"/$

),	𝑣),$+-( = cos	( )
(,,,,(!"&')/$

), 𝑘 = 0, 	1, 	. . , 	(𝐷 − 1)/2 (S3) 

where 	ℎ) is the embedding vector for the 𝑖-th position in the masked sequence.  

Finally, two embedding matrices are added as a combination embedding matrix 

𝐻(: 

 𝐻( = 𝐻! + 𝐻' , 𝐻( ∈ 𝑅"×& (S4) 

D. Self-attention  

The embedding matrix 𝐻(	is fed to a self-attention block with 𝑛 layers, each of which 
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consists of 𝑚 attention heads, a linear unit, and a feed-forward network (FFN). In each 

attention head, the scale dot-product attention is performed as follows: 

 𝐴),. = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀),.
/𝑀),.

0 1/O𝑑).)	𝑀),.
2 	 (S5) 

 𝑀),.
/ = 𝐻)𝑊),.

/, 𝑀),.
0 = 𝐻)𝑊),.

0 , 𝑀),.
2 = 𝐻)𝑊),.

2 	 (S6) 

 𝑑). = 𝐷/𝑚, 𝑊),.
/ ,𝑊),.

0 ,𝑊),.
2  ∈ 𝑅&×(

$
)), 𝑀),.

/ , 𝑀),.
0 ,	𝑀),.

2 ,			𝐴),. ∈ 𝑅
"×($))	 (S7) 

where 𝐴),.  is the attention matrix in the (𝑖 -th layer, 𝑗-th head) and measures the 

evolution correlation for each amino acid pair in the sequence, 𝑀),.
/ , 𝑀),.

0 , and	𝑀),.
2 	are 

Query, Key, and Value matrices in the (𝑖-th layer, 𝑗-th head), 𝐻) 	is the input matrix in 

the 𝑖-th layer,	𝑊),.
/, 𝑊),.

0 , and 𝑊),.
2 	are weight matrices, and 𝑑). is the scale parameter. 

The outputs of all attention heads in 𝑖-th layer are concatenated as a new matrix 

𝐴), which is further fed to a linear unit to output the matrix 𝑈) 	: 

 𝐴) = 𝐴),(𝐴),$…𝐴),5	 (S8) 

 𝑈) = 𝐴)𝑊)
( + 𝑏)(, 𝑊)

( ∈ 𝑅&×& , 𝐴) , 	𝑏)(, 𝑈) ∈ 𝑅"×&	 (S9) 

where 𝑊)
( and 𝑏)( are the weight matrix and bias, respectively, in the linear unit. 

E. Feed-forward network with shortcut connections 

The 𝑈) is added by 𝐻) 	to generate a new matrix 𝐹), which is further fed to the FFN to 

output the matrix 𝑇): 

 𝐹) 	= 𝐻) + 𝑈) 	 (S10) 

 𝑇) = 𝑔𝑒𝑙𝑢(𝐹)𝑊)
$ + 𝑏)$)𝑊)

6 + 𝑏)6, 𝑊)
$,𝑊)

6 ∈ 𝑅&×&, 𝑏)$, 𝑏)6, 𝑇) ∈ 𝑅"×&	 (S11) 

 gelu(𝑥) = x∅(𝑥) (S12) 

where 𝑊)
$ and 𝑊)

6 are weight matrices in the FFN, 𝑏)$ and 𝑏)6 are bias in the FFN, 

and ∅(𝑥)	is the integral of Gaussian Distribution for 𝑥 

The 𝐹) is added by 𝑇) as the output the 𝑖-th attention layer: 

 𝐻)-(= 𝐹)+ 𝑇) , 𝐻)-( ∈ 𝑅"×& (S13) 

where 𝐻)-( is the evolution diversity-based embedding matrix in 𝑖-th attention layer.  

The output of the last attention layer is fed to a fully connected layer with SoftMax 

function to generate a 𝐿 × 28 probability matrix: 

 𝑃 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐻7𝑊7 + 𝑏7), 𝑃 ∈ 𝑅"×$% (S14) 

where the (𝑙-th,	 𝑐-th) value in 𝑃 indicates the probability that the 𝑙-th token in the 

masked sequence is predicted as the 𝑐-th type of amino acid, 𝑊7 and 𝑏7 are weight 
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matrix and bias, respectively.  

