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ULTIMATE BOUNDEDNESS OF SOLUTIONS FOR A GENERALIZED
LIENARD EQUATION WITH FORCING TERM
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Abstract. A boundedness theorem is established for a second order differential
equation describing parametric excitations in physics.

1. Introduction. The purpose of this paper is to establish a boundedness theorem

for the equation

(1) x+f{U x, x)x + g(t, x) = e(t), ( =d/dt)

where/(/, x, y) is continuous for all t, x and y, g(t, x) is continuous for all / and x and

e(ή is continuous and bounded for all /. It is a feature that g(t, x), the restoring force

in physics, depends not only on x but also on ί, and then (1) describes parametric

excitations (cf. [14], [23]). Although many boundedness theorems have been obtained

for (1) in the case where g(t, x) is independent of /, that is,

(2) g(t,x) = g(x),

(cf. [l]-[24] except [11], and [4, Theorem 4]), all of their proofs depend heavily on

(2) and are not applicable to (1).

The first boundedness theorem for (1) was obtained by Cartwright and Swinnerton-

Dyer [4, Theorem 4], but their theorem does not cover Rayleigh's equation

(3) k ( 3

except when g(x) = x.

In this paper we investigate the boundedness of solutions under the restriction

(4) f(t,x, -y)>kyλ for all t,x>A and y>A,

where k, λ and A are positive constants, which was motivated by (3).

Theorem 1 in Section 2 shows that if λ > 1 in (4), then the solutions are ultimately

bounded under mild conditions on g(t, x). However we can show that λ= 1 is critical.

Namely, when λ = 1, Theorem 1 still guarantees the boundedness under some additional

condition on g(t,x), but the example in Section 4 shows that this condition cannot be
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dropped.
Our method is to construct a positively invariant Jordan curve in a phase plane

corresponding to (1) in the same way as in many previous results.
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2. Boundedness theorem. We assume (4), the uniqueness of solutions for (1)
with arbitrary initial conditions and the following conditions (i) through (v):

( i ) e(ή is bounded for all t, and for any constant N>0

sup {\f(t,x,y)\;\x\<N,\y\<N, -cc<t<co}< +oo ,

(ii) there exists a constant M > 0 such that/(ί, x,y)> — M for all t, x and y,
(iii) /(/, x , ^ ) > 0 for all ί and |ΛΓ|> 1, | ^ | > 1,
(iv) there exist two functions hx(x) and h2(x), continuous for all x, such that

h1(x)<(g(t, x)-e(t))sgnx<h2(x) for all x and all t and that h1(x)>M+b for | x | > l

and for a constant b > 0,
(v) if 0 < λ < 1, then h2 (x) satisfies

f
J c

(v.l) I e - 2 k x h 2 ( x ) d x < o o w h e n λ = l ,
J o

(v.2) lim sup — — < I(λ) when 0 < λ < 1 ,

where μ = {\ +λ)/(l -λ), I(λ) = (l-λ)(\ -λ2)μ(k/2)μ + 1 and k is the constant in (4).

REMARK 1. In the case of (2), the above conditions (i) through (iv) are used as
standard conditions (cf. [19]).

REMARK 2. We can see that /(Λ)->0 as i->l, because log/(λ) = (μ+l)log(l —
/ί2)(A:/2)-log(l+2)->-oo as Λ-l.

Our main theorem is the following whose proof will be given in the next section.

THEOREM 1. Under the above conditions, the solutions of (I) are ultimately bounded.
Namely there exist positive constants B1 and B2 such that any solution x{t) satisfies
Ix{t) \<Bl9\x(t) \<B2for all t> T, where Tis a constant depending on x(t) while Bt and
B2 are independent of the particular solution.
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We give examples of Theorem 1 when λ = 2 and λ =1/2. The solutions of the

following equations are ultimately bounded:

and

where k is a positive constant, g(t, x) satisfies (iv), e(i) and a(t) are continuous and

bounded, a(t) > 0 and

27
{(7); - o o < ί < o o } < k *k .

2048

Here we note that 7(1/2) = 2Ίk*/2048 in (v.2).

We now consider the periodic case of (1), that is, when/(7, x, y), g(t, x) and e(i)

have the same period, say 2π, in t. As a special case of Massera's theorem (cf. [20, p.

369]), it is known that if every solution of (1) is bounded in the future, then there exists

at least one 2π-periodic solution. This is the case if (1) satisfies all conditions (ϋ)-(v)

of Theorem 1. Hence both equations in the examples have at least one 2π-periodic

solution if g(t, x), a{t) and e(ή are 2π-periodic in t.

