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Bhaskar Roy Bardhan and Jeffrey H. Shapiro
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ABSTRACT

Fiber-optic communications are moving to coherent detection in order to increase their spectral efficiency, i.e.,
their channel capacity per unit bandwidth. At power levels below the threshold for significant nonlinear effects,
the channel model for such operation—a linear time-invariant filter followed by additive Gaussian noise—is
one whose channel capacity is well known from Shannon’s noisy channel coding theorem. The fiber channel,
however, is really a bosonic channel, meaning that its ultimate classical information capacity must be determined
from quantum-mechanical analysis, viz. from the Holevo-Schumacher-Westmoreland (HSW) theorem. Based on
recent results establishing the HSW capacity of a linear (lossy or amplifying) channel with additive Gaussian
noise, we provide a general continuous-time result, namely the HSW capacity of a linear time-invariant (LTI)
bosonic channel with additive Gaussian noise arising from a thermal environment. In particular, we treat
quasimonochromatic communication under an average power constraint through a channel comprised of a stable
LTI filter that may be attenuating at all frequencies or amplifying at some frequencies and attenuating at others.
Phase-insensitive additive Gaussian noise—associated with the continuous-time Langevin noise operator needed
to preserve free-field commutator brackets—is included at the filter output. We compare the resulting spectral
efficiencies with corresponding results for heterodyne and homodyne detection over the same channel to assess
the increased spectral efficiency that might be realized with optimum quantum reception.
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1. INTRODUCTION

Determining the ultimate limits on reliable data-transmission rates for noisy communication channels is one of
the most fundamental tasks in information theory. The mathematical foundation for determining such limits was
set by Shannon in his seminal work, which introduced the notion of channel capacity as the maximum rate at
which error-free communication is possible over a communication channel.1 However, information is necessarily
encoded in a physical system, and at optical frequencies noise sources of quantum mechanical origin impact
the ultimate rate of reliable communication. It is therefore important to determine the information-carrying
capacities of noisy quantum communication channels and also to establish means by which these limits can be
approached in practical systems.

For optical communication systems—for instance, ones based on fiber or free-space propagation—bosonic
channels provide a quantum model of communication in which the modes of the electromagnetic field are used
as physical information carriers.2,3 The rate of reliable information transmission through such communication
channels is significantly impacted by measurement statistics of the receiver used to extract the encoded infor-
mation. In particular, conventional optical communication receivers, i.e., those that employ direct, homodyne,
or heterodyne detection, have different capacities, owing to their different measurement statistics. Direct de-
tection has superior photon efficiency (many bits/photon),4 hence it is the preferred choice for photon-starved
applications like the Lunar Laser Communication Demonstration.5 Homodyne and heterodyne detection, how-
ever, offer better spectral efficiency (many bits/sec-Hz),6 so they are employed to maximize throughput in the
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Internet’s fiber backbone. In fact, fiber-optic communications are moving to coherent detection for increased
spectral efficiency,7 and it is germane to explore whether it is possible to approach the ultimate limits of reliable
transmission with these standard detection techniques.

The ultimate capacity of a bosonic channel is its Holevo-Schumacher-Westmoreland (HSW) capacity,8 which
will equal or exceed those of conventional systems. Until recently, the only bosonic channel whose HSW capacity
was known was the pure loss channel, in which any attenuation between the transmitter and the receiver was ac-
companied by the minimum (vacuum-state) noise level needed to preserve the Heisenberg uncertainty principle.9

Now, however, with the proof of the minimum output entropy conjecture,10,11 the HSW capacities are known
for the single-mode phase-insensitive Gaussian channels such as the thermal noise, additive noise, and quantum
amplifier channels. These results were later extended to obtain the capacities of physical communication channels
that are affected by nonzero memory and Gaussian noise.12 However, the memory model used in Ref. 12—a
cascade of identical discrete beam-splitters or amplifiers—is insufficiently general to include the quantum model
of the archetypal communication channel from classical information theory, viz., transmission through a general
continuous-time, linear-time invariant (LTI) filter followed by additive statistically-stationary Gaussian noise.

In this paper, we remedy the preceding omission by determining the HSW limit on spectral efficiency of an
average-power constrained, quasimonochromatic bosonic channel comprised of a stable LTI filter—which, at any
particular frequency, may be attenuating or amplifying—followed by additive phase-insensitive Gaussian noise
arising from a thermal environment. We evaluate the HSW capacities of such channels by decomposing them
into a set of parallel channels with additive Gaussian noise, and we compare the results so obtained with the
corresponding capacities when coherent (homodyne or heterodyne) detection is used in lieu of optimal quantum
reception.