F. Loss function 

The loss function is designed as a negative log likelihood function between inputted 

one-hot and outputted probability matrices, to ensure that the prediction model correctly 

predicts the true amino acids in the masked position as much as possible: 

 𝐿𝑜𝑠𝑠895 = 𝐸:~< ∑ e− =>?'*,,(*)
|:(A)|

f=∈:(A)  (S15) 

where 𝑥 is a sequence in training protein set 𝑋, 𝑥(𝑀) is a set of masking position in 

𝑥, |𝑥(𝑀)| is the number of elements in 𝑥(𝑀), 𝑐(𝑙) is the type index of amino acid 

for the	 𝑙-th token in 𝑥 before masking, and -𝑙𝑜𝑔𝑃=,C(=) is negative log likelihood of 

the true amino acid 𝑥= under condition of masking.  

The ESM2 transformer is optimized by minimizing the loss function via Adam 

optimization algorithm [3]. Then, the output of last attention layer is represented as a 

𝐿 × 𝐷  matrix, as the evolution diversity-based embedding for DNA-binding site 

prediction, where 𝐷 is the number of neurons of FFN. The current ESM2 model with 

3 billion parameters was trained over 60 million proteins from UniRef50 database and 

can be freely download at https://github.com/facebookresearch/esm, where 𝑛 = 36, 

𝑚 = 20, and 𝐷 = 2560. 

 

Text S2. The procedures for ESM-MSA transformer 

A. Masking  

For an input multiple sequence alignment (MSA), the masking strategy is performed. 

Specifically, for each individual sequence in MSA, we randomly sample 15% tokens 

(amino acids), each of which is changed as a special “masking” token with 80% 

probability, a randomly chosen alternate amino acid with 10% probability, and the 

original input token (i.e., no change) with 10% probability.  

B. One-hot encoding  

The masked MSA is encoded as three matrices using one-hot encoding from three 

different views. Specifically, for the 𝑗-th position of the 𝑖-th sequence in the masked 

MSA, we encode it as three one-hot vectors, i.e., 𝒙)., 𝒚)., and 𝒛)., from the views of 

token type, row position, and column position, respectively.   

      𝒙). = 1𝑥).(, 𝑥).$, … , 𝑥).D)-.3 ∈ 𝑅
D)-. , 𝑥).+ = n

1, 𝑘 = 𝑐).
0, 𝑘 ≠ 𝑐).

 (S16) 
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      𝒚). = 1𝑦).(, 𝑦).$, … , 𝑦).A)-.3 ∈ 𝑅
A)-. , 𝑦).+ = n1, 𝑘 = 𝑖

0, 𝑘 ≠ 𝑖 (S17) 

      𝒛). = 1𝑧).(, 𝑧).$, … , 𝑧).")-.3 ∈ 𝑅
")-. , 𝑧).+ = n1, 𝑘 = 𝑗

0, 𝑘 ≠ 𝑗 (S18) 

where 𝑐). is the index of token type for the 𝑗-th position of the 𝑖-th sequence, 𝐶5E: 

is the number of types of tokens, 𝐿5E: and 𝑀5E: are preset maximum values for 

sequence length and alignments, respectively. In this work, 𝐶5E: = 28 and 𝐿5E: =
𝑀5E: = 1024, where 28 types of tokens include 20 common amino acids, 6 non-

common amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.   

According to Eqs. S16-S18, the masked MSA can be encoded as three matrices, 

i.e., 𝑿, 𝒀 and 𝒁, through one-hot encoding from the view of token type, row position, 

and column position, respectively, where 𝑿 ∈ 𝑅A×"×D)-., 𝒀 ∈ 𝑅A×"×A)-. and 𝒁 ∈

𝑅A×"×")-. , 𝑀  is the number of alignments, and 𝐿  is the length of individual 

sequence in the masked MSA.  

C. Initial embedding  

Each one-hot coding matrix is multiplied by a weight matrix to generate the 

corresponding embedding matrix: 

     𝑯F>+87 = 𝑿𝑾F>+87 = -

𝑿[1]
𝑿[2]
…

𝑿[𝑀]

0𝑾F>+87 = -

𝑿[1]𝑾F>+87
𝑿[2]𝑾F>+87

…
𝑿[𝑀]𝑾F>+87

0 ∈ 𝑅A×"×& (S19) 

𝑿[𝑖] ∈ 𝑅"×D)-. ,𝑾F>+87 ∈ 𝑅D)-.×& 

     𝑯G>H = 𝑿𝑾G>H = -

𝒀[1]
𝒀[2]
…

𝒀[𝑀]

0𝑾G>H = -

𝒀[1]𝑾G>H
𝒀[2]𝑾G>H

…
𝒀[𝑀]𝑾G>H

0 ∈ 𝑅A×"×& (S20) 