The existence of periodic solutions for equations of type (1) has already been

studied by several authors. For example, Yoshizawa [24] considered it under the

assumption of the existence of two constants a, b, a<b, such that g(t, a)>e(t)>g(t, b)

for 0</<2π. Also, from the proof of Lazer's theorem [11] we can see that (1) has a

periodic solution if /(/, x, y) is constant and

| x | ->00 X

However, both equations in the examples do not fall within the hypotheses of any of

these results [11] and [24].

3. Proof of theorem. We consider the phase plane R2 with coordinates x and

y = x. Then (1) is equivalent to the system

(5) χ=y, y= -f(t, x, y)y-h(t, x),

where Λ(/, χ) = g{t, x) — e(t), and (iv) implies

(6) h(t, x)sgnx>M+b for | JC | > 1 and all t.

From (5) we obtain by division



298 F. NAKAJIMA

for
r f ( t , x , y )

ax x y

We set w(ή = (x(t),y(t))eR2. The following is a key lemma in our proof.

LEMMA 1. Under (iv) and (v), there exists a continuously differentiate function

y= —φ(x)for A<x<ω, where ω = oo ifθ<λ<\ andω<A + \ if λ>\, such that

(7) φ(x)>A, φ(x)-κχ) as X^KO

and y= —φ(x) satisfies

(8) ^ - f ^ x ^ y ) - ^ ^ - far ω>x>A and all t.
dx y

Consequently the curve w(t) crosses y= —φ(x) from below to above as t increases.

PROOF. In order to prove (7) and (8), it is sufficient to show that

(9) -φ(
dx

for A<x<ω, as well as (7), because of (iv) and (4), and (9) is reduced to

(10) — (x) - 2kzv + 2h2(x) < 0
dx

by z(x) = φ2(x) and v = (1 + λ)/2.

We first consider the case where λ>\. Letting N to be the constant such that

N=sup{h2(x);A<x<A + l} ,

we consider the equation

(11) — (x) - 2kz\x) + 2N= 0 .
dx

Because of v> 1, we can see that if z(A) is sufficiently large, then the solution z(x) of

(11) is monotone increasing for x>A, but noncontinuable until x = A + 1. Namely there

is a constant ω, A<ω<A + l, such that z(x) is defined on [A, ω), z(x) >A2 and z(x)-> oo

as x->ω. Therefore, φ(x) = y/z(x) satisfies (7) and (9).

Secondly we consider the case where λ=l. Then (10) is reduced to

— (x) - 2kz(x) + 2h2(x) < 0 ,
dx

which is satisfied by
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= e2k(χ-A){z(A)-2 Γe-2kiu-A)h2(u)du} .
JA

Because of (v.l), if z(A) is sufficiently large, then z(x) is defined for all x>A, z(x)>A2

and z(x)-+oo as JC->OO. Therefore φ(x) = y/z(x) satisfies (7) and (9).

Finally, for the case where 0 < λ < 1-, we can see that

φ(x) = (l-λy^-λ)r y (x-A) + Λ for some constant c>0

satisfies (7) and (9) by (v.2). The proof of Lemma 1 is complete.

We denote the straight line segment joining any two points P and Q of R2 by PQ

and the curve y = —φ(x) (x>A) in R2 by Γ. We will prove Theorem 1 by constructing

a Jordan domain Da cz R2, a>A, such that

(12) U DX = R2

<x>A

and the closure Da of Da is positively invariant, that is, if w(t0) e Da for some t0 > 0,

then w(t)eDa for t>t0 and that if w(to)eDa — DA for some ot>A, then w(T)eJA for

some Γ> /0, where JA is the boundary of DA.

Without loss of generality, assume that

M>\ and OL>A>2M.

We construct a Jordan curve Ja, which will be the boundary of Da, starting at

Q1=(OL, -φ(α)) (see Figure 1).

Step 1. From (iv) we can choose a constant ^(α) > M such that

K((x)>sup{\h(t, x)\; — oo</<αo , — l < x < α } ,

A:(α)>supi Ψ^ ;A<x<oc> when 0<λ<\ ,
I dx )

and consider the equation

(13) — = #(a)l 1 I, y(μ)= -φ(α) .

Since the right hand side is positive for y<0 and j(α)<0, it follows that y(x) is defined

for x<oc and y(x)< — φ(α)<0 for x<cc. Indeed, y(x) is given by the equation

y + log\y— 1 \ — K(cήx = const.