2. LINEAR, TIME-INVARIANT BOSONIC CHANNEL

2.1 Bosonic channels

Bosonic channels play a very significant role in modeling optical communication channels that rely on fiber or
free space propagation. In general, a K mode bosonic channel can be represented by K quantized modes of
the electromagnetic field in a tensor-product Hilbert space H⊗K = ⊗K

k=1Hk with K pairs of input and output
bosonic field operators { âink , âoutk : k = 1, 2, . . . ,K }. For instance, at the single-mode level, attenuating and
amplifying channels can be represented by bosonic channels whose channel input is an electromagnetic field
mode with photon annihilation operator âin, and the resulting channel output is another field mode whose
photon annihilation operator âout is given by the commutator-preserving transformations

âout =

{ √
η âin +

√
1− η âenv, attenuating channel

√
κ âin +

√
κ− 1 â†env, amplifying channel,

(1)

where 0 < η ≤ 1 is the attenuating channel’s transmissivity, 1 < κ < ∞ is the amplifying channel’s gain, and âenv
is the photon annihilation operator corresponding to an environmental-noise mode. The thermal-noise channel
is an attenuating channel whose âenv mode is in a thermal state, i.e., an isotropic Gaussian mixture of coherent
states with average photon number Nenv > 0:

ρ̂env =

∫

d2α
exp(−|α|2/Nenv)

πNenv
|α〉〈α|. (2)

The amplifying channel’s âenv mode injects minimal quantum noise when it is in its vacuum state, but, more
generally, it too could be in a thermal state given by (2).

2.2 LTI channel model with additive, phase-insensitive Gaussian noise

At power levels below the threshold for significant nonlinear effects, the fiber-optic communication channel is
a bosonic channel whose ultimate classical information capacity must be determined from quantum-mechanical
analysis, viz. from the HSW theorem.13,14

Proc. of SPIE Vol. 9739  973910-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Êout(t)Êin(t)

N̂(t)

H(ω)

Figure 1. Schematic diagram of the transmission of a baseband field operator through an LTI filter—with frequency
responseH(ω) at detuning ω from the optical carrier frequency ω0—and additive, statistically-stationary, phase-insensitive
Gaussian noise N̂(t) with noise spectrum SN (ω) =

∫
dτ 〈N̂†(t+ τ)N̂(t)〉e−iωτ .

The quantum model from which the fiber channel’s HSW capacity can be derived is schematically shown
in Fig. 1 for quasimonochromatic operation that is subject to an average power constraint. Here, Êin(t) and
Êout(t) are the baseband

√

photons/s field operators at the channel’s input and output, respectively, both having

the commutator relation
[

ÊJ(t), Ê
†
J(u)

]

= δ(t − u), for J = in, out. The positive-frequency input and output

field operators are thus Êin(t)e
−iω0t and Êout(t)e

−iω0t, where ω0 is the optical carrier frequency. The input-
output relation can be written as Êout(t) =

∫

dτ Êin(τ)h(t − τ) + N̂(t), where h(t) is the baseband channel’s

impulse response—assumed to be causal and stable—and N̂(t) is a baseband noise operator needed to ensure
the appropriate field-commutator relations. The frequency response H(ω) of the LTI filter H(ω) =

∫

dt h(t)eiωt

provides the Fourier-domain version of the above input-output relation

Êout(ω) = Êin(ω)H(ω) + N̂ (ω), where ÊJ(ω) =
∫

dt ÊJ(t)e
iωt, for J = in, out. (3)

Here, N̂ (ω) is the Fourier transform of the noise operator N̂(t) satisfying the commutator relation
[

N̂ (ω), N̂ †(ω′)
]

= 2πδ (ω − ω′)
(

1− |H(ω)|2
)

. (4)

2.3 Amplification and attenuation in LTI bosonic channels

The LTI filter described above can represent, depending on the magnitude of the frequency response H(ω),
both the attenuation and amplification processes for optical communication. Let us define two regimes for the
detuning frequencies: ω ∈ Ωatt, for which the filter is attenuating (|H(ω)| ≤ 1); and ω ∈ Ωamp, for which the
filter is amplifying (|H(ω)| > 1). Note that Eq. (3) takes forms similar to those in Eq. (1) for both of these cases.
We shall assume that the channel represented by such an LTI filter has the minimum-noise associated with
the quasimonochromatic operation at temperature T K, in which case N̂(t) can be taken to be in a zero-mean,
stationary Gaussian state with the phase-insensitive correlation function