𝒀[𝑖] ∈ 𝑅"×A)-. ,𝑾G>H ∈ 𝑅A)-.×& 

     	𝑯C>= = 𝒁𝑾C>= = -

𝒁[1]
𝒁[2]
…

𝒁[𝑀]

0𝑾C>= = -

𝒁[1]𝑾C>=
𝒁[2]𝑾C>=

…
𝒁[𝑀]𝑾C>=

0 ∈ 𝑅A×"×& (S21) 

𝒁[𝑖] ∈ 𝑅"×")-. ,𝑾C>= ∈ 𝑅")-.×& 

where 𝑿[𝑖], 𝒀[𝑖] and 𝒁[𝑖] are the one-hot coding matrices for the 𝑖-th sequence in 

the masked MSA from the view of token type, row position, and column position, 

respectively, 𝑯F>+87, 𝑯G>H, and 𝑯C>= are token type-based, row position-based, and 
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column position-based embedding matrices for the masked MSA, respectively, and 𝐷 

is the embedding dimension. In this work, 𝐷 = 768.  

Three embedding matrices are added as an initial embedding matrix 𝑯𝑖𝑛𝑖𝑡: 

      𝑯)7)F = 𝑯F>+87 +𝑯G>H +𝑯C>= , 𝑯)7)F ∈ 𝑅A×"×& (S22) 

D. Batch normalization and dropout   

The initial embedding matrix 𝑯)7)F is fed to the batch normalization layer to generate 

the corresponding normalized matrix 𝑯(: 

      𝑯( = 𝐵𝑁(𝑯)7)F) = ~
𝐵𝑁(𝒉(() ⋯ 𝐵𝑁(𝒉(")

⋮ ⋱ ⋮
𝐵𝑁(𝒉A() ⋯ 𝐵𝑁(𝒉A")

� (S23) 

     𝐵𝑁1𝒉).3 = 𝛾 ∙ 𝒉/0JK/0
LM/0

!-N
+ 𝛽, 𝒉). ∈ 𝑅& (S24) 

where 𝒉). is the initial embedding vector for the 𝑗-th position of the 𝑖-th sequence in 

the masked MSA, 𝑢). and 𝜎).$  are mean and variance for 𝒉)., respectively, and 𝛾, 𝛽, 

and 𝜖 are normalized factors.  

The normalized matrix 𝑯( is fed to dropout layer: 

      𝑯( ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯(, 𝑟) (S25) 

where 𝑟 is the rate of neurons which are randomly dropped in each training step, 

indicating that the corresponding weight vectors will be not optimized.  

E. Self-attention    

The initial embedding matrix 𝑯( is fed to the self-attention network with 𝑁 blocks, 

each of which consists of three sub-blocks. In this work, 𝑁 = 12.   

The first sub-block consists of a batch normalization layer, a row attention layer, 

a dropout layer, and a short connection, as follows.  

      𝑯+
O = 𝐵𝑁(𝑯+) (S26) 

      𝑯+
P = 𝑅𝐴(𝑯+

O) (S27) 

      𝑯+
P ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯+

P , 𝑟) (S28) 

      𝑭+ = 𝑆𝐶(𝑯+ , 𝑯+
P) = 𝑯+ +𝑯+

P (S29) 

where 𝑯+ and 𝑭+ are the input and output matrices in the first sub-block of the 𝑘-th 

self-attention block, respectively, 𝐵𝑁(∙) is the batch normalization function (see Eqs. 

S23-S24), 𝑆𝐶(∙) is the short connection, and 𝑅𝐴(∙) is the row attention layer (see Eqs. 

S38-S45), 𝑯+, 𝑯+
O, 𝑯+

P, 𝑭+ ∈ 𝑅A×"×&. 
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The second sub-block consists of a batch normalization layer, a column attention 

layer, a dropout layer, and a short connection, as follows.  

      𝑭+O = 𝐵𝑁(𝑭+) (S30) 

      𝑭+D = 𝐶𝐴(𝑭+O) (S31) 

      𝑭+D ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑭+D , 𝑟) (S32) 

      𝑼+ = 𝑆𝐶(𝑭+ , 𝑭+D) = 𝑭+ + 𝑭+D  (S33) 

where 𝑭+ and 𝑼+ are the input and output matrices in the second sub-block of the 𝑘-

th self-attention block, respectively, 𝐶𝐴(∙) is the column attention layer (see Eqs. S46-

S54), and 𝑭+O, 𝑭+D , 𝑼+ ∈ 𝑅A×"×&. 

