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Optical channels, such as fibres or free-space links, are ubiquitous in today’s telecommunication networks. They rely on
the electromagnetic field associated with photons to carry information from one point to another in space. A complete
physical model of these channels must necessarily take quantum effects into account to determine their ultimate
performances. Single-mode, phase-insensitive bosonic Gaussian channels have been extensively studied over past
decades, given their importance for practical applications. In spite of this, a long-standing unsolved conjecture on the
optimality of Gaussian encodings has prevented finding their classical communication capacity. Here, this conjecture is
solved by proving that the vacuum state achieves the minimum output entropy of these channels. This establishes the
ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical
capacity of these channels is additive.

S
ince the advent of lasers, the question of how quantum effects
must be accounted for in optical communication systems has
occupied researchers1. The limits imposed by quantum mech-

anics on the highest possible bit rate achievable through optical
channels (the so-called ‘classical capacity’) have long been studied
(for example, in ref. 2), but no complete resolution of the
problem was found due to the extreme difficulty of identifying the
optimal encodings and decodings. Recent progress in quantum
communication theory then moved this question forward by pro-
viding a formal expression for the classical capacity of quantum
channels3–5. Still later, the capacity of a large class of realistic
quantum communication models known as phase-insensitive
bosonic Gaussian channels (BGCs) was expressed6 by conjecturing
the optimality of Gaussian encodings. These include channels that
use the electromagnetic field (or any bosonic field) as an infor-
mation carrier (for example, optical fibres, optical waveguides or
free-space communication lines) and they model the most relevant
sources of noise that may affect the transmission line (for example,
attenuation noise due to the transferring of signals in dissipative
media or the noise associated with their amplification).

The Gaussian conjecture has consequently become one of the
most debated conjectures in quantum communication theory over
the last decade. It can be rephrased, stating that the minimum
von Neumann entropy at the output of a BGC is achieved by
Gaussian input states (this is named the ‘minimal output entropy’
or ‘min-entropy’ conjecture)7. In its simplest form it implies
that a bosonic system (say a mode of the electromagnetic field)
interacting with a Gibbs thermal state via a quadratic exchange
Hamiltonian will attain the minimum possible output entropy
value if initially prepared into a coherent state, for example
vacuum. This apparently innocuous statement turns out to have
profound physical and technological implications8–15. Indirect
evidence of its validity has accumulated over the years8–19, yet its
proof has remained elusive.

Here, we prove this Gaussian min-entropy conjecture for single-
mode phase-insensitive BGCs (a set including, for instance, thermal,
additive classical noise, and amplifier channels6), which in turn

provides the ultimate closed expression for the communication
capacity of these channels as prescribed by quantum mechanics
(an extended version of this theorem that applies to multi-mode
scenarios is given in ref. 20.) The proof restricts the entropy mini-
mization over bounded energy states, but this does not affect the
capacities. It also implies that the capacity of phase-insensitive
BGCs can be achieved via Gaussian encodings and is additive,
which has long been open to question. Furthermore, as sketched
in the discussion section, proving the conjecture has broader conse-
quences, allowing us to compute for the first time the entanglement
of formation21 for some non-symmetric Gaussian states or to
deduce the optimality of Gaussian measurements in the quantum
discord22 for some Gaussian states23. Other major implications
can be anticipated.

The Gaussian channel model
BGCs are the quantum counterparts of the Gaussian channels of
classical information theory24. They describe all physical completely
positive trace-preserving (CPT) transformations25, which, when
acting on a collection of bosonic degrees of freedom (continuous-
variable quantum systems26,27), preserve their Gaussian character6.
Accordingly, BGCs are the most common noise models that
tamper with quantum optical implementations, including those
responsible for the attenuation, amplification and squeezing of
optical signals2. The most physically relevant cases are the phase-
insensitive BGCs operating on a single bosonic mode described by
the annihilation (resp. creation) operator a (resp. a†), fulfilling the
canonical commutation rules [a,a†] = 1. Phase-insensitive BGCs
include two distinct subclasses: the covariant and contravariant
BGCs. A general single-mode covariant BGC transforms the
symmetrically ordered characteristic function χ(z) = Tr[ρD(z)]
(z being complex) associated with the input state ρ (ref. 28) as
χ(z) ! χ(

!!