Let C^α) be the arc of y(x) from Qγ to the point of intersection with the line x= — 1,

sayj22 = ( - l , — j?) for some β>0. Since dy/dx>K(θL)>\, the gradient of the vector

ζ^Qi is larger than 1, that is, (β — φ((x))/((x+ 1)> 1, which implies
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(14) j?>φ

and, therefore, by (7)

(15) jβ-> + oo as

Since

y)

the arc CΊ(α) is concave with respect to the x-axis, and hence QιQ2 is above Cx(α).

Moreover Cx(α) is below Γ for A <x<oc, because

dyjx)

dx
>K(oc)>

dφ(x)

dx
(A<x<oc) when 0<λ<\

and

> 0 >

dx dx

Step 2. The equation

(16) f ^ , y(-l)=-β
dx y

has a solution y(x) such that

Since β>\, y(x) meets the line y= — \, say at Q 3 = ( — y, — 1), where

(17) ? > — .
V 2M

Then the arc C2(α) = <22<23 is contained in the region x< — \,y< — \ and is concave

with respect to the x-axis.

Step 3. We set 2 4 = ( — δ, 0), where δ = y + 2/b. Then Q 3 β 4 is contained in the

region x < — 1, — 1 < y < 0 and the gradient of the vector β 3 β 4 is —b/2.

Step 4. We choose a constant L(α) > Af such that

L(α)>sup{|Λ(/, x ) | ; - o o < ί < o o , -δ<x<\} ,

and consider the equation

dx \ y
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A positive valued solution y(x) such that j>(x)->0 as x->—<5 + 0 uniquely defined for
x>-δ.

Let C3(α) be the arc of y(x) from g 4 to be point of intersection with x= 1, say
Q5 = (\,ξ). Since

the gradient of the vector β 4 β 5 is larger than M, and hence ξ/(l +δ)>M, which implies

ξ > J > 1

Step 5. The equation

(20) %

has a solution J(JC) such that

Since ζ> 1, y(x) meets the line y=\, say at Q6 = (η, 1), where

£2 α4

(21) >7> — > >fxM2>(x

by (19) and (14). We set C4(α) = Q^.
Step 6. We set Q7 = (C, 0), where ζ = η + 2/b>oc. The segment Q6QΊ is contained

in the region x>A, 0<y< 1 and the gradient of the vector Q6QΊ is —6/2.
Step 7. Let L*(α)>M be a constant such that

^ for a<x<ζ and all ί

and let >;=j;(x) be the negative valued solution of the equation

(22) ^
y.

with y(x)-+O as x-+ζ — 0. Since y(x) exists for all x<ζ, we have

(JC<0
ς— α

and hence y(cc)< —φ(a), which implies that y—y{x) intersects Γ at a point g 8 to the

right of £>! on Γ. We set C5(α) = Q^. ^_^
Now we take Ja to be the Jordan curve consisting of the arc QXQ8 of Γ, C^α),
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C2(α), β 3 β 4 , C3(α), C4(α), Q6QΊ and C5(α), and we take Z>α to be the interior of Ja.

We will prove (12). Indeed, taking Ea to be the interior of the polygon of Ql9 Q2,

Q^ Q^ 25> (?6> β?> δi> we can see that

(23) Ea c= Da

by the convexity of Ck(oc) (1 < £ < 5 ) to the x-axis. Since each of the ^-coordinates of

Qί9 Q2 and Q5 and each of the x-coordinates of Q3, g 4 , Q6 and QΊ tend to oo or— oo

as α - ω by (7), (15), (17), (19) and (21), we have

which implies (12), together with (23).

In order to prove the positive invariance of Dα, assuming that w(t0) e Ja for some

to>0, we show that w(t) crosses Ja — {β4, QΊ) transversely from outside to inside as t

increases through ί0 and that if w(/0)e{24, β 7 }, there is a constant ε>0 such that

(24) w(0e/)β for to<t<to + ε.

Step 8. Suppose w(ί0)e C5(oc) — {QΊ, Q8}. From (5) we obtain by division

(25) ^ = A = - / ( W ) - ^ for ,*0.
ax x y

By the definition of L*(α), we have

(26) — < L * ( α ) ( l - — ) for j < 0 .

Since x(to)=y(to)<0, we can see from the comparison of the above with (22) that w(t)

crosses C5(α) — {β7, Q8} transversely from below to above as t increases through t0.

For w(to) = QΊ, we have

and

because x(ί0) > 1. Therefore, for a small constant ε > 0,

x(ή<x(t0) and y(ή<0 for /

Considering (26) again for y=y(t) (to<t<to + ε), w(t) must be above C5(α). Thus we

obtain (24). The case where w(ίo) = Q8 is treated in Step 9.