The last sub-block consists of a batch normalization layer, a feed-forward network, 

a dropout layer, and a short connection, as follows.  

      𝑼+O = 𝐵𝑁(𝑼+) (S34) 

      𝑼+Q = 𝐹𝐹𝑁(𝑼+O) (S35) 

      𝑼+Q ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑼+Q , 𝑟) (S36) 

      𝑯+-( = 𝑆𝐶(𝑼+ , 𝑼+Q) = 𝑼+ + 𝑼+Q (S37) 

where 𝑼+ and 𝑯+-( are the input and output matrices in the third sub-block of the 

𝑘-th self-attention block, respectively, 𝐹𝐹𝑁(. ) is the feed-forward network (see Eqs. 

S55-S60), and 𝑼+O, 𝑼+Q, 𝑯+-( ∈ 𝑅A×"×&.  

(a) Row attention 

Each row attention layer consists of 𝑚 attention heads and a linear unit, where 𝑚 =
12. In each attention head, the input matrix is multiplied by three weight matrices to 

generate the corresponding Query, Key, and Value matrices. 

      𝑸+FP = 𝑯+
O𝑾+F

/P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

/P =

⎣
⎢
⎢
⎢
⎡𝑯+

O[1]𝑾+F
/P

𝑯+
O[2]𝑾+F

/P

…
𝑯+
O[𝑀]𝑾+F

/P⎦
⎥
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S38) 

      𝑲+F
P = 𝑯+

O𝑾+F
0P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

0P =

⎣
⎢
⎢
⎡𝑯+

O[1]𝑾+F
0P

𝑯+
O[2]𝑾+F

0P

…
𝑯+
O[𝑀]𝑾+F

0P⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S39) 

      𝑽+FP = 𝑯+
O𝑾+F

2P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

2P =

⎣
⎢
⎢
⎡𝑯+

O[1]𝑾+F
2P

𝑯+
O[2]𝑾+F

2P

…
𝑯+
O[𝑀]𝑾+F

2P⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S40) 
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	𝑯+
O[𝑖] ∈ 𝑅"×& ,𝑾+F

/P ,𝑾+F
0P ,𝑾+F

2P ∈ 𝑅&×(
&
5) 

where 𝑯+
O is the input matrix of row attention layer in the 𝑘-th self-attention block 

(See Eq. S27), 𝑸+FP , 𝑲+F
P , and 𝑽+FP  are Query, Key, and Value matrices in the t-th head 

of the row attention layer in the 𝑘-th block, respectively, 𝑾+F
/P, 𝑾+F

0P, and 𝑾+F
2P are 

corresponding weight metrices.  

Then, the dot-product between 𝑸+FP  and 𝑲+F
P  is performed and then normalized 

by SoftMax function to generate a row attention weight matrix: 

     𝑾+F
RP = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(∑ 𝑸"1

2 [)]∙(𝑲"1
2 [)])3}4

/5'
ZA&/5

) ∈ 𝑅"×" , 𝑸+FP [𝑖], 𝑲+F
P [𝑖] 	 ∈ 𝑅"×(&/5)(S41) 

      𝑾+F
RP ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾+F

RP , 𝑟) (S42) 

where 𝑾+F
RP is the attention weight matrix in the t-th head of the row attention layer in 

the 𝑘-th block and measures the correlation for each pair of columns in the masked 

MSA.  

Next, the row attention weight matrix 𝑾+F
RP is multiplied by Value matrix 𝑽+FP  to 

generate the corresponding row attention matrix: 

𝑨+FP = 𝑾+F
RP𝑽+FP = 𝑾+F

RP

⎣
⎢
⎢
⎡ 𝑽+F

P [1]
𝑽+FP [2]
…

𝑽+FP [𝑀]⎦
⎥
⎥
⎤
=

⎣
⎢
⎢
⎡𝑾+F

RP𝑽+FP [1]
𝑾+F

RP𝑽+FP [2]
…

𝑾+F
RP𝑽+FP [𝑀]⎦

⎥
⎥
⎤
∈ 𝑅A×"×\

$
)], 𝑽+FP [𝑖] ∈ 𝑅

"×\$)](S43) 

where 𝑨+FP  is the attention matrix in the t-th head of the row attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨+P = 𝑨+(P 𝑨+$P …𝑨+5P ∈ 𝑅A×"×& (S44) 