τ
√

z)exp(−y|z|2/2), where τ≥ 0 is a loss/gain parameter
and y parametrizes the added noise, while D(z) = exp[za†–z*a] is
the displacement operator. For contravariant (phase-conjugation)
channels, we have χ(z) ! χ(−

!!!

|τ|
√

z*)exp(−y|z|2/2), where τ≤ 0.
The BGC is physical (the map is CPT) provided that y satisfies
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y≥ |τ − 1|. The map is called quantum-limited when this latter
inequality is saturated. A compact representation of phase-insensitive
BGC channels29 is given in Fig. 1. Among these channels, four
fundamental classes can be identified (adopting the notation of
refs 7, 9, and 30): the thermal channels EN

η , the amplifier channels
AN

κ and their weak conjugates30–32 ÃN
κ , and the classical additive

noise channels N n (see Fig. 1 and Supplementary Information for
a precise definition). Channel EN

η can be effectively described as
the transformation induced by mixing on a beamsplitter of trans-
missivity η∈ [0,1] the input state of the system with an external
mode B initialized into a Gibbs thermal bosonic state
ρ(N)
G = N

N+1

( )

b†b/(N + 1) with average photon number N∈ [0,∞].
The quantum-limited element of the set EN

η corresponds to N = 0,
a purely lossy (attenuator) channel Eη := E0

η (ref. 33). A well-
known property of this channel is that, when applied iteratively
on a state, it brings it toward the vacuum state, that is,

lim
q!∞

[Eη]
q(ρ) = |0〉〈0| (1)

The amplifier channels AN
κ and their weak-conjugates ÃN

κ refer,
respectively, to the signal and idler modes one gets at the output
of a parametric amplifier that couples (via a two-mode squeezing
transformation) the input state with the B mode defined above.
These channels are characterized by the gain parameter κ∈ [1,∞]
and, for N = 0, represent quantum-limited transformations
(Aκ :=A0

κ and Ãκ := Ã0
κ, respectively). Finally, the classical additive

noise channel N n is induced by randomly displacing the input
states in phase space via a Gaussian probability distribution of

variance n∈ [0,∞]. Note that EN
η , A

N
κ and N n are covariant,

while Ã
N

κ is contravariant under a phase shift of the input state.

The Gaussian channel conjecture
Consider a single-mode BGC effecting map Φ. Following refs 3, 4,
25, 34 and 35, its optimal classical communication rate, or
classical capacity5, can be computed as C(Φ) = limm!∞

1
m
Cχ(Φ

⊗m),
where Φ⊗m describes m channel uses (memoryless noise model),
while Cχ[Ψ] is the single-letter or χ-capacity of the map Ψ defined
by the expression Cχ(Ψ) = supENS{S(Ψ(ρENS)) −

∑

j pjS(Ψ[ρj]))}.
Here, maximization is performed over the set of input ensem-
bles ENS = {pj; ρj} (pj are probabilities; ρj are density
matrices), where ρENS =

∑

j pjρj is the associated average state and
S(ρ) = –Tr[ρlog2ρ] is the von Neumann entropy of ρ (ref. 25).
Input ensembles ENS must respect an average input energy
constraint, that is, Tr[H(m)ρENS]≤mE, where H(m) =

∑m
j=1 a

†

jaj is
the total photon number operator in the m modes. We also intro-
duce the minimum output entropy quantity S(<)min[Φ

⊗m] := infψ
S(Φ⊗m(|ψ〉〈ψ|)) for the map Φ⊗m, where the symbol (<) indicates
that the minimization is restricted over m-mode states |ψ〉 having
bounded mean input energy, that is, Tr[H(m)|ψ〉〈ψ|] <∞. This
restriction ensures finiteness and the continuity36 of all the
entropy quantities throughout this article.

The min-entropy conjecture then implies that S(<)min[Φ
⊗m] should

be additive and, if Φ is phase-insensitive, equal to m times the
output entropy associated with the vacuum input |0〉, that is,

S(<)min[Φ
⊗m] =mS(<)min[Φ] =mS(Φ(|0〉〈0|)) (2)

As detailed in the Supplementary Information, the validity of
equation (2) allows one to demonstrate a couple of properties first
conjectured in ref. 6 and known to hold at least for purely lossy
maps Eη := E0

η (ref. 33). First, for phase-insensitive BGCs, Gaussian
states provide optimal ensembles ENS for the classical capacity C
(Φ;E) under the average input energy constraint. Second, Cχ is addi-
tive, that is, C(Φ;E) = Cχ(Φ;E). The minimum entropy values S(<)min as
well as the corresponding capacities C for the four classes of Gaussian
channels defined in Fig. 1 are provided in the Supplementary
Information. Plots of these functions are presented in Fig. 2.