In the following discussion, t is always assumed to increase through t0.

Step 9. Suppose w(t0)eQιQ8 — {Qi}> By Lemma 1, w(t) crosses Γ from below to

above at t = t0, and since
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x(h)=y(to)<09

we can see that w(ή crosses QιQs — {Qi} from outside to inside at t0. The case where
w(to) = Q1 is treated in Step 10.

Step 10. Suppose w(t0) E C1 (α) — {Q2}- From the definition of K((x), (25) implies

— <K(Λ)(l-—\ for y<0.
dx \ y)

Since x(to)=y(to)<0, we can see from the comparison of the above with (13) that w(ή
crosses Cx(α) — {Q2} from below to above at ί = t0. The case where w(to) = Q2 is treated
in Step 11.

Step 11. Suppose w(ίo)eC2(α)-{23}. Since

f(t,x,y)>0 for x < - l and >><-l

and

h(t,x)<-M-b for x<-\,

(25) implies that

dy M+b M
— < < for >><0.
dx y y

Since .x;(ίo)=>>(/o)<0, we can see from the comparison of the above with (16) that w(t)
crosses C2(α) — {β3} from below to above at t = t0. The case where w(to) = Q3 is treated
in Step 12.

Step 12. Suppose w(t0) e Q3Q^- {β4}. Since

h(t,x)<-M-b for J C < - 1 ,

(25) implies

— <M+ <-b for - 1 < J < 0 .

dx y

On the other hand, the gradient of the vector β 3 β 4 is —b/2. Therefore, since
x(to)=y(to)<Q> w(t) crosses β 3 β 4 from below to above at t = t0.

By arguments similar to those above, we can show (24) for w(to) = Q4 and that
w(t) crosses C3(α) — {β4}, C4(α) and Q6QΊ transversely from outside to inside. Thus
the positive invariance of Da is proved.

Next we show our remaining assertion to the effect that if w(ήeDa — DA, then
w(T)eJA for some T>ί0. Let Pt be the point on JA corresponding to Qt on Ja for
1 < i< 8 (see Figure 1, where the shadowed region denotes DA). To the contrary, suppose
that w(ήφJA for all t>ί0, that is, w(ήeDa-DA for all t>t0. For w(ή = (x(ή,y(ή),
since x(ή is bounded for t>t0, there is a sequence {tk}^=ί, tk-^co as &->oo, such that
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x(tk)=y(tk)-+0 as

which implies that w(tk) approaches P4Q4. or P6QΊ as /τ->oo. In some neighbourhoods

of P4Q4 and PΊQΊ, where \x\> 1 and |jμ| is sufficiently small, we obtain by the same

argument as in Step 12 that \y(t)\>b, which guarantees that w(t) crosses P4Q4 or PΊQΊ

at some / close to tk. Therefore w(ή makes a complete clockwise revolution around

DA. This is a contradiction, because w(ή cannot cross Γ from above to below. The

proof of Theorem 1 is complete.

REMARK 3. In the above argument it is seen that w(t) starting outside DA never

makes a complete revolution around DA. Such a behavior was already observed for the

equation (3) with g(x) = x by setting a critical point at infinity (cf. [20, p. 316]).

4. Unbounded solutions. We show that the condition (v.l) in Theorem 1 cannot

by dropped, by constructing a continuous function a(t), 1 < a(t) < 6, such that the

equation

(27)

has a solution x(t) with

(28) lim sup | x(t) | = 00 for some ω e R .

For the system

(29) x=y, y=-\y\y-eait){xlx,

which is equivalent to (27), we shall show that there exists a solution y(t) satisfying

(30) lim sup | y(ή \ = 00

and that (30) implies (28).

In order to prove the assertion, it is sufficient to construct a continuous function

a(ή and τ 2 for any y0 and τ l 5 where \yo\>N for some constant Λf>0, such that

τ 2 > τ 1 ? l<a(ί)<6 on [τl9 τ 2] ,

and that the solution (x(ή,y(ή) with x(τi) = 0 and y(τί)=yo satisfies

(31) I j (τ 2 ) l>bol + 1 and x(τ2) = 0.

Let TV be a large positive number such that if | y \ > N, then the solution x = x(y)

of the equation
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9 V3 9

satisfies

and in the following, take y0 such that \yo\>N. Since the right hand side of (29) is

symmetric with respect to the origin, we may assume that yo>0 and set τί = t1.