 𝑯+
P = 𝑨+P𝑾+

P + 𝒃+P =

⎣
⎢
⎢
⎡ 𝑨+

P[1]
𝑨+P[2]
…

𝑨+P[𝑀]⎦
⎥
⎥
⎤
𝑾+

P + 𝒃+P =

⎣
⎢
⎢
⎡ 𝑨+

P[1]𝑾+
P

𝑨+P[2]𝑾+
P

…
𝑨+P[𝑀]𝑾+

P⎦
⎥
⎥
⎤
+ 𝒃+P ∈ 𝑅A×"×& (S45) 

 𝑾+
P ∈ 𝑅&×& , 𝑨+P[𝑖] ∈ 𝑅"×&   

where 𝑯+
P in the output matrix of row attention layer in the 𝑘-th attention block (See 

Eq. S27), and 𝑾+
P and 𝒃+P are weight matrix and bias in the linear unit, respectively.  

(b) Column attention 

Each column attention layer consists of 𝑚 attention heads and a linear unit. In each 

attention head, the input matrix is multiplied by three weight matrices to generate the 

corresponding Query, Key, and Value matrices. 
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 𝑸+FD = 𝑭+O𝑾+F
/D =

⎣
⎢
⎢
⎡ 𝑭+

O[1]
𝑭+O[2]
…

𝑭+O[𝑀]⎦
⎥
⎥
⎤
𝑾+F

/D =

⎣
⎢
⎢
⎢
⎡ 𝑭+

O[1]𝑾+F
/D

𝑭+O[2]𝑾+F
/D

…
𝑭+O[𝑀]𝑾+F

/D⎦
⎥
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S46) 

      𝑲+F
D = 𝑭+O𝑾+F

0D =

⎣
⎢
⎢
⎡ 𝑭+

O[1]
𝑭+O[2]
…

𝑭+O[𝑀]⎦
⎥
⎥
⎤
𝑾+F

0D =

⎣
⎢
⎢
⎡ 𝑭+

O[1]𝑾+F
0D

𝑭+O[2]𝑾+F
0D

…
𝑭+O[𝑀]𝑾+F

0D⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S47) 

      𝑽+FD = 𝑭+O𝑾+F
2D =

⎣
⎢
⎢
⎡ 𝑭+

O[1]
𝑭+O[2]
…

𝑭+O[𝑀]⎦
⎥
⎥
⎤
𝑾+F

2D =

⎣
⎢
⎢
⎡ 𝑭+

O[1]𝑾+F
2D

𝑭+O[2]𝑾+F
2D

…
𝑭+O[𝑀]𝑾+F

2D⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S48) 

𝑭+O[𝑖] ∈ 𝑅"×& ,𝑾+F
/D ,𝑾+F

0D ,𝑾+F
2D ∈ 𝑅&×(

&
5) 

where 𝑭+O is the input matrix of column attention layer in the 𝑘-th self-attention block 

(see Eq. S31), 𝑸+FD , 𝑲+F
D , and 𝑽+FD  are Query, Key, and Value matrices in the t-th head 

of column attention layer in the 𝑘-th block, respectively, 𝑾+F
/D , 𝑾+F

0D , and 𝑾+F
2D  are 

corresponding weight metrices. 

Then, the dot-product between 𝑸+FD  and 𝑲+F
D  is performed and then normalized 

by SoftMax function to generate an attention weight matrix: 

      𝑾+F
RD = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 �𝑸"1

6 (𝑲"1
6 )3

Z&/5
� ∈ 𝑅A×"×A (S49) 

      𝑾+F
RD ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾+F

RD , 𝑟) (S50) 

      𝑸!"# (𝑲!"
# )$ = &𝑸!"# [: , 1, : ]	𝑸!"# [: , 2, ∶] 	…𝑸!"# [: , 𝐿, ∶]1 ∙ &𝑲!"

# [: , 1, : ]	𝑲!"
# [: , 2, ∶]	…𝑲!"

# [: , 𝐿, ∶]1
$
=

3𝑸!"# [: , 1, : ] ∙ 𝑲!"
# [: , 1, : ]$	𝑸!"# [: , 2, : ] ∙ 𝑲!"

# [: , 2, : ]$ …𝑸!"# [: , 𝐿, : ] ∙ 𝑲!"
# [: , 𝐿, : ]$4 ∈ 𝑅𝑀×𝐿×𝑀 (S51) 

𝑸+FD [: , 𝑗, : ], 𝑲+F
D [: , 𝑗, : ] ∈ 𝑅A×\

&
5], 𝑸+FD [: , 𝑗, : ] ∙ 𝑲+F

D [: , 𝑗, : ]1 ∈ 𝑅A×A 

where 𝑾+F
RD  is the attention weight matrix in the t-th head of column attention layer in 

the 𝑘-th block, and 𝑾+F
RD[: , 𝑗, : ] measures the correlation for each pair of alignments 

at the 𝑗-th position.  