The proof
Following ref. 10, we use the fact that a generic phase covariant
(resp. contravariant) single-mode channel Φ can be expressed as
the concatenation of a quantum-limited lossy channel followed by
a quantum-limited amplifier (resp. quantum-limited contravariant
amplifier). Thus,

Φ =Aκ0
○ Eη0

(or Φ = Ãκ0
○ Eη0

) (3)

where parameters κ0 and η0 are in biunivocal correspondence with
the selected channel Φ and are obtained by solving the equations
τ = η0κ0 and y = κ0(1 − η0) + (κ0 − 1) for the covariant case, or
τ = η0(1 − κ0) and y = (κ0 − 1)(1 − η0) + κ0 for the contravariant
case (see Supplementary Information). Because channels Eη0

map
the vacuum into the vacuum, it follows that, to prove the min-
entropy conjecture for one use of Φ, it is sufficient to prove it for
Aκ0

, or equivalently, for Ãκ0
. These last two channels indeed have

the same minimum output entropy as they are conjugate37,38

(more generally, given a generic pure input state |ψ〉, density
operators Aκ0

(|ψ〉〈ψ|) and Ãκ0
(|ψ〉〈ψ|) have the same

non-zero spectra). Applying this single-mode reduction to m
channel uses, Φ⊗m =A⊗m

κ0
○ E⊗m

η0
, we actually need to prove

the min-entropy conjecture for channel A⊗m
κ0

because the product
vacuum state is invariant under E⊗m

η0
. A further simplification

then follows by noting that the conjugate channel Ãκ0
is entangle-

ment-breaking39. This implies that its minimal output entropy is

τ

y
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Figure 1 | Compact representation of single-mode phase-insensitive

channels. a, Single-mode phase-insensitive bosonic Gaussian channels

belong to four families characterized by the loss/gain parameter τ: (i) thermal

channel EN
τ with 0≤ τ≤ 1; (ii) amplifier channel AN

τ , where τ≥ 1; (iii) additive

classical noise channel N y satisfying τ = 1; (iv) (contravariant) phase-

conjugation channel, with τ≤0. All physical channels must satisfy y≥ |τ − 1|

and they are quantum-limited when this inequality is saturated. The

channels where y≥ |τ| + 1 can be shown to be entanglement-breaking.

b, A generic covariant single-mode channel Φ, with parameters τ and y,

can be expressed as the concatenation of a quantum-limited lossy channel

followed by a quantum-limited amplifier Φ =Aκ0
○ Eη0

, where τ = κ0η0 and

y = κ0(1 − η0) + (κ0 − 1). c, The proof relies on the following observation,

which is applied iteratively. Any quantum-limited amplifier Aκ0
has a

complementary (COM) channel Ãκ0
that is phase-conjugating (that is,

τ≤0), and therefore entanglement-breaking. Applying a complex

conjugation (CC) to Ãκ0
results in a new channel M satisfying τ = κ0 − 1 and

y = κ0, which can be decomposed (DEC) as Aκ0
○ E(κ0−1)/κ0

.
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additive, S(<)min[Ã
⊗m

κ0
] =mS(<)min[Ãκ0

], so the same is true for Aκ0
.

Consequently, the minimum output entropy for m uses of
channel Φ can always be achieved over separable inputs, and the
additivity of Cχ holds provided we can prove the single-mode
amplifier conjecture11

S(<)min[Aκ0
] = S(Aκ0

(|0〉〈0|)) (4)

To prove it, we observe that the conjugate channel Ãκ0
can be

expressed as the following measure-and-prepare transformation in
the coherent state basis

ρ ↦ Ãκ0
[ρ] = ∫ d

2z

π
| −

!!!

κ0
√

z*〉〈−
!!