RN (τ) = 〈N̂†(t+ τ)N̂(t)〉 =
∫

dω

2π
SN (ω)eiωτ , (5)

where

SN(ω) =















1− |H(ω)|2
e~ω0/kT − 1

for ω ∈ Ωatt

|H(ω)|2 − 1

1− e−~ω0/kT
, for ω ∈ Ωamp,

(6)

with k being Boltzmann’s constant, follows from the Planck law for thermally-distributed photons in the quasi-
monochromatic limit wherein e~(ω0+ω)/kT ≈ e~ω0/kT . The quasimonochromatic condition will apply when H(ω)
is narrowband, in comparison with ω0, such as would be the case for a dense wavelength-division multiplex-
ing (DWDM).16–18 Thus, in our numerical work we will consider the fourth-order Butterworth filter, for which
|H(ω)| = H0/[1+(ω/ωc)

8], where 0 < H0 ≤ 1 is an attenuating filter, H0 > 1 is an amplifying filter, and ωc ≪ ω0

enforces the quasimonochromatic condition on the channel filter that will imply a similar quasimonochromatic
constraint on Êin(t)’s capacity-achieving excitation spectrum.
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2.4 Fourier mode-decomposition of the LTI bosonic channel

We now introduce a discretization based on transmitting a stream of Ts-sec long continuous-time symbols that
are bracketed by ∆Ts-sec long guard bands. Specifically, we will assume that the input field Êin(t) is only
in a non-vacuum state when |t − n(Ts + ∆Ts)| ≤ Ts/2, for integer n. Likewise, after offsetting the receiver’s
clock by the filter’s group delay, we will assume that the receiver only measures the output field Êout(t) when
|t − n(Ts + ∆Ts)| ≤ Ts/2, for integer n. By taking Ts to greatly exceed the filter’s bandwidth ωc/2π, we can
choose a fixed ∆Ts large enough to ignore intersymbol interference while maintaining ∆Ts ≪ Ts.

19 It follows
that we can focus our attention on a single n value in our discretization, so we will use the n = 0 operator-valued
Fourier series representations,

Êin(t) =
∑

k

âink
exp(−i2πkt/Ts)√

Ts

, for |t| ≤ Ts/2, and Êout(t) =
∑

k

âoutk

exp(−i2πkt/Ts)√
Ts

, for |t| ≤ Ts/2, (7)

to obtain

âoutk = H(2πk/Ts)â
in
k + n̂k, where N̂(t) =

∑

k

n̂k
exp(−i2πkt/Ts)√

Ts

, for |t| ≤ Ts/2. (8)

The statistics for N̂(t) given in the previous section, together with the high time-bandwidth condition Tsωc/2π ≫
1, imply that the noise operator’s Fourier series is also its Karhunen-Loève series, so that the {n̂k} are in a product

state that is Gaussian, zero-mean, and completely characterized by 〈n̂†
kn̂j〉 = SN (ωk)δkj , where ωk = 2πk/T and

δkj is the Kronecker delta function.

The LTI bosonic channel we are considering can thus be decomposed into a set of parallel channels19 with
operator-valued input-output pairs {(âink , âoutk }, where the output is related to the the input via Eq. (8). In the
next section, we show that this decomposition in turn allows us evaluate the information capacities for optimum
reception as well as coherent (homodyne or heterodyne) detection over LTI bosonic channels with Gaussian noise.

3. CAPACITIES OF LTI BOSONIC CHANNELS

3.1 Bosonic channel capacities

For the last few decades, extensive efforts have been put into determining the ultimate limits on the reliable
communication through the bosonic channels. Shannon’s noisy channel coding theorem showed that the classical
capacity of a classical channel is the maximum mutual information between its input and output states over
all encoding and decoding strategies. However, the quantum nature of single-mode attenuating and amplifying
bosonic channel means that their classical information capacities must be found from the HSW theorem, by
maximizing over both the transmitted quantum states and the receiver’s quantum measurement. Consider a
set of symbols {x} that is represented by a collection of input states {ρ̂x}, and assume that these states are
selected according to some prior distribution {px}. A quantum channel can, in general, be represented by a
completely-positive-trace-preserving (CPTP) map (say M), and the Holevo information χ(M) for this channel
is given by

χ(M) = S

(

∑

x

pxρ̂x

)

−
∑

x

pxS (ρ̂x) , (9)

where S(ρ̂) is the von Neumann entropy of a state ρ̂. The classical capacity of this channel is

C = sup
n

(

max
{px,ρ̂x}

[

χ
(

M⊗n
)]

/n

)

. (10)

The regularization step—the supremum over n channel uses— is necessary because it is not known, in general,
whether the Holevo information is additive.