Next, the column attention weight matrix 𝑾+F
𝐴𝐶 is multiplied by Value matrix 𝑽+FD  

to generate the corresponding column attention matrix: 

𝑨!"# = 𝑾!"
%#𝑽!"# = &𝑾!"

%#[: , 1, : ]	𝑾!"
%#[: , 2, ∶]	…𝑾!"

%#[: , 𝐿, ∶]1 ∙ &𝑽!"# [: , 1, : ]	𝑽!"# [: , 2, ∶]	…𝑽!"# [: , 𝐿, ∶]1=&𝑾!"
%#[: , 1, : ] ∙

𝑽!"# [: , 1, : ]		𝑾!"
%#[: , 2, ∶] ∙ 𝑽!"# [: , 2, ∶] 		…𝑾!"

%#[: , 𝐿, ∶] ∙ 𝑽!"# [: , 𝐿, ∶]1 ∈ 𝑅
𝑀×𝐿×(𝐷𝑚) (S52) 
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𝑾+F
RD[: , 𝑗, : ] ∈ 𝑅A×A , 𝑽+FD [: , 𝑗, ∶] ∈ 𝑅

A×(&5),𝑾+F
RD[: , 𝑗, ∶] ∙ 𝑽+FD [: , 𝑗, ∶] ∈ 𝑅

A×(&5) 

where 𝑨+FD  is the attention matrix in the t-th head of column attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨+D = 𝑨+(D 𝑨+$D …𝑨+5D ∈ 𝑅A×"×& (S53) 

 𝑭+D = 𝑨+D𝑾+
D + 𝒃+D =

⎣
⎢
⎢
⎡ 𝑨+

D[1]
𝑨+D[2]
…

𝑨+D[𝑀]⎦
⎥
⎥
⎤
𝑾+

D =

⎣
⎢
⎢
⎡ 𝑨(

D[1]𝑾+
D

𝑨$D[2]𝑾+
D

…
𝑨+D[𝑀]𝑾+

D⎦
⎥
⎥
⎤
+ 𝒃+D ∈ 𝑅A×"×& (S54) 

 𝑾+
D ∈ 𝑅&×& , 𝑨+D[𝑖] ∈ 𝑅"×&   

where 𝑭+D  in the output matrix of column attention layer in the 𝑘-th attention block, 

(See Eq. S31), and 𝑾+
D  and 𝒃+D  are weight matrix and bias in the linear unit, 

respectively. 

(c) Feed-forward network 

      𝑻+Q = 𝑔𝑒𝑙𝑢(𝑼+O𝑾+
( + 𝒃+() ∈ 𝑅A×"×&' (S55) 

      𝑻+Q ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑻+Q , 𝑟) (S56) 

      𝑼+Q = 𝑻+Q𝑾+
$ + 𝒃+$ ∈ 𝑅A×"×& (S57) 

 𝑔𝑒𝑙𝑢(𝑥) = 𝑥∅(𝑥) (S58) 

      𝑼+O𝑾+
( =

⎣
⎢
⎢
⎡ 𝑼+

O[1]
𝑼+O[2]
…

𝑼+O[𝑀]⎦
⎥
⎥
⎤
𝑾+

( =

⎣
⎢
⎢
⎡𝑼+

O[1]𝑾+
(

𝑼+O[2]𝑾+
(

…
𝑼+O[𝑀]𝑾+

(⎦
⎥
⎥
⎤
∈ 𝑅A×"×&' (S59) 

      𝑻+Q𝑾+
$ =

⎣
⎢
⎢
⎡ 𝑻+

Q[1]
𝑻+Q[2]
…

𝑻+Q[𝑀]⎦
⎥
⎥
⎤
𝑾+

$ =

⎣
⎢
⎢
⎡ 𝑻+

Q[1]𝑾+
$

𝑻+Q[2]𝑾+
$

…
𝑻+Q[𝑀]𝑾+

$⎦
⎥
⎥
⎤
∈ 𝑅A×"×& (S60) 

      𝑼+O[𝑖] ∈ 𝑅"×& ,𝑾+
( ∈ 𝑅&×&' , 𝑻+Q[𝑖] ∈ 𝑅"×&' ,𝑾+

$ ∈ 𝑅&'×& , 𝐷(=3072  

where 𝑼+O and 𝑼+Q are the input and output matrices of feed-forward network in the 

𝑘 -th self-attention block, respectively, (see Eq. S35), 𝑾+
(  and 𝑾+

$  are weight 

matrices, 𝒃+(  and 𝒃+$  are bias, and ∅(𝑥)	is the integral of Gaussian Distribution for 

𝑥. 