Step 1. First of all we consider the solution of the system

(32) x=y, y=

with x(t1) = 0 and yit^^y^. In the first quadrant of the phase plane (32) yields that

dv

(33) yJL=-y2-e*X9

dx

and by setting z=y2, we obtain the linear equation

dx

and hence

-2 ί V Wt/j,

that is,

(34) y2 = ,

Setting t2 to be the first t>t1 such that y(t) = 0 and putting xo = x(t2), we have

(35)

which implies that .x0->oo as }>0->oo.

In the fourth quadrant (32) yields

(36) yQL=y2-e*Xt

dx

and hence by the same argument as above we have

(37) y2e~2x-2(l + x ) e " x = const.
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Substituting x = x0 and y = 0, we obtain

(38) y2 = 2(1 +x)ex-2(\ + xo)e2χ-χ°.

Step 2. Secondly we consider the solution of the system

(39) x=y, y=-\y\y-e6lxlx

with x(t2) = x0 and y(t2) = 0. Since (39) yields

(40) —=y2-e6xx
dx

in the fourth quadrant, by the same argument as in Step 1 we obtain

fx — xe*x- — e*x* + —
2 8 2

Setting t3 to be the first t>t2 such that x(t) = 0 and putting y1=y(t3), we see that

(41)

Since \yo\>N, (35) implies that yl>(yo + 2)2. Let δ be a small positive number such
that

(42)

and let ί4 be a number sufficiently close to t3, t2<t4<t3, such that

(43) y(u)< ~ (yo+2)

and

(44) 0<x(t4)<δ.

Step 3. Let a(t, ε) be a function defined for /> tί and a small positive parameter ε
such that

a(t,ε) =

(tγ<t<t2)

-t2) (t2<t<t2

+ ε<t<t4-ε)

6 — ( ί -
ε

Clearly a(t, ε) is continuous for /, 1 < a(t, ε) < 6 and
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(45) \a(t,ε)-6\dt = 5ε.
Jt2

We consider the solution x(ή = X{t) and y(ή = Y(t) of the system (29) with

a(ή = a(t, ε), which satisfies X(t1) = 0 and Y(t1)=y0. Since a(t, ε)=l for ti<t<t2, (29)

coincides with (32), and hence x = X{i) and y = Y(t) satisfies (34) and X(t2) = x0 and

Y(t2) = 0. We set G to be the region in the fourth quadrant bounded by the ^-axis

and the curve (38) and (41) (see Figure 2). For t2<t<tAr, because 1 <a(t, ε)<6, we can

see by the comparison of the equation YdY/dX= γ2-e

a^)χχ with (36) and (40) that

(X(t), Y(ή) remains in G as long as it belongs to the fourth quadrant.

We will show that if ε is sufficiently small, then

(46) (X(t),Y(t))eG for t2<t<u,

(47) X(u)<δ

and

(48) r ( '4 )<-ϋΌ + 2).

For the solution (x(ή, y(ή) of (39), setting

ξ(t) = X(ή-x(t) and η(ή=Y(ή-y(ή,

we see that ζ(t2) = η(t2) = b because X(t2) = x(t2) = x0 and Y(t2) = y(t2) = 0, and that

(49) ξ = η,

(50) ή= Y2-y

2-(ea^xX-e6xx).

Therefore, there is a positive constant L such that

(51)

as long as (X(ή, Y(ί))eG. Setting ρ(t) = \ξ(t)\ + \η(t)\, we see from [6] that ρ{t) has

the right-hand derivative D+p(t) and by (49) and (51) that

Therefore we obtain

p(i)<L\ \a(s,ε)-6\e{L+m-s)ds for t>t2,<L\ \a(s,ε)-

where we used p(ί2) = 0, and hence by (45) p(ή = O(ε) for t2<t<t4, that is, \X(ή-

x(t) I +1 Y(ή-y(t)\^0 on [/2, ί4] as ε->0. Thus, (46), (47) and (48) are proved by (43)

and (44).

Step 4. We consider (29) for t>t4, and then since a(t, ε)=l for t>t4, it again
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y=~φ(χ)

FIGURE 1.

(41)

FIGURE 2.
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coincides with (32), and hence x = X{i) and y = Y(t) satisfies (37) in the fourth quadrant.

Setting /5 to be the first t>t4 such that X(ή = 0 and putting Yx = Y(t5), we have

and hence by (47), (48) and (42), we obtain

Thus, setting τ2

 = t5, we obtain (31), and (30) implies (28) by (35). The proof is

complete.
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