κ
√

0z
*|〈z|ρ|z〉 (5)

where |z〉 = D(z)|0〉 is a coherent state (z being complex). The next
step is to notice that, by taking the complex conjugate of Ãκ0

[ρ]
with respect to the Fock basis, one obtains a state that coincides
with the output state of an entanglement-breaking covariant
channel M with parameters τ= κ0 − 1 and y = κ0 (Fig. 1). Thus,
Ãκ0

[ρ] and M[ρ] share the same spectrum for a fixed input ρ.
Together with the fact that for a pure input state |ψ〉, Ãκ0

(|ψ〉〈ψ|)
also has the same spectrum as Aκ0

(|ψ〉〈ψ|), this implies that
there exists a unitary transformation U (possibly dependent
upon |ψ〉) that fulfils the condition

Aκ0
(|ψ〉〈ψ|) = [U ○M](|ψ〉〈ψ|) = [U ○Aκ0

○ Eη0
](|ψ〉〈ψ|) (6)

where the second identity follows from equation (3), which allows
one to write M =Aκ0

○ Eη0
with η0= (κ0 – 1)/κ0 (Fig. 1). Equation (6)

means that, for a pure input state |ψ〉, the output state of a
quantum-limited amplifier Aκ0

coincides (up to a unitary trans-
formation that in principle depends upon |ψ〉) with the one
obtained by first applying a lossy channel Eη0

to the input and
then Aκ0

, as shown in Fig. 3. Consider next a generic ensemble
decomposition of Eη0

(|ψ〉〈ψ|), that is, Eη0
(|ψ〉〈ψ|) =

∑

j pj|ψj〉〈ψj|,
where pj > 0 are probabilities. Inserting this into equation (6)
and iterating the same passage q times, we obtain the identity

Aκ0
(|ψ〉〈ψ|) =

∑

ℓ

q
ℓ
[W

ℓ
○Aκ0

](|f
ℓ
〉〈f

ℓ
|) (7)

where W
ℓ
are unitaries, q

ℓ
> 0 are probabilities, and |f

ℓ
〉 are state

vectors that provide an ensemble decomposition after q applications
of Eη0

on the input state |ψ〉, that is,
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Figure 2 | Plots of the capacities and minimal output entropies for thermal EEEEEN

η , classical additive noise NNNNN
n
, amplifier AAAAAN

κ and contravariant amplifierÃAAAA
N

κ

BGCs. The exact definition of the channels and the analytical expressions for these quantities are provided in the Supplementary Information. a, Plot of the

capacities of EN
η (green region) and AN

κ as a function of parameters η and κ, respectively, for different values of N (N =0, 1, 5, 10, 20, 40, 100 and 200,

from top to bottom). For EN
η the capacity of N =0 coincides with the one given in ref. 33. b, Comparison of the capacities of AN

κ (solid lines) and Ã
N

κ

(dashed lines) as a function of κ for N = 0, 1, 5 and 10 (from top to bottom). c, Minimum output entropies for EN
η (green region), AN

κ (solid lines) and Ã
N

κ

(dashed lines). From bottom to top, N =0, 2, 5, 10, 20 and 40. In all plots E = 10. d, Plot of the capacity of N n as a function of noise parameter n and energy

constraint parameter E. Inset: minimum output entropy of N n.
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Figure 3 | Graphical representation of equation (6). The symbol ‘≃’ indicates

that applying the quantum-limited amplifier Aκ0
to pure input |ψ〉 or to its

evolved counterpart via a lossy channel of transmissivity η0= 1 − 1/κ0 (that

is, Eη0
(|ψ〉〈ψ|)) produces outputs that have the same spectra.
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∑

ℓ

q
ℓ
|f

ℓ
〉〈f

ℓ
| = [Eη0

]q(|ψ〉〈ψ|) (8)

(Here, index ℓ refers to a path of j-indices across the q subsequent
ensemble decompositions of the output state of Eη0

; see ref. 20 for
details.) Exploiting the concavity of the von Neumann entropy,
identity (7) yields

S(Aκ0
(|ψ〉〈ψ|)) ≥

∑

ℓ

q
ℓ
S(Aκ0

(|f
ℓ
〉〈f

ℓ
|)) (9)

Recalling property (1), it is intuitively clear at this level that for
q→∞, the ensemble {q