F. Output layer    

The output of the last self-attention block is fed to a fully connected layer with SoftMax 

function to generate a probability matrix: 
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 𝑷 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑯`-(𝑾a + 𝒃a) ∈ 𝑅A×"×D)-.	 (S61) 

																						𝑯`-(𝑾a =

⎣
⎢
⎢
⎡𝑯`-([1]𝑾a

𝑯`-([2]𝑾a

…
𝑯`-([𝑀]𝑾a⎦

⎥
⎥
⎤
, 𝑯`-([𝑖] ∈ 𝑅"×&	,𝑾a ∈ 𝑅&×D)-.		 (S62) 

where 𝑯`-( is the outputted embedding matrix in the 𝑁-th self-attention block, 𝑾a 

and 𝒃a  are weight matrix and bias, respectively, and the 𝑷(𝑖, 𝑗, 𝑐)  indicates the 

probability that the 𝑗-th position of the 𝑖-th sequence in the masked MSA is predicted 

as the 𝑐-th type of amino acid. 

G. Loss function 

For an individual MSA, the loss function is designed as: 

 𝐿𝑜𝑠𝑠59E =
(
A
∙ ∑ { (

|5E9+())|
∙ ∑ −𝑙𝑜𝑔𝑷),.,C(),.).∈5E9+()) }A

)c(  (S63) 

where 𝑀 is the number of alignments, 𝑚𝑎𝑠𝑘(𝑖) is a set of masking position in the 𝑖-
th sequence, |𝑚𝑎𝑠𝑘(𝑖)| is the number of elements in 𝑚𝑎𝑠𝑘(𝑖), 𝑐(𝑖, 𝑗) is the type 

index of amino acid for the	 𝑗-th position in the 𝑖-th sequence before masking, and -

𝑙𝑜𝑔𝑷),.,C(),.) is negative log likelihood of the true amino acid at the	 𝑗-th position in the 

𝑖-th sequence under condition of masking.  
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Supporting Figures 
 

 

Figure S1. The workflow of ESM2 transformer.  
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Figure S2. The workflow of ESM-MSA transformer.  
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Figure S3. The architectures of three ablation models.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.30.542787doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542787


 
Supporting Tables 

 
Table S1. The performance of five DNA-binding site predictors  

on PDNA-543 over ten-fold cross-validation. 

Method Sen Spe Acc MCC AUROC 

TargetDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) a 0.770 0.771 0.770 0.304 0.845 
DNAPred (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) b 0.771 0.785 0.784 0.318 0.861 

PredDBR (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) c 0.776 0.774 0.774 0.358 - 
ULDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) 0.864 0.861 0.861 0.462 0.933 

TargetDNA (𝑆𝑝𝑒 ≈ 0.95) a 0.406 0.950 0.914 0.339 0.845 
DNAPred (𝑆𝑝𝑒 ≈ 0.95) b 0.449 0.950 0.917 0.373 0.861 

PredDBR (𝑆𝑝𝑒 ≈ 0.95) c 0.454 0.955 0.914 0.415 - 
Guan’s method (𝑆𝑝𝑒 ≈ 0.95) d 0.452 0.954 0.928 0.352 - 

ULDNA (𝑆𝑝𝑒 ≈ 0.95) 0.668 0.950 0.931 0.534 0.933 
a Results excerpted from TargetDNA [4]; b Results excerpted from DNAPred [5]; c Results 
excerpted from PredDBR [6]; d Results excerpted from Guan et al [7]. “𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒” means 
the threshold that makes 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒; “𝑆𝑝𝑒 ≈ 0.95” means the threshold that makes 𝑆𝑝𝑒 ≈
0.95. ‘-’ means the value is not given. Bold fonts highlight the best performer in each 
evaluation metric. 
 
 
 
 
 
 
 
 
 
 
 

Table S2. The performance of five DNA-binding site predictors  
on PDNA-335 over five-fold cross-validation. 