For a single-mode pure-loss bosonic channel, when the transmitter is constrained to use at most NS photons
on average per channel use, the capacity is given by g(ηNS), where g(x) ≡ (x+ 1) log2(x+ 1)− x log2(x) is the
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von Neumann entropy of a bosonic thermal state with average photon number x, and η is the transmissivity
of the channel.9 Moreover, this capacity has been shown to be achievable with an isotropic Gaussian encoding
over coherent states, and it exceeds what is achievable with the coherent (homodyne and heterodyne) detection,
namely, Chom = 1

2 log2(1+4ηNS), Chet = log2(1+ηNS). It is also known that heterodyne detection is asymptot-
ically capacity-achieving, for the pure-loss channel, as NS → ∞. With the proof of the long-standing minimum
output entropy conjecture last year,10,11 the following HSW capacities for the single-mode thermal noise and
amplifying channels are now also known

C(Mtherm) = g(ηNS + (1− η)Nenv)− g((1− η)Nenv), (11)

C(Mampl) = g(κNS + (κ− 1)(Nenv + 1))− g((κ− 1)(Nenv + 1)), (12)

where Nenv is the average photon number of the environmental noise mode.

3.2 Capacity and spectral efficiency of LTI bosonic channels

To evaluate the HSW capacities and the spectral efficiencies, along with their homodyne and heterodyne coun-
terparts, for the LTI thermal-noise attenuating and amplifying channels, we proceed by considering their parallel
channel decomposition as described in Sec. 2. With this decomposition of the LTI bosonic channels with additive
Gaussian noise, the discretized capacity problem is then reduced to maximizing the Holevo information subject
to the average photon-flux constraint ∗

1

Ts +∆Ts

∑

k

n̄(ωk) ≤ P, (13)

where n̄(ωk) = 〈âin†k âink 〉. The results of Refs. 11,12 imply that the discretized-channel’s HSW capacity is achieved
by coherent-state encoding. For such encoding, the Holevo information rate (in bits/sec) is

χ(P ) =

∑

k

{

g[|H(ωk)|2n̄(ωk) + SN (ωk)]− g[SN (ωk)]
}

Ts +∆Ts
, (14)

and the constrained maximization of χ(P ) can be accomplished by a Lagrange multiplier technique, as was done
for the multiple-spatial-mode, broadband, pure-loss channel,15 and for the beam-splitter and amplifier cascade
channels.12 Passing to the limit Ts → ∞, with ∆Ts, fixed then yields the LTI channel’s HSW capacity (in
bits/sec):

CHSW(P ) =

∫

dω

2π

{

[g[|H(ω)|2n̄(ω) + SN (ω)]− g[SN (ω)]
}

, (15)

where SN (ω) is given by Eq. (6) and the average photon-number distribution is

n̄(ω) =max
{[

(eβ/|H(ω)|2 − 1)−1 − SN (ω)
]

/|H(ω)|2, 0
}

, (16)

where the Lagrange multiplier β is chosen to saturate the photon-flux bound

∫

dω

2π
n̄(ω) ≤ P. (17)

The spectral efficiency (in bits/sec-Hz), i.e., the capacity per unit bandwidth ωc, can be evaluated from the
above HSW capacity,20 and in our case we have,

CHSW,SE(P ) =
2π

ωc

∫

dω

2π

[

g
(

|H(ω)|2n̄(ω) + |1− |H(ω)|2|SN (ω)
)

− g
(

|1− |H(ω)|2|SN (ω)
)]

, (18)

∗Because Êin(t)’s excitation is quasimonochromatic, this constraint limits the average power to at most ~ω0P .
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subject to the photon-flux constraint.