ℓ
,|f

ℓ
〉} in equation (8) will contain one

single component, namely the vacuum. Equation (9) will then lead
us to conclude that the output entropy for input |ψ〉 is larger than
the one associated with the vacuum, and hence to equation (4). To
show this rigorously, we start from the inequality

S(Aκ0
(|f

ℓ
〉〈f

ℓ
|)) ≥ −Tr[Aκ0

(|f
ℓ
〉〈f

ℓ
|)log2Aκ0

(σ)]

+ Tr[|f
ℓ
〉〈f

ℓ
|log2σ]

(10)

which holds for an arbitrary state |f
ℓ
〉 of equation (8) and for a

generic state σ, and which can be easily derived from the monotonic
decrease25 of the relative entropy S(|f

ℓ
〉〈f

ℓ
|∥σ) under the action of

mapAκ0
. Setting σ = [Eη0

]q(|ψ〉〈ψ|) and inserting into the righthand
side of equation (9), we then obtain

S(Aκ0
(|ψ〉〈ψ|)) ≥ S((Aκ0

○ [Eη0
]q)(|ψ〉〈ψ|))

− S([Eη0
]q(|ψ〉〈ψ|))

(11)

Because |ψ〉 is of bounded mean energy, the same holds for
[Eη0

]q(|ψ〉〈ψ|) and (Aκ0
○ [Eη0

]q)(|ψ〉〈ψ|) (the corresponding
energy expectations values being in fact ηq〈ψ|a†a|ψ〉 and
κηq〈ψ|a†a|ψ〉 + κ(κ − 1)). We can then invoke the continuity of the
von Neumann entropy36 and use property (1) for q→∞ to show that

S(Aκ0
(|ψ〉〈ψ|)) ≥ S(Aκ0

(|0〉〈0|)) (12)

and hence equation (4). This proves conjecture (2) and gives the sol-
ution for the capacity presented in Fig. 2.

Discussion
Aside from a definitive proof of the classical capacity of the four
fundamental Gaussian channels (Φ = EN

η , N n, A
N
κ or ÃN

κ ), the
above approach can be used to prove an identity analogous to (2)
for any single-mode channel covariant or contravariant with
respect to an arbitrary squeezed complex structure. Furthermore,
as explained in the Supplementary Information, when the mean
energy E is large enough29,40, this result can be used to show that
the optimality of Gaussian inputs for C(ψ;E) and the additivity of
Cχ(ψ;E) hold also for such channels. The solution of the min-
entropy conjecture also allows one to extend for the first time the
results of refs 41 and 42 by yielding the exact formula for the entan-
glement of formation (EoF)21 of some non-permutation-symmetric
two-mode Gaussian states. (The EoF is a measure of the cost of gen-
erating a given quantum bipartite state ρ.) Consider the two-mode
density matrices ρ(κ,N) one obtains at the output of a parametric
amplifier with gain parameter κ, when injecting the vacuum into
one port and a Gibbs thermal state ρ(N)

G into the other, that is,
ρ(κ,N) = Uκ[ρ

(N)
G ⊗ |0〉〈0|]U†

κ . The symmetric case ρ(κ,0) corre-
sponds to the two-mode squeezed vacuum state, whose entanglement
of formation is trivial to compute, that is, EoF[ρ(κ,0)] = g(κ − 1).
For a general ρ(κ,N) state, equation (4) implies

EoF ρ κ,N( )
[ ]

= EoF[ρ κ,0( )] = g κ − 1( ) (13)

(Notice that this expression does not depend on the mean photon
numberN of ρ(N)

G .) The proof of this identity follows by first noticing
that one can obtain the upperbound EoF[ρ(κ,N)]≤ g(κ − 1) by
generating ρ(κ,N) starting from the two-mode squeezed vacuum
state ρ(κ,0) and applying random correlated displacements (a trans-
formation that only involves local operation and classical communi-
cation post-processing) to both modes42. To show that this quantity
is also a lower bound for EoF[ρ(κ,N)], one can use the fact that the
reduced density matrix of ρ(κ,N) coincides with the output
state Aκ(ρ

(N)
G ) of the quantum-limited amplifier with a thermal state

ρ(N)
G input. Exploiting the equivalence relation between the EoF
and the minimum output entropy introduced in ref. 43, our proof
of conjecture (2) implies equation (13) (see Supplementary
Information for detailed proof).
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