Method Sen Spe Acc MCC AUROC 

EC-RUS a 0.487 0.951 0.926 0.378 0.852 
TargetS b 0.417 0.945 0.899 0.362 0.824 

DNAPred c  0.543 0.917 0.886 0.390 0.856 
PredDBR d   0.426 0.953 0.910 0.390 - 

ULDNA  0.676 0.948 0.925 0.565 0.940 
a Results excerpted from EC-RUS [8]; b Results excerpted from 
TargetS [9]; c Results excerpted from DNAPred [5]; d Results 
excerpted from PredDBR [6]. ‘-’ means the value is not given. Bold 
fonts highlight the best performer in each evaluation metric. 
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Table S3. The performance of eleven DNA-binding site predictors  
on PDNA-316 over ten-fold cross-validation. 

Method Sen Spe Acc MCC 

DBS-PRED a 0.530 0.760 0.750 0.170 
BindN a 0.540 0.800 0.780 0.210 

DNABindR a 0.660 0.740 0.730 0.230 
DISIS a 0.190 0.980 0.920 0.250 

DP-Bind a  0.690 0.790 0.780 0.290 
BindN-rf a  0.670 0.830 0.820 0.320 

MetaDBSite a 0.770 0.770 0.770 0.320 
TargetDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) a 0.780 0.780 0.780 0.339 

TargetDNA (𝑆𝑝𝑒 ≈ 0.95) a 0.430 0.950 0.910 0.375 
DNAPred (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) b 0.800 0.799 0.799 0.370 

DNAPred (𝑆𝑝𝑒 ≈ 0.95) b 0.521 0.951 0.918 0.452 
PredDBR (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) c 0.815 0.807 0.808 0.398 

PredDBR (𝑆𝑝𝑒 ≈ 0.95) c 0.561 0.953 0.921 0.497 
PredDBR (threshold = 0.5) c 0.531 0.958 0.923 0.489 

ULDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) 0.871 0.867 0.867 0.502 
ULDNA (𝑆𝑝𝑒 ≈ 0.95) 0.676 0.950 0.929 0.561 

ULDNA (threshold = 0.5) 0.449 0.983 0.942 0.526 
a Results excerpted from TargetDNA [4]; b Results excerpted from 
DNAPred [5]; c Results excerpted from PredDBR [6]; “𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒 ” 
means the threshold that makes 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒; “𝑆𝑝𝑒 ≈ 0.95” means the 
threshold that makes 𝑆𝑝𝑒 ≈ 0.95. Bold fonts highlight the best performer 
in each evaluation metric. 

Table S4. The predicted and native DNA-binding sites of two representative proteins  
for five DNA-binding prediction methods 

Protein Method Predicted DNA-binding sites 

2MXF_A 

LA-ESM2 2R 5K 7Y 10P 11H 18T 19K 20G 21G 22N 23H 24K 27K 30K 

LA-ProtTrans 1A 2R 3K 4V 5K 16I 17E 18T 19K 20G 21G 22N 23H 24K 25T 27K 

LA-ESM-MSA 2R 5K 7Y 18T 19K 20G 21G 22N 23H 24K 27K 30K 41W 

ULDNA 2R 3K 5K 7Y 18T 19K 20G 21G 22N 23H 24K 27K 30K 

PredDBR 2R 5K 7Y 8K 9N 18T 19K 20G 21G 23H 

Native DNA-binding sites 1A 2R 3K 5K 7Y 18T 19K 20G 21G 22N 23H 24K 26L 27K 30K 39E 

3ZQL_A 

LA-ESM2 12R 13R 14S 15A 16R 17S 18H 19R 20T 43S 44M 45R 54G 55T 56M 57S 59Y 60Y 
61Y 180R 183 M 

LA-ProtTrans 13R 14S 15A 16R 17S 18H 19R 20T 21L 43S 44M 45R 55T 56M 57S 59Y 60Y 61Y 
65K 

LA-ESM-MSA 12R 13R 14S 15A 16R 17S 18H 19R 20T 23R 43S 44M 45R 46R 53A 54G 55T 56M 
57S 59Y 60Y 61Y 64T 65K 

ULDNA 12R 13R 14S 15A 16R 17S 18H 19R 20T 43S 44M 45R 53A 54G 55T 56M 57S 59Y 
60Y 61Y 64T 65K 

PredDBR 1V 4W 6H 7P 12R 15A 18H 19R 22S 23R 43S 44M 45R 53A 54G 55T 56M 57S 59Y  
60Y 61Y 64T 65K 115W 117N 119H 124P 125N 126S 182W 187G 236D 

Native DNA-binding sites 12R 19R 43S 44M 45R 54G 55T 56M 57S 59Y 60Y 61Y 64T 65K 

Bold font means a DNA-binding site can be correctly predicted by a DNA-binding prediction method.  
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