The homodyne and heterodyne spectral efficiencies—to which we will compare the preceding HSW limit
on the spectral efficiency—presume coherent-state encoding. Hence their capacities are well known, because
homodyne and heterodyne measurements convert the Fig. 1 model into classical LTI channels with additive
Gaussian noise. In particular, assuming unity homodyne and heterodyne efficiencies, the homodyne channel
corresponding to Fig. 1 has an input that is a real-valued, classical, photon-units field Ehom

in (t) and an output
that is a real-valued, classical, photon-units field Ehom

out (t). The homodyne channel’s input-output relation is then

Ehom
out (t) =

∫

dτ Ehom
in (τ)h(t− τ) +Nhom(t), (19)

where Nhom(t) is a stationary, zero-mean, real-valued Gaussian random process with spectral density SNhom
(ω) =

(2SN (ω) + 1)/4 †. The corresponding channel model for heterodyne detection has complex-valued, classical,
photon-units input and output fields that are related by

Ehet
out(t) =

∫

dτ Ehet
in (τ)h(t− τ) +Nhet(t), (20)

where Nhet(t) is a stationary, zero-mean, isotropic, complex-valued Gaussian random process with spectral
density SNhet

(ω) = (SN (ω) + 1)/2. Standard Shannon theory results now lead to the following homodyne and
heterodyne capacities (in bits/sec)19

Chom(P ) =

∫

dω

2π

1

2
log2

(

1 +
n̄hom(ω)|H(ω)|2

SNhom
(ω)

)

, (21)

where
n̄hom(ω) = max

(

βhom/2− SNhom
(ω)/|H(ω)|2, 0

)

, (22)

with the Lagrange multiplier βhom chosen to give

∫

dω

2π
n̄hom(ω) = P, (23)

and

Chet(P ) =

∫

dω

2π
log2

(

1 +
n̄het(ω)|H(ω)|2

2SNhet
(ω)

)

, (24)

where
n̄het(ω) = max

(

βhet − 2SNhet
(ω)/|H(ω)|2, 0

)

, (25)

with the Lagrange multiplier βhet chosen to give

∫

dω

2π
n̄het(ω) = P. (26)

The corresponding spectral efficiencies for the homodyne and heterodyne detection are given by

Chom,SE(P ) =
2π

ωc

∫

dω

2π
log2

(

1 +
n̄het(ω)|H(ω)|2

2SNhet
(ω)

)

, (27)

Chet,SE(P ) =
2π

ωc

∫

dω

2π
log2

(

1 +
n̄het(ω)|H(ω)|2

2SNhet
(ω)

)

. (28)

From Eqs. (22) and (25), it is apparent that the capacity achieving photon-flux spectra for homodyne and
heterodyne detection have “water filling” interpretations, e.g., the capacity-achieving photon flux for homodyne

†Here, without appreciable loss of generality, we have assumed that the impulse response h(t) is real valued.
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Figure 2. Spectral efficiencies (SEs) (in bits/sec-Hz)) for optimum quantum reception, homodyne, and heterodyne detec-
tion plotted versus the transmitted photon flux for an attenuating DWDM filter modeled by a fourth-order Butterworth
filter, for which |H(ω)| = H0/[1 + (ω/ωc)

8] with peak value H0 = 0.1 and bandwidth ωc/2π = 40 GHz. These plots
assume ω0 corresponding to a 1.55 µm center wavelength and T = 300 K thermal environment.

detection is allocated across detuning frequencies keeping n̄(ω) + SNhom
(ω)/|H(ω)|2 constant while satisfying

Eq. (23).19,21

In Fig. 2, we compare the spectral efficiency for optimum quantum reception with those for homodyne and
heterodyne detection as functions of the transmitted photon flux. These curves assume an attenuating DWDM
filter modeled by a fourth-order Butterworth filter, for which |H(ω)| = H0/[1 + (ω/ωc)

8]. We find that the
heterodyne capacity exceeds the homodyne capacity over the entire a broad range of photon fluxes. This oc-
curs because their capacities increase linearly with increasing bandwidth but increase only logarithmically with
increasing signal-to-noise ratio, implying that heterodyne detection’s factor-of-two bandwidth advantage over ho-
modyne detection overwhelms the latter’s factor-of-two maximum SNR advantage over the former. Furthermore,
at high photon-flux levels, the spectral efficiency of heterodyne detection approaches the HSW limit.

4. CONCLUSIONS

We have presented a quantum-mechanical model for optical communication through LTI bosonic channels with
additive Gaussian noise and have reported a framework for evaluating the ultimate limits on reliable communica-
tion over such channels. These bosonic channels, operating in the thermal environment, can represent the effects
of quantum amplification or attenuation. Our work provides tools that enable comparison of optimum reception
spectral efficiencies for representative DWDM filters—with or without amplification—with the corresponding
results for homodyne and detection. Although motivated by the fiber application, these results are applicable to
all LTI channels with additive, phase-insensitive Gaussian noise, so they can be applied to unguided channels as
well.
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